JP2008167572A - Current detecting circuit and power supply unit using the same - Google Patents

Current detecting circuit and power supply unit using the same Download PDF

Info

Publication number
JP2008167572A
JP2008167572A JP2006353776A JP2006353776A JP2008167572A JP 2008167572 A JP2008167572 A JP 2008167572A JP 2006353776 A JP2006353776 A JP 2006353776A JP 2006353776 A JP2006353776 A JP 2006353776A JP 2008167572 A JP2008167572 A JP 2008167572A
Authority
JP
Japan
Prior art keywords
voltage
output
current
comparator
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006353776A
Other languages
Japanese (ja)
Inventor
Yasunobu Iwata
靖信 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP2006353776A priority Critical patent/JP2008167572A/en
Publication of JP2008167572A publication Critical patent/JP2008167572A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Emergency Protection Circuit Devices (AREA)
  • Power Conversion In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem wherein, since the detection current of an excessive current protective circuit is a constant value, irrespective of the ambient temperature, when the ambient temperature rises, the detection current exceeds the limit of a delating curve, having a possibility to cause problems, such as heating or firing. <P>SOLUTION: A voltage signal, wherein voltage drops as the ambient temperature rises, is applied between one end of a current-detecting resistor and one input terminal of a comparator, for allowing a voltage-restricting element to restrict the voltage signal from becoming more than the constant value, and a constant voltage is applied between the other end of the resistor and the other input terminal of the comparator. Furthermore, the current detection circuit is used for the overcurrent detection circuit of the power supply unit. Since when the ambient temperature rises, the detection current drops, the detection current is prevented from exceeding the limit of the delating curve to eliminate problems, such as heating or firing. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、取り付け条件や周囲温度によって許容される電力が変化する電源装置に用いて好適な電流検出回路およびこの電流検出回路を用いた電源装置に関するものである。   The present invention relates to a current detection circuit suitable for use in a power supply apparatus in which allowable power varies depending on mounting conditions and ambient temperature, and a power supply apparatus using the current detection circuit.

図4に、過電流保護回路を内蔵した直流電源装置の構成を示す。図4において、電圧制御回路10は入力された交流を直流に変換し、この直流を所定の周波数の交流に再変換してトランス11の1次側に印加する。トランス11の2次側に発生した交流はダイオード12で整流され、コンデンサ13で平滑されて負荷14に出力される。電圧制御回路10は、出力電圧Voutが一定になるようにトランス11に印加する交流を制御する。電圧制御回路10とトランス11で電圧制御部を構成している。   FIG. 4 shows the configuration of a DC power supply device incorporating an overcurrent protection circuit. In FIG. 4, the voltage control circuit 10 converts the input alternating current into direct current, reconverts the direct current into alternating current with a predetermined frequency, and applies it to the primary side of the transformer 11. The alternating current generated on the secondary side of the transformer 11 is rectified by the diode 12, smoothed by the capacitor 13, and output to the load 14. The voltage control circuit 10 controls the alternating current applied to the transformer 11 so that the output voltage Vout is constant. The voltage control circuit 10 and the transformer 11 constitute a voltage control unit.

電流検出回路20は、コンパレータ21、このコンパレータ21の反転入力端子に接続された基準電圧源22および負荷14に流れる電流の帰還路に挿入された抵抗23で構成される。抵抗23の両端には、負荷14に流れる電流に比例する降下電圧が発生する。この降下電圧はコンパレータ21の非反転入力端子に入力される。また、コンパレータ21の出力は電圧制御回路10に入力される。   The current detection circuit 20 includes a comparator 21, a reference voltage source 22 connected to the inverting input terminal of the comparator 21, and a resistor 23 inserted in a feedback path for current flowing through the load 14. A voltage drop proportional to the current flowing through the load 14 is generated at both ends of the resistor 23. This voltage drop is input to the non-inverting input terminal of the comparator 21. The output of the comparator 21 is input to the voltage control circuit 10.

このような構成において、この電源装置の出力電流が小さく、抵抗23の降下電圧が基準電圧源22の両端電圧より小さいときは、コンパレータ21の出力は低レベルになる。電圧制御回路10は通常の動作を行い、出力電圧Voutを一定値に保つ。   In such a configuration, when the output current of the power supply device is small and the voltage drop across the resistor 23 is smaller than the voltage across the reference voltage source 22, the output of the comparator 21 is at a low level. The voltage control circuit 10 performs a normal operation and maintains the output voltage Vout at a constant value.

出力電流が増加し、抵抗23の降下電圧が基準電圧源22の両端電圧より大きくなると、コンパレータ21の出力は高レベルに変化し、電圧制御回路10は出力電圧Voutを低下させる。このため、出力電流は減少する。このようにして、出力電流を所定の値以下に制御することにより過電流が出力されないようにして、電源装置の焼損等の事故を防止する。   When the output current increases and the voltage drop across the resistor 23 becomes larger than the voltage across the reference voltage source 22, the output of the comparator 21 changes to a high level, and the voltage control circuit 10 decreases the output voltage Vout. For this reason, the output current decreases. In this way, the output current is controlled to be equal to or less than a predetermined value so that no overcurrent is output, thereby preventing accidents such as burning of the power supply device.

