JP2010233355A - Protective control apparatus - Google Patents

Protective control apparatus Download PDF

Info

Publication number
JP2010233355A
JP2010233355A JP2009078168A JP2009078168A JP2010233355A JP 2010233355 A JP2010233355 A JP 2010233355A JP 2009078168 A JP2009078168 A JP 2009078168A JP 2009078168 A JP2009078168 A JP 2009078168A JP 2010233355 A JP2010233355 A JP 2010233355A
Authority
JP
Japan
Prior art keywords
circuit
logic
voltage
input
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009078168A
Other languages
Japanese (ja)
Other versions
JP5225170B2 (en
Inventor
Yusuke Yanagibashi
佑亮 柳橋
Toshio Tanaka
年男 田中
Noriyoshi Suga
紀善 須賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2009078168A priority Critical patent/JP5225170B2/en
Publication of JP2010233355A publication Critical patent/JP2010233355A/en
Application granted granted Critical
Publication of JP5225170B2 publication Critical patent/JP5225170B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a protective control apparatus which can suppress heat generation in the components of a logic input circuit to cope with a wide range of logic signals different in a rated voltage. <P>SOLUTION: An analog conversion circuit 12 converts a current and voltage input from a power system through an input transformer 11 into an analog signal, and an A/D converting circuit 13 converts the converted analog signal into a predetermined digital signal. A logic input circuit 15 takes in an external voltage logic signal having a predetermined operation condition and an output condition, and a calculation processing circuit 14 performs a predetermined protective control calculation based on the digital signal in the A/D conversion circuit and the logic signal in the logic input circuit. A logic input control circuit 18 intermittently operates the logic input circuit at the timing for taking in the voltage logic signal from the outside in accordance with the command of the calculation processing circuit 14, while a power supply circuit 19 supplies a control power supply voltage to each circuit so that the control voltage becomes equal to the voltage of the external logic signal of the logic input circuit 15. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、電力系統の電流・電圧・位相およびロジック信号入力条件により、系統事故の検出および所定の制御を行う保護制御装置に関する。   The present invention relates to a protection control device that detects a system fault and performs predetermined control according to current, voltage, phase, and logic signal input conditions of a power system.

一般に、保護制御装置は電力系統の電流・電圧・位相およびロジック信号入力により、系統事故の検出および所定の制御を行うものであり、電力系統の電圧・電流を入力変換器を介して入力し、所定のアナログ変換回路で入力変成器の二次側の信号を所定レベルのアナログ信号に変換し、さらに、A/D変換回路でディジタル信号に変換して演算処理回路で所定の保護制御演算を行い系統事故を検出するものである。保護制御演算結果を外部に出力するにあたり、外部から電圧のロジック信号によって所定の動作条件や出力条件などの設定および制御を可能としている。   In general, a protection control device detects a system fault and performs predetermined control based on the current, voltage, phase, and logic signal input of the power system, and inputs the voltage and current of the power system via an input converter. The signal on the secondary side of the input transformer is converted to a predetermined level analog signal by a predetermined analog conversion circuit, and further converted to a digital signal by an A / D conversion circuit, and a predetermined protection control calculation is performed by an arithmetic processing circuit. It detects system faults. In outputting the protection control calculation result to the outside, it is possible to set and control predetermined operation conditions and output conditions by a voltage logic signal from the outside.

従来の保護制御装置では、外部から電圧のロジック信号を常時連続的に入力し、保護制御装置内に電流を流し込むことでロジック信号を取り込んでいる。このため、ロジック入力回路の部品発熱量が多く、必要により放熱対策やロジック入力回路数を限定するなどの制約があった。   In a conventional protection control device, a logic signal of voltage is continuously input from the outside, and a logic signal is captured by flowing a current into the protection control device. For this reason, there is a large amount of heat generated by the components of the logic input circuit, and there are restrictions such as measures for heat dissipation and limiting the number of logic input circuits if necessary.

複数の入力電圧に対して1つの無接点リレーを動作させる場合においても、入力電圧が大きな場合にも、無接点リレーに対する入力電流を低減することができるようにしたものがある(例えば、特許文献1参照)。   Even when operating a single contactless relay for a plurality of input voltages, even when the input voltage is large, there is one that can reduce the input current to the contactless relay (for example, Patent Documents). 1).

特開2005−101781号公報JP 2005-101781 A

特許文献1のものでは、定電流回路と、バイパス回路を設けている。定電流回路によって、複数の定格電圧のロジック信号に対応することができ、筐体内部の発熱量を抑えることを可能にしており、放熱用ヒートシンクの実装やケースに放熱用のスリットを設けるなどの放熱対策をする必要がない。また、バイパス回路によって、一定時間、大きな電流を流すことで、外部接点の接触部に酸化皮膜が発生した場合でも、その酸化皮膜を除去でき、外部接点の接触不良を防止することが可能である。   In the thing of patent document 1, the constant current circuit and the bypass circuit are provided. The constant current circuit can handle logic signals of multiple rated voltages, making it possible to suppress the amount of heat generated inside the housing, such as mounting a heat sink for heat dissipation or providing a heat dissipation slit in the case. There is no need to take heat dissipation measures. Moreover, even if an oxide film is generated at the contact portion of the external contact by passing a large current for a certain time by the bypass circuit, the oxide film can be removed and the contact failure of the external contact can be prevented. .

しかし、特許文献1のものでは、外部からの電圧のロジック信号を常時連続的に入力しており、必ずしも発熱対策としては、十分ではない。   However, in Patent Document 1, a logic signal of an external voltage is always input continuously, which is not necessarily sufficient as a countermeasure against heat generation.

本発明の目的は、更なる発熱量の低減をし、より小形化した保護制御装置を提供することである。   An object of the present invention is to provide a protection control device that is further reduced in size by further reducing the amount of heat generation.

