JP2010074013A - Electromagnet apparatus - Google Patents

Electromagnet apparatus Download PDF

Info

Publication number
JP2010074013A
JP2010074013A JP2008241917A JP2008241917A JP2010074013A JP 2010074013 A JP2010074013 A JP 2010074013A JP 2008241917 A JP2008241917 A JP 2008241917A JP 2008241917 A JP2008241917 A JP 2008241917A JP 2010074013 A JP2010074013 A JP 2010074013A
Authority
JP
Japan
Prior art keywords
coil
resistance value
temperature rise
thermistor
parallel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008241917A
Other languages
Japanese (ja)
Other versions
JP2010074013A5 (en
Inventor
Sakuichi Akabori
作一 赤堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyooki Kogyo Co Ltd
Original Assignee
Toyooki Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyooki Kogyo Co Ltd filed Critical Toyooki Kogyo Co Ltd
Priority to JP2008241917A priority Critical patent/JP2010074013A/en
Publication of JP2010074013A publication Critical patent/JP2010074013A/en
Publication of JP2010074013A5 publication Critical patent/JP2010074013A5/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Magnetically Actuated Valves (AREA)
  • Electromagnets (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electromagnet apparatus which is capable of reducing power consumption without increasing a current value of power supply to a coil more than necessary by approximating fixing a resultant resistance value for flow of a current of power supply to the coil against the temperature rise. <P>SOLUTION: A resistor 25 having a resistance value fixed against the temperature rise is connected in parallel to an NTC thermistor 24 having a negative temperature coefficient having such a characteristic that the resistance value curvilinearly decreases in accordance with the temperature rise due to power supply to a coil 16 or the like, to generate a parallel resultant resistance value approximately linearly decreasing in accordance with the temperature rise, and a resistance value of the coil 16 linearly increasing in accordance with the temperature rise and the parallel resultant resistance value approximately linearly decreasing in accordance with the temperature rise are added. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、コイルへの通電により可動鉄心を固定鉄心に吸引する電磁石装置に関し、特に、流体を制御する電磁弁に適用する電磁石装置に関する。   The present invention relates to an electromagnet device that attracts a movable iron core to a fixed iron core by energizing a coil, and more particularly to an electromagnet device that is applied to an electromagnetic valve that controls fluid.

この種の電磁石装置は、特許文献1にあるように、温度上昇により抵抗値が減少する特性を有するサーミスタをコイルと直列接続し、通電によるソレノイドの温度上昇により増加するコイルの抵抗値にサーミスタの減少する抵抗値を加算して直列合成抵抗値とし、温度上昇にかかわりなく安定した吸引力を得ようとしている。
実開昭63−80813号公報
In this type of electromagnet device, as disclosed in Patent Document 1, a thermistor having a characteristic in which a resistance value decreases as a temperature rises is connected in series with a coil, and the resistance value of the thermistor increases as the solenoid temperature rises due to energization. The decreasing resistance value is added to obtain a series combined resistance value, and a stable suction force is obtained regardless of the temperature rise.
Japanese Utility Model Publication No. 63-80813

ところが、かかる従来のソレノイドでは、コイルはソレノイドの温度上昇に対して抵抗値が直線的に増加する特性を有するのに対し、サーミスタは温度上昇に対して抵抗値が曲線的に減少する特性を有するため、温度上昇に対して直線的に増加するコイルの抵抗値にサーミスタの曲線的に減少する抵抗値が加算され、コイルとサーミスタとの直列合成抵抗値を温度上昇に対して略一定に保つことが難しく、コイルへ通電する電流値が最小となるところで必要な吸引力を得なければならず、合成抵抗値が小さい領域ではコイルへ通電する電流値が必要以上に大きくなってしまい、消費電力を浪費するという問題があった。   However, in such a conventional solenoid, the coil has a characteristic that the resistance value increases linearly as the temperature of the solenoid increases, whereas the thermistor has a characteristic that the resistance value decreases in a curve as the temperature increases. Therefore, the resistance value of the thermistor that decreases linearly is added to the resistance value of the coil that linearly increases with respect to the temperature rise, and the series combined resistance value of the coil and the thermistor is kept substantially constant with respect to the temperature rise. It is difficult to obtain the necessary attraction force where the current value flowing through the coil is minimized, and in the region where the combined resistance value is small, the current value flowing through the coil becomes larger than necessary, reducing the power consumption. There was a problem of wasting.

