JP2011241507A - Flame-resistant fiber bundle, carbon fiber bundle, and method for producing them - Google Patents

Flame-resistant fiber bundle, carbon fiber bundle, and method for producing them Download PDF

Info

Publication number
JP2011241507A
JP2011241507A JP2010114866A JP2010114866A JP2011241507A JP 2011241507 A JP2011241507 A JP 2011241507A JP 2010114866 A JP2010114866 A JP 2010114866A JP 2010114866 A JP2010114866 A JP 2010114866A JP 2011241507 A JP2011241507 A JP 2011241507A
Authority
JP
Japan
Prior art keywords
fiber bundle
oil
carbon fiber
flame
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010114866A
Other languages
Japanese (ja)
Other versions
JP5667380B2 (en
Inventor
Hidekazu Yoshikawa
秀和 吉川
Hiroko Yokoyama
裕子 横山
Masako Obata
真子 小幡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Toho Tenax Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Tenax Co Ltd filed Critical Toho Tenax Co Ltd
Priority to JP2010114866A priority Critical patent/JP5667380B2/en
Publication of JP2011241507A publication Critical patent/JP2011241507A/en
Application granted granted Critical
Publication of JP5667380B2 publication Critical patent/JP5667380B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Inorganic Fibers (AREA)
  • Artificial Filaments (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a carbon fiber bundle excellent in strength against flexural deformation such as twist and a method for producing a carbon fiber bundle.SOLUTION: When a carbon fiber bundle is produced, a copolymer obtained by polymerizing monomers containing acrylonitrile of not less than 90 mass % is spun, washed and drawn before coated with spinning oil, dried, and secondary drawn to obtain an acrylic precursor fiber bundle; the acrylic precursor fiber bundle is coated with firing oil and treated with heat at 200 to 300°C to obtain a flame-resistant fiber bundle; the flame-resistant fiber bundle is then carbonized in an inert gas atmosphere at a temperature of 800 to 2,500°C; and the coating weight ratio of spinning oil to firing oil is set to be within the range of 1:2 to 1:3.

Description

本発明は、ねじれ等の屈曲変形に対する強度に優れる炭素繊維束を得るための耐炎化繊維束及びその製造方法に関する。 The present invention relates to a flame-resistant fiber bundle for obtaining a carbon fiber bundle excellent in strength against bending deformation such as torsion and a method for producing the same.

炭素繊維は他の繊維と比較して優れた比強度及び比弾性率を有する。炭素繊維はその有する軽量性及び優れた機械的特性を利用して、樹脂と複合化する補強繊維として、広く工業的に利用されている。 Carbon fibers have superior specific strength and specific modulus compared to other fibers. Carbon fiber is widely used industrially as a reinforcing fiber to be combined with resin by utilizing its light weight and excellent mechanical properties.

近年、炭素繊維を利用する複合材料の工業的な用途は、多くの分野に広がりつつある。特にスポーツ・レジャー分野、航空宇宙分野においては、より高性能化(高強度化、高弾性化)に向けた要求が強まっている。炭素繊維と樹脂との複合化において高性能化を追求するためには、樹脂の持つ物性よりも炭素繊維そのものの物性を向上させることが不可欠である。炭素繊維は引張特性に対する強度・弾性率に優れる一方で、圧縮荷重やせん断荷重に対しては脆く、特にねじれ等の屈曲変形を伴う負荷に対する耐性の向上が必要とされている。 In recent years, industrial applications of composite materials using carbon fibers are spreading in many fields. Particularly in the sports / leisure field and the aerospace field, demands for higher performance (higher strength, higher elasticity) are increasing. In order to pursue high performance in the composite of carbon fiber and resin, it is essential to improve the physical properties of the carbon fiber itself rather than the physical properties of the resin. While carbon fibers are excellent in strength and elastic modulus with respect to tensile properties, they are brittle against compressive loads and shear loads, and in particular, it is necessary to improve resistance to loads accompanying bending deformation such as torsion.

従来、炭素繊維を安定して製造するために、単繊維同士の融着を防ぎ、繊維束の集束性を高める目的で、紡糸油剤や焼成油剤などの油剤が使用されており、一般的にシリコーン油剤が用いられる(例えば、特許文献1〜3参照)。しかし、これらの油剤により、繊維内部への酸素の透過性が低減するため、炭素繊維製時の耐炎化工程で耐炎化反応が均一に進まず、結果として得られる炭素繊維の圧縮強度や屈曲強度などの特性の低下要因となっていた。一方で、これらの油剤を使用しない場合には、単繊維同士の融着や製造時の擦過などにより繊維束が損傷するため、結果として得られる炭素繊維の特性は、引張特性も含め著しく低下する。 Conventionally, in order to stably produce carbon fibers, oil agents such as spinning oils and calcined oils have been used for the purpose of preventing the fusion of single fibers and improving the bundling property of fiber bundles. An oil agent is used (for example, refer to patent documents 1 to 3). However, these oil agents reduce the oxygen permeability to the inside of the fiber, so the flameproofing reaction does not progress uniformly in the flameproofing process when making carbon fiber, and the resulting carbon fiber compressive strength and flexural strength It was a factor that deteriorated the characteristics. On the other hand, when these oil agents are not used, the fiber bundle is damaged due to fusion between single fibers or abrasion during production, and the resulting carbon fiber properties, including tensile properties, are significantly reduced. .

そのため、炭素繊維製造時に油剤を使用した上で、炭素繊維の特にねじれ等の屈曲変形を伴う負荷に対する耐性を向上させる必要があった。 Therefore, after using an oil agent at the time of carbon fiber production, it is necessary to improve the resistance to a load accompanied by bending deformation such as twisting of the carbon fiber.

特開2010−43377号公報JP 2010-43377 A 特開2010−53467号公報JP 2010-53467 A 特開2010−77578号公報JP 2010-77578 A

本発明者は、上記問題を解決するため検討を重ねた。その結果、アクリル系前駆体繊維製造工程で付与する紡糸油剤の付着量と、炭素繊維製造工程で付与する焼成油剤の付着量の割合を特定の範囲として製造された耐炎化繊維束を用いて製造される炭素繊維束は、工程を安定化させる焼成油剤が酸素透過を疎外しないため、特にねじれ等の屈曲変形を伴う負荷に対する優れた耐性を有することを本発明者は見出し、本発明を完成するに至った。よって、本発明の目的とするところは、上記問題を解決し、特にねじれ等の屈曲変形を伴う負荷に対する耐性に優れる炭素繊維束及び炭素繊維の製造方法に関することにある。 The inventor has repeatedly studied to solve the above problem. As a result, it is manufactured using a flame-resistant fiber bundle manufactured with the ratio of the amount of spinning oil applied in the acrylic precursor fiber manufacturing process and the ratio of the amount of fired oil applied in the carbon fiber manufacturing process as a specific range. The present inventor finds that the carbon fiber bundle to be processed has excellent resistance to a load accompanied by bending deformation such as twisting because the calcined oil agent that stabilizes the process does not alienate oxygen permeation, and the present invention is completed. It came to. Accordingly, an object of the present invention is to solve the above-described problems and particularly relates to a carbon fiber bundle excellent in resistance to a load accompanied by bending deformation such as torsion and a method for producing the carbon fiber.