本発明の保護制御装置は、電力系統の電流・電圧・位相およびロジック信号入力条件により、系統事故の検出および所定の制御を行う保護制御装置において、電力系統から電流及び電圧を入力変成器を介して入力し前記入力変成器の二次側の信号を所定レベルのアナログ信号に変換するアナログ変換回路と、前記アナログ変換回路のアナログ信号を所定のディジタル信号に変換するA/D変換回路と、所定の動作条件や出力条件が設定された外部から電圧のロジック信号を取り込むロジック入力回路と、前記A/D変換回路のディジタル信号及び前記ロジック入力回路のロジック信号に基づいて所定の保護制御演算を行いリレー出力回路を介して外部に保護制御演算結果を出力する演算処理回路と、前記演算処理回路の指令により外部から電圧のロジック信号を取り込むタイミングに合わせて前記ロジック入力回路を断続的に動作させるためのロジック入力制御回路と、前記ロジック入力回路の外部からのロジック信号の電圧と同じ値の制御用電圧となるように前記入力変成器、前記アナログ変換回路、前記A/D変換回路、前記演算処理回路に制御用の電源電圧を供給する電源回路とを備えたことを特徴とする。   The protection control device of the present invention is a protection control device that detects a system fault and performs predetermined control according to the current, voltage, phase, and logic signal input conditions of the power system, and inputs the current and voltage from the power system via an input transformer. An analog conversion circuit for converting the secondary signal of the input transformer into a predetermined level analog signal, an A / D conversion circuit for converting the analog signal of the analog conversion circuit into a predetermined digital signal, and a predetermined A logic input circuit that takes in a voltage logic signal from the outside in which the operation conditions and output conditions are set, and a predetermined protection control calculation based on the digital signal of the A / D conversion circuit and the logic signal of the logic input circuit An arithmetic processing circuit for outputting the protection control calculation result to the outside via a relay output circuit; A logic input control circuit for intermittently operating the logic input circuit in accordance with the timing of fetching the logic signal, and a control voltage having the same value as the voltage of the logic signal from the outside of the logic input circuit. And a power supply circuit that supplies a power supply voltage for control to the input transformer, the analog conversion circuit, the A / D conversion circuit, and the arithmetic processing circuit.

本発明によれば、ロジック入力回路の部品発熱を抑えることができ、定格電圧が異なる広範囲のロジック信号に対応することができ、しかもロジック信号の電圧を制御する外部接点の接触不良を防止できる。   According to the present invention, component heat generation of the logic input circuit can be suppressed, a wide range of logic signals having different rated voltages can be dealt with, and contact failure of the external contact that controls the voltage of the logic signal can be prevented.

本発明の本発明の第1の実施の形態に係わる保護制御装置の構成図。The block diagram of the protection control apparatus concerning the 1st Embodiment of this invention of this invention. 本発明の本発明の第1の実施の形態におけるロジック入力制御回路及びロジック入力回路の一例の回路図。The circuit diagram of an example of the logic input control circuit and logic input circuit in the 1st Embodiment of this invention of this invention. 本発明の第1の実施の形態におけるロジック入力回路の発熱の説明図。Explanatory drawing of the heat_generation | fever of the logic input circuit in the 1st Embodiment of this invention. 本発明の第1の実施の形態におけるロジック入力回路に流れる電流の説明図。Explanatory drawing of the electric current which flows into the logic input circuit in the 1st Embodiment of this invention. 本発明の第1の実施の形態におけるロジック入力制御回路及びロジック入力回路の他の一例の回路図。The circuit diagram of another example of the logic input control circuit and logic input circuit in the 1st Embodiment of this invention. 本発明の第2の実施の形態におけるロジック入力制御回路及びロジック入力回路の一例の回路図。The circuit diagram of an example of the logic input control circuit and logic input circuit in the 2nd Embodiment of this invention. 本発明の第2の実施の形態におけるロジック入力回路の一例の場合の発熱の説明図。Explanatory drawing of the heat_generation | fever in the example of the logic input circuit in the 2nd Embodiment of this invention. 本発明の第2の実施の形態におけるロジック入力回路の他の一例の場合の発熱の説明図。Explanatory drawing of the heat_generation | fever in the case of another example of the logic input circuit in the 2nd Embodiment of this invention. 本発明の第3の実施の形態に係わる保護制御装置の構成図。The block diagram of the protection control apparatus concerning the 3rd Embodiment of this invention. 本発明の第3の実施の形態におけるロジック入力制御回路及びロジック入力回路の一例の回路図。The circuit diagram of an example of the logic input control circuit and logic input circuit in the 3rd Embodiment of this invention. 本発明の第4の実施の形態におけるロジック入力制御回路及びロジック入力回路の一例の回路図。The circuit diagram of an example of the logic input control circuit and logic input circuit in the 4th Embodiment of this invention.

(第1の実施の形態)
図1は本発明の本発明の第1の実施の形態に係わる保護制御装置の構成図である。電力系統の電流・電圧は入力変成器11により絶縁されており、電力系統の電流及び電圧は入力変成器11を介して入力される。入力変成器1の2次側の信号は入力アナログ回路12に入力され、入力アナログ回路12において所定レベルのアナログ信号に変換される。入力アナログ回路12で得られた所定レベルのアナログ信号は、A/D変換回路13により所定のディジタル信号に変換され演算処理回路14に入力される。また、演算処理回路14には、ロジック入力回路15からのロジック信号も入力される。ロジック信号は、所定の動作条件や出力条件が設定された信号であり、外部から電圧信号としてロジック入力回路15に取り込まれ、取り込まれたロジック信号は演算処理回路14に入力される。
(First embodiment)
FIG. 1 is a configuration diagram of a protection control apparatus according to the first embodiment of the present invention. The current and voltage of the power system are insulated by the input transformer 11, and the current and voltage of the power system are input via the input transformer 11. A signal on the secondary side of the input transformer 1 is input to the input analog circuit 12 and converted into an analog signal of a predetermined level in the input analog circuit 12. An analog signal of a predetermined level obtained by the input analog circuit 12 is converted into a predetermined digital signal by the A / D conversion circuit 13 and input to the arithmetic processing circuit 14. The arithmetic processing circuit 14 also receives a logic signal from the logic input circuit 15. The logic signal is a signal in which predetermined operation conditions and output conditions are set, and is taken into the logic input circuit 15 as a voltage signal from the outside, and the fetched logic signal is inputted into the arithmetic processing circuit 14.