このような電源装置は、装置自体の発熱によって出力することができる最大電流が制限される。すなわち、装置の取り付け位置や筐体の一部であるカバーの有無、あるいは周囲温度によって最大出力電流が変化する。この最大出力電流はディレーティング曲線によって規定されている   In such a power supply device, the maximum current that can be output is limited by the heat generated by the device itself. That is, the maximum output current varies depending on the mounting position of the apparatus, the presence or absence of a cover that is a part of the housing, or the ambient temperature. This maximum output current is specified by the derating curve.

図5にディレーティング曲線の一例を示す。図5の横軸は周囲温度、縦軸は最大出力電流の定格出力電流(常温時に出力可能な最大電流)に対する割合である。30〜33はディレーティング曲線であり、30は電源装置を垂直に取り付けてカバーを付けない場合、31は電源装置を水平に取り付けてカバーを付けない場合、32は電源装置を垂直に取り付けてカバーを付けた場合、33は電源装置を水平に取り付けてカバーを付けた場合のディレーティング曲線である。   FIG. 5 shows an example of a derating curve. The horizontal axis in FIG. 5 is the ambient temperature, and the vertical axis is the ratio of the maximum output current to the rated output current (maximum current that can be output at room temperature). 30 to 33 are derating curves, 30 is a case where the power supply is mounted vertically and no cover is attached, 31 is a case where the power supply is attached horizontally and no cover is attached, 32 is a cover where the power supply is attached vertically , 33 is a derating curve when the power supply is mounted horizontally and a cover is attached.

曲線33では、周囲温度が40℃になると、最大出力電流が低下し始める。同様に、曲線32では周囲温度45℃で、曲線31では周囲温度50℃で、曲線30では周囲温度55℃で最大出力電流が低下し始める。取り付け方法やカバーの有無によってディレーティング曲線が異なるのは、これらによって放熱特性が異なるためである。   In curve 33, when the ambient temperature reaches 40 ° C., the maximum output current starts to decrease. Similarly, the maximum output current begins to decrease at an ambient temperature of 45 ° C. for curve 32, an ambient temperature of 50 ° C. for curve 31, and an ambient temperature of 55 ° C. for curve 30. The reason why the derating curves differ depending on the attachment method and the presence or absence of the cover is that the heat dissipation characteristics differ depending on these.

特開平6−38518号公報JP-A-6-38518

しかしながら、このような電源装置には次のような課題があった。定格出力電流は余裕を持って設定されているので、通常電流検出回路20の検出電流は定格出力電流の110〜130%に設定される。すなわち、電流検出回路20の検出電流は固定値であり、装置の取り付け方法や周囲温度によって変化しない。   However, such a power supply device has the following problems. Since the rated output current is set with a margin, the detection current of the normal current detection circuit 20 is set to 110 to 130% of the rated output current. That is, the detection current of the current detection circuit 20 is a fixed value, and does not change depending on the device mounting method and the ambient temperature.

ある電源装置が定格出力電流の40%で使用されているとする。図5のディレーティング曲線を参照すると、周囲温度が40℃以下ではどのような取り付け方をしても十分余裕があり、問題は発生しない。   Assume that a power supply is used at 40% of the rated output current. Referring to the derating curve in FIG. 5, if the ambient temperature is 40 ° C. or less, there is a sufficient margin regardless of the mounting method, and no problem occurs.

しかし、周囲温度が55℃を越えると、水平取り付けでカバー有りの場合はディレーティング曲線33と交差する。そのため、異常な温度上昇が発生し、最悪の場合電源装置の破壊、異常な温度上昇による発熱、発煙、発火などの事故が発生する可能性がある。前述したように、電流検出回路20の検出電流は定格出力電流の110〜130%に固定されているので、電流検出回路20ではこれらの事故を防止することができないという課題があった。   However, when the ambient temperature exceeds 55 ° C., it crosses the derating curve 33 when the cover is installed horizontally. Therefore, an abnormal temperature rise occurs, and in the worst case, there is a possibility that an accident such as destruction of the power supply device, heat generation due to the abnormal temperature rise, smoke generation, or fire may occur. As described above, since the detection current of the current detection circuit 20 is fixed at 110 to 130% of the rated output current, there is a problem that the current detection circuit 20 cannot prevent these accidents.

従って本発明の目的は、周囲温度によって検出電流が変化する電流検出回路およびそれを用いた電源装置を提供することにある。   Accordingly, an object of the present invention is to provide a current detection circuit in which a detection current changes depending on an ambient temperature, and a power supply device using the current detection circuit.

このような課題を解決するために、本発明のうち請求項1記載の発明は、
2つの入力端子を有し、これらの入力端子に印加される電圧の大小によってその出力が決定されるコンパレータと、
検出する電流が流れる経路中に配置された抵抗と、
前記抵抗の一端と前記コンパレータの一方の入力端子間に、負の温度係数を有する出力電圧を印加する可変電圧源と、
前記コンパレータの前記一方の入力端子電圧を一定値以下に制限する電圧制限素子と、
前記抵抗の他端と前記コンパレータの他方の入力端子間に、一定電圧を印加する基準電圧源と、
を具備したものである。温度が上昇すると検出電流が下がる特性を実現できる。
In order to solve such a problem, the invention according to claim 1 of the present invention,
A comparator having two input terminals, the output of which is determined by the magnitude of the voltage applied to these input terminals;
A resistor arranged in a path through which a current to be detected flows;
A variable voltage source for applying an output voltage having a negative temperature coefficient between one end of the resistor and one input terminal of the comparator;
A voltage limiting element for limiting the one input terminal voltage of the comparator to a certain value or less;
A reference voltage source for applying a constant voltage between the other end of the resistor and the other input terminal of the comparator;
Is provided. A characteristic that the detected current decreases as the temperature rises can be realized.

