JP2005314830A - Polyacrylonitrile-based carbon fiber and method for producing the same - Google Patents

Polyacrylonitrile-based carbon fiber and method for producing the same Download PDF

Info

Publication number
JP2005314830A
JP2005314830A JP2004132618A JP2004132618A JP2005314830A JP 2005314830 A JP2005314830 A JP 2005314830A JP 2004132618 A JP2004132618 A JP 2004132618A JP 2004132618 A JP2004132618 A JP 2004132618A JP 2005314830 A JP2005314830 A JP 2005314830A
Authority
JP
Japan
Prior art keywords
carbon fiber
fiber
mass
polyacrylonitrile
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004132618A
Other languages
Japanese (ja)
Inventor
Hiroyuki Sato
弘幸 佐藤
Yoshinobu Suzuki
慶宜 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Toho Tenax Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Tenax Co Ltd filed Critical Toho Tenax Co Ltd
Priority to JP2004132618A priority Critical patent/JP2005314830A/en
Publication of JP2005314830A publication Critical patent/JP2005314830A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polyacrylonitrile (PAN)-based carbon fiber having improved wettability to resins and high composite performance such as interlaminar shear strength (ILSS). <P>SOLUTION: The PAN-based carbon fiber has a strand strength of 4,600-5,800 MPa, an elastic modulus of 220-250 GPa and a density of ≥1.74 g/cm<SP>3</SP>and <1.80 g/cm<SP>3</SP>and contains silicon. The silicon in the fiber has an SiOx structure (1≤x≤3) and its content is 110-500 ppm in terms of silicon element based on the mass of the carbon fiber. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、樹脂と炭素繊維を複合化してコンポジットを作製する際に用いる、界面特性に優れたポリアクリロニトリル(PAN)系炭素繊維及びその製造方法に関する。   The present invention relates to a polyacrylonitrile (PAN) -based carbon fiber having excellent interface characteristics and a method for producing the same, which is used when a composite is prepared by combining a resin and a carbon fiber.

炭素繊維の製造方法としては、原料繊維にPAN系前駆体繊維(プリカーサー)を使用し、耐炎化処理及び炭素化処理を経て炭素繊維を得る方法が広く知られている。このようにして得られた炭素繊維は、高い比強度、比弾性率など良好な特性を有している。   As a method for producing carbon fiber, a method is widely known in which a PAN-based precursor fiber (precursor) is used as a raw material fiber, and a carbon fiber is obtained through a flame resistance treatment and a carbonization treatment. The carbon fibers thus obtained have good characteristics such as high specific strength and specific elastic modulus.

近年、炭素繊維を利用した複合材料の工業的な用途は、多目的に広がりつつある。特にスポーツ・レジャー分野、航空宇宙分野、自動車分野においては、(1)より高性能化(高強度化、高弾性化)、(2)より軽量化(繊維軽量化及び繊維含有量低減)、(3)複合した際のより高いコンポジット物性の発現性向上(炭素繊維表面・界面特性の向上)に向けた要求が強まっている。   In recent years, industrial uses of composite materials using carbon fibers have been spreading to multiple purposes. Especially in the sports / leisure field, aerospace field, and automobile field, (1) higher performance (higher strength, higher elasticity), (2) lighter (fiber weight reduction and fiber content reduction), ( 3) There is an increasing demand for improving the appearance of higher composite properties when combined (improvement of carbon fiber surface / interface properties).

炭素繊維と樹脂との複合化において高性能化を追求する為には、樹脂が有する特性も重要であるが、炭素繊維そのもの自体の表面特性を向上させることが必要不可欠である。つまり、炭素繊維表面の樹脂に対する濡れ性の向上を図った炭素繊維を用いて樹脂と複合化し、樹脂と炭素繊維をより均一に分散することで、複合材料のより高性能なもの(高強度、高弾性)を得ることができる。   In order to pursue high performance in the composite of carbon fiber and resin, the characteristics of the resin are also important, but it is essential to improve the surface characteristics of the carbon fiber itself. In other words, carbon fiber with improved wettability to the resin on the carbon fiber surface is combined with the resin, and the resin and the carbon fiber are more uniformly dispersed, so that the composite material has higher performance (high strength, High elasticity).

また、高いコンポジット物性の発現性向上が図れれば、コンポジット中の炭素繊維の配合比率を、従来のものよりも少なくすることができる。これにより、原材料の値段において炭素繊維の値段が樹脂の値段よりも高いので、コンポジットとしての軽量化や低コスト化を図ることができる。   In addition, if high composite physical properties can be improved, the blending ratio of the carbon fibers in the composite can be reduced as compared with the conventional one. Thereby, since the price of the carbon fiber is higher than the price of the resin in the price of the raw material, it is possible to achieve weight reduction and cost reduction as a composite.

特に、最近では炭素繊維及び複合材料の高性能化のみでなく、低コスト化もユーザーから強く要望されており、高性能を有する炭素繊維及び複合材料を安価に効率よく生産することが望まれている。   In particular, recently, not only high performance of carbon fibers and composite materials but also cost reduction has been strongly demanded by users, and it is desired to produce carbon fibers and composite materials having high performance efficiently at low cost. Yes.

一方のユーザー要望事項である炭素繊維の強度や品位の向上を図るには、炭素繊維の表面欠陥を減少させることが望ましい。炭素繊維製造過程で発生した表面欠陥をその発生後に除去する方法として、炭素繊維表面をエッチング処理などの表面処理を施すことにより表面欠陥を除去する方法が提案されている(例えば特許文献1参照)。   In order to improve the strength and quality of the carbon fiber, which is one of the user's requirements, it is desirable to reduce the surface defects of the carbon fiber. As a method for removing the surface defects generated in the carbon fiber manufacturing process after the generation, a method for removing the surface defects by performing a surface treatment such as an etching process on the carbon fiber surface has been proposed (for example, see Patent Document 1). .

このような表面欠陥の除去方法により、炭素繊維のストランド強度は向上する。しかし、表面欠陥の発生後除去は後処理設備が複雑で煩雑になり、他方のユーザー要望事項である低コスト化に反するため、実用化は難しいと考えられる。   By such a method for removing surface defects, the strand strength of the carbon fiber is improved. However, the removal of surface defects after the generation of the surface defects makes the post-processing equipment complicated and cumbersome, which is contrary to the cost reduction that is the other user's requirement, and is considered difficult to put into practical use.

表面欠陥の発生後除去ではなく、表面欠陥の発生を未然に防ぐ手法として、プリカーサーの紡糸油剤にアミノシリコーン系油剤を用いる手法がある。この油剤を用いる従来技術としては、例えば特許文献2に開示されているように、プリカーサーを乾燥緻密化した後に、シリコーン系油剤を付与し、表面近傍のみに油剤を存在させることで、油剤を繊維内部に奥深く浸透させずに高強度の繊維を得る技術がある。   As a technique for preventing the occurrence of surface defects rather than the removal after the occurrence of surface defects, there is a technique using an aminosilicone-based oil as the spinning oil for the precursor. As a conventional technique using this oil agent, for example, as disclosed in Patent Document 2, after drying and densifying the precursor, a silicone-based oil agent is applied, and the oil agent is present only in the vicinity of the surface, so that the oil agent is made into a fiber. There is a technology to obtain high-strength fibers without penetrating deep inside.

しかし、表面近傍のみに油剤を塗布してなる繊維の場合には、焼成過程で油剤が空気酸化、加熱分解、不活性ガス雰囲気下での加熱分解、熱反応により、最終的に得られる炭素繊維は、窒化珪素誘導体構造に起因した表面構造のものが多くなる。この炭素繊維を将来樹脂と複合した場合、樹脂との濡れ性が低下し、コンポジットとしての強度が低下する。   However, in the case of fibers formed by applying an oil agent only to the vicinity of the surface, the carbon fiber finally obtained by air oxidation, thermal decomposition, thermal decomposition in an inert gas atmosphere, and thermal reaction in the firing process In many cases, the surface structure originates from the silicon nitride derivative structure. When this carbon fiber is combined with a resin in the future, the wettability with the resin is lowered, and the strength as a composite is lowered.

また、窒化珪素誘導体構造が形成した表面は、それが多く形成していない表面と比較して脆性な表面構造となり、欠陥が発生しやすく、将来炭素繊維の強度や品位(毛羽の抑制)に悪影響を及ぼすことが懸念される。
特開昭61−225330号公報 (特許請求の範囲) 特開2000−136485号公報 (特許請求の範囲)
In addition, the surface on which the silicon nitride derivative structure is formed has a brittle surface structure compared to the surface on which it is not formed so much that defects are likely to occur, which will adversely affect the strength and quality of the carbon fiber (fuzz suppression) in the future. There is a concern that
JP 61-225330 A (Claims) JP 2000-136485 A (Claims)

本発明者等の1人は、上記問題を解決するために種々検討しているうちに、プリカーサーの製造過程で、乾燥緻密化前にアミノシリコーン油剤を付与し、乾燥緻密化後にはシリコーン系油剤を付与しないで製造したプリカーサーを耐炎化処理、次いで炭素化処理することにより、従来の汎用炭素繊維と同等の性能(強度、弾性率)を有し、且つ軽量なコンポジットの原料として適した低密度PAN系炭素繊維が得られることを知得し、先に出願した(特願2003−24730)。   While one of the inventors has studied variously in order to solve the above problem, in the precursor production process, an aminosilicone oil is applied before drying and densification, and after drying and densification, a silicone-based oil is applied. Low density suitable for raw materials of lightweight composites with the same performance (strength and elastic modulus) as conventional general-purpose carbon fibers It was learned that a PAN-based carbon fiber was obtained, and an earlier application was filed (Japanese Patent Application No. 2003-24730).

しかし、このPAN系炭素繊維の性能、例えばコンポジットとした時の層間剪断強度(ILSS)等の性能は、あまり高くない。そこで、本発明者等は、更なる性能向上のために検討を重ねるうちに、乾燥緻密化前にアミノシリコーン油剤を付与し、乾燥緻密化後にはシリコーン系油剤を付与しないで且つ密度を低下させずに製造したPAN系炭素繊維は、耐炎化焼成過程で油剤が空気酸化、加熱分解しにくいことを知得した。   However, the performance of this PAN-based carbon fiber, for example, the performance of interlaminar shear strength (ILSS) when made into a composite is not so high. Therefore, the inventors of the present invention applied an amino silicone oil agent before drying densification, and reduced the density without applying a silicone oil agent after drying densification, while studying for further performance improvement. It was found that the PAN-based carbon fiber produced without the oil was difficult to be oxidized by air and thermally decomposed during the flameproof firing process.