演算処理回路14は、入力したA/D変換回路13のディジタル信号及びロジック入力回路15のロジック信号に基づいて所定の保護制御演算を行い、リレー出力回路16を介して出力接点17により外部に保護制御演算結果を出力する。すなわち、出力接点17は、リレー出力回路16の結果を受けて開閉し、保護制御装置の外部へ保護制御演算結果の情報を伝える。   The arithmetic processing circuit 14 performs a predetermined protection control calculation based on the input digital signal of the A / D conversion circuit 13 and the logic signal of the logic input circuit 15, and protects outside by the output contact 17 via the relay output circuit 16. Outputs control calculation results. That is, the output contact 17 opens and closes in response to the result of the relay output circuit 16 and transmits information on the protection control calculation result to the outside of the protection control device.

ロジック入力制御回路18は、演算処理回路14の指令によりロジック入力回路15を制御するものであり、外部から電圧のロジック信号を取り込むタイミングに合わせてロジック入力回路15を断続的に動作させる。これにより、ロジック入力回路15を断続的に動作させたとしても、ロジック信号を取り込むことができるようにしている。   The logic input control circuit 18 controls the logic input circuit 15 according to a command from the arithmetic processing circuit 14 and operates the logic input circuit 15 intermittently in accordance with the timing of taking in a voltage logic signal from the outside. Thereby, even if the logic input circuit 15 is operated intermittently, a logic signal can be captured.

電源回路19は、電源入力より保護制御装置内部の電源電圧として安定化された制御用電圧を各回路、すなわち、入力変成器11、アナログ変換回路12、A/D変換回路13、演算処理回路14、リレー出力回路16、ロジック入力制御回路18に供給するものである。その際、電源回路19は、ロジック入力回路15の外部からのロジック信号の電圧と同じ値の制御用電圧となるように各回路に制御用の電源電圧を供給する。   The power supply circuit 19 uses the control voltage stabilized as the power supply voltage inside the protection control device from the power supply input to each circuit, that is, the input transformer 11, the analog conversion circuit 12, the A / D conversion circuit 13, and the arithmetic processing circuit 14. The relay output circuit 16 and the logic input control circuit 18 are supplied. At that time, the power supply circuit 19 supplies a control power supply voltage to each circuit so that the control voltage has the same value as the voltage of the logic signal from the outside of the logic input circuit 15.

図2は、図1に示したロジック入力制御回路18及びロジック入力回路15の一例の回路図である。保護制御装置外部の図示省略の外部接点が閉じると、保護制御装置のロジック入力回路15に電圧のロジック信号が印加される。外部接点は、ロジック入力回路15に入力されるロジック信号を制御するものであり、例えば、外部接点が閉じたときは所定の電圧がロジック信号として発生し、外部接点が開いたときは電圧は零となりロジック信号の入力がなくなる。   FIG. 2 is a circuit diagram of an example of the logic input control circuit 18 and the logic input circuit 15 shown in FIG. When an external contact (not shown) outside the protection control device is closed, a voltage logic signal is applied to the logic input circuit 15 of the protection control device. The external contact controls a logic signal input to the logic input circuit 15. For example, when the external contact is closed, a predetermined voltage is generated as a logic signal, and when the external contact is opened, the voltage is zero. And no logic signal is input.

保護制御装置のロジック入力回路15にロジック信号電圧が印加された場合、ロジック入力回路15の抵抗20によって決まる電流Iがフォトカプラ21に流れ、フォトカプラ21を介し演算処理回路14にロジック信号が入力される。このとき、演算処理回路14はロジック入力制御回路18に対し、ロジック入力回路15を断続的に動作させる指令を出力する。すなわち、演算処理回路14はロジック入力制御回路18のフォトモスリレー22を断続的に動作させる制御信号を出力する。これにより、ロジック入力制御回路18のフォトモスリレー22は断続的に動作し、ロジック入力回路15がON/OFFを繰り返して、ロジック入力回路15に電流が断続的に通電される状態となる。つまり、入力回路15に電流が常時通電される状態ではなくなるので、ロジック入力回路15に実装された部品の発熱が抑えられる。   When a logic signal voltage is applied to the logic input circuit 15 of the protection control device, a current I determined by the resistor 20 of the logic input circuit 15 flows to the photocoupler 21, and a logic signal is input to the arithmetic processing circuit 14 via the photocoupler 21. Is done. At this time, the arithmetic processing circuit 14 outputs a command for intermittently operating the logic input circuit 15 to the logic input control circuit 18. That is, the arithmetic processing circuit 14 outputs a control signal for intermittently operating the photo MOS relay 22 of the logic input control circuit 18. Thereby, the photo MOS relay 22 of the logic input control circuit 18 operates intermittently, the logic input circuit 15 repeats ON / OFF, and a current is intermittently supplied to the logic input circuit 15. That is, since the current is not always supplied to the input circuit 15, heat generation of components mounted on the logic input circuit 15 can be suppressed.

図3はロジック入力回路15の発熱の説明図であり、図3(a)は従来の場合の説明図、図3(b)は本発明の場合の説明図である。従来の場合には、図3(a)に示すように、連続的にロジック信号の電圧Vが抵抗20に印加されるので、電流Iは連続的に流れる。また、本発明の場合には、図3(b)に示すように、ロジック入力制御回路18のフォトモスリレー22の断続動作により、断続的にロジック信号の電圧Vが抵抗20に印加されるので、電流Iは断続的に流れる。いま、従来の場合の抵抗20での発熱量をQ1、本発明の場合の抵抗20での発熱量をQ2とする。   FIG. 3 is an explanatory diagram of heat generation of the logic input circuit 15, FIG. 3 (a) is an explanatory diagram of the conventional case, and FIG. 3 (b) is an explanatory diagram of the case of the present invention. In the conventional case, as shown in FIG. 3A, since the voltage V of the logic signal is continuously applied to the resistor 20, the current I flows continuously. In the case of the present invention, as shown in FIG. 3B, the voltage V of the logic signal is intermittently applied to the resistor 20 by the intermittent operation of the photoMOS relay 22 of the logic input control circuit 18. The current I flows intermittently. Now, let Q1 be the amount of heat generated by the resistor 20 in the conventional case, and Q2 be the amount of heat generated by the resistor 20 in the present invention.