上記目的を達成する本発明は、以下に記載するものである。
〔1〕X線光電子分光法を用いてアルゴンエッチングを行い測定される耐炎化繊維束表面のケイ素原子と炭素原子の原子存在比(Si/C)の変化を、下記式により擬似的に算出して得られるエッチング深さ(L)を用いてプロットして得られるグラフの変曲点のエッチング深さ(L2)が、0.4〜1.0nmの範囲にあることを特徴とする耐炎化繊維束。
エッチング深さ(L:nm)=R(nm/min)×(T(s)/60)
(式中、Rは炭素原子のイオンビームスパッタリング率を表し、Tはイオンビームの照射時間(秒)を表す。)
〔2〕前記〔1〕に記載の耐炎化繊維束を炭素化して得られる炭素繊維束であって、炭素繊維束表面のケイ素原子と炭素原子の原子存在比(Si/C)が1〜5%の範囲にあることを特徴とする炭素繊維束。
〔3〕炭素繊維束を構成する単繊維の接着数(膠着個数)が10以下であり、ストランド引張強度が5100〜5500MPa、ストランド引張弾性率が240〜270MPaであり、炭素繊維束を構成する単繊維の直径が6.5〜7.5μmであることを特徴とする〔2〕に記載の炭素繊維束。
〔4〕アクリロニトリルを90質量%以上含有する単量体を重合した共重合体を紡糸し、水洗、延伸処理を行った後、紡糸油剤を付与し、乾燥、2次延伸処理し得られるアクリロニトリル系前駆体繊維束に、焼成油剤を付与し、200〜300℃で熱処理する耐炎化繊維束の製造方法であって、前記紡糸油剤の付着量(質量%、PO1)と、前記焼成油剤の付着量(質量%、PO2)の比が、1:2〜1:3の範囲であることを特徴とする耐炎化繊維束の製造方法。
〔5〕アクリル系前駆体繊維束を170〜250℃、延伸比0.90〜1.10で熱処理した後、焼成油剤を付与することを特徴とする〔4〕に記載の耐炎化繊維束の製造方法。
〔6〕紡糸油剤の付着量(質量%、PO1)と、焼成油剤の付着量(質量%、PO2)の合計の油剤付着量が、アクリロニトリル系前駆体繊維に対して0.09〜0.28質量%であることを特徴とする〔4〕または〔5〕に記載の炭素繊維束の製造方法。
〔7〕紡糸油剤および焼成油剤が、シリコーン系油剤であることを特徴とする〔4〕〜〔6〕のいずれか1項に記載の炭素繊維束の製造方法。
〔8〕アクリロニトリルを90質量%以上含有する単量体を重合した共重合体を紡糸し、水洗、延伸処理を行った後、紡糸油剤を付与し、乾燥、2次延伸処理し得られるアクリロニトリル系前駆体繊維束に、焼成油剤を付与し、200〜300℃で熱処理して耐炎化繊維束を得、次いで該耐炎化繊維束を不活性ガス雰囲気中、温度800〜2,500℃で炭素化処理する炭素繊維束の製造方法であって、前記紡糸油剤の付着量(質量%、PO1)と、前記焼成油剤の付着量(質量%、PO2)の比が、1:2〜1:3の範囲であることを特徴とする炭素繊維束の製造方法。
The present invention for achieving the above object is described below.
[1] The change in the abundance ratio (Si / C) of silicon atoms and carbon atoms on the surface of the flame-resistant fiber bundle measured by argon etching using X-ray photoelectron spectroscopy is calculated by the following formula. The flame-resistant fiber, wherein the etching depth (L2) at the inflection point of the graph obtained by plotting using the etching depth (L) obtained in the above is in the range of 0.4 to 1.0 nm bundle.
Etching depth (L: nm) = R (nm / min) × (T (s) / 60)
(In the formula, R represents the ion beam sputtering rate of carbon atoms, and T represents the ion beam irradiation time (seconds).)
[2] A carbon fiber bundle obtained by carbonizing the flameproof fiber bundle according to [1], wherein the atomic ratio of silicon atoms to carbon atoms (Si / C) on the surface of the carbon fiber bundle is 1 to 5 % Carbon fiber bundle characterized by being in the range of%.
[3] The number of single fibers constituting the carbon fiber bundle is 10 or less, the strand tensile strength is 5100 to 5500 MPa, the strand tensile elastic modulus is 240 to 270 MPa, and the single fibers constituting the carbon fiber bundle The carbon fiber bundle according to [2], wherein the fiber has a diameter of 6.5 to 7.5 μm.
[4] Acrylonitrile system obtained by spinning a copolymer obtained by polymerizing a monomer containing 90% by mass or more of acrylonitrile, washing with water and stretching, then applying a spinning oil, drying and secondary stretching. A method for producing a flame-resistant fiber bundle in which a calcined oil agent is applied to a precursor fiber bundle and heat-treated at 200 to 300 ° C. The ratio of (mass%, PO2) is in the range of 1: 2 to 1: 3.
[5] The flame-resistant fiber bundle according to [4], wherein the acrylic precursor fiber bundle is heat treated at 170 to 250 ° C. and a stretch ratio of 0.90 to 1.10, and then a calcined oil agent is applied. Production method.
[6] The total oil agent adhesion amount of the spinning oil agent (mass%, PO1) and the calcined oil agent (mass%, PO2) is 0.09 to 0.28 with respect to the acrylonitrile-based precursor fiber. The method for producing a carbon fiber bundle according to [4] or [5], wherein the carbon fiber bundle is mass%.
[7] The method for producing a carbon fiber bundle according to any one of [4] to [6], wherein the spinning oil and the firing oil are silicone oils.
[8] Acrylonitrile system obtained by spinning a copolymer obtained by polymerizing a monomer containing 90% by mass or more of acrylonitrile, washing with water and stretching, then applying a spinning oil, drying and secondary stretching. A fired oil agent is applied to the precursor fiber bundle and heat treated at 200 to 300 ° C. to obtain a flame resistant fiber bundle, and then the flame resistant fiber bundle is carbonized at a temperature of 800 to 2,500 ° C. in an inert gas atmosphere. A method for producing a carbon fiber bundle to be treated, wherein the ratio of the amount of adhering spinning oil (% by mass, PO1) to the amount of adhering calcined oil (% by mass, PO2) is 1: 2 to 1: 3. A method for producing a carbon fiber bundle characterized by being in a range.

本発明の耐炎化繊維束によれば、工程を安定化させる焼成油剤が酸素透過を疎外しないため、特にねじれ等の屈曲変形を伴う負荷に対する耐性に優れた炭素繊維束を得ることができる。 According to the flame-resistant fiber bundle of the present invention, since the calcined oil agent that stabilizes the process does not exclude oxygen permeation, it is possible to obtain a carbon fiber bundle excellent in resistance to a load accompanied by bending deformation such as torsion.

以下、本発明を詳細に説明する。本発明の耐炎化繊維束は、X線光電子分光法を用いてアルゴンエッチングを行い測定される炭素繊維束表面のケイ素原子と炭素原子の原子存在比(Si/C)の変化を、下記式により擬似的に算出して得られるエッチング深さ(L)を用いてプロットして得られるグラフの変曲点のエッチング深さ(L2)が、0.4〜1.0nmの範囲にあることを特徴とする耐炎化繊維束である。
エッチング深さ(L:nm)=R(nm/min)×(T(s)/60)
(式中、Rは炭素原子のイオンビームスパッタリング率を表し、Tはイオンビームの照射時間(秒)を表す。)
The present invention will be described in detail below. The flame-resistant fiber bundle of the present invention shows the change in the abundance ratio of silicon atoms to carbon atoms (Si / C) on the surface of the carbon fiber bundle, measured by argon etching using X-ray photoelectron spectroscopy. The etching depth (L2) at the inflection point of the graph obtained by plotting using the etching depth (L) obtained by pseudo calculation is in the range of 0.4 to 1.0 nm. It is a flame-resistant fiber bundle.
Etching depth (L: nm) = R (nm / min) × (T (s) / 60)
(In the formula, R represents the ion beam sputtering rate of carbon atoms, and T represents the ion beam irradiation time (seconds).)

X線光電子分光法による繊維束表面の原子存在比測定およびアルゴンエッチングは、後述の方法によって実施される。繊維束は均一な平面では無いため、アルゴンエッチングによりエッチングされた深さを正確に計測することはできないが、アルゴンの照射条件を用いて理論値を算出することはできる。そのため、本発明はこの理論値をエッチング深さとして用いる。 Measurement of the atomic abundance ratio on the surface of the fiber bundle by X-ray photoelectron spectroscopy and argon etching are performed by the method described later. Since the fiber bundle is not a uniform plane, the depth etched by argon etching cannot be accurately measured, but the theoretical value can be calculated using the argon irradiation conditions. Therefore, the present invention uses this theoretical value as the etching depth.

また、耐炎化繊維束および炭素繊維束中のケイ素原子は、紡糸油剤、焼成油剤などの油剤に由来するため、エッチング処理を行いながらSi/Cを測定することで、油剤が単繊維内部に浸透した深さを評価することができる。しかし、測定範囲に比して十分に細い円筒状のサンプルの集合体である繊維束を側面からエッチング処理しているため、エッチング処理を進めていくと、ケイ素原子は測定されなくなるのではなく、一定値から変化しなくなる。そのため、本発明では、Si/Cの変化を、エッチング深さを用いてプロットしたグラフの変曲点のエッチング深さを、油剤が浸透した深さの指標として用いている。 In addition, since silicon atoms in flame-resistant fiber bundles and carbon fiber bundles are derived from oil agents such as spinning oils and calcined oil agents, the oil agent penetrates inside the single fiber by measuring Si / C while performing etching treatment. Can be evaluated. However, since the fiber bundle, which is a collection of cylindrical samples that are sufficiently thin compared to the measurement range, is etched from the side surface, silicon atoms are not measured when the etching process proceeds, No change from a certain value. Therefore, in the present invention, the etching depth at the inflection point in the graph in which the change in Si / C is plotted using the etching depth is used as an index of the depth at which the oil agent penetrated.

変曲点のエッチング深さは、0.4〜1.0nmであることが必須である。0.4nm未満であると、繊維に付与した油剤が単繊維表面に集中して存在するため、酸素の透過を阻害する。そのため、耐炎化反応が均一に進まず、得られる炭素繊維束の物性、特に圧縮強度や屈曲強度などの特性が低下する。一方、1.0nmを越えると、繊維中に深く浸透した油剤がグラファイト結晶の成長を妨げ、欠陥要因となるため、望ましくない。 It is essential that the etching depth of the inflection point is 0.4 to 1.0 nm. If it is less than 0.4 nm, the oil agent imparted to the fiber is concentrated on the surface of the single fiber, so that oxygen permeation is inhibited. Therefore, the flameproofing reaction does not proceed uniformly, and the properties of the resulting carbon fiber bundle, particularly properties such as compressive strength and flexural strength, are reduced. On the other hand, if it exceeds 1.0 nm, the oil agent that has penetrated deeply into the fiber hinders the growth of graphite crystals and becomes a cause of defects, which is not desirable.