本発明の課題は、コイルへ通電する電流が流れる合成抵抗値を温度上昇に対して略一定にし、コイルへ通電する電流値を必要以上に大きくすることなく消費電力の低減を図り得る電磁石装置を提供するものである。   An object of the present invention is to provide an electromagnet device capable of reducing power consumption without making the combined resistance value through which a current flowing through a coil flows substantially constant with respect to a temperature rise and increasing the current value flowing through the coil more than necessary. It is to provide.

かかる課題を達成すべく、本発明は次の手段をとった。即ち、
コイルへの通電により可動鉄心を固定鉄心に吸引し、温度上昇に対して抵抗値を曲線的に減少する特性を有するサーミスタに温度上昇に対して抵抗値が一定である抵抗器を並列接続して、温度上昇に対して抵抗値を略直線的に減少する並列合成抵抗値を作成し、並列接続したサーミスタと抵抗器とをコイルに直列接続して、温度上昇に対して直線的に増加するコイルの抵抗値と温度上昇に対して略直線的に減少する並列合成抵抗値とを加算したことを特徴とする電磁石装置がそれである。この場合、前記コイルをコイルボビンに巻き回して設け、コイルボビンに巻き回したコイルの外周上に前記サーミスタを配置し、サーミスタおよび前記抵抗器を樹脂モールドにてコイルと一体成形しても良い。
In order to achieve this problem, the present invention has taken the following measures. That is,
A resistor with a constant resistance against temperature rise is connected in parallel to a thermistor that draws the movable iron core into the fixed core by energizing the coil and curbs the resistance value against temperature rise. Creates a parallel combined resistance value that decreases the resistance value almost linearly with respect to temperature rise, and connects the thermistor and resistor connected in parallel to the coil in series to increase linearly with temperature rise. This is an electromagnet device characterized by adding the resistance value of the above and the parallel combined resistance value decreasing substantially linearly with respect to the temperature rise. In this case, the coil may be wound around a coil bobbin, the thermistor may be disposed on the outer periphery of the coil wound around the coil bobbin, and the thermistor and the resistor may be integrally formed with the coil by a resin mold.

以上詳述したように、請求項1に記載の発明は、温度上昇に対して抵抗値を曲線的に減少する特性を有するサーミスタに温度上昇に対して抵抗値が一定である抵抗器を並列接続して、温度上昇に対して抵抗値を略直線的に減少する並列合成抵抗値を作成し、温度上昇に対して直線的に増加するコイルの抵抗値と温度上昇に対して略直線的に減少する並列合成抵抗値とを加算しているため、この加算した合成抵抗値を温度上昇に対して略一定にすることができ、コイルへ通電する電流値を必要以上に大きくすることなく消費電力を低減することができる。   As described in detail above, the invention according to claim 1 is connected in parallel to a thermistor having a characteristic that the resistance value decreases in a curve with a rise in temperature. Then, a parallel combined resistance value that decreases the resistance value substantially linearly with respect to the temperature rise is created, and the resistance value of the coil that increases linearly with respect to the temperature rise and decreases approximately linearly with respect to the temperature rise. Therefore, the added combined resistance value can be made substantially constant with respect to the temperature rise, and power consumption can be reduced without increasing the current value to be supplied to the coil more than necessary. Can be reduced.

また、請求項2に記載の発明は、請求項1に記載の発明の効果に加え、コイルボビンに巻き回したコイルの外周上にサーミスタを配置しているため、サーミスタを発熱源であるコイルの近傍に位置してコイルの上昇する温度を正確に検出することができ、サーミスタの抵抗値と抵抗器の抵抗値との並列合成抵抗値における温度上昇に対して略直線的に減少する特性の精度を一層高めることができる。さらにまた、サーミスタおよび抵抗器を樹脂モールドにてコイルと一体成形しているため、サーミスタと抵抗器を取りまとめて配置することができ、電磁石装置全体の大型化を抑制することができる。   In addition to the effect of the invention described in claim 1, the invention described in claim 2 has a thermistor disposed on the outer periphery of the coil wound around the coil bobbin. The temperature at which the coil rises can be accurately detected, and the accuracy of the characteristic that decreases approximately linearly with respect to the temperature rise in the parallel combined resistance value of the resistance value of the thermistor and the resistance value of the resistor is achieved. It can be further enhanced. Furthermore, since the thermistor and the resistor are integrally formed with the coil by the resin mold, the thermistor and the resistor can be arranged together and the enlargement of the entire electromagnet device can be suppressed.