しかも、炭素化焼成過程における不活性ガス雰囲気下での加熱分解、熱反応で表面に窒化珪素誘導体構造が形成しにくく、その代わりにSiOx構造が形成される。更に、炭素化焼成後表面処理することにより、シラノール基(Si−OH)等が形成したPAN系炭素繊維が得られる。この表面特性が改善されたPAN系炭素繊維を樹脂と複合した場合、樹脂との濡れ性が向上し、層間剪断強度(ILSS)等のコンポジットとしての性能を向上できることを、本発明者等は知得し、本発明を完成するに到った。   Moreover, it is difficult to form a silicon nitride derivative structure on the surface due to thermal decomposition and thermal reaction under an inert gas atmosphere in the carbonization firing process, and instead, a SiOx structure is formed. Furthermore, PAN-based carbon fibers in which silanol groups (Si—OH) and the like are formed are obtained by surface treatment after carbonization firing. The present inventors know that, when this PAN-based carbon fiber with improved surface properties is combined with a resin, the wettability with the resin is improved and the performance as a composite such as interlaminar shear strength (ILSS) can be improved. As a result, the present invention has been completed.

よって、本発明の目的とするところは、上記問題を解決した、表面特性が改善されたPAN系炭素繊維及びその製造方法を提供することを目的とする。   Accordingly, an object of the present invention is to provide a PAN-based carbon fiber having improved surface characteristics and a method for producing the same, which solves the above problems.

上記目的を達成する本発明は、以下に記載のものである。   The present invention for achieving the above object is as follows.

[1] ストランド強度が4600〜5800MPa、弾性率が220〜250GPa、密度が1.74g/cm3以上1.80g/cm3未満、且つ珪素を含有するポリアクリロニトリル系炭素繊維であって、その含有された珪素がSiOx(1≦x≦3)構造を有し、その含有量が元素珪素として、当該炭素繊維質量の110〜500ppmであるポリアクリロニトリル系炭素繊維。 [1] Polyacrylonitrile-based carbon fiber having a strand strength of 4600 to 5800 MPa, an elastic modulus of 220 to 250 GPa, a density of 1.74 g / cm 3 or more and less than 1.80 g / cm 3 , and containing silicon. Polyacrylonitrile-based carbon fiber having a SiOx (1 ≦ x ≦ 3) structure and a content of 110 to 500 ppm of the carbon fiber mass as elemental silicon.

[2] 炭素繊維ストランドの単繊維平均直径が6〜8μmであり、炭素繊維ストランドの電気抵抗値が29〜32Ω・g/m2、且つ、X線光電子分光法により測定される表面珪素量(Si)を示すSi/Cが0.10〜0.15、表面酸素量(O)を示すO/Cが0.15〜0.30である[1]に記載のポリアクリロニトリル系炭素繊維。 [2] The carbon fiber strand has a single fiber average diameter of 6 to 8 μm, the carbon fiber strand has an electric resistance of 29 to 32 Ω · g / m 2 , and a surface silicon amount measured by X-ray photoelectron spectroscopy ( The polyacrylonitrile-based carbon fiber according to [1], wherein Si / C indicating Si) is 0.10 to 0.15, and O / C indicating surface oxygen amount (O) is 0.15 to 0.30.

[3] X線光電子分光法により測定されるSiの結合エネルギーのピークが102〜104eVの範囲に存在する珪素を含む構造を、表面に有する[1]又は[2]に記載のポリアクリロニトリル系炭素繊維。   [3] The polyacrylonitrile-based carbon according to [1] or [2], wherein the surface has a structure containing silicon having a Si binding energy peak measured by X-ray photoelectron spectroscopy in the range of 102 to 104 eV. fiber.

[4] アクリロニトリルを94質量%以上含有する単量体を重合した共重合体を紡糸して得られた糸を、油剤としてアミノ変性シリコーン及びジアルキルスルホサクシネートを含むエマルジョン水溶液を乾燥質量で0.1〜0.3%付着させた後、70〜150℃の乾燥機で乾燥緻密化後、温度100〜130℃、延伸比4.0〜7.0の条件で湿熱延伸処理して単繊維繊度0.96〜1.2dの炭素繊維用前駆体繊維を得、得られた前駆体繊維を、そのまま加熱空気中230〜290℃、延伸比1.02〜1.08で熱処理して耐炎化繊維を得、得られた耐炎化繊維を、不活性ガス雰囲気中で昇温し、最高温度領域で550〜750℃、延伸比1.01〜1.07で予備炭素化し、更に不活性ガス雰囲気中で昇温し、最高温度領域で1180〜1320℃、延伸比0.90〜1.00で炭素化し、水溶液中で炭素繊維1g当り電気量15クーロン以上の電解酸化法により表面処理することを特徴とするポリアクリロニトリル系炭素繊維の製造方法。   [4] A yarn obtained by spinning a copolymer obtained by polymerizing a monomer containing 94% by mass or more of acrylonitrile, an emulsion aqueous solution containing an amino-modified silicone and a dialkylsulfosuccinate as an oil agent in a dry mass of 0. After adhering 1 to 0.3%, after drying and densifying with a dryer at 70 to 150 ° C., wet heat drawing treatment is performed under conditions of a temperature of 100 to 130 ° C. and a draw ratio of 4.0 to 7.0. 0.96 to 1.2d precursor fiber for carbon fiber is obtained, and the obtained precursor fiber is heat-treated as it is in heated air at 230 to 290 ° C. and a draw ratio of 1.02 to 1.08 to provide flame resistant fiber. The flameproofed fiber obtained was heated in an inert gas atmosphere, pre-carbonized at a maximum temperature range of 550 to 750 ° C. and a draw ratio of 1.01 to 1.07, and further in an inert gas atmosphere The temperature rises at 11 and is 11 Production of polyacrylonitrile-based carbon fiber characterized by carbonizing at 0 to 1320 ° C. and a draw ratio of 0.90 to 1.00, and surface-treating in an aqueous solution by electrolytic oxidation with an electric charge of 15 coulomb or more per gram of carbon fiber Method.

[5] 炭素繊維用前駆体繊維の水分率が20〜60質量%である[4]に記載のポリアクリロニトリル系炭素繊維の製造方法。   [5] The method for producing a polyacrylonitrile-based carbon fiber according to [4], wherein the moisture content of the carbon fiber precursor fiber is 20 to 60% by mass.

本発明によれば、樹脂と複合した場合、樹脂との濡れ性が向上し、層間剪断強度(ILSS)等のコンポジットとしての性能を向上できる、表面特性が改善されたPAN系炭素繊維及びその製造方法を提供することができる。   According to the present invention, when combined with a resin, the wettability with the resin is improved, and the performance as a composite such as interlaminar shear strength (ILSS) can be improved, and the PAN-based carbon fiber with improved surface characteristics and its production A method can be provided.

以下は、本発明について更に詳しく説明する。   The following describes the invention in more detail.

[表面特性を改善したPAN系炭素繊維]
本発明の表面特性が改善されたPAN系炭素繊維(以下、『炭素繊維』と略記することがある)は、ストランド強度が4600〜5800MPa、弾性率が220〜250GPa、密度が1.74g/〜1.80g/cm3、且つ珪素を含有するPAN系炭素繊維であって、その含有珪素が、SiOx(1≦x≦3)構造を有し、珪素としての含有量が、当該炭素繊維質量の110〜500ppmであることを特徴とする。
[PAN-based carbon fiber with improved surface properties]
The PAN-based carbon fiber with improved surface characteristics according to the present invention (hereinafter sometimes abbreviated as “carbon fiber”) has a strand strength of 4600-5800 MPa, an elastic modulus of 220-250 GPa, and a density of 1.74 g / ˜. 1.80 g / cm 3 , and PAN-based carbon fiber containing silicon, the contained silicon having a SiOx (1 ≦ x ≦ 3) structure, and the content as silicon is the mass of the carbon fiber It is characterized by being 110-500 ppm.

本発明の炭素繊維は、従来の汎用タイプの炭素繊維に比較して、ストランドの強度、弾性率、伸度、密度が同等の性能を有し、且つ表面近傍に炭素繊維前駆体繊維の製造過程で付与したシリコーン系油剤の影響で珪素が、当該炭素繊維質量の110〜500ppm含有される。   The carbon fiber of the present invention has the same properties of strand strength, elastic modulus, elongation and density as compared to conventional general-purpose carbon fibers, and the process of producing carbon fiber precursor fibers in the vicinity of the surface. Silicon is contained in an amount of 110 to 500 ppm of the mass of the carbon fiber due to the influence of the silicone-based oil applied in (1).

上記炭素繊維ストランドは、単繊維径の平均が6〜8μmであり、炭素繊維ストランドの電気抵抗値が29〜32Ω・g/m2であり、且つ、X線光電子分光法により測定される表面珪素量(Si)を示すSi/Cが0.10〜0.15であることが好ましい。更に、X線光電子分光法により測定される表面酸素量(O)を示すO/Cは0.15〜0.30が好ましく、0.21〜0.30が特に好ましい。 The carbon fiber strand has an average single fiber diameter of 6 to 8 μm, an electrical resistance value of the carbon fiber strand of 29 to 32 Ω · g / m 2 , and surface silicon measured by X-ray photoelectron spectroscopy. It is preferable that Si / C which shows quantity (Si) is 0.10-0.15. Further, the O / C indicating the surface oxygen amount (O) measured by X-ray photoelectron spectroscopy is preferably 0.15 to 0.30, and particularly preferably 0.21 to 0.30.

炭素繊維を製造する上で、不活性ガス雰囲気、特に窒素雰囲気のもとで、1500℃以下で炭素化する。その際の焼成温度は、炭素繊維の内部構造、特にグラファイト化成長に大きな影響を与え、また、同時にガスとして分解、例えばアンモニアとして分解し、表面近傍に残る珪素の含有率や珪素を含む構造が異なっていく。   In producing the carbon fiber, it is carbonized at 1500 ° C. or less under an inert gas atmosphere, particularly a nitrogen atmosphere. The firing temperature at that time has a great influence on the internal structure of the carbon fiber, particularly the graphitization growth, and at the same time, it decomposes as a gas, for example, decomposes as ammonia, and the silicon content remaining in the vicinity of the surface or the structure containing silicon. It will be different.