請求項2記載の発明は、請求項1記載の発明において、
前記可変電圧源を、負の温度係数を有する電圧を出力する温度センサと、一定電圧を出力する基準電圧源で構成したものである。基準電圧源選択の自由度を高くすることができる。
The invention according to claim 2 is the invention according to claim 1,
The variable voltage source includes a temperature sensor that outputs a voltage having a negative temperature coefficient and a reference voltage source that outputs a constant voltage. The degree of freedom in selecting the reference voltage source can be increased.

請求項3記載の発明は、
一定電圧の直流電力を出力し、かつ過電流検出信号が入力されると出力電圧を低下させて過電流が出力されることを防止する電圧制御部と、
前記電圧制御部の出力電流を検出して前記過電流検出信号を出力する、請求項1若しくは請求項2記載の電流検出回路と、
を具備したものである。周囲温度が高くなっても発熱、発火などの事故が起こることがない。
The invention described in claim 3
A voltage controller that outputs DC power of a constant voltage and that prevents an overcurrent from being output by lowering the output voltage when an overcurrent detection signal is input;
The current detection circuit according to claim 1 or 2, wherein an output current of the voltage control unit is detected and the overcurrent detection signal is output.
Is provided. No accidents such as overheating and ignition occur even when the ambient temperature rises.

請求項4記載の発明は、
一定電圧の直流電力を出力し、かつ過電流検出信号が入力されると出力電圧を低下させて過電流が出力されることを防止する電圧制御部と、
前記電圧制御部の出力電流が流れる経路中に配置された抵抗と、
前記抵抗の一端と前記コンパレータの一方の入力端子間に、負の温度係数を有する出力電圧を印加する可変電圧源と、
前記コンパレータの前記一方の入力端子電圧を一定値以下に制限する電圧制限素子と、
前記電圧制御部の出力電圧を分圧し、その分圧した電圧を前記コンパレータの他方の入力端子に出力する分圧器と、
を具備したものである。周囲温度が高くなっても発熱、発火などの事故が起こることがない。
The invention according to claim 4
A voltage controller that outputs DC power of a constant voltage and that prevents an overcurrent from being output by lowering the output voltage when an overcurrent detection signal is input;
A resistor disposed in a path through which an output current of the voltage control unit flows;
A variable voltage source for applying an output voltage having a negative temperature coefficient between one end of the resistor and one input terminal of the comparator;
A voltage limiting element for limiting the one input terminal voltage of the comparator to a certain value or less;
A voltage divider that divides the output voltage of the voltage controller and outputs the divided voltage to the other input terminal of the comparator;
Is provided. No accidents such as overheating and ignition occur even when the ambient temperature rises.

請求項5記載の発明は、請求項4記載の発明において、
前記可変電圧源を、負の温度係数を有する電圧を出力する温度センサと、一定電圧を出力する基準電圧源で構成するようにしたものである。温度センサ選択の自由度を高くすることができる。
The invention according to claim 5 is the invention according to claim 4,
The variable voltage source includes a temperature sensor that outputs a voltage having a negative temperature coefficient and a reference voltage source that outputs a constant voltage. The degree of freedom in selecting the temperature sensor can be increased.

以上説明したことから明らかなように、本発明によれば次のような効果がある。
請求項1,2、3、4および5の発明によれば、電流を検出する抵抗の一端とコンパレータの一方の入力端子間に、周囲温度が高くなると電圧が低下する電圧信号を印加し、この電圧信号が一定値以上にならないように電圧制限素子で制限すると共に、前記抵抗の他端と前記コンパレータの他方の入力端子間に一定電圧を印加するようにした。また、この電流検出回路を電源装置の過電流検出回路に用いた。
As is apparent from the above description, the present invention has the following effects.
According to the first, second, third, fourth and fifth aspects of the present invention, a voltage signal whose voltage decreases as the ambient temperature increases is applied between one end of the resistor for detecting the current and one input terminal of the comparator. The voltage signal is limited by a voltage limiting element so that the voltage signal does not exceed a certain value, and a constant voltage is applied between the other end of the resistor and the other input terminal of the comparator. Further, this current detection circuit was used as an overcurrent detection circuit of the power supply device.

従来は周囲温度に関わらず過電流の検出電流が一定であったため、周囲温度が上昇するとディレーティング曲線で制限される範囲を超過し、電源装置の破壊、異常な温度上昇による発熱、発火などの事故が発生する可能性があった。本発明によると、周囲温度の上昇に従って検出電流の値を低下させることができる。そのため、周囲温度が高い状態で使用してもディレーティング曲線を超過することがなくなり、発熱、発火などの事故を確実に防止することができ、電源装置を保護することができるという効果がある。   Conventionally, the detection current of the overcurrent was constant regardless of the ambient temperature, so if the ambient temperature rises, the range restricted by the derating curve will be exceeded, causing damage to the power supply, heat generation due to abnormal temperature rise, ignition, etc. There was a possibility of an accident. According to the present invention, the value of the detected current can be reduced as the ambient temperature increases. Therefore, even when used in a state where the ambient temperature is high, the derating curve is not exceeded, accidents such as heat generation and ignition can be reliably prevented, and the power supply device can be protected.