以下、電磁石装置を電磁弁に適用した本発明の一実施形態を図面に基づき説明する。
図1および図2において、1は電磁弁の弁本体で、嵌挿孔2を軸方向へ貫通して形成し、弁本体1の一側面に電磁石装置3を着脱自在に装着して嵌挿孔2の一側面への開口を閉塞し、弁本体1の他側面に蓋部材4を着脱自在に装着して嵌挿孔2の他側面への開口を閉塞している。嵌挿孔2には軸方向の略中央部に圧力流体を供給する供給流路Pを開口し、供給流路Pの開口個所の軸方向両側に図示しない流体アクチュエータへ接続する2つの負荷流路A、Bを開口し、2つの負荷流路A、Bの開口個所の軸方向外側にはそれぞれ低圧側へ接続する排出流路Rを開口している。5は嵌挿孔2に軸方向へ摺動自在に嵌挿したスプール状の弁体で、図2に示す電磁石装置3の非通電状態では、蓋部材4との間に挟持したばね6の弾性力により付勢されて左方端に位置し、供給流路Pと一方の負荷流路Aとを切換連通すると共に、他方の負荷流路Bと排出流路Rとを切換連通する。また、弁体5は、電磁石装置3への通電により発生する吸引力でばね6の弾性力に抗して図2の右方端に移動し、供給流路Pと他方の負荷流路Bとを切換連通すると共に、一方の負荷流路Aと排出流路Rとを切換連通する。7は電磁石装置3を外部電源Eに電気接続する端子箱で、弁本体1の上面へ着脱自在に装着している。
Hereinafter, an embodiment of the present invention in which an electromagnet device is applied to an electromagnetic valve will be described with reference to the drawings.
1 and 2, reference numeral 1 denotes a valve body of an electromagnetic valve, which is formed by penetrating an insertion hole 2 in the axial direction, and an electromagnet device 3 is detachably mounted on one side surface of the valve body 1. 2 is closed, and the lid member 4 is detachably attached to the other side of the valve body 1 to close the opening of the fitting hole 2 to the other side. In the insertion hole 2, a supply flow path P for supplying pressure fluid to the substantially central portion in the axial direction is opened, and two load flow paths are connected to fluid actuators (not shown) on both sides in the axial direction of the openings of the supply flow path P. A and B are opened, and discharge channels R connected to the low-pressure side are opened on the axially outer sides of the opening portions of the two load channels A and B, respectively. Reference numeral 5 denotes a spool-like valve element that is slidably inserted in the insertion hole 2 in the axial direction. When the electromagnet apparatus 3 shown in FIG. The supply channel P and one load channel A are switched and urged by force, and the other load channel B and the discharge channel R are switched and communicated. Further, the valve element 5 moves to the right end of FIG. 2 against the elastic force of the spring 6 by the attractive force generated by energizing the electromagnet device 3, and the supply flow path P and the other load flow path B Is switched and communicated with one load channel A and the discharge channel R. 7 is a terminal box for electrically connecting the electromagnet device 3 to the external power source E, and is detachably mounted on the upper surface of the valve body 1.