また、本発明の炭素繊維束表面のケイ素原子と炭素原子の原子存在比(Si/C)が1〜5%であることが好ましい。5%を越えると、繊維に付与した油剤が酸素の透過を阻害し、得られる炭素繊維束の屈曲強度が低下するため好ましくない。 Moreover, it is preferable that the atomic abundance ratio (Si / C) of the silicon atom and the carbon atom on the surface of the carbon fiber bundle of the present invention is 1 to 5%. If it exceeds 5%, the oil applied to the fibers inhibits the permeation of oxygen and the bending strength of the resulting carbon fiber bundle is lowered, which is not preferable.

本発明では炭素繊維束の屈曲強度は、ループストランド強度を用いて評価されている。ループストランド強度は、後述の方法によって測定され、繊維束のねじれ変形に対する耐性の指標である。樹脂との複合材料として好適に用いるために、ループストランド強度は630MPa以上であることが好ましい。 In the present invention, the bending strength of the carbon fiber bundle is evaluated using the loop strand strength. The loop strand strength is measured by a method described later and is an index of resistance to twist deformation of the fiber bundle. In order to be suitably used as a composite material with a resin, the loop strand strength is preferably 630 MPa or more.

本発明の炭素繊維束は、ストランドを構成する単繊維の接着数(膠着個数)が10以下であることが好ましく、ストランド引張強度は5,100〜5,500MPa、ストランド引張弾性率が240〜270MPaであることが好ましく、繊維束を構成する単繊維の直径が6.5〜7.5μmであることが好ましい。 In the carbon fiber bundle of the present invention, the number of single fibers constituting the strand is preferably 10 or less, the strand tensile strength is 5,100-5,500 MPa, and the strand tensile modulus is 240-270 MPa. It is preferable that the diameter of the single fiber constituting the fiber bundle is 6.5 to 7.5 μm.

本発明の耐炎化繊維束は、アクリロニトリルを90質量%以上含有する単量体を重合した共重合体を紡糸し、水洗、延伸処理を行った後、紡糸油剤を付与し、乾燥、2次延伸処理し得られるアクリル系前駆体繊維束に、焼成油剤を付与し、200〜300℃で熱処理して得られる。その際、前記紡糸油剤の付着量(質量%、PO1)と、前記焼成油剤の付着量(質量%、PO2)の比が、1:2〜1:3の範囲とすることで、本発明の耐炎化繊維束は製造される。この耐炎化繊維束を、次いで不活性ガス雰囲気中、温度800〜2,500℃で炭素化処理することで、本発明の炭素繊維束は製造される。 The flame-resistant fiber bundle of the present invention is obtained by spinning a copolymer obtained by polymerizing a monomer containing 90% by mass or more of acrylonitrile, washing with water and stretching, then applying a spinning oil, drying, and secondary stretching. It is obtained by applying a calcined oil to the acrylic precursor fiber bundle that can be treated and heat-treating at 200 to 300 ° C. At that time, the ratio of the adhering amount of the spinning oil (mass%, PO1) and the adhering amount of the calcined oil (mass%, PO2) is in the range of 1: 2 to 1: 3. Flame resistant fiber bundles are manufactured. The carbon fiber bundle of the present invention is manufactured by carbonizing the flame-resistant fiber bundle at a temperature of 800 to 2,500 ° C. in an inert gas atmosphere.

更に具体的に述べると、本発明の炭素繊維束は、例えば、以下の方法により製造することができる。 More specifically, the carbon fiber bundle of the present invention can be produced, for example, by the following method.

<紡糸原液>
本例の耐炎化繊維束および炭素繊維束の製造方法に用いる前駆体繊維の紡糸原液は、炭素繊維製造用の紡糸原液であれば従来公知のものが何ら制限なく使用できる。そのなかでも、アクリロニトリル系炭素繊維製造用の紡糸原液が好ましい。具体的には、アクリロニトリルを90質量%以上、好ましくは94質量%以上含有する単量体を重合した共重合体からなる紡糸原液が挙げられる。アクリロニトリルと共重合する単量体としては、イタコン酸、アクリル酸メチル、アクリル酸エチル、アクリル酸等の公知の単量体が挙げられる。
<Spinning stock solution>
The precursor fiber spinning solution used in the production method of the flame-resistant fiber bundle and the carbon fiber bundle of this example may be any conventionally known one as long as it is a spinning solution for producing carbon fibers. Among these, a spinning dope for producing acrylonitrile-based carbon fiber is preferable. Specifically, a stock solution for spinning composed of a copolymer obtained by polymerizing a monomer containing 90% by mass or more, preferably 94% by mass or more of acrylonitrile is exemplified. Examples of the monomer copolymerized with acrylonitrile include known monomers such as itaconic acid, methyl acrylate, ethyl acrylate, and acrylic acid.

<紡糸>
上記紡糸原液を、1つの紡糸口金に好ましくは1,000以上の孔、より好ましくは20,000以上、さらに好ましくは20,000〜30,000の孔を有する紡糸口金から紡糸原液を紡出し、紡糸後の炭素繊維製造用前駆体繊維とする。紡糸口金が、20,000〜30,000の孔を有していると、太束でありながら糸割れをしない炭素繊維束が得られるため好ましい。口金の孔が20,000より少ない場合でも繊維束を束ね、太束繊維束を得ることはできるが、炭素繊維を加工する際に糸割れが起きるため好ましくない。口金の孔が30,000を超える場合は、得られる炭素繊維の機械特性が低下するため好ましくない。
<Spinning>
The above spinning stock solution is preferably spun from a spinning base having 1,000 or more holes, more preferably 20,000 or more, and even more preferably 20,000 to 30,000 holes in one spinneret, A precursor fiber for producing carbon fiber after spinning is used. It is preferable that the spinneret has holes of 20,000 to 30,000 because a carbon fiber bundle that is a thick bundle but does not crack is obtained. Even when the number of holes in the die is less than 20,000, it is possible to bundle fiber bundles to obtain thick bundle fiber bundles, but this is not preferable because yarn breakage occurs when carbon fibers are processed. When the number of holes in the die exceeds 30,000, the mechanical properties of the obtained carbon fiber are deteriorated, which is not preferable.

この紡糸に際しては、低温に冷却した凝固液(紡糸する際の溶媒−水混合液)を入れた凝固浴中に紡出する方法、湿式紡糸方法又は乾湿式紡糸方法等を用いることができるが、直接凝固液に紡出する湿式紡糸方法が好ましい。乾湿式紡糸方法は、空気中にまず吐出させた後、3〜5mm程度の空間を有して凝固浴に投入し凝固させる方法である。最終的に得られた炭素繊維が表面に襞を形成し、樹脂との接着性が期待できるので、湿式紡糸方法がより好ましい。凝固して得られる上記凝固糸繊維束は、公知の方法により水洗、延伸処理を行う。 In this spinning, a method of spinning in a coagulation bath containing a coagulating liquid cooled to a low temperature (a solvent-water mixture at the time of spinning), a wet spinning method, a dry-wet spinning method, or the like can be used. A wet spinning method of spinning directly into a coagulation liquid is preferred. The dry-wet spinning method is a method in which after first discharging into the air, it has a space of about 3 to 5 mm and is put into a coagulation bath and coagulated. Since the finally obtained carbon fiber forms wrinkles on the surface and adhesion with the resin can be expected, the wet spinning method is more preferable. The coagulated yarn fiber bundle obtained by coagulation is washed with water and stretched by a known method.

<紡糸油剤付与工程>
水洗、延伸された凝固糸繊維束には、紡糸油剤付与工程にて紡糸油剤を付着させる。給油は浸漬給油、タッチローラー給油、スプレー給油など公知の方法により行える。この紡糸油剤の付与の目的は、2次延伸前の乾燥工程及び2次延伸工程において、単繊維同士の融着防止を図ること、及び水洗された凝固糸繊維束の集束性を向上させることにある。紡糸油剤付与工程における紡糸油剤の付着量は、絶乾状態における凝固糸繊維束100質量部に対し0.03〜0.40質量部であり、0.05〜0.35質量部が好ましく、0.06〜0.30質量部がより好ましい。0.03質量部未満であると、続く乾燥工程及び2次延伸工程において単繊維同士が融着しやすい。また、紡糸油剤付与後の凝固糸繊維束の集束性が悪く、乾燥工程及び2次延伸工程において前駆体繊維束が広がり、工程が安定しない。一方、0.40質量部を超えて付着させても、融着や集束性に対する効果は付着量に比例して増加しない。むしろ、最終的に得られる炭素繊維中に、油剤由来の不純物が混入して、炭素繊維束の品質が悪くなる。
<Spinning oil application process>
The spinning oil is adhered to the coagulated fiber bundle that has been washed and drawn in the spinning oil application step. Lubrication can be performed by a known method such as immersion lubrication, touch roller lubrication, or spray lubrication. The purpose of applying this spinning oil agent is to prevent fusion between single fibers in the drying step and the secondary drawing step before the secondary drawing, and to improve the convergence of the coagulated yarn fiber bundle that has been washed with water. is there. The adhesion amount of the spinning oil in the spinning oil application step is 0.03 to 0.40 parts by mass, preferably 0.05 to 0.35 parts by mass, with respect to 100 parts by mass of the coagulated fiber bundle in the absolutely dry state. 0.06-0.30 mass part is more preferable. If it is less than 0.03 parts by mass, the single fibers are likely to be fused in the subsequent drying step and secondary stretching step. Moreover, the convergence property of the coagulated fiber bundle after application of the spinning oil is poor, and the precursor fiber bundle spreads in the drying process and the secondary stretching process, and the process is not stable. On the other hand, even if the amount exceeds 0.40 parts by mass, the effect on fusion and convergence is not increased in proportion to the amount of adhesion. Rather, impurities derived from the oil agent are mixed in the carbon fiber finally obtained, and the quality of the carbon fiber bundle is deteriorated.