以下本発明を、図面を用いて詳細に説明する。図1は本発明に係る電流検出回路の一実施例を用いた電源装置の構成図である。なお、図4と同じ要素には同一符号を付し、説明を省略する。また、電源装置としての構成、動作は図4と同じなので、説明を省略する。図1において、40は電流検出回路であり、コンパレータ21、基準電圧源42および44、温度センサIC41、ツェナダイオード43および抵抗23で構成されている。   Hereinafter, the present invention will be described in detail with reference to the drawings. FIG. 1 is a configuration diagram of a power supply device using an embodiment of a current detection circuit according to the present invention. The same elements as those in FIG. 4 are denoted by the same reference numerals, and description thereof is omitted. The configuration and operation of the power supply device are the same as those in FIG. In FIG. 1, reference numeral 40 denotes a current detection circuit, which includes a comparator 21, reference voltage sources 42 and 44, a temperature sensor IC 41, a Zener diode 43, and a resistor 23.

温度センサIC41は電源端子S、グランド端子G、出力端子Oの3つの端子を有している。温度センサIC41は感温素子を内蔵し、電源端子Sとグランド端子Gの間に所定の電圧を印加すると、出力端子Oとグランド端子G間の電圧が電源装置の内部温度によって変化する。この電圧は内部温度に対して直線的に変化し、かつ内部温度が上昇すると低くなる負の温度係数を有している。なお、基準電圧源42、44の両端電圧およびツェナダイオード43のツェナ電圧の温度係数は、温度センサIC41の温度係数に比べ、十分小さいものを使用する。温度センサIC41と基準電圧源42で可変電圧源を構成する。また、ツェナダイオード43は電圧制限素子の機能を有する。   The temperature sensor IC 41 has three terminals: a power supply terminal S, a ground terminal G, and an output terminal O. The temperature sensor IC 41 incorporates a temperature sensing element, and when a predetermined voltage is applied between the power supply terminal S and the ground terminal G, the voltage between the output terminal O and the ground terminal G changes depending on the internal temperature of the power supply device. This voltage changes linearly with respect to the internal temperature, and has a negative temperature coefficient that decreases as the internal temperature increases. The temperature coefficient of the both-ends voltage of the reference voltage sources 42 and 44 and the Zener voltage of the Zener diode 43 is sufficiently smaller than the temperature coefficient of the temperature sensor IC 41. The temperature sensor IC 41 and the reference voltage source 42 constitute a variable voltage source. Further, the Zener diode 43 has a function of a voltage limiting element.

ダイオード12のカソードとコンデンサ13の一端の接続点をIS、コンデンサ13の他端とトランス11の2次側の接続点をIGとする。ISはこの電源装置のプラス側出力、IGは回路の共通電位点である。   The connection point between the cathode of the diode 12 and one end of the capacitor 13 is IS, and the connection point between the other end of the capacitor 13 and the secondary side of the transformer 11 is IG. IS is a positive output of the power supply device, and IG is a common potential point of the circuit.

温度センサIC41の電源端子SはISに接続され、出力端子Oはコンパレータ21の反転入力端子に接続される。温度センサIC41のグランド端子Gは基準電圧源42の一端に接続され、この基準電圧源42の他端はIGに接続される。すなわち、温度センサIC41と基準電圧源42は直列接続され、この直列回路の両端はISとIG間に接続される。コンパレータ21の反転入力端子には、基準電圧源42の両端電圧と温度センサIC41の出力電圧を加算した電圧が印加される。温度センサIC41の出力端子OとIG間にはツェナダイオード43が接続される。   The power supply terminal S of the temperature sensor IC 41 is connected to IS, and the output terminal O is connected to the inverting input terminal of the comparator 21. The ground terminal G of the temperature sensor IC 41 is connected to one end of the reference voltage source 42, and the other end of the reference voltage source 42 is connected to IG. That is, the temperature sensor IC 41 and the reference voltage source 42 are connected in series, and both ends of this series circuit are connected between IS and IG. A voltage obtained by adding the voltage across the reference voltage source 42 and the output voltage of the temperature sensor IC 41 is applied to the inverting input terminal of the comparator 21. A Zener diode 43 is connected between the output terminal O of the temperature sensor IC 41 and IG.

抵抗23の一端はIGに、他端はこの電源装置の出力端子GNDに接続される。従って、抵抗23にはこの電源装置の出力電流Iが矢印の方向に流れる。基準電圧源44はコンパレータ21の非反転入力端子と抵抗23の他端(IGでない側)に接続される。従って、コンパレータ21の非反転入力端子には、抵抗23の降下電圧と基準電圧源44の両端電圧を加算した電圧が印加される。コンパレータ21の出力は電圧制御回路10に入力される。   One end of the resistor 23 is connected to the IG, and the other end is connected to the output terminal GND of the power supply device. Therefore, the output current I of the power supply device flows in the resistor 23 in the direction of the arrow. The reference voltage source 44 is connected to the non-inverting input terminal of the comparator 21 and the other end (non-IG side) of the resistor 23. Therefore, a voltage obtained by adding the voltage drop across the resistor 23 and the voltage across the reference voltage source 44 is applied to the non-inverting input terminal of the comparator 21. The output of the comparator 21 is input to the voltage control circuit 10.