電磁石装置3は筒状部8とコイル部9とをナット10により組み付けて構成している。筒状部8は弁本体1の嵌挿孔2の一側面への開口部に固定鉄心11を螺着し、固定鉄心11に非磁性材より形成の筒部材12の一端を溶接固着し、筒部材12の一端と反対側の他端に磁性材より形成の蓋部材14を溶接固着し、筒部材12、蓋部材14の内部には固定鉄心11に吸引される可動鉄心13を軸方向へ摺動自在に嵌挿して固定鉄心11と対向して設けている。15は固定鉄心11を貫通して軸方向へ移動自在に設けた押し棒で、一端を可動鉄心13に他端を弁体5にそれぞれ当接し、可動鉄心13の固定鉄心11への吸引移動により弁体5を図2の右方端に移動自在に設けている。   The electromagnet device 3 is configured by assembling a cylindrical portion 8 and a coil portion 9 with a nut 10. The cylindrical portion 8 has a fixed iron core 11 screwed into an opening to one side of the fitting hole 2 of the valve body 1, and one end of a cylindrical member 12 formed of a nonmagnetic material is welded and fixed to the fixed iron core 11. A lid member 14 made of a magnetic material is welded and fixed to the other end opposite to one end of the member 12, and the movable iron core 13 sucked by the fixed iron core 11 is slid in the axial direction inside the cylinder member 12 and the lid member 14. It is inserted so as to be movable, and is provided to face the fixed iron core 11. Reference numeral 15 denotes a push rod provided through the fixed iron core 11 so as to be movable in the axial direction. One end of the push rod is in contact with the movable iron core 13 and the other end is in contact with the valve body 5. The valve body 5 is movably provided at the right end of FIG.

コイル部9はコイル16を巻き回したコイルボビン17の軸方向の一端に円板状の端板18を配置すると共に、コイルボビン17の外周に円筒状の筒体19を配置している。筒体19は図2の上側で軸方向に沿って開口を備え、コイルボビン17の軸方向端部に備えて半径方向外側へ延びる突出片17Aをこの開口から突出して設けている。突出片17Aには2個の導電ピン部材20A、20Bを図2紙面直交方向に間隙を有して設け(図2には手前の導電ピン部材20Aのみが示されている)、両導電ピン部材20A、20Bは軸方向に突出して設け、その突出端部を端子箱7の内部に図2紙面直交方向に間隙を有して設けたメス形端子金具21A、21Bに挿入し(図2には導電ピン部材20Aと同様に手前のメス形端子金具21Aのみが示されている)、外部電源Eからの電気配線22A、22Bと電気接続している。一方の導電ピン部材20Aはコイル16の巻き始め端とリード線23Aで電気接続し、リード線23Aにはサーミスタ24と抵抗器25とを並列接続して、コイル16に直列接続する。並列接続したサーミスタ24と抵抗器25とは筒体19の開口側でコイル16の外周上に配置している。他方の導電ピン部材20Bはリード線23Bでコイル16の巻き終わり端と電気接続している。コイル部9はコイル16を巻き回したコイルボビン17、端板18、筒体19、導電ピン部材20A、20B、リード線23A、23B、サーミスタ24、抵抗器25を樹脂モールドにて一体成形して外皮26を形成している。電磁石装置3は、嵌挿孔2の弁本体1一側面への開口部に固定鉄心11を螺着して筒状部8を弁本体1に固定し、筒状部8にコイル部9を外嵌し、筒状部8の突出端となる蓋部材14に螺着したナット10を回動操作して、弁本体1の一側面とナット10との間にコイル部9を挟持する。そして、電磁石装置3はコイル16への通電により発生する吸引力で可動鉄心13を固定鉄心11に吸引移動し、押し棒15を介して弁体5を図2の右方端に移動すると共に、コイル16への非通電により吸引力が消滅してばね6の弾性力で弁体5とともに可動鉄心13を図2の状態に復帰移動して固定鉄心11より離間する。   In the coil portion 9, a disc-shaped end plate 18 is disposed at one end in the axial direction of a coil bobbin 17 around which the coil 16 is wound, and a cylindrical tube body 19 is disposed on the outer periphery of the coil bobbin 17. The cylindrical body 19 is provided with an opening along the axial direction on the upper side in FIG. 2, and a protruding piece 17 </ b> A is provided protruding from the opening so as to be provided at the axial end of the coil bobbin 17 and extending radially outward. The projecting piece 17A is provided with two conductive pin members 20A and 20B with a gap in the direction perpendicular to the plane of FIG. 2 (only the front conductive pin member 20A is shown in FIG. 2). 20A and 20B are provided so as to protrude in the axial direction, and the protruding end portions thereof are inserted into female terminal fittings 21A and 21B provided with a gap in the direction perpendicular to the plane of FIG. As with the conductive pin member 20A, only the front female terminal 21A is shown), and is electrically connected to the electrical wirings 22A and 22B from the external power source E. One conductive pin member 20A is electrically connected to the winding start end of the coil 16 by a lead wire 23A, and a thermistor 24 and a resistor 25 are connected in parallel to the lead wire 23A, and the coil 16 is connected in series. The thermistor 24 and the resistor 25 connected in parallel are arranged on the outer periphery of the coil 16 on the opening side of the cylindrical body 19. The other conductive pin member 20B is electrically connected to the winding end of the coil 16 through a lead wire 23B. The coil portion 9 is formed by integrally forming a coil bobbin 17 around which a coil 16 is wound, an end plate 18, a cylindrical body 19, conductive pin members 20A and 20B, lead wires 23A and 23B, a thermistor 24, and a resistor 25 using a resin mold. 26 is formed. In the electromagnet device 3, a fixed iron core 11 is screwed into an opening portion of the insertion hole 2 to one side of the valve body 1 to fix the tubular portion 8 to the valve body 1, and the coil portion 9 is attached to the tubular portion 8. The nut 10 that is fitted and screwed to the lid member 14 that is the projecting end of the cylindrical portion 8 is rotated to sandwich the coil portion 9 between one side surface of the valve body 1 and the nut 10. Then, the electromagnet device 3 attracts and moves the movable iron core 13 to the fixed iron core 11 by the attractive force generated by energizing the coil 16, and moves the valve body 5 to the right end of FIG. When the coil 16 is not energized, the attraction force disappears, and the elastic force of the spring 6 causes the movable core 13 to move back together with the valve body 5 to the state shown in FIG.

