JP2010071776A - Device for detecting alternating current - Google Patents

Device for detecting alternating current Download PDF

Info

Publication number
JP2010071776A
JP2010071776A JP2008238936A JP2008238936A JP2010071776A JP 2010071776 A JP2010071776 A JP 2010071776A JP 2008238936 A JP2008238936 A JP 2008238936A JP 2008238936 A JP2008238936 A JP 2008238936A JP 2010071776 A JP2010071776 A JP 2010071776A
Authority
JP
Japan
Prior art keywords
voltage
current transformer
current
converter
voltage dividing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008238936A
Other languages
Japanese (ja)
Other versions
JP5135138B2 (en
Inventor
Tomohisa Okami
智久 狼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Mitsubishi Electric Industrial Systems Corp
Original Assignee
Toshiba Mitsubishi Electric Industrial Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Mitsubishi Electric Industrial Systems Corp filed Critical Toshiba Mitsubishi Electric Industrial Systems Corp
Priority to JP2008238936A priority Critical patent/JP5135138B2/en
Publication of JP2010071776A publication Critical patent/JP2010071776A/en
Application granted granted Critical
Publication of JP5135138B2 publication Critical patent/JP5135138B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Current Or Voltage (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a device for detecting an alternating current which secures coordination between overvoltage protection of an A/D converter and overvoltage protection of other equipment connected to the secondary circuit of an auxiliary current transformer and has high reliability as a whole. <P>SOLUTION: The device includes a current transformer 1 for detecting the alternating current, the auxiliary current transformer 2 to which a secondary output of the current transformer 1 is input, two voltage dividing resistors 3 and 4 which are connected in series so as to convert a secondary current obtained from the secondary output of the auxiliary current transformer 2 into voltage, the A/D converter 5 to which the voltage applied on the voltage dividing resistor 4 on one side is inputted, overvoltage suppressing means 7 and 8 which are connected in parallel to the input of the A/D converter 5 and which are brought to a state of continuity on impression of a first prescribed voltage and hold this first prescribed voltage, and an overcurrent bypass means 6 which is connected in parallel to the secondary output of the auxiliary current transformer 2 and starts electrification on impression of a second prescribed voltage being higher than the first. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は交流電流検出装置に係り、特に交流母線の電流を検出してデジタル信号に変換する機能を有する交流電流検出装置に関する。   The present invention relates to an alternating current detection device, and more particularly to an alternating current detection device having a function of detecting a current of an alternating current bus and converting it into a digital signal.

従来から、比較的容量の大きい交流母線の電流を検出するための交流電流検出装置として、変流器によって検出された交流電流信号を補助変流器によって適切な電流レベルに変換し、更に分圧抵抗器等によって電圧信号に変換し、この電圧信号を例えばA/D変換器でデジタル信号に変換する方式の交流電流検出装置が採用されていた。このA/D変換器の出力をマイコン等に与えることによって、例えばマイコンによる変換装置等の制御に利用することができる。このような交流電流検出装置に対して、交流母線に過大電流が流れたときの過電圧を保護するために変流器の2次側に過電圧保護回路を設ける提案が為されている(例えば特許文献1参照。)。
特開2003−270273号公報(第2−3頁、図1)
Conventionally, as an AC current detection device for detecting a current of a relatively large capacity AC bus, an AC current signal detected by a current transformer is converted to an appropriate current level by an auxiliary current transformer, and further divided. An AC current detection device of a type that converts a voltage signal with a resistor or the like and converts the voltage signal into a digital signal with an A / D converter, for example, has been adopted. By giving the output of the A / D converter to a microcomputer or the like, it can be used for controlling a conversion device or the like by the microcomputer, for example. For such an AC current detection device, a proposal has been made to provide an overvoltage protection circuit on the secondary side of the current transformer in order to protect the overvoltage when an excessive current flows through the AC bus (for example, Patent Documents). 1).
JP 2003-270273 A (page 2-3, FIG. 1)

特許文献1に示されている手法は、A/D変換器の過電圧保護と補助変流器の2次回路全体の過電圧保護を一つの過電圧保護回路で同時に行なおうとするものである。しかるに、電子化されたA/D変換器の過電圧保護については、その保護レベルの精度、信頼性が極めて重要であるのに対し、補助変流器の2次回路に接続される抵抗器などの他の機器の保護レベルは比較的ラフであっても良い。   The technique disclosed in Patent Document 1 intends to simultaneously perform overvoltage protection of the A / D converter and overvoltage protection of the entire secondary circuit of the auxiliary current transformer with one overvoltage protection circuit. However, for the overvoltage protection of electronic A / D converters, the accuracy and reliability of the protection level are extremely important, whereas resistors such as resistors connected to the secondary circuit of the auxiliary current transformer are used. The protection level of other devices may be relatively rough.