炭素繊維表層部のグラファイト構造を簡便に評価する手法として、1m当りの電気抵抗値の値で代用することができる。炭素繊維は繊維内部にグラファイト構造を有しているため、電気伝導性を示す。この内部のグラファイト構造が発達するにつれて、電気伝導性が高くなっていく。特に電子は炭素繊維のより表面付近に流れ易いため、炭素繊維表面付近のグラファイト構造の成長を示す指標として、電気抵抗値を用いることがある。この電気抵抗値は、より高温で焼成された炭素繊維ほど、表面付近のグラファイト構造が成長し、電子が移動しやすいために、電気抵抗値が低い値を示す関係にある。   As a method for simply evaluating the graphite structure of the carbon fiber surface layer portion, the value of the electric resistance value per meter can be substituted. Since carbon fiber has a graphite structure inside the fiber, it exhibits electrical conductivity. As the internal graphite structure develops, the electrical conductivity increases. In particular, since electrons easily flow closer to the surface of the carbon fiber, an electrical resistance value is sometimes used as an index indicating the growth of the graphite structure near the surface of the carbon fiber. This electrical resistance value has a relationship that shows a lower electrical resistance value because the graphite structure near the surface grows and the electrons easily move as the carbon fiber fired at a higher temperature.

この電気抵抗値が低い場合、つまりより高温で炭素化した場合、繊維表面に残存する炭素繊維前駆体繊維に使用した油剤に由来した珪素化合物が熱により分解、また繊維内部から発生するガス、特にアンモニア若しくはその同類化合物によって反応が生じ、目的の含有珪素構造、SiOx(1≦x≦3)構造を有せず、代わりに、窒化珪素誘導体構造が形成して、表面特性が改善できない炭素繊維が得られる。   When this electrical resistance value is low, that is, when carbonized at a higher temperature, the silicon compound derived from the oil used in the carbon fiber precursor fiber remaining on the fiber surface is decomposed by heat, and a gas generated from the inside of the fiber, particularly A carbon fiber that does not have the desired silicon structure and SiOx (1 ≦ x ≦ 3) structure, but instead has a silicon nitride derivative structure, and whose surface characteristics cannot be improved, is caused by a reaction caused by ammonia or a similar compound. can get.

電気抵抗値が高い場合、即ちより低温で炭素化した場合、炭素繊維内部の構造、特にグラファイト構造の成長がそれほど進まないことによって、得られる炭素繊維の性能、例えば、ストランド強度、弾性率、密度の低下を招き好ましくない。また、炭素繊維表面により多くの含有珪素構造、SiOx(1≦x≦3)構造が層として厚く形成(残存)してしまう。このSiOx(1≦x≦3)構造を有する厚い珪素含有層が、将来得られた炭素繊維と樹脂とを複合化した際に、コンポジット物性の低下を招き好ましくない。   When the electrical resistance value is high, that is, when carbonized at a lower temperature, the performance of the carbon fiber obtained, for example, the strand strength, elastic modulus, density, etc., due to the fact that the structure inside the carbon fiber, especially the graphite structure, does not grow so much This is not preferable. Further, a large amount of contained silicon structure and SiOx (1 ≦ x ≦ 3) structure are formed (residual) thickly on the carbon fiber surface. When a thick silicon-containing layer having this SiOx (1 ≦ x ≦ 3) structure is combined with a carbon fiber and a resin obtained in the future, the physical properties of the composite are deteriorated, which is not preferable.

炭素繊維内部の高次構造から見ると、珪素が含有した層が厚く存在する、即ち不純な構造が表面に多く存在すると、炭素繊維内部の構造との乖離が大きくなり、表面に欠陥が生じやすくなり好ましくない。また、炭素繊維の密度が大きくなってしまい好ましくない。従って、電気抵抗値は29〜32Ω・g/m2の範囲が特に好ましい。 When viewed from the higher-order structure inside the carbon fiber, if the silicon-containing layer is thick, that is, if there are many impure structures on the surface, the deviation from the structure inside the carbon fiber will increase and the surface will be prone to defects. It is not preferable. In addition, the density of the carbon fibers increases, which is not preferable. Therefore, the electric resistance value is particularly preferably in the range of 29 to 32 Ω · g / m 2 .

このように、電気抵抗値に代表される、焼成度合いは、炭素繊維表面の含有珪素構造、SiOx(1≦x≦3)構造に大きな影響を与える。   Thus, the degree of firing represented by the electrical resistance value has a great influence on the silicon structure contained on the carbon fiber surface and the SiOx (1 ≦ x ≦ 3) structure.

なお、炭素繊維前駆体繊維の製造過程で、工程安定性や、後の焼成時、特に耐炎化工程での工程安定性や膠着発生を抑制する目的で種々の油剤を付与し、繊維表面に皮膜を形成させる。この油剤の付与による皮膜の形成は、耐炎化時における、繊維内部への酸素透過性に影響を与える。また、繊維内部から発生する分解ガスの放出にも影響を与える。したがって、耐炎化糸の構造に大きな影響を与えるので、付与する油剤の種類(構造)や付着量を後述する条件に制御する必要がある。   In addition, in the process of manufacturing the carbon fiber precursor fiber, various oils are applied for the purpose of suppressing process stability and process stability in the subsequent firing, particularly in the flameproofing process, and the occurrence of sticking, and coating the fiber surface. To form. The formation of a film by the application of this oil agent affects the oxygen permeability to the inside of the fiber at the time of flame resistance. It also affects the release of cracked gas generated from the inside of the fiber. Therefore, since it greatly affects the structure of the flame resistant yarn, it is necessary to control the type (structure) of the oil agent to be applied and the adhesion amount to the conditions described later.

一般の炭素繊維の製造方法では、耐炎化時に、より空気中高温で熱処理すると、耐炎化糸の比重が増加するに伴い、分子内環化は進み、酸素の付加率も高くなっていく。しかし、本発明では、特定の油剤を炭素繊維前駆体繊維の製造過程で、乾燥緻密化前に付与し、表面近傍に浸透させて耐炎化し、第一炭素化炉での初期炭素化、第二炭素化炉で炭素化する際の温度を的確に制御することにより、従来の汎用炭素繊維が有する繊維特性を有し、更には表面特性の優れた炭素繊維を得ることができる。   In a general carbon fiber production method, when heat treatment is performed at a higher temperature in the air at the time of flame resistance, the intramolecular cyclization progresses and the oxygen addition rate increases as the specific gravity of the flame resistant yarn increases. However, in the present invention, a specific oil agent is applied before drying and densification in the production process of the carbon fiber precursor fiber, and is penetrated into the vicinity of the surface to make it flame resistant, and the initial carbonization in the first carbonization furnace, By appropriately controlling the temperature at the time of carbonization in the carbonization furnace, it is possible to obtain carbon fibers having the fiber characteristics of conventional general-purpose carbon fibers and having excellent surface characteristics.

本発明の炭素繊維の原料であるPAN系炭素繊維の炭素繊維用前駆体繊維としては、アクリロニトリルと、このアクリロニトリルと共重合可能なオレフィン構造を有するコモノマーとの共重合体を用いることができる。   As a precursor fiber for carbon fiber of PAN-based carbon fiber which is a raw material of the carbon fiber of the present invention, a copolymer of acrylonitrile and a comonomer having an olefin structure copolymerizable with this acrylonitrile can be used.

この共重合体中のアクリロニトリル含有量は94質量%以上が好ましく、95質量%以上が更に好ましい。また、共重合体中のコモノマー含有量は6質量%以下が好ましく、5質量%以下が更に好ましい。   The acrylonitrile content in this copolymer is preferably 94% by mass or more, and more preferably 95% by mass or more. The comonomer content in the copolymer is preferably 6% by mass or less, and more preferably 5% by mass or less.

コモノマーとしては、アクリル酸、メタクリル酸、イタコン酸等の不飽和カルボン酸及びそれらのアンモニウム塩及びアルキルエステル類、アクリルアミド、メタクリルアミド及びそれらの誘導体等を挙げることができ、それらを2種類以上組み合わせることもできる。   Examples of comonomers include unsaturated carboxylic acids such as acrylic acid, methacrylic acid, and itaconic acid, and ammonium salts and alkyl esters thereof, acrylamide, methacrylamide, and derivatives thereof, and combinations of two or more thereof. You can also.

特に低コスト化を進める上で、コモノマーとして不飽和カルボン酸を用いることは、耐炎化反応を促進させる意味で好ましいものである。不飽和カルボン酸の共重合体中の含有量は、0.1〜3質量%であることが好ましく、特に0.5〜2質量%がより好ましい。   In particular, in order to reduce the cost, it is preferable to use an unsaturated carboxylic acid as a comonomer in terms of promoting the flame resistance reaction. The content of the unsaturated carboxylic acid in the copolymer is preferably 0.1 to 3% by mass, and more preferably 0.5 to 2% by mass.

不飽和カルボン酸の例としては、アクリル酸、クロトン酸、メタクリル酸、イタコン酸、マレイン酸、フマル酸等をあげることができる。   Examples of unsaturated carboxylic acids include acrylic acid, crotonic acid, methacrylic acid, itaconic acid, maleic acid, fumaric acid and the like.

なお、高強度の炭素繊維を得る為には、炭素繊維用前駆体繊維の分子配向性を高くする必要性がある。そのため、炭素繊維用前駆体繊維製造工程で、高延伸しやすくする為に、炭素繊維用前駆体繊維中の分子自由度を高くする目的で、不飽和カルボン酸エステルを共重合することが好ましい。不飽和カルボン酸エステルの共重合体中の含有量は、0.1〜6質量%が好ましく、2〜5質量%が更に好ましい。   In order to obtain high-strength carbon fibers, it is necessary to increase the molecular orientation of the precursor fibers for carbon fibers. Therefore, it is preferable to copolymerize an unsaturated carboxylic acid ester for the purpose of increasing the degree of molecular freedom in the carbon fiber precursor fiber in order to facilitate high stretching in the carbon fiber precursor fiber manufacturing process. 0.1-6 mass% is preferable and, as for content in the copolymer of unsaturated carboxylic acid ester, 2-5 mass% is still more preferable.

不飽和カルボン酸エステルの例としては、アクリル酸アルキル、メタクリル酸アルキルがある。好ましいアルキル基の長さは、炭素数(C)が1〜4であり、特に好ましいアルキル基の長さは、Cが1〜2である。   Examples of unsaturated carboxylic acid esters include alkyl acrylates and alkyl methacrylates. The preferred alkyl group length is 1 to 4 carbon atoms (C), and the particularly preferred alkyl group length is C 1 to 2.

上記モノマーとコモノマーとの重合方法としては、溶液重合、懸濁重合、乳化重合等を用いることができるが、そのまま紡糸できることにより溶液重合が最も好ましい。   As a polymerization method of the above monomer and comonomer, solution polymerization, suspension polymerization, emulsion polymerization and the like can be used, but solution polymerization is most preferable because it can be spun as it is.