図4はロジック入力回路15に流れる電流の説明図であり、図4(a)は従来の場合の説明図、図4(b)は本発明の場合の説明図である。いま、時間Tの周期でフォトモスリレー22を時間αだけONした断続動作としたとする。この場合、フォトモスリレー22がONしている時間αの間に、演算処理回路14はロジック信号を取り込むことになる。   FIG. 4 is an explanatory diagram of the current flowing through the logic input circuit 15, FIG. 4 (a) is an explanatory diagram of the conventional case, and FIG. 4 (b) is an explanatory diagram of the case of the present invention. Now, assume that the photoMOS relay 22 is turned ON for a time α in a period of time T. In this case, the arithmetic processing circuit 14 takes in the logic signal during the time α during which the photoMOS relay 22 is ON.

図4(a)、(b)のように、ロジック信号を読み込んだ場合、従来と本発明との比較を(1)式に示す。   When a logic signal is read as shown in FIGS. 4A and 4B, a comparison between the prior art and the present invention is shown in equation (1).

<従来と本発明の発熱量の違い>
Q1=V1・T
Q2=V1・α
Q2/Q1=α/T …(1)
本発明の場合には、(1)式より、従来に比べ発熱量がα/Tに低減可能となる。本発明の実施の形態によれば、発熱を抑えることが可能となるため小形の保護制御装置の提供が可能となる。
<Difference in calorific value between conventional and present invention>
Q1 = V1 · T
Q2 = V1 ・ α
Q2 / Q1 = α / T (1)
In the case of the present invention, the calorific value can be reduced to α / T from the formula (1) as compared with the prior art. According to the embodiment of the present invention, heat generation can be suppressed, so that a small protection control device can be provided.

図5は、図1に示したロジック入力制御回路及びロジック入力回路の他の一例の回路図である。この他の一例は、複数のロジック信号がロジック入力回路15に入力される場合を示している。   FIG. 5 is a circuit diagram of another example of the logic input control circuit and the logic input circuit shown in FIG. Another example shows a case where a plurality of logic signals are input to the logic input circuit 15.

図5において、複数のロジック信号の電圧V1、V2、V3が各ロジック入力回路に入力された場合、各抵抗20を流れる電流I1、I2、I3のロジック入力回路の片側を共通とすることで、ロジック入力制御回路18のフォトモスリレー22により、ロジック入力回路15がON/OFFを繰り返し、全てのロジック信号を一括制御することも可能である。   In FIG. 5, when voltages V1, V2, and V3 of a plurality of logic signals are input to each logic input circuit, by making one side of the logic input circuits of the currents I1, I2, and I3 flowing through the resistors 20 common, It is also possible to collectively control all the logic signals by repeating ON / OFF of the logic input circuit 15 by the photo MOS relay 22 of the logic input control circuit 18.

本発明の第1の実施の形態によれば、外部からのロジック信号を断続的に取り込むことで、外部から流入する電流を断続的に流すことができ、ロジック入力回路15の部品発熱を抑えることができる。従って、ロジック入力回路15に放熱用ヒートシンクを必要とせず、ケースに放熱用のスリットを設けるなど複雑な構造とすることなく小形の保護制御装置を提供することができる。   According to the first embodiment of the present invention, by intermittently taking in a logic signal from the outside, it is possible to intermittently flow a current flowing from the outside, and to suppress component heat generation of the logic input circuit 15. Can do. Therefore, it is possible to provide a small protection control device without requiring a heat sink for heat dissipation in the logic input circuit 15 and without having a complicated structure such as providing a slit for heat dissipation in the case.

(第2の実施の形態)
図6は本発明の第2の実施の形態におけるロジック入力制御回路及びロジック入力回路の一例の回路図である。この第2の実施の形態は、図2に示した第1の実施の形態に対し、ロジック入力回路15は、外部から電圧で入力したロジック信号を定電流に変換する定電流ダイオード23を備えたものである。
(Second Embodiment)
FIG. 6 is a circuit diagram of an example of a logic input control circuit and a logic input circuit according to the second embodiment of the present invention. In the second embodiment, in contrast to the first embodiment shown in FIG. 2, the logic input circuit 15 includes a constant current diode 23 that converts a logic signal inputted from the outside with a voltage into a constant current. Is.

図6において、ロジック入力回路15には印加された電圧のロジック信号を定電流に変換する定電流素子23が設けられている。すなわち、ロジック信号は、定電流ダイオード13を用いた定電流回路によって、ロジック信号の電圧Vが異なる定格のものであった場合でも、一定の電流を通電させることが可能となる。   In FIG. 6, the logic input circuit 15 is provided with a constant current element 23 for converting a logic signal having an applied voltage into a constant current. That is, the logic signal can be supplied with a constant current even when the logic signal voltage V has a different rating by the constant current circuit using the constant current diode 13.