サーミスタ24は、図3に線Cで示す如き、コイル16への通電や弁本体1内部を流通する圧力流体からの伝熱等による温度上昇に対して抵抗値を曲線的に減少する特性を有する負の温度係数をもつNTCサーミスタである。サーミスタ24と温度上昇に対して抵抗値が一定である抵抗器25とを並列接続した並列抵抗合成値は、サーミスタ24の抵抗値と抵抗器25の抵抗値との乗算値を、サーミスタ24の抵抗値と抵抗器25の抵抗値との加算値で除算して求められ、図3に線Dで示す如き、温度上昇に対して抵抗値を略直線的に減少する。コイル16は、図3に線Fで示す如き、温度上昇に対して抵抗値を直線的に増加する。線Fで示すコイル16の抵抗値と線Dで示す並列合成抵抗値とを加算した合成抵抗値は、図3に線Gで示す如き、温度上昇に対して略一定となる。   As shown by line C in FIG. 3, the thermistor 24 has a characteristic that the resistance value is reduced in a curve with respect to a temperature rise caused by energization of the coil 16 or heat transfer from the pressure fluid flowing through the valve body 1. This is an NTC thermistor with a negative temperature coefficient. The parallel resistance composite value obtained by connecting the thermistor 24 and the resistor 25 having a constant resistance against temperature rise in parallel is a product of the resistance value of the thermistor 24 and the resistance value of the resistor 25, and the resistance of the thermistor 24. It is obtained by dividing by the sum of the value and the resistance value of the resistor 25, and as shown by the line D in FIG. As shown by line F in FIG. 3, the coil 16 linearly increases the resistance value with respect to the temperature rise. The combined resistance value obtained by adding the resistance value of the coil 16 indicated by the line F and the parallel combined resistance value indicated by the line D becomes substantially constant as the temperature rises as indicated by the line G in FIG.

次に、かかる構成の作動を説明する。
図2の状態は、電磁石装置3のコイル16への非通電状態を示し、弁体5はばね6の弾性力により付勢されて左方端に位置し、供給流路Pと一方の負荷流路Aとを切換連通すると共に、他方の負荷流路Bと排出流路Rとを切換連通している。電磁石装置3はばね6の弾性力が押し棒15を介して可動鉄心13に付与され、可動鉄心13が固定鉄心11より離間している。
Next, the operation of this configuration will be described.
The state of FIG. 2 shows a non-energized state of the coil 16 of the electromagnet device 3, and the valve body 5 is urged by the elastic force of the spring 6 and located at the left end, and the supply flow path P and one load flow The channel A is switched and communicated, and the other load channel B and the discharge channel R are switched and communicated. In the electromagnet device 3, the elastic force of the spring 6 is applied to the movable iron core 13 via the push rod 15, and the movable iron core 13 is separated from the fixed iron core 11.