次に、この実施例の動作を説明する。なお、基準電圧源42と44の両端電圧をそれぞれVR42、VR44、ツェナダイオード43のツェナ電圧をV、温度センサIC41が検出する温度をθ(℃)、温度センサIC41の出力電圧をV(θ)、抵抗23の抵抗値をRとする。 Next, the operation of this embodiment will be described. The voltage across the reference voltage sources 42 and 44 is V R42 and V R44 , the Zener voltage of the Zener diode 43 is V Z , the temperature detected by the temperature sensor IC 41 is θ (° C.), and the output voltage of the temperature sensor IC 41 is V (Θ), the resistance value of the resistor 23 is R.

IGを基準としたときの、コンパレータ21の非反転入力端子、反転入力端子の電圧をそれぞれV、Vとすると、
=R・I+VR44
=V(θ)+VR42
になる。但し、ツェナダイオード43のため、V≦Vに制限される。
When the voltages of the non-inverting input terminal and the inverting input terminal of the comparator 21 with respect to IG are V + and V , respectively,
V + = R · I + V R44
V = V (θ) + V R42
become. However, since the Zener diode 43, V - is limited to ≦ V Z.

>V、すなわち
I<(V(θ)+VR42−VR44)/R
のときはコンパレータ21の出力は低レベルになる。この電源装置の出力電圧は、電圧制御回路10により一定値に制御される。
V > V + , that is, I <(V (θ) + V R42 −V R44 ) / R
In this case, the output of the comparator 21 is at a low level. The output voltage of the power supply device is controlled to a constant value by the voltage control circuit 10.

<V、すなわち
I>(V(θ)+VR42−VR44)/R
になると、コンパレータ21の出力は高レベルに変化する。電圧制御回路10はこの電源装置の出力電圧を低下させて過電流が出力されないようにする。
V <V + , that is, I> (V (θ) + V R42 −V R44 ) / R
Then, the output of the comparator 21 changes to a high level. The voltage control circuit 10 reduces the output voltage of the power supply device so that no overcurrent is output.

この結果、最大出力電流IMAXは下記(1)式になる。
MAX=(V(θ)+VR42−VR44)/R ・・・・・・ (1)
図5で説明したように、ディレーティング曲線は右下がりの曲線になるために、周囲温度が高いほど最大出力電流は低くなる。この実施例では温度センサIC41として負の温度係数を有するセンサを用いたので、V(θ)は温度θが高くなるほど小さくなり、前記(1)式から最大出力電流IMAXは低下する。従って、V(θ)の温度係数を調整することにより、最大出力電流IMAXをディレーティング曲線に合わせることができる。
As a result, the maximum output current I MAX is expressed by the following equation (1).
I MAX = (V (θ) + V R42 −V R44 ) / R (1)
As described with reference to FIG. 5, since the derating curve is a downward-sloping curve, the maximum output current decreases as the ambient temperature increases. In this embodiment, since a sensor having a negative temperature coefficient is used as the temperature sensor IC 41, V (θ) decreases as the temperature θ increases, and the maximum output current I MAX decreases from the equation (1). Therefore, the maximum output current I MAX can be adjusted to the derating curve by adjusting the temperature coefficient of V (θ).

なお、前記(1)式では温度θが低くなる程V(θ)が大きくなり、やがてIMAXがこの電源装置の定格出力電流より大きくなってしまう。そのため、出力端子OとIGとの間にツェナダイオード43を挿入し、V(θ)+VR42を一定電圧以下に規制する。定格出力電流をI、ツェナダイオード43のツェナ電圧をVとすると、下記(2)式からツェナ電圧Vを選定すればよい。
=I・R+VR44 ・・・・・・・ (2)
In the equation (1), V (θ) increases as the temperature θ decreases, and I MAX eventually becomes larger than the rated output current of the power supply device. Therefore, a Zener diode 43 is inserted between the output terminal O and IG to regulate V (θ) + VR42 to a certain voltage or less. If the rated output current is I S and the Zener voltage of the Zener diode 43 is V Z , the Zener voltage V Z may be selected from the following equation (2).
V Z = I S · R + V R44 ··· (2)

次に、図2を用いて本実施例の動作を説明する。図2はディレーティング曲線と電流検出回路40が検出する過電流値を表したグラフであり、横軸は電源装置の内部温度、縦軸は定格出力電流に対する割合である。電源装置の内部温度は温度センサIC41が検出する温度θと同じである。   Next, the operation of this embodiment will be described with reference to FIG. FIG. 2 is a graph showing a derating curve and an overcurrent value detected by the current detection circuit 40. The horizontal axis represents the internal temperature of the power supply device, and the vertical axis represents the ratio to the rated output current. The internal temperature of the power supply device is the same as the temperature θ detected by the temperature sensor IC41.

図2において、50はディレーティング曲線である。図5のディレーティング曲線30〜33は、電源装置の取り付け状態等で複数の曲線に分かれていたが、電源装置内部の温度を変数に取ると、1本の曲線50に集約することができる。ディレーティング曲線50は、内部温度70℃から最大出力電流が低下する特性を有している。   In FIG. 2, 50 is a derating curve. Although the derating curves 30 to 33 in FIG. 5 are divided into a plurality of curves depending on the mounting state of the power supply device or the like, if the temperature inside the power supply device is taken as a variable, it can be collected into a single curve 50. The derating curve 50 has a characteristic that the maximum output current decreases from an internal temperature of 70 ° C.