紡糸油剤としてはシリコーンを含有する油剤を用いる。シリコーンは、未変性シリコーン、変性シリコーンの何れでもよいが、変性シリコーンがより好ましい。変性シリコーンの中でもエポキシ変性シリコーン、エチレンオキサイド変性シリコーン、ポリシロキサン、アミノ変性シリコーンが好ましく、アミノ変性シリコーンが特に好ましい。シリコーンを含有する油剤は公知のものが多数市販されている。該油剤と親水基を持つ浸透性油剤とを組み合わせて用いることが好ましい。 As the spinning oil, an oil containing silicone is used. Silicone may be either unmodified silicone or modified silicone, but modified silicone is more preferable. Among the modified silicones, epoxy-modified silicone, ethylene oxide-modified silicone, polysiloxane, and amino-modified silicone are preferable, and amino-modified silicone is particularly preferable. Many known oils containing silicone are commercially available. It is preferable to use the oil agent in combination with a permeable oil agent having a hydrophilic group.

浸透性油剤は官能基として、スルフィン酸、スルホン酸、燐酸、カルボン酸やそのアルカリ金属塩、アンモニウム塩、その誘導体を有するものが好ましい。これらの浸透性油剤のうちでも、浸透しやすい燐酸アンモニウム若しくはその誘導体を用いるのが特に好ましい。 The osmotic oil agent preferably has sulfinic acid, sulfonic acid, phosphoric acid, carboxylic acid, its alkali metal salt, ammonium salt or its derivative as a functional group. Among these penetrating oils, it is particularly preferable to use ammonium phosphate or a derivative thereof that easily penetrates.

<乾燥工程>
紡糸油剤付着付与後の凝固糸繊維束は、乾燥工程で乾燥される。この乾燥工程は、非接触加熱である、熱風乾燥方式が好ましい。乾熱ローラーによる乾燥は、繊維束への油剤付着量が少ない本発明においては、ローラーとの擦れによる繊維損傷を生じやすい。更には、熱圧着による単繊維同士の融着を生じやすい。乾燥温度は、70〜150℃が好ましく、80〜140℃が更に好ましい。乾燥時間は、1〜10分間が好ましい。
<Drying process>
The coagulated fiber bundle after the application of the spinning oil agent is dried in a drying step. This drying step is preferably a hot air drying method which is non-contact heating. Drying with a dry heat roller tends to cause fiber damage due to rubbing with the roller in the present invention in which the amount of the oil agent attached to the fiber bundle is small. Furthermore, it is easy to produce the fusion | bonding of the single fibers by thermocompression bonding. The drying temperature is preferably 70 to 150 ° C, more preferably 80 to 140 ° C. The drying time is preferably 1 to 10 minutes.

<2次延伸処理>
乾燥された凝固糸繊維束は、2次延伸処理される。2次延伸は公知の方法で行うことができるが、スチーム延伸処理を用いることが好ましい。スチーム延伸工程により、加熱延伸される。スチーム延伸は公知の方法を用いて行えばよい。スチーム延伸条件は、温度100〜150℃、飽和スチーム圧力0.1〜5.0MPa(絶対圧)とすることが好ましい。
延伸倍率は、水洗・延伸・乾燥・2次延伸処理を通してのトータル延伸倍率で、10〜15倍とすることが好ましい。2次延伸処理後の繊度は、1.0〜1.4dtexとすることが好ましい。
<Secondary stretching treatment>
The dried coagulated yarn fiber bundle is subjected to secondary stretching treatment. The secondary stretching can be performed by a known method, but a steam stretching process is preferably used. Heat-stretched by a steam stretching process. The steam stretching may be performed using a known method. The steam stretching conditions are preferably a temperature of 100 to 150 ° C. and a saturated steam pressure of 0.1 to 5.0 MPa (absolute pressure).
The draw ratio is a total draw ratio through washing, stretching, drying, and secondary stretching, and is preferably 10 to 15 times. The fineness after the secondary stretching treatment is preferably 1.0 to 1.4 dtex.

<予備熱処理>
2次延伸処理後の繊維を、引き続き加熱空気中170〜250℃、延伸比0.90〜1.10で100〜300秒熱処理(予備熱処理)してもよい。予備熱処理温度が170℃未満の場合、若しくは延伸比が1.10を超える場合は、前駆体繊維の表面が過疎になり、前駆体繊維束を耐炎化処理、炭素化処理して得られる炭素繊維束の強度、伸度が低下するので好ましくない。予備熱処理温度が250℃を超える場合は、炭素化処理して得られる炭素繊維束の強度、伸度が低下するので好ましくない。なお、延伸比が0.9未満の場合は予備熱処理工程及びその後の熱処理工程が不安定となるため好ましくない。予備熱処理して得られる前駆体繊維の密度は、1.2g/cm以下とすることが好ましい。
<Preliminary heat treatment>
The fiber after the secondary stretching treatment may be subsequently heat treated (preliminary heat treatment) for 100 to 300 seconds at 170 to 250 ° C. in a heated air at a draw ratio of 0.90 to 1.10. When the preliminary heat treatment temperature is less than 170 ° C. or when the draw ratio exceeds 1.10, the surface of the precursor fiber becomes depopulated, and the carbon fiber obtained by subjecting the precursor fiber bundle to flame resistance treatment and carbonization treatment This is not preferable because the strength and elongation of the bundle are lowered. When the preliminary heat treatment temperature exceeds 250 ° C., the strength and elongation of the carbon fiber bundle obtained by the carbonization treatment are lowered, which is not preferable. A stretch ratio of less than 0.9 is not preferable because the preliminary heat treatment step and the subsequent heat treatment step become unstable. The density of the precursor fiber obtained by the preliminary heat treatment is preferably 1.2 g / cm 3 or less.

<焼成油剤の付与工程>
アクリロニトリル系前駆体繊維束には、焼成油剤付与工程にて焼成油剤を付着させる。給油は浸漬給油、タッチローラー給油、スプレー給油など公知の方法により行える。この焼成油剤の付与の目的は、耐炎化工程及び炭素化工程において、単繊維同士の融着防止を図ること、及びアクリロニトリル系前駆体繊維束の集束性を向上させることにある。焼成油剤付与工程における焼成油剤の付着量は、絶乾状態におけるアクリル系前駆体繊維束100質量部に対し、0.04〜0.25質量部であり、0.06〜0.23質量部が好ましく、0.06〜0.21質量部がより好ましい。0.04質量部未満であると、続く耐炎化工程及び炭素化工程において単繊維同士が融着しやすい。また、焼成油剤付与後のアクリロニトリル系前駆体繊維束の集束性が悪く、耐炎化工程及び炭素化工程において前駆体繊維束が広がり、工程が安定しない。一方、0.25質量部を超えて付着させても、融着や集束性に対する効果は付着量に比例して増加しない。むしろ、最終的に得られる炭素繊維中に、油剤由来の不純物が混入して、炭素繊維束の品質が悪くなる。
<Applying process of calcined oil>
A calcined oil agent is adhered to the acrylonitrile-based precursor fiber bundle in the calcining oil agent application step. Lubrication can be performed by a known method such as immersion lubrication, touch roller lubrication, or spray lubrication. The purpose of applying the calcined oil is to prevent fusion of single fibers in the flameproofing process and the carbonization process, and to improve the convergence of the acrylonitrile-based precursor fiber bundle. The adhesion amount of the calcination oil agent in the calcination oil agent application step is 0.04 to 0.25 parts by mass, and 0.06 to 0.23 parts by mass with respect to 100 parts by mass of the acrylic precursor fiber bundle in the absolutely dry state. Preferably, 0.06-0.21 mass part is more preferable. If the amount is less than 0.04 parts by mass, the single fibers are easily fused in the subsequent flameproofing step and carbonization step. Moreover, the convergence property of the acrylonitrile-based precursor fiber bundle after applying the baking oil agent is poor, the precursor fiber bundle spreads in the flameproofing process and the carbonization process, and the process is not stable. On the other hand, even if the amount exceeds 0.25 part by mass, the effect on fusion and convergence is not increased in proportion to the amount of adhesion. Rather, impurities derived from the oil agent are mixed in the carbon fiber finally obtained, and the quality of the carbon fiber bundle is deteriorated.