この状態で、電磁石装置3のコイル16へ通電すると、吸引力が発生して可動鉄心13を固定鉄心11に吸引移動する。弁体5は可動鉄心13の吸引移動が押し棒15を介して付与され、ばね6の弾性力に抗して図2の右方端に移動し、供給流路Pと他方の負荷流路Bとを切換連通すると共に、一方の負荷流路Aと排出流路Rとを切換連通する。そして、電磁石装置3のコイル16を非通電にすると、吸引力が解消し、弁体5はばね6の弾性力により図2の状態に復帰移動する。電磁石装置3はばね6の弾性力が押し棒15を介して可動鉄心13に付与され、可動鉄心13が図2の状態に復帰移動し、固定鉄心11より離間する。   In this state, when the coil 16 of the electromagnet device 3 is energized, an attractive force is generated and the movable iron core 13 is attracted and moved to the fixed iron core 11. The valve body 5 is given a suction movement of the movable iron core 13 via the push rod 15 and moves to the right end in FIG. 2 against the elastic force of the spring 6, and the supply flow path P and the other load flow path B Are switched and communicated with one load channel A and the discharge channel R. When the coil 16 of the electromagnet device 3 is deenergized, the attractive force is eliminated, and the valve body 5 returns to the state shown in FIG. 2 by the elastic force of the spring 6. In the electromagnet device 3, the elastic force of the spring 6 is applied to the movable iron core 13 via the push rod 15, and the movable iron core 13 returns to the state shown in FIG. 2 and is separated from the fixed iron core 11.

かかる作動で、温度上昇に対して抵抗値を曲線的に減少する特性(図3の線C)を有する負の温度係数をもつNTCサーミスタ24に、温度上昇に対して抵抗値が一定である抵抗器25を並列接続して、温度上昇に対して抵抗値を略直線的に減少する並列合成抵抗値(図3の線D)を作成し、温度上昇に対して直線的に増加するコイル16の抵抗値(図3の線F)と温度上昇に対して略直線的に減少する前記並列合成抵抗値(図3の線D)とを加算しているため、この加算した合成抵抗値を、図3の線Gで示す如き、温度上昇に対して略一定にすることができ、コイル16へ通電する電流値を必要以上に大きくすることなく消費電力を低減することができる。   With such an operation, the NTC thermistor 24 having a negative temperature coefficient having a characteristic (curve C in FIG. 3) that reduces the resistance value in a curved manner with respect to the temperature rise has a resistance that is constant with respect to the temperature rise. A parallel combined resistance value (line D in FIG. 3) that decreases the resistance value substantially linearly with respect to the temperature rise is created by connecting the devices 25 in parallel, and the coil 16 that increases linearly with respect to the temperature rise. Since the resistance value (line F in FIG. 3) and the parallel combined resistance value (line D in FIG. 3) that decrease substantially linearly with respect to the temperature rise are added, the added combined resistance value is As shown by the line G in FIG. 3, it can be made substantially constant with respect to the temperature rise, and the power consumption can be reduced without increasing the current value supplied to the coil 16 more than necessary.

また、コイルボビン17に巻き回したコイル16の外周上にサーミスタ24を配置しているため、サーミスタ24を発熱源であるコイル16の近傍に位置してコイル16の上昇する温度を正確に検出することができる。さらにまた、サーミスタ24および抵抗器25を樹脂モールドにてコイル16と一体成形しているため、サーミスタ24と抵抗器25を取りまとめて配置することができ、電磁石装置全体の大型化を抑制することができる。   Further, since the thermistor 24 is arranged on the outer periphery of the coil 16 wound around the coil bobbin 17, the thermistor 24 is positioned in the vicinity of the coil 16 that is a heat generation source, and the rising temperature of the coil 16 is accurately detected. Can do. Furthermore, since the thermistor 24 and the resistor 25 are integrally formed with the coil 16 by a resin mold, the thermistor 24 and the resistor 25 can be arranged together and the enlargement of the entire electromagnet device can be suppressed. it can.