51は電流検出回路40が検出する過電流の変化を表した曲線である。この曲線51はディレーティング曲線50の120%の値に設定されている。すなわち、常温での検出電流を定格出力電流の120%とし、内部温度70℃から、ディレーティング曲線50の同じ勾配で低下する特性に設定する。この勾配、開始温度などは、温度センサIC41の温度係数、基準電圧源42、44の両端電圧、抵抗23の抵抗値を調整することにより、達成することができる。   A curve 51 represents a change in overcurrent detected by the current detection circuit 40. This curve 51 is set to a value of 120% of the derating curve 50. That is, the detection current at normal temperature is set to 120% of the rated output current, and the characteristic is set such that the internal temperature decreases from 70 ° C. with the same gradient of the derating curve 50. This gradient, starting temperature, and the like can be achieved by adjusting the temperature coefficient of the temperature sensor IC 41, the voltage across the reference voltage sources 42 and 44, and the resistance value of the resistor 23.

次に、曲線51を実現するための具体例を説明する。電流検出回路40の検出電流を常温で12Aとし、70℃から0.4A/℃の勾配で低下する特性とする。この特性は、定格出力電流が10Aの電源装置に対応している。   Next, a specific example for realizing the curve 51 will be described. The detection current of the current detection circuit 40 is 12A at room temperature, and the characteristic decreases with a gradient from 70 ° C. to 0.4 A / ° C. This characteristic corresponds to a power supply device with a rated output current of 10A.

温度センサIC41として、0℃のときの出力電圧が1.713Vで、−8.2mV/℃の温度係数を有する素子を使用する。このような温度センサICとしては、例えばセイコーインスツル株式会社のS−8120Cが該当する。温度θ(℃)と出力電圧V(θ)の関係は、下記(3)式で表される。
V(θ)=1.713−0.0082・θ ・・・・・・ (3)
As the temperature sensor IC 41, an element having an output voltage of 1.713 V at 0 ° C. and a temperature coefficient of −8.2 mV / ° C. is used. An example of such a temperature sensor IC is S-8120C manufactured by Seiko Instruments Inc. The relationship between the temperature θ (° C.) and the output voltage V (θ) is expressed by the following equation (3).
V (θ) = 1.713−0.0082 · θ (3)

温度センサIC41の温度係数と曲線51の勾配から、抵抗23の抵抗値を決定できる。抵抗23の抵抗値をRとすると、抵抗値Rは下記(4)式を満足しなければならない。
−0.0082(V/℃)/R(Ω) =−0.4(A/℃) ・・・ (4)
上記(4)式から、R=0.0205Ωになる。
The resistance value of the resistor 23 can be determined from the temperature coefficient of the temperature sensor IC 41 and the slope of the curve 51. When the resistance value of the resistor 23 is R, the resistance value R must satisfy the following formula (4).
−0.0082 (V / ° C.) / R (Ω) = − 0.4 (A / ° C.) (4)
From the above equation (4), R = 0.0205Ω.

前記(3)式から、70℃のときのV(θ)は、
V(θ)=1.713−0.0082・70=1.139V
になる。このときの最大出力電流IMAXは12Aなので、前記(1)式から、
12=(1.139+VR42−VR44)/0.0205
になる。従って、VR42−VR44=―0.893Vになる。これから、基準電圧源42として両端電圧が2.500Vのものを、基準電圧源44として両端電圧が3.393Vのものを用いる。
From the equation (3), V (θ) at 70 ° C. is
V (θ) = 1.713−0.0082 · 70 = 1.139V
become. Since the maximum output current I MAX at this time is 12 A, from the above equation (1),
12 = (1.139 + V R42 −V R44 ) /0.0205
become. Therefore, V R42 −V R44 = −0.893V. Accordingly, the reference voltage source 42 with a voltage at both ends of 2.500 V and the reference voltage source 44 with a voltage at both ends of 3.393 V are used.

常温時の検出電流は12Aなので、前記(2)式のI=12、VR44=3.393、R=0.00205を代入すると、ツェナ電圧V=3.639Vを得ることができる。 Since the detected current at room temperature is 12 A, the Zener voltage V Z = 3.639 V can be obtained by substituting I S = 12, V R44 = 3.393, and R = 0.00205 in the equation (2).

なお、基準電圧源44として両端電圧が0.893Vのものを用いると、基準電圧源42をなくすることもできる。但し、基準電圧源42を用いると、基準電圧源決定の自由度を増すことができる。そのため、市販の標準的な基準電圧源を用いることができる。また、図1では温度センサIC41と基準電圧源42を直列接続してこれらの電圧を加算するようにしたが、加算器を用いて加算するようにすることもできる。   If the reference voltage source 44 has a voltage at both ends of 0.893 V, the reference voltage source 42 can be eliminated. However, when the reference voltage source 42 is used, the degree of freedom in determining the reference voltage source can be increased. Therefore, a commercially available standard reference voltage source can be used. In FIG. 1, the temperature sensor IC 41 and the reference voltage source 42 are connected in series and these voltages are added. However, they can be added using an adder.