さらに、紡糸油剤の付着量(質量%、PO1)と焼成油剤の付着量(質量%、PO2)の比が、1:2〜1:3となるよう焼成油剤を付与する必要がある。また、紡糸油剤の付着量と焼成油剤の付着量をあわせた、油剤の総付着量は0.09〜0.28重量%であることが好ましい。 Furthermore, it is necessary to apply the calcined oil so that the ratio of the amount of adhering spinning oil (mass%, PO1) to the amount of adhering calcined oil (mass%, PO2) is 1: 2 to 1: 3. Moreover, it is preferable that the total adhesion amount of oil agent which combined the adhesion amount of spinning oil agent and the adhesion amount of baking oil agent is 0.09 to 0.28 weight%.

紡糸油剤として前駆体繊維束の乾燥工程以前に凝固糸に付与した油剤は、凝固糸の表面が過疎であるため、繊維中に浸透しやすい。そのため、紡糸油剤の割合が増えると、比較的繊維表面から深い範囲にまで油剤が浸透し、変曲点のエッチング深さが増加する。焼成油剤の付着量が紡糸油剤の付着量の2倍に満たない場合には、紡糸油剤の割合が大きすぎるため、繊維中に深く浸透した油剤がグラファイト結晶の成長を妨げ、欠陥要因となるため、望ましくない。 The oil agent applied to the coagulated yarn before the drying process of the precursor fiber bundle as the spinning oil agent easily penetrates into the fiber because the surface of the coagulated yarn is depopulated. Therefore, when the ratio of the spinning oil increases, the oil penetrates relatively deeply from the fiber surface, and the etching depth at the inflection point increases. When the adhesion amount of the firing oil agent is less than twice the adhesion amount of the spinning oil agent, the proportion of the spinning oil agent is too large, and the oil agent that has penetrated deeply into the fibers hinders the growth of graphite crystals and becomes a defect factor. Is not desirable.

一方、炭素繊維の製造工程で付与する焼成油剤は、前駆体繊維の繊維表面が凝固糸ほど過疎でないため、深い範囲まで油剤が浸透することはない。そのため、焼成油剤の割合が増えると、変曲点のエッチング深さは減少する。焼成油剤の付着量が紡糸油剤の付着量の3倍を超えると、繊維に付与した油剤が繊維表面に集中して存在するため、酸素の透過を阻害する。そのため、耐炎化反応が均一に進まず、得られる炭素繊維束の物性、特に圧縮強度や屈曲強度などの特性が低下する。 On the other hand, the calcined oil applied in the carbon fiber manufacturing process is not as depopulated as the fiber surface of the precursor fiber as the coagulated yarn, so that the oil does not penetrate to a deep range. Therefore, the etching depth at the inflection point decreases as the ratio of the firing oil increases. When the adhesion amount of the firing oil agent exceeds three times the adhesion amount of the spinning oil agent, the oil agent imparted to the fiber is concentrated on the fiber surface, thereby inhibiting oxygen permeation. Therefore, the flameproofing reaction does not proceed uniformly, and the properties of the resulting carbon fiber bundle, particularly properties such as compressive strength and flexural strength, are reduced.

焼成油剤としては、シリコーンを含有する油剤を用いる。シリコーンは、未変性シリコーン、変性シリコーンの何れでもよいが、変性シリコーンがより好ましい。変性シリコーンの中でもエポキシ変性シリコーン、エチレンオキサイド変性シリコーン、ポリシロキサン、アミノ変性シリコーンが好ましく、アミノ変性シリコーンが特に好ましい。シリコーンを含有する油剤は、公知のものが多数市販されている。該油剤と親水基を持つ浸透性油剤とを組み合わせて用いることが好ましい。 As the calcining oil, an oil containing silicone is used. Silicone may be either unmodified silicone or modified silicone, but modified silicone is more preferable. Among the modified silicones, epoxy-modified silicone, ethylene oxide-modified silicone, polysiloxane, and amino-modified silicone are preferable, and amino-modified silicone is particularly preferable. Many known oils containing silicone are commercially available. It is preferable to use the oil agent in combination with a permeable oil agent having a hydrophilic group.

浸透性油剤は官能基として、スルフィン酸、スルホン酸、燐酸、カルボン酸やそのアルカリ金属塩、アンモニウム塩、その誘導体を有するものが好ましい。これらの浸透性油剤のうちでも、浸透しやすい燐酸アンモニウム若しくはその誘導体を用いるのが特に好ましい。 The osmotic oil agent preferably has sulfinic acid, sulfonic acid, phosphoric acid, carboxylic acid, its alkali metal salt, ammonium salt or its derivative as a functional group. Among these penetrating oils, it is particularly preferable to use ammonium phosphate or a derivative thereof that easily penetrates.

<耐炎化処理>
前駆体繊維束は、引き続き加熱空気中、200〜300℃で耐炎化処理される。この耐炎化処理により、前駆体繊維がアクリル系繊維の場合、アクリル系繊維の環化反応を生じさせ、酸素結合量を増加させて不融化、難燃化させてアクリル系耐炎化繊維束を得る。この耐炎化処理は、一般的に、延伸倍率0.85〜1.30の範囲で延伸されることが好ましい。この耐炎化処理により、密度1.3〜1.5g/cmの耐炎化繊維束が得られる。耐炎化時の張力は上記延伸倍率の範囲を超えない限り特に限定されない。
<Flame resistance treatment>
The precursor fiber bundle is subsequently flameproofed at 200 to 300 ° C. in heated air. By this flameproofing treatment, when the precursor fiber is an acrylic fiber, a cyclization reaction of the acrylic fiber is caused, and the oxygen bond amount is increased to make it infusible and flame retardant to obtain an acrylic flameproof fiber bundle. . In general, the flameproofing treatment is preferably performed in a range of a draw ratio of 0.85 to 1.30. By this flameproofing treatment, a flameproofed fiber bundle having a density of 1.3 to 1.5 g / cm 3 is obtained. The tension at the time of flame resistance is not particularly limited as long as it does not exceed the range of the draw ratio.

<第一炭素化処理>
上記耐炎化繊維束は、従来の公知の方法を採用して炭素化することができる。例えば、窒素雰囲気下300〜800℃の焼成炉(第一炭素化炉)で徐々に温度勾配をかけ、耐炎化繊維束の張力を制御して緊張下で1段目の炭素化(第一炭素化)をする。
<First carbonization treatment>
The flame-resistant fiber bundle can be carbonized using a conventionally known method. For example, a temperature gradient is gradually applied in a firing furnace (first carbonization furnace) at 300 to 800 ° C. in a nitrogen atmosphere, and the tension of the flame-resistant fiber bundle is controlled to control the first stage carbonization (first carbon). ).

<第二炭素化処理>
より炭素化を進め且つグラファイト化(炭素の高結晶化)を進める為に、窒素等の不活性ガス雰囲気下で昇温し、焼成炉(第二炭素化炉)で徐々に温度勾配をかけ、第一炭素化繊維の張力を制御して弛緩条件で焼成する。焼成温度については、第二炭素化炉で温度勾配をかけていき、最高温度領域で、好ましくは800℃から2500℃、より好ましくは1200℃から2100℃がよい。炉内の高温部での滞留時間が長くなると、グラファイト化が進み過ぎ、脆性化した炭素繊維束が得られることになるので好ましくない。
<Second carbonization treatment>
To further promote carbonization and graphitization (high crystallization of carbon), raise the temperature in an inert gas atmosphere such as nitrogen, gradually apply a temperature gradient in the firing furnace (second carbonization furnace), The first carbonized fiber is fired under relaxed conditions by controlling the tension. About a calcination temperature, a temperature gradient is applied in a 2nd carbonization furnace, Preferably it is 800 to 2500 degreeC in a maximum temperature range, More preferably, 1200 to 2100 degreeC is good. If the residence time in the high temperature part in the furnace becomes long, graphitization proceeds too much and a brittle carbon fiber bundle is obtained, which is not preferable.

<表面酸化処理>
上記第二炭素化処理繊維束は、引き続き表面酸化処理を施す。表面酸化処理には気相、液相処理も用いることができるが、工程管理の簡便さと生産性を高める点から、液相処理が好ましい。液相処理のうちでも、液の安全性・安定性の面から、電解液を用いる電解処理が好ましい。電解酸化処理に用いられる電解液としては、硫酸、硝酸、塩酸等の無機酸や、水酸化ナトリウム、水酸化カリウムなどの無機水酸化物、硫酸アンモニウム、炭酸ナトリウム、炭酸水素ナトリウム等の無機塩類などが挙げられる。
<Surface oxidation treatment>
The second carbonized fiber bundle is subsequently subjected to surface oxidation treatment. A gas phase or liquid phase treatment can also be used for the surface oxidation treatment, but the liquid phase treatment is preferable from the viewpoint of easy process control and productivity. Among the liquid phase treatments, electrolytic treatment using an electrolytic solution is preferable from the viewpoint of liquid safety and stability. Examples of the electrolytic solution used for the electrolytic oxidation treatment include inorganic acids such as sulfuric acid, nitric acid, and hydrochloric acid, inorganic hydroxides such as sodium hydroxide and potassium hydroxide, and inorganic salts such as ammonium sulfate, sodium carbonate, and sodium bicarbonate. Can be mentioned.