図7はロジック入力回路15の発熱の説明図であり、図7(a)、(b)は従来の場合の説明図、図7(c)、(d)は本発明の場合の説明図である。従来の最小電圧Vminのロジック信号の場合には、図7(a)に示すように、連続的にロジック信号の電圧Vminが抵抗20に印加されるので、電流Iは連続的に流れ発熱量はQ1minとなる。従来の最大電圧Vmaxのロジック信号の場合には、図7(b)に示すように、連続的にロジック信号の電圧Vmaxが抵抗20に印加されるので、N倍の電流NIが連続的に流れ発熱量はQ1maxとなる。   7A and 7B are explanatory diagrams of heat generation of the logic input circuit 15. FIGS. 7A and 7B are explanatory diagrams of the conventional case, and FIGS. 7C and 7D are explanatory diagrams of the case of the present invention. is there. In the case of the conventional logic signal having the minimum voltage Vmin, as shown in FIG. 7A, since the voltage Vmin of the logic signal is continuously applied to the resistor 20, the current I flows continuously and the calorific value is Q1min. In the case of the conventional logic signal having the maximum voltage Vmax, as shown in FIG. 7B, the voltage Vmax of the logic signal is continuously applied to the resistor 20, so that N times the current NI flows continuously. The calorific value is Q1max.

一方、本発明の場合には、図7(c)、(d)に示すように、最小電圧Vminのロジック信号、あるいは最大電圧Vmaxのロジック信号の場合であっても、定電流素子23を通しているので電流Iは同じであり、発熱量Q2minと発熱量Q2maxはロジック信号の電圧分の差が生じる。   On the other hand, in the case of the present invention, as shown in FIGS. 7C and 7D, even when the logic signal has the minimum voltage Vmin or the logic signal having the maximum voltage Vmax, the constant current element 23 is passed. Therefore, the current I is the same, and the heat generation amount Q2min and the heat generation amount Q2max have a difference corresponding to the voltage of the logic signal.

すなわち、ロジック信号の電圧の最小と最大の関係を(2)式と仮定した場合、従来と本発明の発熱量の比較を(3)式に示す。   That is, assuming that the relationship between the minimum and maximum voltage of the logic signal is expressed by equation (2), the comparison of the heat generation amount between the conventional and the present invention is expressed by equation (3).

<入力電圧の最小と最大の関係>
Vmax=N・Vmin …(2)
<従来回路と定電流回路の発熱量の違い>
Q1max={(N・Vmin)/R}・T
Q1min={(Vmin)/R}・T
K1=Q1max/Q1min=N
Q2max={(N・Vmin)・I}・T
Q2min={(Vmin)・I}・T
K2=Q2max/Q2min=N
K2/K1=1/N …(3)
本発明の場合には、(3)式より、従来に比べ発熱量が1/Nに低減可能となる。
<Relationship between minimum and maximum input voltage>
Vmax = N · Vmin (2)
<Difference in heat generation between conventional circuit and constant current circuit>
Q1max = {(N · Vmin) 2 / R} · T
Q1min = {(Vmin) 2 / R} · T
K1 = Q1max / Q1min = N 2
Q2max = {(N · Vmin) · I} · T
Q2min = {(Vmin) · I} · T
K2 = Q2max / Q2min = N
K2 / K1 = 1 / N (3)
In the case of the present invention, the calorific value can be reduced to 1 / N from the formula (3) as compared with the prior art.

さらに、ロジック入力制御回路18の制御により、断続的に通電した場合には、
電流は、常時ロジック入力回路15に電流が通電されないため、より発熱を抑えることが可能となる。その場合の効果を説明する。例として図8の回路例を用い、従来と本発明の発熱量の比較を(4)式に示す。
Furthermore, when energized intermittently under the control of the logic input control circuit 18,
Since the current is not always supplied to the logic input circuit 15, the heat generation can be further suppressed. The effect in that case will be described. As an example, the circuit example of FIG. 8 is used, and a comparison of the amount of heat generated in the prior art and the present invention is shown in equation (4).

<従来回路と本発明回路の発熱量の違い>
(Q2/Q1)・(K2/K1)=α/(N・T) …(4)
さらにロジック入力制御回路18により、従来に比べ発熱量がα/(N・T)に低減可能となる。本発明の第2の実施の形態によれば発熱を抑えることが可能となるため小形の保護制御装置の提供が可能となり、1種類のロジック入力回路で広範囲のロジック信号電圧に対応可能となる。
<Difference in heat generation between the conventional circuit and the circuit of the present invention>
(Q2 / Q1) · (K2 / K1) = α / (N · T) (4)
Further, the logic input control circuit 18 can reduce the amount of heat generation to α / (N · T) compared to the conventional case. According to the second embodiment of the present invention, since it is possible to suppress heat generation, it is possible to provide a small protection control device, and it is possible to deal with a wide range of logic signal voltages with one type of logic input circuit.

(第3の実施の形態)
図9は本発明の第3の実施の形態に係わる保護制御装置の構成図である。この第3の実施の形態は、図1に示した第1の実施の形態に対し、電源回路19から供給される制御用の電源電圧を監視する電源電圧監視回路24を設け、演算処理回路14は、電源電圧監視回路24で得られた制御電源電圧のレベルに応じて、ロジック入力回路15内の抵抗を切り替えてロジック入力回路15に流れ込む電流を制御するようにしたものである。図1と同一要素には同一符号を付し重複する説明は省略する。
(Third embodiment)
FIG. 9 is a block diagram of a protection control apparatus according to the third embodiment of the present invention. The third embodiment is different from the first embodiment shown in FIG. 1 in that a power supply voltage monitoring circuit 24 for monitoring the control power supply voltage supplied from the power supply circuit 19 is provided. Is a circuit that controls the current flowing into the logic input circuit 15 by switching the resistance in the logic input circuit 15 in accordance with the level of the control power supply voltage obtained by the power supply voltage monitoring circuit 24. The same elements as those in FIG. 1 are denoted by the same reference numerals, and redundant description is omitted.

電源電圧監視回路24は、電源回路19に印加された制御電源電圧の大きさを監視し、制御電源電圧のレベル判定し、そのレベル判定結果により演算処理回路14から制御信号を出力しロジック入力回路15内の抵抗を切り替えて、ロジック入力回路15に流れる電流を抑制する。   The power supply voltage monitoring circuit 24 monitors the magnitude of the control power supply voltage applied to the power supply circuit 19, determines the level of the control power supply voltage, and outputs a control signal from the arithmetic processing circuit 14 based on the level determination result to output a logic input circuit. The resistance in 15 is switched to suppress the current flowing in the logic input circuit 15.