なお、一実施形態では、電磁弁装置3を弁本体1の一側面に装着して用い、弁体5を図2の右方端と左方端との2位置に移動自在としたが、電磁石装置3を弁本体1の両側面に装着して用い、弁体5を軸方向の略中央位置と右方端と左方端との3位置に移動自在に設けてもよいことは勿論である。   In one embodiment, the electromagnetic valve device 3 is mounted on one side of the valve body 1 and the valve body 5 is movable to two positions, the right end and the left end in FIG. Needless to say, the device 3 may be mounted on both side surfaces of the valve body 1 and the valve body 5 may be movably provided at three positions, ie, a substantially central position in the axial direction, a right end, and a left end. .

本発明の一実施形態を示した電磁石装置の電気回路図である。It is an electric circuit diagram of an electromagnet device showing an embodiment of the present invention. 一実施形態の電磁石装置を適用した電磁弁の縦断面図である。It is a longitudinal cross-sectional view of the solenoid valve to which the electromagnet apparatus of one Embodiment is applied. 一実施形態の抵抗値と温度との特性を示すグラフ図である。It is a graph which shows the characteristic of resistance value and temperature of one Embodiment.

符号の説明Explanation of symbols

3:電磁石装置
11:固定鉄心
13:可動鉄心
16:コイル
24:サーミスタ
25:抵抗器
3: Electromagnet device 11: Fixed iron core 13: Movable iron core 16: Coil 24: Thermistor 25: Resistor

Claims (2)

コイルへの通電により可動鉄心を固定鉄心に吸引し、温度上昇に対して抵抗値を曲線的に減少する特性を有するサーミスタに、温度上昇に対して抵抗値が一定である抵抗器を並列接続して、温度上昇に対して抵抗値を略直線的に減少する並列合成抵抗値を作成し、並列接続したサーミスタと抵抗器とをコイルに直列接続して、温度上昇に対して直線的に増加するコイルの抵抗値と温度上昇に対して略直線的に減少する並列合成抵抗値とを加算したことを特徴とする電磁石装置。   A resistor with a constant resistance against temperature rise is connected in parallel to a thermistor that draws the movable core into the fixed core by energizing the coil and reduces the resistance value in a curve with temperature rise. Then, a parallel composite resistance value that decreases the resistance value almost linearly with respect to the temperature rise is created, and a parallel-connected thermistor and resistor are connected in series with the coil to increase linearly with respect to the temperature rise. 2. An electromagnet device comprising: a resistance value of a coil and a parallel combined resistance value that decreases substantially linearly with respect to a temperature rise. 前記コイルをコイルボビンに巻き回して設け、コイルボビンに巻き回したコイルの外周上に前記サーミスタを配置し、サーミスタおよび前記抵抗器を樹脂モールドにてコイルと一体成形したことを特徴とする請求項1に記載の複合電磁切換弁。   2. The coil according to claim 1, wherein the coil is wound around a coil bobbin, the thermistor is disposed on an outer periphery of the coil wound around the coil bobbin, and the thermistor and the resistor are integrally formed with the coil by a resin mold. The composite electromagnetic switching valve as described.
JP2008241917A 2008-09-22 2008-09-22 Electromagnet apparatus Pending JP2010074013A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008241917A JP2010074013A (en) 2008-09-22 2008-09-22 Electromagnet apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008241917A JP2010074013A (en) 2008-09-22 2008-09-22 Electromagnet apparatus

Publications (2)

Publication Number Publication Date
JP2010074013A true JP2010074013A (en) 2010-04-02
JP2010074013A5 JP2010074013A5 (en) 2011-10-06

Family

ID=42205508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008241917A Pending JP2010074013A (en) 2008-09-22 2008-09-22 Electromagnet apparatus

Country Status (1)

Country Link
JP (1) JP2010074013A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012205486A (en) * 2011-03-28 2012-10-22 Nidec Sankyo Corp Motor device
KR20170103621A (en) * 2016-03-03 2017-09-13 한온시스템 주식회사 Temperature compensated solenoid and actuator provided therewith
US20180025825A1 (en) * 2016-07-19 2018-01-25 Eagle Actuator Components Gmbh & Co. Kg Temperature-Compensated Valve
US20180094591A1 (en) * 2014-04-24 2018-04-05 Eagle Actuator Components Gmbh & Co. Kg Circuit for temperature compensation
US11365823B2 (en) * 2014-04-24 2022-06-21 Eagle Actuator Components Gmbh & Co. Kg Valve with temperature compensation