<サイジング処理>
上記表面酸化処理後の繊維束は、必要に応じ、引き続いてサイジング処理を施す。サイジング方法は、従来の公知の方法で行うことができ、サイジング剤は、用途に即して適宜組成を変更して使用し、均一付着させた後に、乾燥することが好ましい。
<Sizing process>
The fiber bundle after the surface oxidation treatment is subsequently subjected to sizing treatment as necessary. The sizing method can be carried out by a conventionally known method, and the sizing agent is preferably used after changing its composition as appropriate according to the application, and after uniformly adhering.

以上の製造方法により得られる耐炎化繊維束は、X線光電子分光法を用いてアルゴンエッチングを行い測定される、耐炎化繊維束表面のケイ素原子と炭素原子の原子存在比(Si/C)の変化を、下記式により擬似的に算出して得られるエッチング深さ(L)を用いてプロットして得られる、グラフの変曲点のエッチング深さ(L2)が、0.4〜1.0nmの範囲にあることを特徴とする耐炎化繊維束であり、この耐炎化繊維束を炭素化して得られる炭素繊維束は、炭素繊維束を構成する単繊維の接着数が10以下の、品位の良い炭素繊維束であって、圧縮強度にも優れている。 The flame-resistant fiber bundle obtained by the above production method has an atomic abundance ratio (Si / C) of silicon atoms and carbon atoms on the surface of the flame-resistant fiber bundle, which is measured by performing argon etching using X-ray photoelectron spectroscopy. The etching depth (L2) at the inflection point of the graph obtained by plotting the change using the etching depth (L) obtained by pseudo-calculation by the following formula is 0.4 to 1.0 nm. The carbon fiber bundle obtained by carbonizing the flame resistant fiber bundle is characterized in that the number of bonded single fibers constituting the carbon fiber bundle is 10 or less, It is a good carbon fiber bundle and has excellent compressive strength.

エッチング深さ(L:nm)=R(nm/min)×(T(s)/60)
(式中、Rは炭素原子のイオンビームスパッタリング率を表し、Tはイオンビームの照射時間(秒)を表す。)
Etching depth (L: nm) = R (nm / min) × (T (s) / 60)
(In the formula, R represents the ion beam sputtering rate of carbon atoms, and T represents the ion beam irradiation time (seconds).)

以下、本発明を、実施例及び比較例により更に具体的に説明する。また、各実施例及び比較例における処理条件、並びに、前駆体繊維束、耐炎化繊維束及び炭素繊維束の物性についての評価方法は以下の方法により実施した。 Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples. Moreover, the evaluation method about the processing conditions in each Example and a comparative example, and the physical property of a precursor fiber bundle, a flame-resistant fiber bundle, and a carbon fiber bundle was implemented with the following method.

<炭素繊維束の強度、弾性率、伸度>
JIS・R・7608に規定された方法により、炭素繊維の強度、弾性率、伸度を測定した。
<Strength, elastic modulus and elongation of carbon fiber bundle>
The strength, elastic modulus, and elongation of the carbon fiber were measured by the method defined in JIS R7608.

<炭素繊維のループストランド強度(結節強度)>
JIS・L・1013に規定された方法によりループストランド強度を測定した。
<Loop strand strength of carbon fiber (knot strength)>
The loop strand strength was measured by the method defined in JIS L1013.

<炭素繊維接着>
炭素繊維束を3mmの長さに切断し、アセトン10mlの入った100mlビーカーに投入し、超音波振動を10秒間以上付与し、光学顕微鏡にて20倍の倍率で観察することにより、繊維接着箇所をカウントし繊維接着数(膠着個数)とした。
<Carbon fiber bonding>
The carbon fiber bundle is cut into 3 mm lengths, placed in a 100 ml beaker containing 10 ml of acetone, subjected to ultrasonic vibration for 10 seconds or more, and observed with an optical microscope at a magnification of 20 times. Was counted as the fiber adhesion number (adhesion number).

<炭素繊維密度>
アルキメデス法により測定した。試料繊維はアセトン中にて脱気処理し測定した。
<Carbon fiber density>
Measured by Archimedes method. The sample fiber was degassed in acetone and measured.

<繊維束表面のSi/C>
繊維束表面の珪素と炭素の存在比(Si/C)は、次の手順に従って測定した。繊維束をカットして、ステンレス製の試料支持台上に拡げて並べた後、光電子脱出角度を90度に設定し、X線源としてMgKαを用い、試料チャンバー内を1×10−6Paの真空度に保った。測定時の帯電に伴うピークの補正として、まずC1sの主ピークの結合エネルギー値B.E.を284.6eVに合わせた。Si2pピーク面積は、96〜108eVの範囲で直線のベースラインを引くことにより求め、C1sピーク面積は、282〜292eVの範囲で直線のベースラインを引くことにより求めた。繊維束表面の珪素と炭素の存在比(Si/C)は、上記Si2pピーク面積とC1sピーク面積の比で計算して求めた。
<Si / C on the surface of the fiber bundle>
The abundance ratio of silicon and carbon (Si / C) on the surface of the fiber bundle was measured according to the following procedure. After cutting the fiber bundle and spreading it on a stainless steel sample support table, the photoelectron escape angle was set to 90 degrees, MgKα was used as the X-ray source, and the inside of the sample chamber was 1 × 10 −6 Pa. Maintained vacuum. As correction of the peak accompanying charging during measurement, first, the binding energy value B. of the main peak of C1s. E. Was adjusted to 284.6 eV. The Si2p peak area was obtained by drawing a straight base line in the range of 96 to 108 eV, and the C1s peak area was obtained by drawing a straight base line in the range of 282 to 292 eV. The silicon / carbon abundance ratio (Si / C) on the surface of the fiber bundle was determined by calculating the ratio of the Si2p peak area to the C1s peak area.

<耐炎化繊維束のエッチング>
耐炎化繊維束をステンレス製の試料支持台上に拡げて並べた後、繊維側面に対して垂直に下記の照射条件でアルゴンイオンビームを15秒ずつ15回照射し、1回照射するごとに繊維束表面のSi/Cを測定した。下式により算出されるエッチング深さを横軸とし、Si/C(%)の値を縦軸として、各測定値をグラフにプロットした。
エッチング深さ(L:nm)=R(nm/min)×(T(s)/60)
そして、エッチング深さ(L2)(nm)は、Si/Cが一定になる前のプロットの漸近線と、一定値になった後のプロットの漸近線の交点を変曲点として、変曲点の横軸の値を求めた。
<Etching of flame-resistant fiber bundle>
After the flame-resistant fiber bundle is spread and arranged on a stainless steel sample support table, it is irradiated with an argon ion beam 15 times for 15 seconds under the following irradiation conditions perpendicularly to the side surface of the fiber. The Si / C on the bundle surface was measured. Each measured value was plotted on a graph with the etching depth calculated by the following equation as the horizontal axis and the Si / C (%) value as the vertical axis.
Etching depth (L: nm) = R (nm / min) × (T (s) / 60)
Then, the etching depth (L2) (nm) is an inflection point with the intersection of the asymptotic line of the plot before Si / C becomes constant and the asymptotic line of the plot after reaching a constant value as the inflection point. The value of the horizontal axis was obtained.

照射条件(アルゴンイオン加速条件)
電流密度:1mA/cm
電圧:500V
イオンビームスパッタリング率(R):4.0nm/min (イオンの加速条件による文献値)
エッチング率:10% (照射時間の10%が、エッチング処理される時間)
Irradiation conditions (Argon ion acceleration conditions)
Current density: 1 mA / cm 2
Voltage: 500V
Ion beam sputtering rate (R): 4.0 nm / min (document values based on ion acceleration conditions)
Etching rate: 10% (10% of irradiation time is etching time)

[実施例1〜5、比較例1〜5]
アクリロニトリル95質量%/アクリル酸メチル4質量%/イタコン酸1質量%よりなる共重合体紡糸原液を、1つの紡糸口金に24,000の孔を有する紡糸口金(24,000フィラメント用の紡糸口金)を通して、塩化亜鉛水溶液中に吐出して凝固させ、凝固糸を得た。
[Examples 1-5, Comparative Examples 1-5]
A copolymer spinning stock solution consisting of 95% by mass of acrylonitrile / 4% by mass of methyl acrylate / 1% by mass of itaconic acid was used as a spinneret having 24,000 holes in one spinneret (spinneret for 24,000 filaments). And solidified by discharging into an aqueous zinc chloride solution to obtain a coagulated yarn.

この凝固糸を、水洗、延伸した後、紡糸油剤としてアミノ変性シリコーン油剤を表1に記載の付着量になるように付与した。その後、乾燥・スチーム延伸処理し、アクリロニトリル系前駆体繊維を得た。水洗・延伸・乾燥・スチーム延伸処理を通してのトータル延伸倍率は13倍であり、得られたアクリル系前駆体繊維束の繊度は1.23dtexであった。 The coagulated yarn was washed with water and stretched, and then an amino-modified silicone oil was applied as a spinning oil so as to have an adhesion amount shown in Table 1. Thereafter, drying and steam drawing were performed to obtain an acrylonitrile-based precursor fiber. The total draw ratio through the washing, drawing, drying and steam drawing processes was 13 times, and the fineness of the obtained acrylic precursor fiber bundle was 1.23 dtex.