紡糸する際の液(紡糸原液)は、ジメチルホルムアミド、ジメチルスルホキシド、ジメチルアセトアミド等の有機溶媒や、硝酸、塩化亜鉛水溶液、ロダン塩水溶液等の無機溶媒を溶媒として用い、上記モノマーとコモノマーとを重合させたポリマー溶液を、紡糸原液とすることが好ましい。その中でも、高分子量ポリマーを溶解させるのに優位性がある塩化亜鉛水溶液を溶媒に用いるのがより好ましい。   The spinning solution (spinning stock solution) was prepared by polymerizing the above monomers and comonomers using organic solvents such as dimethylformamide, dimethyl sulfoxide, dimethylacetamide, and inorganic solvents such as nitric acid, zinc chloride aqueous solution, and rhodan salt aqueous solution as solvents. The polymer solution thus prepared is preferably used as a spinning dope. Among these, it is more preferable to use a zinc chloride aqueous solution having an advantage for dissolving a high molecular weight polymer as a solvent.

紡糸原液の濃度は、炭素繊維前駆体繊維の比重に影響を与えるので、溶媒として塩化亜鉛水溶液を用いた場合、5質量%以上10質量%以下が好ましい。更に好ましくは7質量%以上9質量%以下が更に好ましい。紡糸原液の濃度が低すぎる場合は、得られる炭素繊維前駆体繊維の比重が低くなり、低比重の炭素繊維が得られなくなる。一方、濃度が高すぎる場合は、ポリマーの溶媒に対する溶解度には限界があるため、紡糸原液が不均一な溶液になり好ましくない。   Since the concentration of the spinning dope affects the specific gravity of the carbon fiber precursor fiber, it is preferably 5% by mass or more and 10% by mass or less when a zinc chloride aqueous solution is used as a solvent. More preferably, 7 mass% or more and 9 mass% or less are still more preferable. When the concentration of the spinning dope is too low, the specific gravity of the obtained carbon fiber precursor fiber is low, and carbon fibers having a low specific gravity cannot be obtained. On the other hand, if the concentration is too high, there is a limit to the solubility of the polymer in the solvent, which is not preferable because the spinning dope becomes a non-uniform solution.

紡糸は、低温に冷却した凝固液(紡糸する際の溶媒−水混合液)を入れた凝固浴中に直接紡出する湿式紡糸が好ましい。また、空気中にまず吐出させた後、3〜5mm程度の空間を有して凝固浴に投入し凝固させる乾湿式紡糸法でもよい。   The spinning is preferably wet spinning in which spinning is carried out directly in a coagulation bath containing a coagulation liquid cooled to a low temperature (solvent-water mixture at the time of spinning). Alternatively, a dry-wet spinning method may be used in which a space of about 3 to 5 mm is first discharged into the air and then charged into a coagulation bath and coagulated.

紡出糸は、濃度勾配をかけた凝固浴で徐々に凝固させ、同時に溶媒を除去しながら、水洗して直接浴中延伸する。浴中延伸では、数種の水洗〜熱水浴中で、延伸比2.0〜6.0、特に延伸比4.0〜6.0で紡出糸を延伸するのが好ましい。   The spun yarn is gradually coagulated in a coagulation bath having a concentration gradient, and at the same time, while removing the solvent, washed with water and directly stretched in the bath. In stretching in the bath, it is preferable to stretch the spun yarn in several water washing to hot water baths at a draw ratio of 2.0 to 6.0, particularly 4.0 to 6.0.

浴中延伸の条件については、上記凝固浴温度と、水洗温度又は熱水浴温度との温度勾配は最大で98℃にするのが好ましい。   Regarding the conditions for stretching in the bath, the temperature gradient between the coagulation bath temperature and the washing temperature or hot water bath temperature is preferably 98 ° C. at the maximum.

その後、乾燥緻密化に先立って、耐熱性向上や紡糸安定性を目的として、親水基を持つ浸透性油剤とシリコーン系油剤を組み合わせた炭素繊維用前駆体繊維油剤を付与することが、炭素繊維を軽量化する場合には、この炭素繊維を品位よく得る点から好ましい。   Then, prior to drying and densification, for the purpose of improving heat resistance and spinning stability, it is possible to apply a carbon fiber precursor fiber oil agent that combines a permeable oil agent having a hydrophilic group and a silicone oil agent. In the case of reducing the weight, it is preferable from the viewpoint of obtaining this carbon fiber with high quality.

浸透性油剤とシリコーン系油剤との配合割合は65:35〜75:25(質量基準)が好ましい。   The blending ratio of the osmotic oil agent and the silicone oil agent is preferably 65:35 to 75:25 (mass basis).

浸透性油剤は官能基として、スルフィン酸、スルホン酸、燐酸、カルボン酸やそのアルカリ金属塩、アンモニウム塩、その誘導体を有するものが好ましい。これらの浸透性油剤のうちでも、浸透しやすいジアルキルスルホサクシネート若しくはその誘導体を用いるのが特に好ましい。   The osmotic oil agent preferably has sulfinic acid, sulfonic acid, phosphoric acid, carboxylic acid, its alkali metal salt, ammonium salt or its derivative as a functional group. Among these penetrating oils, it is particularly preferable to use dialkyl sulfosuccinate or a derivative thereof which can easily penetrate.

シリコーン系油剤は、未変性あるいは変性されたもののいずれでもよいが、中でもエポキシ変性シリコーン、エチレンオキサイド変性シリコーン、ポリシロキサン、アミノ変性シリコーンが好ましく、アミノ変性シリコーンが特に好ましい。   The silicone oil may be either unmodified or modified, and among them, epoxy-modified silicone, ethylene oxide-modified silicone, polysiloxane and amino-modified silicone are preferable, and amino-modified silicone is particularly preferable.

浸透性油剤とシリコーン系油剤とが配合された油剤のアクリル繊維への付与の割合(付着量)は、アクリル繊維乾燥質量当り0.1〜0.3質量%である。   The ratio (attachment amount) applied to the acrylic fiber of the oil containing the permeable oil and the silicone-based oil is 0.1 to 0.3% by mass based on the acrylic fiber dry mass.

油剤付着量が0.1質量%より少ない場合は、耐炎化工程でのアクリル繊維の収束性が劣り、この耐炎化工程以降での工程通過性は著しく損なわれるので好ましくない。   When the amount of the oil agent is less than 0.1% by mass, the convergence property of the acrylic fiber in the flameproofing process is inferior, and the process passability after this flameproofing process is remarkably impaired.

一方、油剤付着量が0.3質量%を超える場合は、目的とする単繊維強度を得ることが出来ないので好ましくない。   On the other hand, when the amount of oil agent adhering exceeds 0.3% by mass, the desired single fiber strength cannot be obtained, which is not preferable.

乾燥緻密化においては、温度勾配をかけた幾層にも連なる部屋を有する熱風乾燥機で乾燥することが好ましい。乾燥温度については、より緻密性が向上するように、70〜150℃で適宜調節して行うことが好ましく、80〜140℃で適宜調節して行うことが更に好ましい。乾燥時間については、1〜10分間が好ましい。   In the drying and densification, it is preferable to dry with a hot air drier having several layers of rooms with a temperature gradient. About drying temperature, it is preferable to adjust suitably at 70-150 degreeC so that a compactness may improve more, and it is still more preferable to adjust suitably at 80-140 degreeC. The drying time is preferably 1 to 10 minutes.

また、高温での延伸を行うことによって、作製される炭素繊維用前駆体繊維の繊度や分子配向を整えることができる。特に加圧スチーム中での熱延伸は有効であり、温度100〜130℃、延伸比4.0〜6.0の条件で湿熱延伸処理することが特に好ましい。この熱延伸の条件は、炭素繊維用前駆体繊維の緻密性に大きな影響を与える。   Moreover, the fineness and molecular orientation of the produced carbon fiber precursor fiber can be adjusted by stretching at a high temperature. In particular, heat stretching in pressurized steam is effective, and wet heat stretching treatment is particularly preferable under conditions of a temperature of 100 to 130 ° C. and a stretching ratio of 4.0 to 6.0. This hot drawing condition has a great influence on the density of the precursor fiber for carbon fiber.

緻密性を評価する手段として、アルキメデス法による見かけ比重の評価がある。   As a means for evaluating the denseness, there is an evaluation of apparent specific gravity by Archimedes method.

炭素繊維用前駆体繊維を約2g採取し、直径3cm以内の円状にまとめ、形状が崩れないようにする。測定溶剤には、水、若しくは親水性溶媒が好ましい。なお、炭素繊維用前駆体繊維に付与させた油剤の影響等で脱泡時に泡が取れ難い場合がある。この場合は、エタノール若しくはアセトンを用いるのが最も好ましい。   About 2 g of carbon fiber precursor fibers are collected and collected into a circle having a diameter of 3 cm or less so that the shape does not collapse. The measurement solvent is preferably water or a hydrophilic solvent. In some cases, it is difficult to remove bubbles at the time of defoaming due to the influence of the oil agent applied to the precursor fiber for carbon fiber. In this case, it is most preferable to use ethanol or acetone.

次に、上記円状のサンプルを溶媒中に浸漬し、減圧下で脱泡する。常温下で、溶媒中の質量を測定し、更にサンプルを加熱乾燥して乾燥質量を求め、炭素繊維用前駆体繊維の見かけ比重を求める。この比重は、PANの比重1.18より低くなるが、好ましくは1.160〜1.175、より好ましくは1.163〜1.174、更に好ましくは1.165〜1.173になるように乾燥緻密化及び熱延伸条件を変更する。   Next, the circular sample is immersed in a solvent and degassed under reduced pressure. Under normal temperature, the mass in the solvent is measured, the sample is further dried by heating to obtain the dry mass, and the apparent specific gravity of the precursor fiber for carbon fiber is obtained. The specific gravity is lower than the specific gravity of 1.18 of PAN, preferably 1.160 to 1.175, more preferably 1.163 to 1.174, and even more preferably 1.165 to 1.173. Change the drying densification and heat stretching conditions.

本発明において、炭素繊維用前駆体繊維の単繊維繊度は、強度向上の観点から、耐炎化工程での酸化斑(むら)が生じ難いように、細い方が好ましい。具体的には、1.2d以下が好ましく、0.9〜1.2dがより好ましく、0.96〜1.18dが更に好ましい。   In the present invention, the single fiber fineness of the precursor fiber for carbon fiber is preferably narrow so that oxidation spots (unevenness) in the flame resistance process are unlikely to occur from the viewpoint of improving the strength. Specifically, 1.2 d or less is preferable, 0.9 to 1.2 d is more preferable, and 0.96 to 1.18 d is still more preferable.