図10は本発明の第3の実施の形態におけるロジック入力制御回路及びロジック入力回路の一例の回路図である。図10に示すように、ロジック入力回路15は複数の直列接続の抵抗25に入力され、抵抗25には抵抗制御用スイッチ26が並列接続されている。図10では2個の抵抗25が直列接続され、1個の抵抗25に抵抗制御用スイッチ26が並列接続された場合を示している。   FIG. 10 is a circuit diagram of an example of a logic input control circuit and a logic input circuit according to the third embodiment of the present invention. As shown in FIG. 10, the logic input circuit 15 is input to a plurality of series-connected resistors 25, and a resistance control switch 26 is connected to the resistors 25 in parallel. FIG. 10 shows a case where two resistors 25 are connected in series and a resistance control switch 26 is connected in parallel to one resistor 25.

ロジック信号の電圧が大きいときは、演算処理回路14は抵抗制御用スイッチ26を開き、2個の抵抗25を直列接続した状態とする。これにより、ロジック入力回路15内の電流は抑制される。一方、ロジック信号の電圧が小さいときは、演算処理回路14は抵抗制御用スイッチ26を閉じ、1個の抵抗25を接続した状態とする。これにより、ロジック入力回路15内の電流は、ロジック信号の電圧が変化した場合であっても、変動を小さくできる。   When the voltage of the logic signal is high, the arithmetic processing circuit 14 opens the resistance control switch 26 and connects the two resistors 25 in series. Thereby, the current in the logic input circuit 15 is suppressed. On the other hand, when the voltage of the logic signal is small, the arithmetic processing circuit 14 closes the resistance control switch 26 and connects one resistor 25. As a result, the current in the logic input circuit 15 can be reduced even when the voltage of the logic signal changes.

例えば、電源電圧監視回路24のレベル判定閾値を150Vとした場合、制御電源電圧が110Vではロジック入力回路15の抵抗制御用スイッチ26をON状態とし、制御電源電圧が220Vではロジック入力回路15の抵抗制御用スイッチ26をOFF状態とする。この結果、ロジック入力回路15の抵抗25が切り替えられ、広範囲のロジック信号電圧が印加された場合でも通電電流を段階的に制御することが可能となる。よって共通の回路ハードにより広範囲のロジック信号電圧に対応可能となり、従来に比べ発熱を抑えることができるため小形の保護制御装置を提供できる。   For example, when the level determination threshold value of the power supply voltage monitoring circuit 24 is 150 V, the resistance control switch 26 of the logic input circuit 15 is turned ON when the control power supply voltage is 110 V, and the resistance of the logic input circuit 15 when the control power supply voltage is 220 V. The control switch 26 is turned off. As a result, the resistor 25 of the logic input circuit 15 is switched, and the energization current can be controlled stepwise even when a wide range of logic signal voltages are applied. Therefore, a common circuit hardware can cope with a wide range of logic signal voltages, and heat generation can be suppressed as compared with the conventional one, so that a small protection control device can be provided.

第3の実施の形態によれば、保護制御装置の制御電源電圧レベルに応じて演算処理回路14よりロジック入力回路15の抵抗を切り替え、ロジック入力回路15に流れ込む電流を制御することで、広範囲のロジック信号電圧に対して、1種類のロジック入力回路15で定格電圧が異なる場合でも対応することができ、保護制御装置の共用化が実現できる。   According to the third embodiment, the resistance of the logic input circuit 15 is switched from the arithmetic processing circuit 14 in accordance with the control power supply voltage level of the protection control device, and the current flowing into the logic input circuit 15 is controlled. Even when the rated voltage differs for one type of logic input circuit 15 with respect to the logic signal voltage, the protection control device can be shared.

(第4の実施の形態)
図11は本発明の第4の実施の形態におけるロジック入力制御回路及びロジック入力回路の一例の回路図である。この第4の実施の形態は、図2に示した第1の実施の形態に対し、ロジック入力回路に入力される電圧のロジック信号を制御する外部接点に対して、外部接点が閉じる度に短時間だけ大きな電流を通電させる瞬時電流通電回路27を設けたものである。図2と同一要素には、同一符号を付し重複する説明は省略する。
(Fourth embodiment)
FIG. 11 is a circuit diagram of an example of a logic input control circuit and a logic input circuit according to the fourth embodiment of the present invention. The fourth embodiment is shorter than the first embodiment shown in FIG. 2 every time the external contact is closed with respect to the external contact that controls the logic signal of the voltage input to the logic input circuit. An instantaneous current energizing circuit 27 for energizing a large current only for a time is provided. The same elements as those in FIG. 2 are denoted by the same reference numerals, and redundant description is omitted.

図11に示すように、保護制御装置外部の図示省略の外部接点に対して、外部接点が閉じる度に短時間大きな電流を流す瞬時電流通電回路27がロジック入力回路15の入力端に並列に接続されている。外部接点は、前述したように、ロジック入力回路15に入力されるロジック信号電圧を制御する接点である。   As shown in FIG. 11, an instantaneous current conducting circuit 27 for supplying a large current for a short time each time the external contact is closed is connected in parallel to the input terminal of the logic input circuit 15 with respect to an external contact (not shown) outside the protection control device. Has been. As described above, the external contact is a contact that controls the logic signal voltage input to the logic input circuit 15.