この前駆体繊維束を、0.95倍の延伸倍率で、240℃で予備熱処理した後、表1に記載の付着量になるように焼成油剤を付与した。その後、熱風循環式耐炎化炉の最高温度域を250℃に設定した加熱空気中、延伸倍率を0.9〜1.1の範囲内で制御して耐炎化処理し、密度1.36g/cmの耐炎化繊維束を得た。この耐炎化繊維束を、第一炭素化炉の不活性雰囲気中300〜800℃の温度域を通過させて第一炭素化処理を施した後、第二炭素化炉の不活性雰囲気中800〜2,000℃の温度域を通過させて第二炭素化処理を施し、炭素繊維束を得た。 This precursor fiber bundle was preheated at 240 ° C. at a draw ratio of 0.95 times, and then a calcined oil agent was applied so that the adhesion amount shown in Table 1 was obtained. Thereafter, in a heated air in which the maximum temperature range of the hot-air circulation type flameproofing furnace is set to 250 ° C., the stretching ratio is controlled within the range of 0.9 to 1.1, and flameproofing treatment is performed, and the density is 1.36 g / cm3. 3 flame-resistant fiber bundles were obtained. The flame-resistant fiber bundle is passed through a temperature range of 300 to 800 ° C. in the inert atmosphere of the first carbonization furnace and subjected to the first carbonization treatment, and then in the inert atmosphere of the second carbonization furnace. A second carbonization treatment was performed by passing through a temperature range of 2,000 ° C. to obtain a carbon fiber bundle.

次いで、この炭素繊維束を、硫酸アンモニウム水溶液を電解液として用い、炭素繊維1g当り20クーロンの電気量で表面処理を施した。引き続き公知の方法で、サイジング剤を施し、乾燥して表1に示す強度、弾性率、伸度の炭素繊維束を得た。 Next, this carbon fiber bundle was subjected to a surface treatment using an aqueous ammonium sulfate solution as an electrolytic solution at an electric quantity of 20 coulomb per 1 g of carbon fiber. Subsequently, a sizing agent was applied by a known method and dried to obtain a carbon fiber bundle having the strength, elastic modulus and elongation shown in Table 1.

表1に示したように、実施例1は紡糸油剤:焼成油剤の比を1:2とし、トータルの油剤付着量を0.18%として炭素繊維を得た。耐炎化繊維束のエッチング深さL2は0.73nmで、本発明の範囲0.4〜1.0nmを満足していた。得られた炭素繊維は、炭素繊維のストランド強度が5,150MPa、ループストランド強度が660MPa、繊維接着数が1個/24000本、繊維直径が7.3μmと良好な性能を示す、ねじれ特性に優れた炭素繊維であった。 As shown in Table 1, in Example 1, carbon fiber was obtained by setting the ratio of spinning oil: baking oil to 1: 2, and the total amount of oil applied was 0.18%. The etching depth L2 of the flame resistant fiber bundle was 0.73 nm, which satisfied the range of 0.4 to 1.0 nm of the present invention. The obtained carbon fiber has excellent twisting characteristics with a carbon fiber strand strength of 5,150 MPa, a loop strand strength of 660 MPa, a fiber bonding number of 1/24000, and a fiber diameter of 7.3 μm. Carbon fiber.

実施例2と3、比較例1〜3は、実施例1の紡糸油剤:焼成油剤の比を表1に示したように変更したのみで、実施例1と同様にして炭素繊維を作製した。実施例2と3は良好な結果を示したが、比較例1〜3は低い物性を示した。実施例2と3の耐炎化繊維束のエッチング深さL2は、本発明の範囲を満足していたが、比較例1〜3のものは、全て、エッチング深さが本発明の範囲外であった。 In Examples 2 and 3 and Comparative Examples 1 to 3, carbon fibers were produced in the same manner as in Example 1 except that the ratio of spinning oil agent: baking oil agent in Example 1 was changed as shown in Table 1. Examples 2 and 3 showed good results, but Comparative Examples 1 to 3 showed low physical properties. The etching depth L2 of the flameproof fiber bundles of Examples 2 and 3 satisfied the scope of the present invention, but all of Comparative Examples 1 to 3 had an etching depth outside the scope of the present invention. It was.

実施例4と5、比較例4と5は、実施例1の紡糸油剤:焼成油剤の比、および油剤付着量を変更したのみで、実施例1と同様にして炭素繊維を作製した。実施例4と5は良好な結果を示したが、比較例4と5は低い物性を示した。実施例4と5の耐炎化繊維束のエッチング深さL2は、本発明の範囲を満足していたが、比較例4と5のものは、エッチング深さが本発明の範囲外であった。 In Examples 4 and 5, and Comparative Examples 4 and 5, carbon fibers were produced in the same manner as in Example 1 except that the ratio of spinning oil: baking oil and the amount of oil attached in Example 1 were changed. Examples 4 and 5 showed good results, but Comparative Examples 4 and 5 showed low physical properties. The etching depth L2 of the flameproof fiber bundles of Examples 4 and 5 satisfied the range of the present invention, but those of Comparative Examples 4 and 5 had an etching depth outside the range of the present invention.

Figure 2011241507
Figure 2011241507

Claims (8)

X線光電子分光法を用いてアルゴンエッチングを行い測定される耐炎化繊維束表面のケイ素原子と炭素原子の原子存在比(Si/C)の変化を、下記式により擬似的に算出して得られるエッチング深さ(L)を用いてプロットして得られるグラフの変曲点のエッチング深さ(L2)が、0.4〜1.0nmの範囲にあることを特徴とする耐炎化繊維束。
エッチング深さ(L:nm)=R(nm/min)×(T(s)/60)
(式中、Rは炭素原子のイオンビームスパッタリング率を表し、Tはイオンビームの照射時間(秒)を表す。)
It is obtained by pseudo-calculating the change in the atomic abundance ratio (Si / C) of silicon atoms and carbon atoms on the surface of the flame-resistant fiber bundle, measured by performing argon etching using X-ray photoelectron spectroscopy. A flame-resistant fiber bundle, wherein an etching depth (L2) at an inflection point of a graph obtained by plotting using the etching depth (L) is in a range of 0.4 to 1.0 nm.
Etching depth (L: nm) = R (nm / min) × (T (s) / 60)
(In the formula, R represents the ion beam sputtering rate of carbon atoms, and T represents the ion beam irradiation time (seconds).)
請求項1に記載の耐炎化繊維束を炭素化して得られる炭素繊維束であって、炭素繊維束表面のケイ素原子と炭素原子の原子存在比(Si/C)が1〜5%の範囲にあることを特徴とする炭素繊維束。 A carbon fiber bundle obtained by carbonizing the flame resistant fiber bundle according to claim 1, wherein the atomic ratio of silicon atoms to carbon atoms (Si / C) on the surface of the carbon fiber bundle is in the range of 1 to 5%. A carbon fiber bundle characterized by being. 炭素繊維束を構成する単繊維の接着数(膠着個数)が10以下であり、ストランド引張強度が5100〜5500MPa、ストランド引張弾性率が240〜270MPaであり、炭素繊維束を構成する単繊維の直径が6.5〜7.5μmであることを特徴とする請求項2に記載の炭素繊維束。 The number of single fibers constituting the carbon fiber bundle is 10 or less, the strand tensile strength is 5100 to 5500 MPa, the strand tensile elastic modulus is 240 to 270 MPa, and the diameter of the single fiber constituting the carbon fiber bundle The carbon fiber bundle according to claim 2, wherein is 6.5 to 7.5 μm. アクリロニトリルを90質量%以上含有する単量体を重合した共重合体を紡糸し、水洗、延伸処理を行った後、紡糸油剤を付与し、乾燥、2次延伸処理し得られるアクリロニトリル系前駆体繊維束に、焼成油剤を付与し、200〜300℃で熱処理する耐炎化繊維束の製造方法であって、前記紡糸油剤の付着量(質量%、PO1)と、前記焼成油剤の付着量(質量%、PO2)の比が、1:2〜1:3の範囲であることを特徴とする耐炎化繊維束の製造方法。 An acrylonitrile-based precursor fiber obtained by spinning a copolymer obtained by polymerizing a monomer containing 90% by mass or more of acrylonitrile, washing with water and stretching, then applying a spinning oil, drying, and secondary stretching. A method for producing a flame-resistant fiber bundle in which a calcined oil agent is applied to a bundle and heat treated at 200 to 300 ° C., wherein the amount of spin oil applied (mass%, PO1) and the amount of calcined oil applied (mass%) , PO2) is in the range of 1: 2 to 1: 3. アクリロニトリル系前駆体繊維束を170〜250℃、延伸比0.90〜1.10で熱処理した後、焼成油剤を付与することを特徴とする請求項4に記載の耐炎化繊維束の製造方法。 The method for producing a flame-resistant fiber bundle according to claim 4, wherein the baked oil agent is applied after heat treating the acrylonitrile-based precursor fiber bundle at 170 to 250 ° C and a draw ratio of 0.90 to 1.10. 紡糸油剤の付着量(質量%、PO1)と、焼成油剤の付着量(質量%、PO2)の合計の油剤付着量が、アクリロニトリル系前駆体繊維に対して0.09〜0.28質量%であることを特徴とする請求項4または5に記載の耐炎化繊維束の製造方法。 The total oil agent adhesion amount of the spinning oil agent (mass%, PO1) and the calcined oil agent (mass%, PO2) is 0.09 to 0.28 mass% with respect to the acrylonitrile-based precursor fiber. The method for producing a flameproof fiber bundle according to claim 4 or 5, wherein the flameproof fiber bundle is provided. 紡糸油剤および焼成油剤が、シリコーン系油剤であることを特徴とする請求項4〜6のいずれか1項に記載の耐炎化繊維束の製造方法。 The method for producing a flame-resistant fiber bundle according to any one of claims 4 to 6, wherein the spinning oil and the fired oil are silicone oils. アクリロニトリルを90質量%以上含有する単量体を重合した共重合体を紡糸し、水洗、延伸処理を行った後、紡糸油剤を付与し、乾燥、2次延伸処理し得られるアクリロニトリル系前駆体繊維束に、焼成油剤を付与し、200〜300℃で熱処理して耐炎化繊維束を得、次いで該耐炎化繊維束を不活性ガス雰囲気中、温度800〜2500℃で炭素化処理する炭素繊維束の製造方法であって、前記紡糸油剤の付着量(質量%、PO1)と、前記焼成油剤の付着量(質量%、PO2)の比が、1:2〜1:3の範囲であることを特徴とする炭素繊維束の製造方法。
An acrylonitrile-based precursor fiber obtained by spinning a copolymer obtained by polymerizing a monomer containing 90% by mass or more of acrylonitrile, washing with water and stretching, then applying a spinning oil, drying, and secondary stretching. A carbon fiber bundle is obtained by applying a fired oil to the bundle, heat-treating at 200 to 300 ° C. to obtain a flame resistant fiber bundle, and then carbonizing the flame resistant fiber bundle at a temperature of 800 to 2500 ° C. in an inert gas atmosphere. The ratio of the amount of adhering spinning oil (mass%, PO1) to the amount of adhering calcined oil (mass%, PO2) is in the range of 1: 2 to 1: 3. A method for producing a carbon fiber bundle.
JP2010114866A 2010-05-19 2010-05-19 Flame-resistant fiber bundle, carbon fiber bundle, and production method thereof Active JP5667380B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010114866A JP5667380B2 (en) 2010-05-19 2010-05-19 Flame-resistant fiber bundle, carbon fiber bundle, and production method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010114866A JP5667380B2 (en) 2010-05-19 2010-05-19 Flame-resistant fiber bundle, carbon fiber bundle, and production method thereof