図3に本発明の他の実施例を示す。なお、図1と同じ要素には同一符号を付し、説明を省略する。図3において、60は電流検出回路であり、コンパレータ21、基準電圧源42、温度センサIC41、ツェナダイオード43、抵抗23、61、62で構成されている。抵抗61と62は直列接続され、この直列回路の両端はそれぞれISとGNDに接続される。また、抵抗61と62の接続点の電圧は、コンパレータ21の非反転入力端子に入力される。抵抗61、62で分圧器を構成している。   FIG. 3 shows another embodiment of the present invention. In addition, the same code | symbol is attached | subjected to the same element as FIG. 1, and description is abbreviate | omitted. In FIG. 3, reference numeral 60 denotes a current detection circuit, which includes a comparator 21, a reference voltage source 42, a temperature sensor IC 41, a Zener diode 43, and resistors 23, 61 and 62. Resistors 61 and 62 are connected in series, and both ends of the series circuit are connected to IS and GND, respectively. The voltage at the connection point between the resistors 61 and 62 is input to the non-inverting input terminal of the comparator 21. The resistors 61 and 62 constitute a voltage divider.

この実施例では、基準電圧源44の代わりに、電源装置の出力電圧を抵抗61と62で分圧し、この分圧した電圧をコンパレータ21の非反転入力端子に入力するようにする。この実施例では、電圧制御回路10が故障して過大電圧が発生するとコンパレータ21の出力が高レベルになるので、過大電圧検出回路として用いることもできるという特徴がある。但し、過大電流が流れて出力電圧が低下するとコンパレータ21の出力は低レベルに移行する。そのため、過電流保護回路として用いるときは、コンパレータの出力が高レベルになったときにその出力をラッチする機構が必要になる。   In this embodiment, instead of the reference voltage source 44, the output voltage of the power supply device is divided by resistors 61 and 62, and this divided voltage is input to the non-inverting input terminal of the comparator 21. In this embodiment, when the voltage control circuit 10 fails and an excessive voltage is generated, the output of the comparator 21 becomes a high level, so that it can also be used as an excessive voltage detection circuit. However, when an excessive current flows and the output voltage decreases, the output of the comparator 21 shifts to a low level. Therefore, when used as an overcurrent protection circuit, a mechanism is required to latch the output when the output of the comparator becomes high.

なお、これらの実施例では電源装置の過電流保護回路の一部として用いたが、これに限られることはない。他の装置の電流検出回路として用いることもできる。また、温度センサIC41の両端電圧をコンパレータ21の反転入力端子に、基準電圧源44の両端電圧を非反転入力端子に入力するようにしたが、逆にしてもよい。この場合はコンパレータ21の出力レベルが逆になる。   In these embodiments, the power supply device is used as a part of the overcurrent protection circuit, but the present invention is not limited to this. It can also be used as a current detection circuit for other devices. Further, the voltage across the temperature sensor IC 41 is input to the inverting input terminal of the comparator 21 and the voltage across the reference voltage source 44 is input to the non-inverting input terminal. In this case, the output level of the comparator 21 is reversed.

また、これらの実施例では交流入力の電源装置について説明したが、DC−DCコンバータのような直流入力の電源であってもよい、また、絶縁型だけでなく非絶縁型の電源装置に適用することもできる。   Moreover, although the AC input power supply apparatus has been described in these embodiments, it may be a DC input power supply such as a DC-DC converter, and is applicable not only to an insulation type but also to a non-insulation type power supply apparatus. You can also.

本発明の一実施例を示す構成図である。It is a block diagram which shows one Example of this invention. 検出電流の温度特性を示した特性図である。It is a characteristic view showing a temperature characteristic of a detection current. 本発明の他の実施例を示す構成図である。It is a block diagram which shows the other Example of this invention. 従来の過電流保護回路付き電源装置の構成図である。It is a block diagram of the conventional power supply device with an overcurrent protection circuit. ディレーティング曲線の一例を示す特性図である。It is a characteristic view which shows an example of a derating curve.

符号の説明Explanation of symbols

10 電圧制御回路
11 トランス
12 ダイオード
13 コンデンサ
14 負荷
21 コンパレータ
23、61、62 抵抗
40、60 電流検出回路
41 温度センサIC
42、44 基準電圧源
43 ツェナダイオード
DESCRIPTION OF SYMBOLS 10 Voltage control circuit 11 Transformer 12 Diode 13 Capacitor 14 Load 21 Comparator 23, 61, 62 Resistance 40, 60 Current detection circuit 41 Temperature sensor IC
42, 44 Reference voltage source 43 Zener diode

Claims (5)