また、一般的にA/D変換器の入力電圧を調整可能とするために、分圧抵抗器には分圧比の変更が可能な可変抵抗器が用いられる。従って、A/D変換器の過電圧保護と補助変流器の2次回路全体の過電圧保護を一つの過電圧保護回路で行うと、分圧比を調整した結果A/D変換器の過電圧保護レベルも変わり、A/D変換器の過電圧保護が成り立たなくなったり、不要に低いレベルでの保護動作となって正常な動作に支障を来たす恐れがあった。   In general, in order to be able to adjust the input voltage of the A / D converter, a variable resistor capable of changing a voltage dividing ratio is used as the voltage dividing resistor. Therefore, if the overvoltage protection of the A / D converter and the overvoltage protection of the secondary circuit of the auxiliary current transformer are performed with one overvoltage protection circuit, the overvoltage protection level of the A / D converter also changes as a result of adjusting the voltage division ratio. The overvoltage protection of the A / D converter may not be realized, or the protection operation may be performed at an unnecessarily low level, thereby hindering normal operation.

本発明は上記の課題を鑑みて為されたもので、A/D変換器の過電圧保護と補助変流器の2次回路に接続される他の機器の過電圧保護間の協調をとり、全体として信頼性の高い交流電流検出装置を提供することを目的とする。   The present invention has been made in view of the above-mentioned problems, and cooperates between the overvoltage protection of the A / D converter and the overvoltage protection of other devices connected to the secondary circuit of the auxiliary current transformer as a whole. An object of the present invention is to provide a highly reliable alternating current detecting device.

上記目的を達成するために、本発明の交流電流検出装置は、交流電流検出用の変流器と、この変流器の2次出力を入力とする補助変流器と、前記補助変流器の2次出力から得られる2次電流を電圧に変換するために直列接続された2つの分圧抵抗器と、前記分圧抵抗器のうち一方の分圧抵抗器に印加される電圧を入力とするA/D変換器と、前記A/D変換器の入力に並列に接続され、第1の所定電圧が印加されると導通状態となってこの第1の所定電圧を保持する過電圧抑制手段と、補助変流器の2次出力と並列に接続され、前記第1の所定電圧より高い第2の所定電圧が印加されると通電を開始する過電流バイパス手段とを具備したことを特徴としている。   In order to achieve the above object, an AC current detection device according to the present invention includes a current transformer for AC current detection, an auxiliary current transformer that receives a secondary output of the current transformer, and the auxiliary current transformer. Two voltage dividing resistors connected in series to convert a secondary current obtained from the secondary output into a voltage, and a voltage applied to one of the voltage dividing resistors as an input. An A / D converter that is connected in parallel to the input of the A / D converter, and an overvoltage suppressing unit that is in a conductive state when the first predetermined voltage is applied and holds the first predetermined voltage. And an overcurrent bypass means connected in parallel with the secondary output of the auxiliary current transformer and starting energization when a second predetermined voltage higher than the first predetermined voltage is applied. .

本発明によれば、A/D変換器の過電圧保護と補助変流器の2次回路に接続される他の機器の過電圧保護間の協調をとり、全体として信頼性の高い交流電流検出装置を提供することが可能となる。   According to the present invention, the overvoltage protection of the A / D converter and the overvoltage protection of other devices connected to the secondary circuit of the auxiliary current transformer are coordinated to provide a highly reliable alternating current detection device as a whole. It becomes possible to provide.

以下、図面を参照して本発明の実施例を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は本発明実施例1に係る交流電流検出装置のブロック構成図である。   FIG. 1 is a block diagram of an alternating current detection device according to Embodiment 1 of the present invention.

図1において、交流電流検出装置10は、交流母線に流れる電流をデジタル信号に変換して制御装置等に設けられたマイコン20に与える。以下交流電流検出装置10の内部構成について説明する。   In FIG. 1, an alternating current detection device 10 converts a current flowing in an alternating current bus into a digital signal and supplies the digital signal to a microcomputer 20 provided in a control device or the like. Hereinafter, the internal configuration of the AC current detection device 10 will be described.

変流器1は交流母線の電流を検出し、補助変流器2によって適切な電流レベルに変換する。そして補助変流器2の2次巻線出力と並列に直列接続された分圧抵抗器3及び分圧抵抗器4を接続し、分圧抵抗器4の両端の電圧をA/D変換器5の入力に与える。A/D変換器5は、分圧抵抗器4に印加される電圧をデジタル信号に変換し、装置の外部に接続されたマイコン20にこの信号を与える。   The current transformer 1 detects the current of the AC bus and converts it to an appropriate current level by the auxiliary current transformer 2. Then, a voltage dividing resistor 3 and a voltage dividing resistor 4 connected in series with the secondary winding output of the auxiliary current transformer 2 are connected in parallel, and the voltage across the voltage dividing resistor 4 is converted to an A / D converter 5. Give to the input. The A / D converter 5 converts the voltage applied to the voltage dividing resistor 4 into a digital signal, and gives this signal to the microcomputer 20 connected to the outside of the apparatus.

また、A/D変換器5の過電圧防止手段としてツェナーダイオード7、8を互いに逆向きに直列接続した過電圧防止回路を分圧抵抗4と並列に接続し、更に、補助変流器2の2次側の過電流バイパス手段として電圧依存性抵抗器6を補助変流器2の2次巻線と並列に接続している。   Further, as an overvoltage prevention means of the A / D converter 5, an overvoltage prevention circuit in which Zener diodes 7 and 8 are connected in series in opposite directions is connected in parallel with the voltage dividing resistor 4, and the secondary current of the auxiliary current transformer 2 is further connected. A voltage-dependent resistor 6 is connected in parallel with the secondary winding of the auxiliary current transformer 2 as overcurrent bypass means on the side.

上記の回路構成においては、例えば、交流母線も主回路電流が1000A/puでありA/D変換器5の電圧入力範囲が±10Vであるとき、1000A/puの電流信号を3〜5V/pu程度の電圧信号に変換し、2〜3pu程度の電流値までマイコン6に入力が可能なよう補助変流器2、分圧抵抗器3及び分圧抵抗器4の定格を選定する。   In the above circuit configuration, for example, when the main circuit current of the AC bus is 1000 A / pu and the voltage input range of the A / D converter 5 is ± 10 V, the current signal of 1000 A / pu is 3 to 5 V / pu. The ratings of the auxiliary current transformer 2, the voltage dividing resistor 3, and the voltage dividing resistor 4 are selected so that the voltage can be converted into a voltage signal of about 2 and the current value of about 2 to 3 pu can be input to the microcomputer 6.

以下、図2を参照して実施例1の動作の詳細について説明する。   The details of the operation of the first embodiment will be described below with reference to FIG.

図2は過電圧防止回路及び電圧依存性抵抗器のI−V特性図である。図2(b)に示したように、ツェナーダイオード7、8による過電圧防止回路に印加される電圧をV1、通電電流をI1としたときのI1−V1特性は、図2(a)に示したようにV1が或る電圧閾値Vthr1以上となったとき、または電圧閾値−Vthr1以下となったとき電圧のクリップが開始される特性となっている。同様に、電圧依存性抵抗器に印加される電圧をV2、通電電流をI2としたときのI2−V2特性は、V2が或る電圧閾値Vthr2以上となったとき、または電圧閾値−Vthr2以下となったとき電圧のクリップが開始される特性となる。これらの特性を数式で表すと以下となる。   FIG. 2 is an IV characteristic diagram of the overvoltage prevention circuit and the voltage dependent resistor. As shown in FIG. 2B, the I1-V1 characteristic when the voltage applied to the overvoltage prevention circuit by the Zener diodes 7 and 8 is V1 and the conduction current is I1 is shown in FIG. Thus, when V1 becomes equal to or higher than a certain voltage threshold value Vthr1, or when it becomes equal to or lower than the voltage threshold value −Vthr1, the voltage clipping is started. Similarly, the I2-V2 characteristic when the voltage applied to the voltage-dependent resistor is V2 and the energization current is I2 is as follows: V2 becomes a voltage threshold value Vthr2 or more, or voltage threshold value −Vthr2 or less. When this happens, voltage clipping starts. These characteristics are expressed as follows:

|V1|<|Vthr1|のとき、 I1≒0A ・・・(1)
|V1|>|Vthr1|のとき、 I1≫0A ・・・(2)
|V2|<|Vthr2|のとき、 I2≒0A ・・・(3)
|V2|>|Vthr2|のとき、 I2≫0A ・・・(4)
|Vthr2|>|Vthr1| ・・・(5)
このような保護特性を有する交流電流検出装置10において、交流母線の短絡などによって補助変流器2の2次巻線に過電流が発生したとき、以下の3段階に従って現象が進展する。
When | V1 | <| Vthr1 |, I1≈0A (1)
When | V1 |> | Vthr1 |, I1 >> 0A (2)
When | V2 | <| Vthr2 |, I2≈0A (3)
When | V2 |> | Vthr2 |, I2 >> 0A (4)
| Vthr2 |> | Vthr1 | (5)
In the AC current detecting device 10 having such protection characteristics, when an overcurrent is generated in the secondary winding of the auxiliary current transformer 2 due to a short circuit of the AC bus, the phenomenon progresses according to the following three stages.

第1段階は、分圧抵抗4の両端電圧がVthr1に上昇するまでの状態であり、この状態ではツェナーダイオード7、8は非導通状態である。また、電圧依存性抵抗器6もほとんど電流が流れていない状態であり、過電流となる前の段階である。   The first stage is a state until the voltage across the voltage dividing resistor 4 rises to Vthr1, and in this state, the Zener diodes 7 and 8 are nonconductive. The voltage-dependent resistor 6 is also in a state where almost no current flows, and is a stage before an overcurrent occurs.

第2段階は、分圧抵抗4の両端電圧がVthr1に達した後、分圧抵抗4と分圧抵抗3の全体に掛かる電圧がVthr2に上昇するまでの状態であり、この状態ではツェナーダイオード7、8は導通状態となり分圧抵抗4の両端電圧をVthr1に保持してA/D変換器6の過電圧を防止している。このときには未だ電圧依存性抵抗器6にはほとんど電流が流れていない。   The second stage is a state in which the voltage applied across the voltage dividing resistor 4 and the voltage dividing resistor 3 rises to Vthr2 after the voltage across the voltage dividing resistor 4 reaches Vthr1, and in this state, the Zener diode 7 , 8 are in a conducting state, and the voltage across the voltage dividing resistor 4 is held at Vthr1 to prevent overvoltage of the A / D converter 6. At this time, almost no current flows through the voltage-dependent resistor 6.

第3段階は、分圧抵抗3と分圧抵抗4の全体に掛かる電圧がVthr2以上に上昇した状態であり、この状態ではツェナーダイオード7、8は導通状態、電圧依存性抵抗器6も電流を通流する状態となる。ツェナーダイオード7、8が導通状態のまま分圧抵抗4の両端電圧をVthr1に保持する一方、電圧依存性抵抗器6も電流を通流する状態となり分圧抵抗3、4の両端電圧をVthr2の値に実質的に保持する。ここで実質的とは、通電する電流の増大に伴ってV2は上昇するが、その程度が僅かであるということである。これによって分圧抵抗3、4及びツェナーダイオード7、8に流入する電流が一定値以上に増大することを制限し、過負荷による分圧抵抗3、4及びツェナーダイオード7、8の焼損を防止することが可能となる。   The third stage is a state in which the voltage applied to the whole of the voltage dividing resistor 3 and the voltage dividing resistor 4 has risen to Vthr2 or more. In this state, the Zener diodes 7 and 8 are in a conducting state, and the voltage dependent resistor 6 also conducts current. It will be in a state to flow. While the Zener diodes 7 and 8 are kept conductive, the voltage across the voltage dividing resistor 4 is held at Vthr1, while the voltage-dependent resistor 6 is also in a state where current flows and the voltage across the voltage dividing resistors 3 and 4 is set to Vthr2. Hold substantially on the value. Here, “substantially” means that V2 rises with increasing current to be energized, but its degree is slight. This restricts the current flowing into the voltage dividing resistors 3 and 4 and the Zener diodes 7 and 8 from increasing to a certain value or more, and prevents the voltage dividing resistors 3 and 4 and the Zener diodes 7 and 8 from being burned by overload. It becomes possible.

以上説明したように、A/D変換器5の入力電圧がその耐電圧以下となるよう過電圧防止回路におけるVthr1を選定し、分圧抵抗3、4及び過電圧防止回路で発生する損失が許容損失以下となるよう電圧依存性抵抗器のVthr2を選定することによって協調のとれた信頼性の高い過電圧保護を実現することが可能となる。   As described above, Vthr1 in the overvoltage prevention circuit is selected so that the input voltage of the A / D converter 5 is lower than the withstand voltage, and the loss generated in the voltage dividing resistors 3 and 4 and the overvoltage prevention circuit is less than the allowable loss. By selecting Vthr2 of the voltage-dependent resistor so as to be, it becomes possible to realize coordinated and reliable overvoltage protection.

この実施例における電圧依存性抵抗器6の具体例として、ZNR(登録商標)を適用することができる。一般的にツェナーダイオードの許容損失と比べて、ZNRは許容損失が大きいため、過電流のバイパス動作で焼損することなく、本発明の保護機能を満足することができる。   As a specific example of the voltage dependent resistor 6 in this embodiment, ZNR (registered trademark) can be applied. In general, the ZNR has a large allowable loss as compared with the allowable loss of the Zener diode, so that the protection function of the present invention can be satisfied without being burned out by an overcurrent bypass operation.

図3は本発明実施例2に係る交流電流検出装置のブロック構成図である。この実施例2の各部について、図1の本発明の実施例1に係る交流電流検出装置のブロック構成図の各部と同一部分は同一符号で示し、その説明は省略する。この実施例2が実施例1と異なる点は、交流電流検出装置10Aの過電流バイパス手段として実施例1における電圧依存性抵抗器6に代え、一定電圧が印加されると導通状態となる電圧依存性素子6Aを用いた点である。   FIG. 3 is a block diagram of an AC current detection apparatus according to Embodiment 2 of the present invention. In the second embodiment, the same parts as those in the block diagram of the AC current detecting apparatus according to the first embodiment of the present invention shown in FIG. The difference between the second embodiment and the first embodiment is that the overcurrent bypass means of the AC current detecting device 10A is replaced with the voltage-dependent resistor 6 in the first embodiment, and becomes a conductive state when a constant voltage is applied. This is a point using the conductive element 6A.

以下、図4を参照して実施例2の動作の詳細について説明する。   Details of the operation of the second embodiment will be described below with reference to FIG.

図4は電圧依存性素子6AのI−V特性図である。図4(b)に示したように、電圧依存性素子6Aに印加される電圧をV3、通電電流をI3としたとき、I3−V3特性は図4(a)に示したようにV3が或る電圧閾値Vthr3以上となったとき、または電圧閾値−Vthr3以下となったときそのインピーダンスが極端に低下して電圧が低下する特性となる。すなわち、
|V3|<|Vthr3|のとき、I3≒0A ・・・(6)
|V3|>|Vthr3|となったとき、I3≫0A・・・(7)
(ただし電圧依存性素子6Aの導通後、V3≒0V)
また、ツェナーダイオード7、8の電圧閾値Vthr1と電圧依存性素子6Aの電圧閾値Vthr3は、以下の関係を有する。
FIG. 4 is an IV characteristic diagram of the voltage dependent element 6A. As shown in FIG. 4B, when the voltage applied to the voltage dependent element 6A is V3 and the energization current is I3, the I3-V3 characteristic is V3 as shown in FIG. 4A. When the voltage threshold Vthr3 is equal to or higher than the voltage threshold Vthr3 or lower, the impedance is extremely lowered and the voltage is lowered. That is,
When | V3 | <| Vthr3 |, I3≈0A (6)
When | V3 |> | Vthr3 |, I3 >> 0A (7)
(However, after the conduction of the voltage dependent element 6A, V3≈0V)
The voltage threshold value Vthr1 of the Zener diodes 7 and 8 and the voltage threshold value Vthr3 of the voltage dependent element 6A have the following relationship.

|Vthr3|>|Vthr1| ・・・(8)
このような保護特性を有する交流電流検出装置10Aにおいて、交流母線の短絡などによって補助変流器2の2次巻線に過電流が発生したとき、以下の3段階に従って現象が進展する。
| Vthr3 |> | Vthr1 | (8)
In the AC current detection device 10A having such protection characteristics, when an overcurrent is generated in the secondary winding of the auxiliary current transformer 2 due to a short circuit of the AC bus, the phenomenon progresses according to the following three stages.

第1段階は、分圧抵抗4の両端電圧がVthr1に上昇するまでの状態であり、この状態ではツェナーダイオード7、8および電圧依存性素子6Aは非導通状態であり、過電流となる前の段階である。   The first stage is a state until the voltage across the voltage dividing resistor 4 rises to Vthr1, and in this state, the Zener diodes 7 and 8 and the voltage dependent element 6A are in a non-conducting state, and before the overcurrent occurs. It is a stage.

第2段階は、分圧抵抗4の両端電圧がVthr1に達した後、分圧抵抗3と分圧抵抗4の全体に掛かる電圧がVthr3に上昇するまでの状態であり、この状態ではツェナーダイオード7、8は導通状態となり分圧抵抗4の両端電圧をVthr1に保持し過電圧の出力を防止している。電圧依存性素子6Aはほとんど電流を流していない状態である。   The second stage is a state in which the voltage applied across the voltage dividing resistor 3 and the voltage dividing resistor 4 rises to Vthr3 after the voltage across the voltage dividing resistor 4 reaches Vthr1, and in this state, the Zener diode 7 , 8 are in a conductive state, and the voltage across the voltage dividing resistor 4 is held at Vthr1 to prevent overvoltage output. The voltage dependent element 6A is in a state where almost no current flows.

第3段階は、分圧抵抗3と分圧抵抗4の全体に掛かる電圧がVthr3以上に上昇した状態であり、この状態となると電圧依存性素子6Aは導通状態となる。電圧依存性素子6Aは導通状態となると分圧抵抗3、4の両端電圧は実質的にゼロとなる。ここで実質的とは、この分圧抵抗3、4の両端電圧が電圧依存性素子6Aのオン電圧まで低下するということである。これにより分圧抵抗4の両端電圧がVthr1以下となりツェナーダイオード7、8は非導通状態となる。過電流状態が続く場合には、電圧依存性素子6Aは導通状態を継続し過電流を還流し、その結果、過負荷による分圧抵抗3、4及びツェナーダイオード7、8の焼損を防止することが可能となる。   The third stage is a state in which the voltage applied to the entire voltage dividing resistor 3 and the voltage dividing resistor 4 has risen to Vthr3 or more. In this state, the voltage-dependent element 6A becomes conductive. When the voltage dependent element 6A becomes conductive, the voltage across the voltage dividing resistors 3 and 4 becomes substantially zero. Here, “substantially” means that the voltage across the voltage dividing resistors 3 and 4 is reduced to the ON voltage of the voltage-dependent element 6A. As a result, the voltage across the voltage dividing resistor 4 becomes Vthr1 or less, and the Zener diodes 7 and 8 are turned off. When the overcurrent state continues, the voltage-dependent element 6A continues to conduct and recirculates the overcurrent, thereby preventing the voltage dividing resistors 3 and 4 and the Zener diodes 7 and 8 from being burned out due to overload. Is possible.

以上から分かるように電圧依存性素子6Aが導通状態となったとき、交流電流検出値は0pu程度になってしまうので、正常な制御ができなくなる恐れがある。従ってこの実施例2においては、交流母線の異常を検出する交流過電流の整定値を超える過電流となって制御の対象となる装置の保護動作が働いた後に電圧依存性素子6Aが導通するようにVthr3を選定しておく必要がある。   As can be seen from the above, when the voltage-dependent element 6A becomes conductive, the AC current detection value becomes about 0 pu, and thus there is a possibility that normal control cannot be performed. Therefore, in the second embodiment, the voltage dependent element 6A is turned on after the overcurrent exceeding the set value of the AC overcurrent that detects the AC bus abnormality is detected and the protection operation of the device to be controlled is activated. It is necessary to select Vthr3.

本実施例の利点は、過電流入力時に電圧依存性素子6Aは電圧を保持しないため分圧抵抗3、4及び電圧依存性素子6Aに要求される許容損失が小さくなり、従って回路を小型化できることである。   The advantage of this embodiment is that the voltage-dependent element 6A does not hold a voltage when an overcurrent is input, so that the allowable loss required for the voltage dividing resistors 3 and 4 and the voltage-dependent element 6A is reduced, and thus the circuit can be reduced in size. It is.

以上説明したようにこの実施例2においても、A/D変換器5の入力電圧が耐電圧以下となるよう過電圧防止回路におけるVthr1を選択し、分圧抵抗3、4及び過電圧防止回路で発生する損失が許容損失以下となるよう電圧依存性素子のVthr3を選定することによって協調のとれた信頼性の高い過電圧保護を実現することが可能となる。   As described above, also in the second embodiment, Vthr1 in the overvoltage prevention circuit is selected so that the input voltage of the A / D converter 5 is equal to or lower than the withstand voltage, and is generated in the voltage dividing resistors 3 and 4 and the overvoltage prevention circuit. By selecting Vthr3 of the voltage dependent element so that the loss is equal to or less than the allowable loss, it is possible to realize coordinated and reliable overvoltage protection.

尚、電圧依存性素子6Aの具体例としては双方向性のサイダック(登録商標)が挙げられる。   A specific example of the voltage-dependent element 6A is a bidirectional Sidac (registered trademark).

本発明の実施例1に係る交流電流検出装置のブロック構成図。The block block diagram of the alternating current detection apparatus which concerns on Example 1 of this invention. 過電圧防止回路及び電圧依存性抵抗器のI−V特性図。The IV characteristic figure of an overvoltage prevention circuit and a voltage dependence resistor. 本発明の実施例2に係る交流電流検出装置のブロック構成図。The block block diagram of the alternating current detection apparatus which concerns on Example 2 of this invention. 電圧依存性素子のI−V特性図。The IV characteristic figure of a voltage dependence element.

符号の説明Explanation of symbols

1 変流器
2 補助変流器
3、4 分圧抵抗器
5 A/D変換器
6 電圧依存性抵抗器
6A 電圧依存性素子
7、8 ツェナーダイオード
10、10A 交流電流検出装置
20 マイコン
DESCRIPTION OF SYMBOLS 1 Current transformer 2 Auxiliary current transformer 3, 4 Voltage dividing resistor 5 A / D converter 6 Voltage dependence resistor 6A Voltage dependence element 7, 8 Zener diode 10, 10A AC current detection apparatus 20 Microcomputer

Claims (3)

交流電流検出用の変流器と、
この変流器の2次出力を入力とする補助変流器と、
前記補助変流器の2次出力から得られる2次電流を電圧に変換するために直列接続された2つの分圧抵抗器と、
前記分圧抵抗器のうち一方の分圧抵抗器に印加される電圧を入力とするA/D変換器と、
前記A/D変換器の入力に並列に接続され、第1の所定電圧が印加されると導通状態となってこの第1の所定電圧を保持する過電圧抑制手段と、
補助変流器の2次出力と並列に接続され、前記第1の所定電圧より高い第2の所定電圧が印加されると通電を開始する過電流バイパス手段と
を具備したことを特徴とする交流電流検出装置。
A current transformer for AC current detection;
An auxiliary current transformer that receives the secondary output of the current transformer,
Two voltage dividing resistors connected in series to convert a secondary current obtained from the secondary output of the auxiliary current transformer into a voltage;
An A / D converter having a voltage applied to one of the voltage dividing resistors as an input; and
An overvoltage suppressing means connected in parallel to the input of the A / D converter, and becomes conductive when a first predetermined voltage is applied, and holds the first predetermined voltage;
And an overcurrent bypass means connected in parallel with the secondary output of the auxiliary current transformer and starting energization when a second predetermined voltage higher than the first predetermined voltage is applied. Current detection device.
前記過電流バイパス手段は、
前記第2の所定電圧が印加されると導通状態となり且つ前記第2の所定電圧を実質的に保持する特性を有する電圧依存性抵抗器であることを特徴とする請求項1に記載の交流電流検出装置。
The overcurrent bypass means includes
The alternating current according to claim 1, wherein the alternating current is a voltage-dependent resistor that has a characteristic of becoming conductive when the second predetermined voltage is applied and substantially holding the second predetermined voltage. Detection device.
前記過電流バイパス手段は、
前記第2の所定電圧が印加されると導通状態となり且つその両端電圧を実質的にゼロとするような特性を有する電圧依存性素子であることを特徴とする請求項1に記載の交流電流検出装置。
The overcurrent bypass means includes
2. The AC current detection according to claim 1, wherein the AC current detection element is a voltage-dependent element that has a characteristic of becoming conductive when the second predetermined voltage is applied and having a voltage at both ends substantially zero. apparatus.
JP2008238936A 2008-09-18 2008-09-18 AC current detector Active JP5135138B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008238936A JP5135138B2 (en) 2008-09-18 2008-09-18 AC current detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008238936A JP5135138B2 (en) 2008-09-18 2008-09-18 AC current detector

Publications (2)

Publication Number Publication Date
JP2010071776A true JP2010071776A (en) 2010-04-02
JP5135138B2 JP5135138B2 (en) 2013-01-30

Family

ID=42203712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008238936A Active JP5135138B2 (en) 2008-09-18 2008-09-18 AC current detector

Country Status (1)

Country Link
JP (1) JP5135138B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102692555A (en) * 2012-06-22 2012-09-26 李利利 Analogue quantity inputting circuit for transformer substation
CN106569078A (en) * 2016-10-25 2017-04-19 中国电力科学研究院 State detection method and system for secondary circuit of current transformer
CN109270319A (en) * 2018-11-29 2019-01-25 西安高研电器有限责任公司 A kind of multi-tap voltage transformer and its production, adjustment method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110007126B (en) * 2019-04-17 2020-10-16 电子科技大学 Direct current bus voltage isolation detection circuit

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5783956A (en) * 1980-11-13 1982-05-26 Hitachi Ltd Subscriber circuit
JPS57127856A (en) * 1981-01-30 1982-08-09 Matsushita Electric Ind Co Ltd 3-phase current detection system
JPS593739U (en) * 1983-04-15 1984-01-11 沖電気工業株式会社 arrester circuit
JPS59226614A (en) * 1983-06-06 1984-12-19 株式会社明電舎 Power source for stationary protecting relay
JPS60204218A (en) * 1984-03-27 1985-10-15 東京電力株式会社 Ground fault direction relay
JPH02219418A (en) * 1989-02-20 1990-09-03 Fujitsu General Ltd Detection circuit for power supply interruption
JPH06138154A (en) * 1992-10-26 1994-05-20 Meidensha Corp Inspection system of zero-phase current monitoring circuit
JPH118930A (en) * 1997-04-25 1999-01-12 Mitsubishi Electric Corp Instrument for measuring information on current application to circuit breaker
JP2000081454A (en) * 1998-09-04 2000-03-21 Jimbo Electric Co Ltd Current measuring circuit
JP2002131344A (en) * 2000-10-27 2002-05-09 Fuji Electric Co Ltd Electric current measurement device
JP2003005872A (en) * 2002-04-22 2003-01-08 Mitsubishi Electric Corp Operation processor
JP2003199240A (en) * 2001-12-25 2003-07-11 Meidensha Corp Digital protective relay

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5783956A (en) * 1980-11-13 1982-05-26 Hitachi Ltd Subscriber circuit
JPS57127856A (en) * 1981-01-30 1982-08-09 Matsushita Electric Ind Co Ltd 3-phase current detection system
JPS593739U (en) * 1983-04-15 1984-01-11 沖電気工業株式会社 arrester circuit
JPS59226614A (en) * 1983-06-06 1984-12-19 株式会社明電舎 Power source for stationary protecting relay
JPS60204218A (en) * 1984-03-27 1985-10-15 東京電力株式会社 Ground fault direction relay
JPH02219418A (en) * 1989-02-20 1990-09-03 Fujitsu General Ltd Detection circuit for power supply interruption
JPH06138154A (en) * 1992-10-26 1994-05-20 Meidensha Corp Inspection system of zero-phase current monitoring circuit
JPH118930A (en) * 1997-04-25 1999-01-12 Mitsubishi Electric Corp Instrument for measuring information on current application to circuit breaker
JP2000081454A (en) * 1998-09-04 2000-03-21 Jimbo Electric Co Ltd Current measuring circuit
JP2002131344A (en) * 2000-10-27 2002-05-09 Fuji Electric Co Ltd Electric current measurement device
JP2003199240A (en) * 2001-12-25 2003-07-11 Meidensha Corp Digital protective relay
JP2003005872A (en) * 2002-04-22 2003-01-08 Mitsubishi Electric Corp Operation processor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102692555A (en) * 2012-06-22 2012-09-26 李利利 Analogue quantity inputting circuit for transformer substation
CN106569078A (en) * 2016-10-25 2017-04-19 中国电力科学研究院 State detection method and system for secondary circuit of current transformer
CN109270319A (en) * 2018-11-29 2019-01-25 西安高研电器有限责任公司 A kind of multi-tap voltage transformer and its production, adjustment method

Also Published As

Publication number Publication date
JP5135138B2 (en) 2013-01-30

Similar Documents

Publication Publication Date Title
US20090256533A1 (en) Current-level Decision Device for a Power Supply Device and Related Power Supply Device
US20140286058A1 (en) Undervoltage protection circuit, undervoltage protection method and switching power supply
EP2071690A2 (en) Overvoltage protection circuit and electronic device comprising the same
JP4983523B2 (en) Power supply circuit and earth leakage circuit breaker using the power supply circuit
US10257908B2 (en) LED device protection circuit and method thereof
JP2004312901A (en) Overcurrent protection circuit for switching power supply
JP5135138B2 (en) AC current detector
JP5126241B2 (en) Overvoltage protection circuit and overvoltage protection method
US9797957B2 (en) Detecting apparatus for AC motor malfunction and distribution panel having the same
US20100149712A1 (en) Digital Overcurrent Protection Device for a Power Supply Device and Related Power Supply Device
JP5929424B2 (en) LED lighting device and lighting device using the same
US9654022B2 (en) Power conversion device and control method thereof
WO2009078728A1 (en) Protection system
CN112054683B (en) Power conversion device
JP2014068448A (en) Input overvoltage prevention circuit and power supply unit
US9112509B2 (en) Phase synchronization circuit for AC voltage
US9866061B2 (en) Power supply apparatus with protection function and redundant power supply system
JP2002165454A (en) Ac voltage regulator
JP5959010B2 (en) Overcurrent detection device
JP2007181357A (en) Capacitor input type rectifier circuit with overcurrent detecting function, and inverter device using same
US9484823B2 (en) Power supply apparatus with extending hold up time function
JP2010233355A (en) Protective control apparatus
KR101449403B1 (en) Voltage sensing controller for an asynchronous dc-dc boost converter, led backlight system, lamp system with the same controller and method of selectively isolating input power supply
JP2008167572A (en) Current detecting circuit and power supply unit using the same
CN108123422B (en) Overvoltage protection circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110610

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120807

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121002

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121026

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151116

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5135138

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250