Publications (2)

Publication Number Publication Date
JP2011241507A true JP2011241507A (en) 2011-12-01
JP5667380B2 JP5667380B2 (en) 2015-02-12

Family

ID=45408458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010114866A Active JP5667380B2 (en) 2010-05-19 2010-05-19 Flame-resistant fiber bundle, carbon fiber bundle, and production method thereof

Country Status (1)

Country Link
JP (1) JP5667380B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014025167A (en) * 2012-07-27 2014-02-06 Toray Ind Inc Flame-resistant fiber bundle and carbon fiber bundle, and methods for producing the same
WO2020195476A1 (en) * 2019-03-28 2020-10-01 東レ株式会社 Carbon fiber bundle and production method thereof
WO2024122529A1 (en) * 2022-12-07 2024-06-13 帝人株式会社 Carbon fibers and method for producing same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6183373A (en) * 1984-09-25 1986-04-26 東レ株式会社 Production of acrylic precursor fiber bundle
JPH11124744A (en) * 1997-10-20 1999-05-11 Toray Ind Inc Production of carbon fiber precursor fiber and carbon fiber
JP2001355120A (en) * 2000-06-12 2001-12-26 Toho Tenax Co Ltd Large tow precursor, method for producing the same and method for producing carbon fiber
JP2001355121A (en) * 2000-06-12 2001-12-26 Toho Tenax Co Ltd Large tow precursor and method for producing the same
JP2002146681A (en) * 2000-11-02 2002-05-22 Mitsubishi Rayon Co Ltd Method of producing carbon fiber and precursor thereof and method of applying finishing oil
JP2004211240A (en) * 2002-12-27 2004-07-29 Mitsubishi Rayon Co Ltd Carbon fiber, acrylonitrile-based precursor fiber for the same, and method for producing the carbon fiber and the precursor fiber
JP2009221619A (en) * 2008-03-14 2009-10-01 Toho Tenax Co Ltd Precursor fiber and method for producing precursor fiber, flame-resistant fiber and carbon fiber
JP2009242989A (en) * 2008-03-31 2009-10-22 Toho Tenax Co Ltd Acrylic precursor and method for producing the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6183373A (en) * 1984-09-25 1986-04-26 東レ株式会社 Production of acrylic precursor fiber bundle
JPH11124744A (en) * 1997-10-20 1999-05-11 Toray Ind Inc Production of carbon fiber precursor fiber and carbon fiber
JP2001355120A (en) * 2000-06-12 2001-12-26 Toho Tenax Co Ltd Large tow precursor, method for producing the same and method for producing carbon fiber
JP2001355121A (en) * 2000-06-12 2001-12-26 Toho Tenax Co Ltd Large tow precursor and method for producing the same
JP2002146681A (en) * 2000-11-02 2002-05-22 Mitsubishi Rayon Co Ltd Method of producing carbon fiber and precursor thereof and method of applying finishing oil
JP2004211240A (en) * 2002-12-27 2004-07-29 Mitsubishi Rayon Co Ltd Carbon fiber, acrylonitrile-based precursor fiber for the same, and method for producing the carbon fiber and the precursor fiber
JP2009221619A (en) * 2008-03-14 2009-10-01 Toho Tenax Co Ltd Precursor fiber and method for producing precursor fiber, flame-resistant fiber and carbon fiber
JP2009242989A (en) * 2008-03-31 2009-10-22 Toho Tenax Co Ltd Acrylic precursor and method for producing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014025167A (en) * 2012-07-27 2014-02-06 Toray Ind Inc Flame-resistant fiber bundle and carbon fiber bundle, and methods for producing the same
WO2020195476A1 (en) * 2019-03-28 2020-10-01 東レ株式会社 Carbon fiber bundle and production method thereof
JP7447788B2 (en) 2019-03-28 2024-03-12 東レ株式会社 Carbon fiber bundle and its manufacturing method
WO2024122529A1 (en) * 2022-12-07 2024-06-13 帝人株式会社 Carbon fibers and method for producing same

Also Published As

Publication number Publication date
JP5667380B2 (en) 2015-02-12

Similar Documents

Publication Publication Date Title
JP5324472B2 (en) Flame-resistant fiber and carbon fiber manufacturing method
JP4617940B2 (en) Polyacrylonitrile-based polymer for carbon fiber precursor fiber, carbon fiber precursor fiber, and method for producing carbon fiber
JPH11217734A (en) Carbon fiber and its production
JP2007162144A (en) Method for producing carbon fiber bundle
JP5667380B2 (en) Flame-resistant fiber bundle, carbon fiber bundle, and production method thereof
JP2004300600A (en) Flame-resistant fiber, carbon fiber and method for producing these fibers
JP2007186802A (en) Method for producing flame retardant fiber and carbon fiber
JPH01306619A (en) High-strength and high elastic modulus carbon fiber
JP7447788B2 (en) Carbon fiber bundle and its manufacturing method
JP5811529B2 (en) Carbon fiber bundle manufacturing method
JP2013023801A (en) Method for producing carbon fiber bundle
JP2014125701A (en) Method of manufacturing carbon fiber bundle
JP2005314830A (en) Polyacrylonitrile-based carbon fiber and method for producing the same
JP2017137614A (en) Carbon fiber bundle and manufacturing method thereof
JP4565978B2 (en) Carbon fiber manufacturing method
JP2004232155A (en) Light-weight polyacrylonitrile-based carbon fiber and method for producing the same
JP5419768B2 (en) Carbon fiber surface treatment method and carbon fiber produced by the treatment method
JP2008308777A (en) Carbon fiber and method for producing polyacrylonitrile-based precursor fiber for producing carbon fiber
JP2004060126A (en) Carbon fiber and method for producing the same
JP2015183166A (en) Acrylonitrile-based copolymer, acrylonitrile-based carbon fiber precursor fiber and method for producing carbon fiber
JP2004156161A (en) Polyacrylonitrile-derived carbon fiber and method for producing the same
JP6359860B2 (en) Carbon fiber precursor fiber and method for producing carbon fiber precursor fiber
JP2021139062A (en) Production method of carbon fiber bundle
JP6304046B2 (en) Carbon fiber bundle and method for producing the same
JP4919410B2 (en) Carbon fiber manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141212

R150 Certificate of patent or registration of utility model

Ref document number: 5667380

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350