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5533042A (en) * 1978-08-29 1980-03-08 Toshiba Mach Co Ltd Temperature-compenstated solenoid
JPS63161315U (en) * 1987-04-10 1988-10-21
JPH0222078U (en) * 1988-07-25 1990-02-14
JPH0295810U (en) * 1989-01-20 1990-07-31
JPH02127003U (en) * 1989-03-28 1990-10-19
JPH06109483A (en) * 1992-09-29 1994-04-19 Yokogawa Electric Corp Magnetic resolver
JP2007139193A (en) * 2005-11-18 2007-06-07 Zhejiang Sanhua Refrigerating Group Co Ltd Coil of solenoid controlled valve

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5533042A (en) * 1978-08-29 1980-03-08 Toshiba Mach Co Ltd Temperature-compenstated solenoid
JPS63161315U (en) * 1987-04-10 1988-10-21
JPH0222078U (en) * 1988-07-25 1990-02-14
JPH0295810U (en) * 1989-01-20 1990-07-31
JPH02127003U (en) * 1989-03-28 1990-10-19
JPH06109483A (en) * 1992-09-29 1994-04-19 Yokogawa Electric Corp Magnetic resolver
JP2007139193A (en) * 2005-11-18 2007-06-07 Zhejiang Sanhua Refrigerating Group Co Ltd Coil of solenoid controlled valve

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012205486A (en) * 2011-03-28 2012-10-22 Nidec Sankyo Corp Motor device
US20180094591A1 (en) * 2014-04-24 2018-04-05 Eagle Actuator Components Gmbh & Co. Kg Circuit for temperature compensation
US11365823B2 (en) * 2014-04-24 2022-06-21 Eagle Actuator Components Gmbh & Co. Kg Valve with temperature compensation
KR20170103621A (en) * 2016-03-03 2017-09-13 한온시스템 주식회사 Temperature compensated solenoid and actuator provided therewith
US20180025825A1 (en) * 2016-07-19 2018-01-25 Eagle Actuator Components Gmbh & Co. Kg Temperature-Compensated Valve
JP2018013245A (en) * 2016-07-19 2018-01-25 イーグル アクチュエーター コンポーネンツ ゲゼルシャフト ミット ベシュレンクター ハーフトゥンク アンド コンパニー コマンディットゲゼルシャフト Valve with temperature compensation control
CN107633932A (en) * 2016-07-19 2018-01-26 伊格尔执行器零部件股份有限公司 The valve of temperature-compensating

Similar Documents

Publication Publication Date Title
US20080204176A1 (en) Unequally tapped coil solenoid valve
US20120292544A1 (en) Solenoid for electromagnetic valve
JP2010074013A (en) Electromagnet apparatus
EP2766649B1 (en) Solenoid valve with a metallic tube bobbin
JP6078434B2 (en) Solenoid device
JP2006200654A (en) Four way solenoid valve
JP2007139193A (en) Coil of solenoid controlled valve
US10215299B2 (en) Fluid control valve having yoke-supported core
WO2015177957A1 (en) Dc-operated polarized electromagnet and electromagnetic contactor using same
JP6264686B2 (en) Electromagnetic relay
JP2006049918A (en) Solenoid driving valve, high-speed response solenoid, and method for increasing working speed of solenoid for solenoid driving valve
WO2017002350A1 (en) Electromagnetic device, and electromagnetic relay using same
CN106683824B (en) System and method for an electromagnetic actuator
JP2011133071A (en) Self-holding solenoid valve
JP6069127B2 (en) Electromagnetic relay module
JP2013024304A (en) Solenoid valve
JP6650698B2 (en) Actuator for solenoid valve and solenoid valve
JP6329781B2 (en) Solenoid device
JP6468988B2 (en) Solenoid device and solenoid system
US20200072377A1 (en) Electromagnetic valve
JP2018066418A (en) Solenoid selector valve
JP5792803B2 (en) electromagnet
KR101431740B1 (en) Adjustable solenoid apparatus using magnetic field
JP5249190B2 (en) Solenoid valve and method for fixing main valve part and solenoid part in solenoid valve
JP2018041911A (en) solenoid

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110820

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110820

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120925

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130213

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130312