得られた炭素繊維用前駆体繊維は、分子配向の緩和が生じ難いように、糸(前駆体繊維)の乾燥を防ぐ必要がある。そのため、前駆体繊維の水分率は、好ましくは20〜60質量%、特に好ましくは30〜50質量%に保つ必要がある。炭素繊維用前駆体繊維の水分率が低くなりすぎると、集束性が低下することによって取扱性が悪くなり、また、水分率が高すぎると水の表面張力により、耐炎化工程中のローラーに巻き付きやすくなりトラブルの原因になる。   The obtained precursor fiber for carbon fiber needs to prevent drying of the yarn (precursor fiber) so that the molecular orientation is not easily relaxed. Therefore, the moisture content of the precursor fiber is preferably 20 to 60% by mass, particularly preferably 30 to 50% by mass. If the moisture content of the carbon fiber precursor fiber is too low, the handleability is deteriorated due to a decrease in convergence, and if the moisture content is too high, the surface tension of water wraps around the roller during the flameproofing process. It becomes easy and causes trouble.

上記のようにして作製され、適宜調節された水分率を有する炭素繊維用前駆体繊維は、密閉容器中に一時保存することが可能である。保存容器としては、円筒形の容器が好ましく、ビニール袋も好ましい。但し、保存する際は、内部の水分が保持できるものでなければいけない。   The precursor fiber for carbon fiber produced as described above and having an appropriately adjusted moisture content can be temporarily stored in a sealed container. As the storage container, a cylindrical container is preferable, and a plastic bag is also preferable. However, when storing, it must be able to retain the internal moisture.

なお、本発明で用いられる炭素繊維用前駆体繊維は、乾熱ローラー等の熱処理を施しておらず、湿熱延伸後の糸を用いているため、そのままの状態で保存すると、繊維の配向緩和が生じ、炭素繊維の強度低下を招いてしまう。   In addition, since the precursor fiber for carbon fiber used in the present invention is not subjected to a heat treatment such as a dry heat roller and uses a yarn after wet heat drawing, if it is stored as it is, the orientation of the fiber is relaxed. This will cause a decrease in strength of the carbon fiber.

この炭素繊維用前駆体繊維の配向緩和を防ぐ方法としては、以下に示す、従来既存の技術が応用できる。   As a method of preventing orientation relaxation of the carbon fiber precursor fiber, the following conventional techniques can be applied.

即ち、炭素繊維用前駆体繊維の製造後の後工程(耐炎化工程、炭素化工程)において、繊維内部の分子配向性を向上させるための方法として、湿熱延伸して前駆体繊維の糸を製造した後における、純水等で濡れたままの状態の糸を、収納容器に蓄える方法が利用できる。   That is, as a method for improving the molecular orientation inside the fiber in the post-process (flame-proofing process, carbonization process) after the production of the precursor fiber for carbon fiber, the yarn of the precursor fiber is produced by wet heat drawing. After that, a method of storing the yarn in a wet state with pure water or the like in a storage container can be used.

この濡れたまま糸を収納容器に蓄える方法によれば、繊維が乾燥することによって生ずる配向緩和や空気による酸化、空気中の異物の付加等が防止でき、高強度の炭素繊維を製造する事ができる。   According to the method of storing the yarn in the storage container while wet, it is possible to prevent orientation relaxation, oxidation by air, addition of foreign matter in the air, etc. caused by drying of the fiber, and to produce high-strength carbon fiber. it can.

次いで、上記前工程で製造した炭素繊維用前駆体繊維を、耐炎化工程で耐炎化処理する。この耐炎化処理は、例えば加熱空気中2室以上に分かれた横型炉で、多段ローラー群を介して、温度230〜290℃、好ましくは230〜270℃、延伸比1.02〜1.08、好ましくは1.03〜1.07で熱処理して行うことができる。   Next, the precursor fiber for carbon fiber produced in the previous step is subjected to flame resistance treatment in the flame resistance step. This flameproofing treatment is, for example, a horizontal furnace divided into two or more chambers in heated air, through a multi-stage roller group, a temperature of 230 to 290 ° C, preferably 230 to 270 ° C, a draw ratio of 1.02 to 1.08, Preferably, the heat treatment can be performed at 1.03 to 1.07.

耐炎化の延伸比が低いと、分子配向が緩和されてしまう為好ましくない。また、通常耐炎化が進むにつれて繊維が脆弱化するので、延伸比が高すぎると、単糸切れによる毛羽が発生し、後に得られる炭素繊維の品位を著しく低下させるので好ましくない。   If the stretch ratio for flame resistance is low, the molecular orientation is relaxed, which is not preferable. Further, since the fiber becomes brittle as the flame resistance is usually increased, if the draw ratio is too high, fluff due to single yarn breakage is generated, and the quality of the carbon fiber obtained later is remarkably lowered.

従って、耐炎化時の延伸比については、1.02〜1.08で熱処理することが好ましく、1.03〜1.07で熱処理することが更に好ましい。   Therefore, it is preferable to heat-process at 1.02-1.08 about the stretch ratio at the time of flame resistance, and it is still more preferable to heat-process at 1.03-1.07.

耐炎化反応については、初期にニトリル基への酸化によって反応が開始され、環化反応が生じ、更に環への酸素の付加により、耐炎化構造となる。従って、環化の度合いと酸化の度合いを規定することにより、好ましい耐炎化糸を製造することが可能である。   As for the flameproofing reaction, the reaction is initially initiated by oxidation to a nitrile group to cause a cyclization reaction, and further, by adding oxygen to the ring, a flameproofing structure is obtained. Therefore, by defining the degree of cyclization and the degree of oxidation, it is possible to produce a preferable flameproof yarn.

耐炎化繊維の比重は、好ましくは1.360〜1.385、より好ましくは1.363〜1.383、更に好ましくは1.365〜1.380がよい。   The specific gravity of the flame resistant fiber is preferably 1.360 to 1.385, more preferably 1.363 to 1.383, and still more preferably 1.365 to 1.380.

耐炎化糸の表面付近では、炭素繊維用前駆体繊維に付与した油剤の影響によるSiの酸化物、ポリアクリロニトリルの酸化によるアミド形成、その環化物への酸化等により、さまざまな酸化物の構造を有しているが、表面付近の元素割合として酸素と珪素の比が1以上の際に好ましい構造となる。   Near the surface of the flame-resistant yarn, various oxide structures are formed by Si oxides due to the effect of the oil applied to the precursor fiber for carbon fibers, amide formation by oxidation of polyacrylonitrile, oxidation to cyclized products, etc. However, a preferable structure is obtained when the ratio of oxygen to silicon is 1 or more as the element ratio in the vicinity of the surface.

上記耐炎化繊維は、窒素等の不活性ガス雰囲気下300〜750℃で3室以上に分けた焼成炉(第一炭素化炉)で徐々に温度勾配をかけ、耐炎化繊維の張力を制御して緊張下で1段目の炭素化(予備炭素化)をする。   The flame-resistant fiber is gradually heated in a firing furnace (first carbonization furnace) divided into three or more chambers at 300 to 750 ° C. in an inert gas atmosphere such as nitrogen to control the tension of the flame-resistant fiber. The first stage of carbonization (preliminary carbonization) under tension.

緊張条件については、収縮比(緊張後の長さ/緊張前の長さ)が好ましくは1.01〜1.07の範囲、より好ましくは1.02〜1.05の範囲がよい。   As for the tension condition, the contraction ratio (length after tension / length before tension) is preferably in the range of 1.01 to 1.07, more preferably in the range of 1.02 to 1.05.

焼成温度については、第一炭素化炉で温度勾配をかけていき、最高温度領域で、好ましくは550〜750℃、より好ましくは600〜700℃とすることがよい。   About baking temperature, a temperature gradient is applied in a 1st carbonization furnace, Preferably it is 550-750 degreeC, More preferably, it is 600-700 degreeC in the highest temperature range.

より炭素化を進め且つグラファイト化(炭素の高結晶化)を進める為に、窒素等の不活性ガス雰囲気下で昇温し、2室以上に分けた焼成炉(第二炭素化炉)で徐々に温度勾配をかけ、糸(予備炭素化繊維)の張力を制御して弛緩条件で焼成する。   In order to further promote carbonization and graphitization (high crystallization of carbon), the temperature is raised in an inert gas atmosphere such as nitrogen and gradually in a firing furnace (second carbonization furnace) divided into two or more chambers. A temperature gradient is applied to the yarn, and the tension of the yarn (preliminary carbonized fiber) is controlled and fired under a relaxed condition.

弛緩条件については、収縮比(弛緩後の長さ/弛緩前の長さ)が好ましくは0.9〜1.0の範囲、より好ましくは0.92〜0.99の範囲、更に好ましくは0.95〜0.98の範囲がよい。   Regarding relaxation conditions, the shrinkage ratio (length after relaxation / length before relaxation) is preferably in the range of 0.9 to 1.0, more preferably in the range of 0.92 to 0.99, and still more preferably 0. A range of .95 to 0.98 is preferable.

焼成温度については、第二炭素化炉で温度勾配をかけていき、最高温度領域で、好ましくは1180〜1320℃、より好ましくは1200〜1300℃とすることがよい。   About a calcination temperature, a temperature gradient is applied in a 2nd carbonization furnace, Preferably it is 1180-1320 degreeC in a highest temperature area | region, More preferably, it is good to set it as 1200-1300 degreeC.

温度勾配については、好ましくは、400℃/分以上の昇温、より好ましくは400〜1000℃/分の昇温、更に好ましくは、500〜900℃/分の昇温である。生産性やコスト面から炉長があまり長すぎるのは好ましくなく、また、炉内の高温部での滞留時間が長くなると、グラファイト化が進み過ぎ、脆性化した炭素繊維が得られることになるので好ましくない。   The temperature gradient is preferably 400 ° C./min or higher, more preferably 400 to 1000 ° C./min, and still more preferably 500 to 900 ° C./min. It is not preferable that the furnace length is too long in terms of productivity and cost, and if the residence time in the high temperature part in the furnace becomes long, graphitization proceeds too much and brittle carbon fibers are obtained. It is not preferable.

また、温度勾配が緩く、滞留時間が長くなると、炭素繊維内部の構造において、緻密化が進んでしまうため、炭素繊維の密度が高くなり過ぎるので好ましくない。上記範囲の温度勾配、最高温度領域で、滞留時間を設定することにより、炭素繊維内部の構造が適正化され、従来の汎用炭素繊維が有する繊維特性を有することができる。   Further, if the temperature gradient is gentle and the residence time is long, densification is advanced in the structure inside the carbon fiber, which is not preferable because the density of the carbon fiber becomes too high. By setting the residence time in the temperature gradient and the maximum temperature range within the above range, the structure inside the carbon fiber is optimized, and the conventional general-purpose carbon fiber can have the fiber characteristics.

得られた炭素繊維は、酸若しくはアルカリ水溶液を用いた電解層中で電解酸化処理して、表面処理する。炭素繊維を樹脂と複合化させて材料として使用する場合は、炭素繊維とマトリックス樹脂との親和性や接着性を向上させる目的で行う必要がある。   The obtained carbon fiber is surface-treated by electrolytic oxidation treatment in an electrolytic layer using an acid or alkaline aqueous solution. When carbon fiber is combined with resin and used as a material, it is necessary to improve the affinity and adhesion between the carbon fiber and the matrix resin.