瞬時電流通電回路27は、コンデンサ28、抵抗29の並列回路で構成されている。保護制御装置外部の図示省略の外部接点が閉じ、保護制御装置のロジック入力回路15にロジック信号電圧が印加された場合、コンデンサ28が充電されるまでは、ロジック入力回路15のコンデンサ28に電流が流れ込む。このため、外部接点の接触部に大きな電流が流れる。コンデンサ28が充電した後、コンデンサ28の両端の電位差はロジック入力回路15に入力されるロジック信号電圧のレベルと等価となる。これにより、ロジック信号電圧は第1の実施の形態の保護制御装置の制御電源電圧の大きさとなる。   The instantaneous current conduction circuit 27 is configured by a parallel circuit of a capacitor 28 and a resistor 29. When an external contact (not shown) outside the protection control device is closed and a logic signal voltage is applied to the logic input circuit 15 of the protection control device, current is supplied to the capacitor 28 of the logic input circuit 15 until the capacitor 28 is charged. Flows in. For this reason, a large current flows through the contact portion of the external contact. After the capacitor 28 is charged, the potential difference across the capacitor 28 is equivalent to the level of the logic signal voltage input to the logic input circuit 15. As a result, the logic signal voltage becomes the magnitude of the control power supply voltage of the protection control device of the first embodiment.

一方、外部接点が開くとロジック入力回路15にはロジック信号電圧が印加されなくなるが、コンデンサ28が充電されている場合、コンデンサ28の放電完了まで、ロジック入力回路15に電流が通電される。このように、瞬時電流通電回路27のコンデンサ28の充放電を利用して、ロジック入力回路15に入力されるロジック信号電圧を制御する外部接点が閉じる度に短時間大きな電流を通電させる。従って、外部接点の接触部に酸化皮膜が発生した場合でも、外部接点が閉じる度に酸化皮膜を除去し、外部接点の接触不良を防止することができ、システム全体の信頼性が向上する。   On the other hand, when the external contact is opened, no logic signal voltage is applied to the logic input circuit 15. However, when the capacitor 28 is charged, a current is passed through the logic input circuit 15 until the capacitor 28 is completely discharged. In this way, using the charging / discharging of the capacitor 28 of the instantaneous current energizing circuit 27, a large current is energized for a short time every time the external contact for controlling the logic signal voltage input to the logic input circuit 15 is closed. Therefore, even when an oxide film is generated at the contact portion of the external contact, the oxide film is removed every time the external contact is closed, and the contact failure of the external contact can be prevented, thereby improving the reliability of the entire system.

以上の説明では、第1の実施の形態に対し、外部接点が閉じる度に短時間だけ大きな電流を通電させる瞬時電流通電回路27を設けた場合を示したが、第2の実施の形態や第3の実施の形態に対し、瞬時電流通電回路27を設けるようにしてもよい。   In the above description, the case where the instantaneous current energizing circuit 27 that energizes a large current only for a short time each time the external contact is closed is provided with respect to the first embodiment. In contrast to the third embodiment, an instantaneous current conduction circuit 27 may be provided.

第4の実施の形態によれば、保護制御装置外部の外部接点が閉じる度に、ロジック入力回路に短時間大きな電流を流すことで、ロジック入力回路15に入力されるロジック信号電圧を制御する外部接点の接触部に酸化皮膜が発生した場合でも、外部接点が閉じる度に酸化皮膜を除去し、外部接点の接触不良を防止できる。これにより、正しくロジック信号を保護制御装置内部に取り込むことが可能となる。   According to the fourth embodiment, every time an external contact outside the protection control device is closed, a large current is passed through the logic input circuit for a short time to control the logic signal voltage input to the logic input circuit 15. Even when an oxide film is generated at the contact portion of the contact, the oxide film is removed every time the external contact is closed, and contact failure of the external contact can be prevented. As a result, the logic signal can be correctly taken into the protection control device.

11…入力変成器、12…入力アナログ回路、13…A/D変換回路、14…演算処理回路、15…ロジック入力回路、16…リレー出力回路、17…出力接点、18…ロジック入力制御回路、19…電源回路、20…抵抗、21…フォトカプラ、22…フォトモスリレー、23…定電流ダイオード、24…電源電圧監視回路、25…抵抗、26…抵抗制御用スイッチ、27…瞬時電流通電回路、28…コンデンサ、29…抵抗 DESCRIPTION OF SYMBOLS 11 ... Input transformer, 12 ... Input analog circuit, 13 ... A / D conversion circuit, 14 ... Arithmetic processing circuit, 15 ... Logic input circuit, 16 ... Relay output circuit, 17 ... Output contact, 18 ... Logic input control circuit, DESCRIPTION OF SYMBOLS 19 ... Power supply circuit, 20 ... Resistance, 21 ... Photocoupler, 22 ... Photomoss relay, 23 ... Constant current diode, 24 ... Power supply voltage monitoring circuit, 25 ... Resistance, 26 ... Resistance control switch, 27 ... Instantaneous current conduction circuit , 28 ... capacitor, 29 ... resistance

Claims (4)