2つの入力端子を有し、これらの入力端子に印加される電圧の大小によってその出力が決定されるコンパレータと、
検出する電流が流れる経路中に配置された抵抗と、
前記抵抗の一端と前記コンパレータの一方の入力端子間に、負の温度係数を有する出力電圧を印加する可変電圧源と、
前記コンパレータの前記一方の入力端子電圧を一定値以下に制限する電圧制限素子と、
前記抵抗の他端と前記コンパレータの他方の入力端子間に、一定電圧を印加する基準電圧源と、
を具備したことを特徴とする電流検出回路。
A comparator having two input terminals, the output of which is determined by the magnitude of the voltage applied to these input terminals;
A resistor arranged in a path through which a current to be detected flows;
A variable voltage source for applying an output voltage having a negative temperature coefficient between one end of the resistor and one input terminal of the comparator;
A voltage limiting element for limiting the one input terminal voltage of the comparator to a certain value or less;
A reference voltage source for applying a constant voltage between the other end of the resistor and the other input terminal of the comparator;
A current detection circuit comprising:
前記可変電圧源は、負の温度係数を有する電圧を出力する温度センサと、一定電圧を出力する基準電圧源で構成されることを特徴とする請求項1記載の電流検出回路。   2. The current detection circuit according to claim 1, wherein the variable voltage source includes a temperature sensor that outputs a voltage having a negative temperature coefficient and a reference voltage source that outputs a constant voltage. 一定電圧の直流電力を出力し、かつ過電流検出信号が入力されると出力電圧を低下させて過電流が出力されることを防止する電圧制御部と、
前記電圧制御部の出力電流を検出して前記過電流検出信号を出力する、請求項1若しくは請求項2記載の電流検出回路と、
を具備したことを特徴とする電源装置。
A voltage controller that outputs DC power of a constant voltage and that prevents an overcurrent from being output by lowering the output voltage when an overcurrent detection signal is input;
The current detection circuit according to claim 1 or 2, wherein an output current of the voltage control unit is detected and the overcurrent detection signal is output.
A power supply device comprising:
一定電圧の直流電力を出力し、かつ過電流検出信号が入力されると出力電圧を低下させて過電流が出力されることを防止する電圧制御部と、
前記電圧制御部の出力電流が流れる経路中に配置された抵抗と、
前記抵抗の一端と前記コンパレータの一方の入力端子間に、負の温度係数を有する出力電圧を印加する可変電圧源と、
前記コンパレータの前記一方の入力端子電圧を一定値以下に制限する電圧制限素子と、
前記電圧制御部の出力電圧を分圧し、その分圧した電圧を前記コンパレータの他方の入力端子に出力する分圧器と、
を具備したことを特徴とする電源装置。
A voltage controller that outputs DC power of a constant voltage and that prevents an overcurrent from being output by lowering the output voltage when an overcurrent detection signal is input;
A resistor disposed in a path through which an output current of the voltage control unit flows;
A variable voltage source for applying an output voltage having a negative temperature coefficient between one end of the resistor and one input terminal of the comparator;
A voltage limiting element for limiting the one input terminal voltage of the comparator to a certain value or less;
A voltage divider that divides the output voltage of the voltage controller and outputs the divided voltage to the other input terminal of the comparator;
A power supply device comprising:
前記可変電圧源は、負の温度係数を有する電圧を出力する温度センサと、一定電圧を出力する基準電圧源で構成されることを特徴とする請求項4記載の電源装置。   5. The power supply apparatus according to claim 4, wherein the variable voltage source includes a temperature sensor that outputs a voltage having a negative temperature coefficient and a reference voltage source that outputs a constant voltage.
JP2006353776A 2006-12-28 2006-12-28 Current detecting circuit and power supply unit using the same Pending JP2008167572A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006353776A JP2008167572A (en) 2006-12-28 2006-12-28 Current detecting circuit and power supply unit using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006353776A JP2008167572A (en) 2006-12-28 2006-12-28 Current detecting circuit and power supply unit using the same

Publications (1)

Publication Number Publication Date
JP2008167572A true JP2008167572A (en) 2008-07-17

Family

ID=39696275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006353776A Pending JP2008167572A (en) 2006-12-28 2006-12-28 Current detecting circuit and power supply unit using the same

Country Status (1)

Country Link
JP (1) JP2008167572A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021049135A1 (en) * 2019-09-12 2021-03-18 ローム株式会社 Overcurrent protection circuit
EP3459156B1 (en) * 2016-05-20 2023-11-29 KYOCERA AVX Components Corporation System and method for charging a capacitor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3459156B1 (en) * 2016-05-20 2023-11-29 KYOCERA AVX Components Corporation System and method for charging a capacitor
WO2021049135A1 (en) * 2019-09-12 2021-03-18 ローム株式会社 Overcurrent protection circuit
JP7472151B2 (en) 2019-09-12 2024-04-22 ローム株式会社 Overcurrent Protection Circuit

Similar Documents

Publication Publication Date Title
US9042069B2 (en) Power supply controller
CN107276571B (en) System and method for high side power switch
US9941782B2 (en) Power supply device and method for limiting an output current of a power supply device
US9698697B2 (en) Power supply device, and method of controlling power supply device
US20080304303A1 (en) Power converting device
US20140286058A1 (en) Undervoltage protection circuit, undervoltage protection method and switching power supply
US20070116553A1 (en) Fan system and temperature-sensing protecting device thereof
JPWO2004017507A1 (en) Overheat protection device
TW201505343A (en) Switching regulator and electronic device
JP5288446B2 (en) Electronic device system and power control method thereof
JP2008141894A (en) Rush current preventing circuit
EP2160832B1 (en) Motor driver system and method of protecting motor driver
JP2004312901A (en) Overcurrent protection circuit for switching power supply
JP2007060787A (en) Power supply transformer protection system
JP2008148407A (en) Overcurrent detection circuit
JP2008167572A (en) Current detecting circuit and power supply unit using the same
JP2007325428A (en) Switching power supply
JP4294928B2 (en) Stabilized power supply
US7859802B2 (en) Burden resistor temperature compensation algorithm
JP5135138B2 (en) AC current detector
KR101894002B1 (en) A detection circuit for degradation of a surge protective device
JP7396240B2 (en) Overcurrent protection circuit
JP6807983B2 (en) Power converter
JP7080623B2 (en) Power supply and image forming equipment
KR100450204B1 (en) Protection circuit of Plasma display panel