電解処理の電解液としては、酸性若しくはアルカリ性のものが使用できる。酸性のものとして、硝酸、硫酸、塩酸、酢酸、それらのアンモニウム塩、硫酸水素アンモニウム等がある。   As an electrolytic solution for electrolytic treatment, an acidic or alkaline solution can be used. Examples of acidic substances include nitric acid, sulfuric acid, hydrochloric acid, acetic acid, their ammonium salts, and ammonium hydrogen sulfate.

これらの電解液のうちでも、好ましくは、弱酸性を示す硫酸アンモニウム、硫酸水素アンモニウム等のアンモニウム塩がよい。また、アルカリ性のものは、水酸化カリウム、水酸化ナトリウム、アンモニア等が挙げられる。   Among these electrolytic solutions, ammonium salts such as ammonium sulfate and ammonium hydrogen sulfate that exhibit weak acidity are preferable. Examples of alkaline substances include potassium hydroxide, sodium hydroxide, and ammonia.

電解酸化する際の電気量は、炭素繊維外層部のグラファイト化の度合いに伴い調整する必要がある。樹脂との複合化をすることを踏まえると、親和性を向上する炭素繊維1g当り15クーロン以上が好ましく、18クーロン以上が特に好ましい。なお、電気量が多すぎると炭素繊維表面の小規模欠陥を取り除く以上に表面が酸化され、欠陥を新たに生じさせる場合があり、多くとも30クーロン以下が好ましい。   The amount of electricity at the time of electrolytic oxidation needs to be adjusted according to the degree of graphitization of the carbon fiber outer layer portion. In consideration of the compounding with the resin, it is preferably 15 coulombs or more, and particularly preferably 18 coulombs or more per 1 g of the carbon fiber that improves the affinity. If the amount of electricity is too large, the surface may be oxidized more than removing small-scale defects on the carbon fiber surface, and new defects may be generated, and at most 30 coulombs are preferred.

また、電解酸化による表面処理を施した後は、電解液やその副生成物等が炭素繊維に付着しているので、よく水洗し、乾燥する必要がある。更に、炭素繊維の後加工をしやすくし、取扱性を向上させる目的で、サイジング処理する。サイジング方法は、従来の公知の方法で行うことができ、サイジング剤は、用途に即して適宜組成を変更して使用し、均一付着させた後に、乾燥する。付着量は、好ましくは、0.1〜2.0質量%、より好ましくは、0.5〜1.5質量%である。   In addition, after the surface treatment by electrolytic oxidation, the electrolytic solution and its by-products are attached to the carbon fiber, so it is necessary to wash with water and dry it. Further, sizing treatment is performed for the purpose of facilitating the post-processing of the carbon fiber and improving the handleability. The sizing method can be carried out by a conventionally known method, and the sizing agent is used by changing the composition as appropriate according to the use, and after uniformly adhering, is dried. The amount of adhesion is preferably 0.1 to 2.0% by mass, more preferably 0.5 to 1.5% by mass.

以下の実施例及び比較例に記載した条件によりポリアミド被覆炭素繊維を作製した。なお、各ポリアミド被覆炭素繊維の諸物性値は、前述の方法又は以下の方法により測定した。   Polyamide-coated carbon fibers were produced under the conditions described in the following examples and comparative examples. In addition, the various physical-property values of each polyamide covering carbon fiber were measured by the above-mentioned method or the following methods.

[X線回折測定での配向度]
なお、X線回折測定での配向度測定については、次のようにして求めることができる。
[Orientation degree in X-ray diffraction measurement]
In addition, about the orientation degree measurement by X-ray diffraction measurement, it can obtain | require as follows.

炭素繊維前駆体繊維を、単繊維約24000本(例えば単繊維12000本の炭素繊維束を2束)で構成させ、アセトンを用いて収束して繊維軸方向に繊維を引揃える。   The carbon fiber precursor fiber is composed of about 24,000 single fibers (for example, two carbon fiber bundles of 12,000 single fibers), converged with acetone, and aligned in the fiber axis direction.

直径1cmの穴をあけた台紙に、穴の部分が繊維の中央に来るように、繊維を引揃えた長さ3cmの炭素繊維前駆体繊維束を貼付ける。繊維軸と治具の軸が平行になるように、台紙に貼った炭素繊維前駆体繊維束を試料調整用治具に、緊張させた状態で固定する。   A carbon fiber precursor fiber bundle having a length of 3 cm, in which the fibers are aligned, is attached to a mount with a hole having a diameter of 1 cm so that the hole portion is in the center of the fiber. The carbon fiber precursor fiber bundle affixed to the mount is fixed to the sample adjustment jig in a tensioned state so that the fiber axis and the jig axis are parallel.

更に、この治具を透過法による広角X線回折測定試料台に固定する。X線源として、CuのKα線を使用し、試料に照射すると、2θが17度付近に回折パターンが現れる。   Furthermore, this jig is fixed to a wide-angle X-ray diffraction measurement sample stage by a transmission method. When Cu Kα rays are used as the X-ray source and the sample is irradiated, a diffraction pattern appears when 2θ is around 17 degrees.

上記の測定によって得た回折パターンのピーク(2θ)の位置で、測定試料台を0〜360度回転させ円周方向にスキャンして得られた2つのピークから、各の半値幅を求め、平均して半値幅Hとし、下式
配向度(%)=[(180−H)/180]×100
によって求めることができる。
At the position of the peak (2θ) of the diffraction pattern obtained by the above measurement, the half width is obtained from the two peaks obtained by rotating the measurement sample stage 0 to 360 degrees and scanning in the circumferential direction. The full width at half maximum is H, and the following degree of orientation (%) = [(180−H) / 180] × 100
Can be obtained.

[炭素繊維表面の表面酸素及び珪素の濃度O/C、Si/C、並びに、Siの結合エネルギー]
炭素繊維表面の表面酸素及び珪素の濃度O/C、Si/Cは、次の手順に従ってXPS(ESCA)によって求めた。
[Carbon fiber surface oxygen and silicon concentrations O / C, Si / C, and Si binding energy]
The surface oxygen and silicon concentrations O / C and Si / C on the carbon fiber surface were determined by XPS (ESCA) according to the following procedure.

炭素繊維をカットしてステンレス製の試料支持台上に拡げて並べた後、光電子脱出角度を90度に設定し、X線源としてMgKαを用い、試料チャンバー内を1×10-6Paの真空度に保つ。測定時の帯電に伴うピークの補正として、まずC1sの主ピークの結合エネルギー値B.E.を284.6eVに合わせる。Si1sピーク面積は、92〜116eVの範囲で直線のベースラインを引くことにより求め、O1sピーク面積は、528〜540eVの範囲で直線のベースラインを引くことにより求め、C1sピーク面積は、282〜296eVの範囲で直線のベースラインを引くことにより求めた。炭素繊維表面の表面酸素濃度O/Cは、上記O1sピーク面積とC1sピーク面積の比で計算して求めた。炭素繊維表面の表面珪素濃度Si/Cは、上記Si1sピーク面積とC1sピーク面積の比で計算して求めた。 After cutting the carbon fibers and arranging them on a stainless steel sample support table, the photoelectron escape angle was set to 90 degrees, MgKα was used as the X-ray source, and the inside of the sample chamber was vacuumed at 1 × 10 −6 Pa. Keep it up. As a correction of the peak accompanying charging at the time of measurement, first, the binding energy value B. of the main peak of C 1s . E. Is adjusted to 284.6 eV. The Si 1s peak area is obtained by drawing a straight base line in the range of 92 to 116 eV, the O 1s peak area is obtained by drawing a straight base line in the range of 528 to 540 eV, and the C 1s peak area is It was determined by drawing a straight baseline in the range of 282 to 296 eV. The surface oxygen concentration O / C on the surface of the carbon fiber was determined by calculating the ratio of the O 1s peak area to the C 1s peak area. The surface silicon concentration Si / C on the surface of the carbon fiber was determined by calculating the ratio of the Si 1s peak area to the C 1s peak area.

また、X線光電子分光法により測定されるSiの結合エネルギーのピークは、拡大し、最大点の位置を求めた。   In addition, the peak of Si binding energy measured by X-ray photoelectron spectroscopy was expanded, and the position of the maximum point was obtained.

[電気抵抗値]
電気抵抗値の測定に関しては、JIS−R−7601に規定する体積抵抗率のストランドの試験A法を参考に行うことができる。ただし、JIS−R−7601では、電気抵抗値に、炭素繊維の比重を掛け合わせた体積抵抗率を求めており、電気抵抗値[X(Ω・g/m2)]を求めるには、下式
X = Rb×t/L
Rb:試験片長Lのときの電気抵抗(Ω)、t:試験片の繊度(tex)、L:抵抗測定時の試験片長(m)
を用いて行った。
[Electric resistance value]
With respect to the measurement of the electric resistance value, it can be performed with reference to the test method A of the strand having a volume resistivity specified in JIS-R-7601. However, in JIS-R-7601, the volume resistivity obtained by multiplying the electrical resistance value by the specific gravity of the carbon fiber is obtained. To obtain the electrical resistance value [X (Ω · g / m 2 )], Formula X = Rb × t / L
Rb: electrical resistance (Ω) when the specimen length is L, t: fineness of the specimen (tex), L: specimen length when measuring the resistance (m)
It was performed using.

尚、抵抗測定時の試験片長については、1m程度で測定することが好ましい。   In addition, about the test piece length at the time of resistance measurement, it is preferable to measure at about 1 m.

[炭素繊維ストランド強度、弾性率]
JIS R 7601に規定された方法により測定した。
[Carbon fiber strand strength, elastic modulus]
It was measured by the method defined in JIS R7601.

[コンポジットの層間剪断強度(ILSS)]
エポキシ樹脂(油化シェルエポキシ社製、商品名:エピコート)に、硬化剤、促進剤を加え、炭素繊維含浸用エポキシ樹脂組成物を作製した。
[Interlaminar shear strength of composite (ILSS)]
A curing agent and an accelerator were added to an epoxy resin (trade name: Epicoat manufactured by Yuka Shell Epoxy Co., Ltd.) to prepare an epoxy resin composition for carbon fiber impregnation.

この樹脂組成物をフィルムコーターにより、離型紙の上に塗布し、樹脂フィルムとした。この樹脂フィルム上に炭素繊維を等間隔に引き揃え並べた後、加熱して樹脂を炭素繊維に含浸させ、目付350g/m2、樹脂含浸率35質量%の炭素繊維強化エポキシ樹脂組成物を作製した。 This resin composition was applied onto release paper with a film coater to obtain a resin film. After aligning carbon fibers on this resin film at equal intervals and heating, carbon fiber is impregnated by heating to produce a carbon fiber reinforced epoxy resin composition having a basis weight of 350 g / m 2 and a resin impregnation ratio of 35% by mass. did.

上記にて作製した炭素繊維強化エポキシ樹脂組成物を成型後の厚みが2.8mmとなるように積層し、金型に入れ、130℃で1.5時間、0.49MPa-Gauge(5.0kgf/cm2-Gauge)の圧力で成型し、繊維が1方向に配列した炭素繊維強化成型板(CFRP板:コンポジット)を作製した。このCFRP板のILSSをASTM−D−2344に準拠し、室温にて測定を行った。 The carbon fiber reinforced epoxy resin composition prepared above was laminated so that the thickness after molding was 2.8 mm, placed in a mold, and 0.49 MPa-Gauge (5.0 kgf) at 130 ° C. for 1.5 hours. / Cm 2 -Gauge) to form a carbon fiber reinforced molded plate (CFRP plate: composite) in which fibers are arranged in one direction. The ILSS of this CFRP plate was measured at room temperature according to ASTM-D-2344.

[実施例1]
塩化亜鉛水溶液を溶媒とする溶液重合法により、アクリロニトリル95質量%、アクリル酸メチル4質量%、イタコン酸1質量%とからなる重合度が1.6、ポリマー濃度7.5質量%のポリマー原液を得た。
[Example 1]
By a solution polymerization method using an aqueous solution of zinc chloride as a solvent, a polymer stock solution having a polymerization degree of 1.6 and a polymer concentration of 7.5% by mass consisting of 95% by mass of acrylonitrile, 4% by mass of methyl acrylate, and 1% by mass of itaconic acid is obtained. Obtained.

このポリマー原液を、12000フィラメント用の口金を通して、5℃の25質量%塩化亜鉛水溶液中に吐出して凝固させ、凝固糸を得た。   This polymer stock solution was discharged into a 25 mass% zinc chloride aqueous solution at 5 ° C. through a base for 12000 filaments and coagulated to obtain a coagulated yarn.

この凝固糸を水洗し、90℃で熱延伸し、アミノ変性シリコーン油剤(アミノシリコーン 竹本油脂株式会社製 BS−379)を7g/l、ジオクチルスルフォサクシネートを3g/l(70:30)含むエマルジョン溶液に浸漬した後、0.2質量%付着させ、熱風乾燥機を用いて70〜140℃で乾燥緻密化、110〜120℃で延伸比4.6にて湿熱延伸し、水分率を40質量%に調整して、単繊維繊度が1.17dの炭素繊維用前駆体繊維を得た。繊維比重は、1.165、X線回折による配向度は、89.6%であった。   This coagulated yarn is washed with water and hot-drawn at 90 ° C., and contains 7 g / l of an amino-modified silicone oil agent (BS-379 manufactured by Aminosilicone Takemoto Yushi Co., Ltd.) and 3 g / l (70:30) of dioctylsulfosuccinate. After being immersed in the emulsion solution, 0.2% by mass was deposited, and it was dried and densified at 70 to 140 ° C. using a hot air dryer, and wet-heat stretched at a stretch ratio of 4.6 at 110 to 120 ° C. to obtain a moisture content of 40. The carbon fiber precursor fiber having a single fiber fineness of 1.17d was obtained by adjusting the mass%. The fiber specific gravity was 1.165, and the degree of orientation by X-ray diffraction was 89.6%.

得られた炭素繊維用前駆体繊維を空気中250℃から270℃の温度分布を持った雰囲気下で、延伸比1.05で耐炎化させた。耐炎化糸の比重は1.36であった。   The obtained precursor fiber for carbon fiber was flameproofed at a draw ratio of 1.05 in an atmosphere having a temperature distribution of 250 ° C. to 270 ° C. in air. The specific gravity of the flameproof yarn was 1.36.

この耐炎化糸を、不活性雰囲気中300〜650℃の温度分布を持った第一炭素化炉において、延伸比1.03で炭素化させ、更に、不活性雰囲気中で最高温度が1250℃になるように設定(雰囲気中の温度分布:300〜1250℃)した第二炭素化炉で炭素化させた。   The flameproofed yarn is carbonized at a draw ratio of 1.03 in a first carbonization furnace having a temperature distribution of 300 to 650 ° C. in an inert atmosphere, and the maximum temperature is 1250 ° C. in an inert atmosphere. Carbonization was performed in a second carbonization furnace set so as to be (temperature distribution in the atmosphere: 300 to 1250 ° C.).

次に、10質量%硫酸アンモニウム水溶液を電解液として、炭素繊維1g当り20クーロンの電解酸化処理をした後、水洗し、更にサイジング処理してサイジング剤−水エマルジョン溶液(濃度3質量%)を付着させ、これを150℃で乾燥した。サイジング剤の付着量は1.3質量%であった。このようにして得られた炭素繊維の特性を表1に示す。   Next, an electrolytic oxidation treatment of 20 coulomb per gram of carbon fiber was performed using a 10% by mass ammonium sulfate aqueous solution as an electrolytic solution, followed by washing with water and further sizing treatment to attach a sizing agent-water emulsion solution (concentration 3% by mass). This was dried at 150 ° C. The adhesion amount of the sizing agent was 1.3% by mass. The characteristics of the carbon fiber thus obtained are shown in Table 1.

[実施例2]
炭素化後、10質量%硫酸アンモニウム水溶液を電解液として、炭素繊維1g当り25クーロンの電解酸化処理をしたのち、水洗した以外は、実施例1と同様に行った。このようにして得られた炭素繊維の特性を表1に示す。
[Example 2]
After carbonization, the same procedure as in Example 1 was carried out except that 10% by mass ammonium sulfate aqueous solution was used as the electrolytic solution, and after conducting an electrolytic oxidation treatment of 25 coulombs per gram of carbon fiber, it was washed with water. The characteristics of the carbon fiber thus obtained are shown in Table 1.

[実施例3]
不活性雰囲気中で最高温度が1300℃になるように設定(雰囲気中の温度分布:300〜1300℃)した第二炭素化炉で炭素化させた以外は、実施例1と同様に行った。このようにして得られた炭素繊維の特性を表1に示す。
[Example 3]
The same procedure as in Example 1 was performed except that carbonization was performed in a second carbonization furnace set so that the maximum temperature was 1300 ° C. in an inert atmosphere (temperature distribution in the atmosphere: 300 to 1300 ° C.). The characteristics of the carbon fiber thus obtained are shown in Table 1.

[実施例4]
不活性雰囲気中で最高温度が1200℃になるように設定(雰囲気中の温度分布:300〜1200℃)した第二炭素化炉で炭素化させた以外は、実施例1と同様に行った。このようにして得られた炭素繊維の特性を表1に示す。
[Example 4]
The same procedure as in Example 1 was performed except that carbonization was performed in a second carbonization furnace set so that the maximum temperature was 1200 ° C. in an inert atmosphere (temperature distribution in the atmosphere: 300 to 1200 ° C.). The characteristics of the carbon fiber thus obtained are shown in Table 1.

[比較例1]
炭素繊維前駆体繊維に油剤を、乾燥緻密化前ではなく、乾燥緻密化後に付与させ、更に、120℃で乾燥させ炭素繊維前駆体繊維を得た。その後の焼成工程は、実施例1と同様に行った。このようにして得られた炭素繊維の特性を表1に示す。
[Comparative Example 1]
The oil agent was applied to the carbon fiber precursor fiber after dry densification, not before dry densification, and further dried at 120 ° C. to obtain a carbon fiber precursor fiber. The subsequent firing step was performed in the same manner as in Example 1. The characteristics of the carbon fiber thus obtained are shown in Table 1.

[比較例2]
炭素繊維前駆体繊維の油剤に、アミノ変性シリコーン油剤とジオクチルスルホサクシネートの混合物を0.2質量%付着させる代わりに、燐酸アンモニウム誘導体を有する浸透性油剤を同量で0.1質量%付着させた以外は、実施例1と同様に行った。このようにして得られた炭素繊維の特性を表1に示す。
[Comparative Example 2]
Instead of attaching 0.2% by mass of a mixture of amino-modified silicone oil and dioctyl sulfosuccinate to carbon fiber precursor fiber oil, the same amount of osmotic oil having an ammonium phosphate derivative was attached in an amount of 0.1% by mass. The procedure was the same as in Example 1 except that. The characteristics of the carbon fiber thus obtained are shown in Table 1.

[比較例3]
炭素繊維前駆体繊維の油剤に、アミノ変性シリコーン油剤とジオクチルスルホサクシネートの混合物を0.2質量%付着させる代わりに、アミノ変性シリコーン油剤と燐酸アンモニウム誘導体を有する浸透性油剤を同量で0.1質量%付着させた以外は、実施例1と同様に行った。このようにして得られた炭素繊維の特性を表1に示す。
[Comparative Example 3]
Instead of adhering 0.2% by mass of the mixture of amino-modified silicone oil and dioctylsulfosuccinate to the oil agent of the carbon fiber precursor fiber, the same amount of the osmotic oil agent having the amino-modified silicone oil and the ammonium phosphate derivative in an amount of 0. The same procedure as in Example 1 was performed except that 1% by mass was adhered. The characteristics of the carbon fiber thus obtained are shown in Table 1.

[比較例4]
不活性雰囲気中で最高温度が1400℃になるように設定(雰囲気中の温度分布:300〜1400℃)した第二炭素化炉で炭素化させた以外は、実施例1と同様に行った。このようにして得られた炭素繊維の特性を表1に示す。
[Comparative Example 4]
The same procedure as in Example 1 was performed except that carbonization was performed in a second carbonization furnace set so that the maximum temperature was 1400 ° C. in an inert atmosphere (temperature distribution in the atmosphere: 300 to 1400 ° C.). The characteristics of the carbon fiber thus obtained are shown in Table 1.

[比較例5]
不活性雰囲気中で最高温度が1150℃になるように設定(雰囲気中の温度分布:300〜1150℃)した第二炭素化炉で炭素化させた以外は、実施例1と同様に行った。このようにして得られた炭素繊維の特性を表1に示す。
[Comparative Example 5]
The same procedure as in Example 1 was performed except that carbonization was performed in a second carbonization furnace set so that the maximum temperature was 1150 ° C. in an inert atmosphere (temperature distribution in the atmosphere: 300 to 1150 ° C.). The characteristics of the carbon fiber thus obtained are shown in Table 1.

[比較例6]
電解酸化処理における炭素繊維1g当りの電気量を12クーロンにした以外は、実施例1と同様に行った。このようにして得られた炭素繊維の特性を表1に示す。
[Comparative Example 6]
The same procedure as in Example 1 was performed except that the amount of electricity per 1 g of carbon fiber in the electrolytic oxidation treatment was 12 coulomb. The characteristics of the carbon fiber thus obtained are shown in Table 1.

Figure 2005314830
Figure 2005314830

Claims (5)

ストランド強度が4600〜5800MPa、弾性率が220〜250GPa、密度が1.74g/cm3以上1.80g/cm3未満、且つ珪素を含有するポリアクリロニトリル系炭素繊維であって、その含有された珪素がSiOx(1≦x≦3)構造を有し、その含有量が元素珪素として、当該炭素繊維質量の110〜500ppmであるポリアクリロニトリル系炭素繊維。 Polyacrylonitrile-based carbon fiber having a strand strength of 4600-5800 MPa, an elastic modulus of 220-250 GPa, a density of 1.74 g / cm 3 or more and less than 1.80 g / cm 3 , and containing silicon, the silicon contained Has a SiOx (1 ≦ x ≦ 3) structure, and its content is elemental silicon, and is a polyacrylonitrile-based carbon fiber having a carbon fiber mass of 110 to 500 ppm. 炭素繊維ストランドの単繊維平均直径が6〜8μmであり、炭素繊維ストランドの電気抵抗値が29〜32Ω・g/m2、且つ、X線光電子分光法により測定される表面珪素量(Si)を示すSi/Cが0.10〜0.15、表面酸素量(O)を示すO/Cが0.15〜0.30である請求項1に記載のポリアクリロニトリル系炭素繊維。 The average single fiber diameter of the carbon fiber strand is 6 to 8 μm, the electrical resistance value of the carbon fiber strand is 29 to 32 Ω · g / m 2 , and the amount of surface silicon (Si) measured by X-ray photoelectron spectroscopy is The polyacrylonitrile-based carbon fiber according to claim 1, wherein Si / C shown is 0.10 to 0.15, and O / C showing the amount of surface oxygen (O) is 0.15 to 0.30. X線光電子分光法により測定されるSiの結合エネルギーのピークが102〜104eVの範囲に存在する珪素を含む構造を、表面に有する請求項1又は2に記載のポリアクリロニトリル系炭素繊維。 3. The polyacrylonitrile-based carbon fiber according to claim 1, wherein the surface has a structure containing silicon having a Si binding energy peak measured by X-ray photoelectron spectroscopy in a range of 102 to 104 eV. アクリロニトリルを94質量%以上含有する単量体を重合した共重合体を紡糸して得られた糸を、油剤としてアミノ変性シリコーン及びジアルキルスルホサクシネートを含むエマルジョン水溶液を乾燥質量で0.1〜0.3%付着させた後、70〜150℃の乾燥機で乾燥緻密化後、温度100〜130℃、延伸比4.0〜7.0の条件で湿熱延伸処理して単繊維繊度0.96〜1.2dの炭素繊維用前駆体繊維を得、得られた前駆体繊維を、そのまま加熱空気中230〜290℃、延伸比1.02〜1.08で熱処理して耐炎化繊維を得、得られた耐炎化繊維を、不活性ガス雰囲気中で昇温し、最高温度領域で550〜750℃、延伸比1.01〜1.07で予備炭素化し、更に不活性ガス雰囲気中で昇温し、最高温度領域で1180〜1320℃、延伸比0.90〜1.00で炭素化し、水溶液中で炭素繊維1g当り電気量15クーロン以上の電解酸化法により表面処理することを特徴とするポリアクリロニトリル系炭素繊維の製造方法。 A yarn obtained by spinning a copolymer obtained by polymerizing a monomer containing 94% by mass or more of acrylonitrile was prepared by using an emulsion aqueous solution containing amino-modified silicone and dialkylsulfosuccinate as an oil agent in a dry mass of 0.1 to 0. After 3% adhesion, drying and densification with a dryer at 70 to 150 ° C., and wet-heat drawing under conditions of a temperature of 100 to 130 ° C. and a draw ratio of 4.0 to 7.0, a single fiber fineness of 0.96 ~ 1.2d precursor fiber for carbon fiber is obtained, and the obtained precursor fiber is directly heat-treated in heated air at 230 to 290 ° C and a draw ratio of 1.02 to 1.08 to obtain a flame-resistant fiber, The obtained flame-resistant fiber is heated in an inert gas atmosphere, pre-carbonized at a maximum temperature range of 550 to 750 ° C. and a draw ratio of 1.01 to 1.07, and further heated in an inert gas atmosphere. 1180-1 in the maximum temperature range 20 ° C., and carbonized at a draw ratio of 0.90 to 1.00, the production method of the polyacrylonitrile-based carbon fiber characterized in that the surface treatment by carbon fiber 1g per electrical quantity 15 coulomb or more electrolytic oxidation in an aqueous solution. 炭素繊維用前駆体繊維の水分率が20〜60質量%である請求項4に記載のポリアクリロニトリル系炭素繊維の製造方法。 The manufacturing method of the polyacrylonitrile-type carbon fiber of Claim 4 whose moisture content of the precursor fiber for carbon fibers is 20-60 mass%.
JP2004132618A 2004-04-28 2004-04-28 Polyacrylonitrile-based carbon fiber and method for producing the same Pending JP2005314830A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004132618A JP2005314830A (en) 2004-04-28 2004-04-28 Polyacrylonitrile-based carbon fiber and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004132618A JP2005314830A (en) 2004-04-28 2004-04-28 Polyacrylonitrile-based carbon fiber and method for producing the same

Publications (1)

Publication Number Publication Date
JP2005314830A true JP2005314830A (en) 2005-11-10

Family

ID=35442547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004132618A Pending JP2005314830A (en) 2004-04-28 2004-04-28 Polyacrylonitrile-based carbon fiber and method for producing the same

Country Status (1)

Country Link
JP (1) JP2005314830A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008201006A (en) * 2007-02-20 2008-09-04 Sakai Ovex Co Ltd Laminate and its manufacturing method
WO2009060653A1 (en) * 2007-11-06 2009-05-14 Toho Tenax Co., Ltd. Carbon fiber strand and process for producing the same
WO2009060793A1 (en) * 2007-11-06 2009-05-14 Toho Tenax Co., Ltd. Carbon fiber strand and process for producing the same
JP2013524028A (en) * 2010-03-31 2013-06-17 コーロン インダストリーズ インク Carbon fiber manufacturing method and carbon fiber precursor fiber
CN112323182A (en) * 2020-09-10 2021-02-05 中复神鹰碳纤维有限责任公司 Preparation method of carbon fiber for carbon-carbon composite material needled net tire
CN114752993A (en) * 2022-06-01 2022-07-15 佛山市石金科技有限公司 Heat-insulating hard felt of crystalline silicon growth furnace and manufacturing method thereof
CN114855307A (en) * 2022-05-25 2022-08-05 昆山盛夏复合材料科技有限公司 Carbon fiber composite material and preparation method thereof

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008201006A (en) * 2007-02-20 2008-09-04 Sakai Ovex Co Ltd Laminate and its manufacturing method
WO2009060653A1 (en) * 2007-11-06 2009-05-14 Toho Tenax Co., Ltd. Carbon fiber strand and process for producing the same
WO2009060793A1 (en) * 2007-11-06 2009-05-14 Toho Tenax Co., Ltd. Carbon fiber strand and process for producing the same
JP2009114578A (en) * 2007-11-06 2009-05-28 Toho Tenax Co Ltd Carbon fiber strand and process for producing the same
US8124228B2 (en) 2007-11-06 2012-02-28 Toho Tenax Co., Ltd. Carbon fiber strand and process for producing the same
US8129017B2 (en) 2007-11-06 2012-03-06 Toho Tenax Co., Ltd. Carbon fiber strand and process for producing the same
JP5100758B2 (en) * 2007-11-06 2012-12-19 東邦テナックス株式会社 Carbon fiber strand and method for producing the same
JP2013524028A (en) * 2010-03-31 2013-06-17 コーロン インダストリーズ インク Carbon fiber manufacturing method and carbon fiber precursor fiber
CN112323182A (en) * 2020-09-10 2021-02-05 中复神鹰碳纤维有限责任公司 Preparation method of carbon fiber for carbon-carbon composite material needled net tire
CN114855307A (en) * 2022-05-25 2022-08-05 昆山盛夏复合材料科技有限公司 Carbon fiber composite material and preparation method thereof
CN114752993A (en) * 2022-06-01 2022-07-15 佛山市石金科技有限公司 Heat-insulating hard felt of crystalline silicon growth furnace and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP5324472B2 (en) Flame-resistant fiber and carbon fiber manufacturing method
JP2018145540A (en) Method for production of carbon fiber bundle
JP2018145541A (en) Carbon fiber bundle and method for production of the same
US9187847B2 (en) Method for preparing carbon fiber and precursor fiber for carbon fiber
WO2007069511A1 (en) Carbon fiber, process for production of polyacrylonitrile-base precursor fiber for carbon fiber production, and process for production of carbon fiber
JP2008163537A (en) Method for producing carbon fiber
JP2010242249A (en) Flame-proof fiber for high strength carbon fiber, and method for producing the same
JP2005314830A (en) Polyacrylonitrile-based carbon fiber and method for producing the same
JP5635740B2 (en) Polyacrylonitrile-based carbon fiber strand and method for producing the same
JP5849127B2 (en) Polyacrylonitrile-based carbon fiber strand and method for producing the same
JP2004232155A (en) Light-weight polyacrylonitrile-based carbon fiber and method for producing the same
JP2007186802A (en) Method for producing flame retardant fiber and carbon fiber
JP5667380B2 (en) Flame-resistant fiber bundle, carbon fiber bundle, and production method thereof
JP2004156161A (en) Polyacrylonitrile-derived carbon fiber and method for producing the same
JP5226238B2 (en) Carbon fiber and composite material using the same
JP2004060069A (en) Polyacrylonitrile-based carbon fiber, and method for producing the same
JP2007070742A (en) Method and machine for producing carbon fiber
JP5811529B2 (en) Carbon fiber bundle manufacturing method
JP2004060126A (en) Carbon fiber and method for producing the same
JP4870511B2 (en) High strength carbon fiber
JP2008308777A (en) Carbon fiber and method for producing polyacrylonitrile-based precursor fiber for producing carbon fiber
JP2007092185A (en) Polyacrylonitrile polymer for carbon fiber precursor fiber
JP2015183166A (en) Acrylonitrile-based copolymer, acrylonitrile-based carbon fiber precursor fiber and method for producing carbon fiber
KR20190084580A (en) Sizing agent for carbon fiber and method of preparing carbon fiber using the same
JP5842343B2 (en) Method for producing carbon fiber precursor acrylic fiber bundle