電力系統の電流・電圧・位相およびロジック信号入力条件により、系統事故の検出および所定の制御を行う保護制御装置において、電力系統から電流及び電圧を入力変成器を介して入力し前記入力変成器の二次側の信号を所定レベルのアナログ信号に変換するアナログ変換回路と、前記アナログ変換回路のアナログ信号を所定のディジタル信号に変換するA/D変換回路と、所定の動作条件や出力条件が設定された外部から電圧のロジック信号を取り込むロジック入力回路と、前記A/D変換回路のディジタル信号及び前記ロジック入力回路のロジック信号に基づいて所定の保護制御演算を行いリレー出力回路を介して外部に保護制御演算結果を出力する演算処理回路と、前記演算処理回路の指令により外部から電圧のロジック信号を取り込むタイミングに合わせて前記ロジック入力回路を断続的に動作させるためのロジック入力制御回路と、前記ロジック入力回路の外部からのロジック信号の電圧と同じ値の制御用電圧となるように前記入力変成器、前記アナログ変換回路、前記A/D変換回路、前記演算処理回路に制御用の電源電圧を供給する電源回路とを備えたことを特徴とする保護制御装置。   In a protection control device that detects a system fault and performs predetermined control according to the current, voltage, phase, and logic signal input conditions of the power system, the current and voltage are input from the power system via the input transformer, and the input transformer An analog conversion circuit that converts a secondary-side signal into an analog signal of a predetermined level, an A / D conversion circuit that converts the analog signal of the analog conversion circuit into a predetermined digital signal, and predetermined operating conditions and output conditions are set A logic input circuit that takes in a logic signal of a voltage from the outside, and performs a predetermined protection control operation based on the digital signal of the A / D conversion circuit and the logic signal of the logic input circuit, and externally via a relay output circuit An arithmetic processing circuit that outputs the result of the protection control calculation, and a voltage logic signal is fetched from the outside in response to a command from the arithmetic processing circuit. A logic input control circuit for intermittently operating the logic input circuit in accordance with the timing, and the input transformer so that the control voltage has the same value as the voltage of the logic signal from the outside of the logic input circuit; A protection control device comprising: the analog conversion circuit; the A / D conversion circuit; and a power supply circuit that supplies a control power supply voltage to the arithmetic processing circuit. 前記ロジック入力回路は、外部から電圧で入力したロジック信号を定電流に変換する定電流素子を備えたことを特徴とする請求項1記載の保護制御装置。 The protection control device according to claim 1, wherein the logic input circuit includes a constant current element that converts a logic signal input from an external voltage into a constant current. 前記電源回路から供給される制御用の電源電圧を監視する電源電圧監視回路を設け、前記演算処理回路は、前記電源電圧監視回路で得られた制御電源電圧のレベルに応じてロジック入力回路内の抵抗を切り替えて前記ロジック入力回路に流れ込む電流を制御することを特徴とする請求項1記載の保護制御装置。 A power supply voltage monitoring circuit for monitoring a power supply voltage for control supplied from the power supply circuit is provided, and the arithmetic processing circuit is provided in a logic input circuit according to a level of the control power supply voltage obtained by the power supply voltage monitoring circuit. The protection control device according to claim 1, wherein a current flowing into the logic input circuit is controlled by switching a resistor. 前記ロジック入力回路は、前記ロジック入力回路に入力される電圧のロジック信号を制御する外部接点に対して、前記外部接点が閉じる度に短時間だけ大きな電流を通電させる瞬時電流通電回路を備えたことを特徴とする請求項1乃至3のいずれか1項に記載の保護制御装置。 The logic input circuit includes an instantaneous current energization circuit that energizes a large current only for a short time each time the external contact is closed with respect to an external contact that controls a logic signal of a voltage input to the logic input circuit. The protection control device according to any one of claims 1 to 3.
JP2009078168A 2009-03-27 2009-03-27 Protection control device Expired - Fee Related JP5225170B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009078168A JP5225170B2 (en) 2009-03-27 2009-03-27 Protection control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009078168A JP5225170B2 (en) 2009-03-27 2009-03-27 Protection control device

Publications (2)

Publication Number Publication Date
JP2010233355A true JP2010233355A (en) 2010-10-14
JP5225170B2 JP5225170B2 (en) 2013-07-03

Family

ID=43048656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009078168A Expired - Fee Related JP5225170B2 (en) 2009-03-27 2009-03-27 Protection control device

Country Status (1)

Country Link
JP (1) JP5225170B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015171218A (en) * 2014-03-06 2015-09-28 三菱電機株式会社 Protection relay
JP2016073004A (en) * 2014-09-26 2016-05-09 三菱電機株式会社 Protection relay device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6251826U (en) * 1985-09-19 1987-03-31
JPH08263110A (en) * 1995-03-23 1996-10-11 Nippondenso Co Ltd Input circuit of control unit
JP2002202336A (en) * 2001-01-05 2002-07-19 Hitachi Ltd Protection controller
JP2003037927A (en) * 2002-04-26 2003-02-07 Hitachi Ltd Digital protection and control apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6251826U (en) * 1985-09-19 1987-03-31
JPH08263110A (en) * 1995-03-23 1996-10-11 Nippondenso Co Ltd Input circuit of control unit
JP2002202336A (en) * 2001-01-05 2002-07-19 Hitachi Ltd Protection controller
JP2003037927A (en) * 2002-04-26 2003-02-07 Hitachi Ltd Digital protection and control apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015171218A (en) * 2014-03-06 2015-09-28 三菱電機株式会社 Protection relay
JP2016073004A (en) * 2014-09-26 2016-05-09 三菱電機株式会社 Protection relay device

Also Published As

Publication number Publication date
JP5225170B2 (en) 2013-07-03

Similar Documents

Publication Publication Date Title
JP2006325302A (en) Discharge preventive circuit and electronic apparatus equipped with that discharge preventive circuit
US10355580B2 (en) DC-DC converter with protection circuit limits
US8564993B2 (en) Switch control circuit, switch control method, power converter, and power conversion method for controlling conducting statuses of switch elements in bridgeless switching circuit
US20140002117A1 (en) System for measuring soft starter current and method of making same
US9876438B2 (en) Converter unit system having inrush-current suppression circuit
JP6288773B2 (en) Power converter
JP6362283B2 (en) Electric vehicle charging equipment and charging method
JP2010158098A (en) Power supply unit and electronic apparatus
JP2010088283A (en) Snubber circuit
US10715043B2 (en) Single inductor multiple output power converter with overload control
JP5225170B2 (en) Protection control device
JP2017118812A (en) Control system of power conversion device
JP6529040B2 (en) Power converter and control method thereof
JP2010051116A (en) Switching power supply, power supply system, and electronic equipment
JP2010071776A (en) Device for detecting alternating current
EP3242390B1 (en) Power control apparatus for sub-module of mmc converter
JP6218714B2 (en) Protective relay device
US9600012B2 (en) Internal power supply of a device
JP2007181357A (en) Capacitor input type rectifier circuit with overcurrent detecting function, and inverter device using same
KR101792540B1 (en) Power control device for sub-module of mmc converter
JP2013198242A (en) Multiplexed power supply apparatus and method of controlling the same
JP2005341722A (en) Ac/dc converter
JP2002354812A (en) Parallel operation system
JP2006136171A (en) Counter measure device taking measures against momentary voltage drop
JP6686352B2 (en) Temperature detection circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121211

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130312

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160322

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees