JP2010070821A - Magnesium alloy sheet having excellent room temperature formability and method for treating magnesium alloy sheet - Google Patents

Magnesium alloy sheet having excellent room temperature formability and method for treating magnesium alloy sheet Download PDF

Info

Publication number
JP2010070821A
JP2010070821A JP2008241162A JP2008241162A JP2010070821A JP 2010070821 A JP2010070821 A JP 2010070821A JP 2008241162 A JP2008241162 A JP 2008241162A JP 2008241162 A JP2008241162 A JP 2008241162A JP 2010070821 A JP2010070821 A JP 2010070821A
Authority
JP
Japan
Prior art keywords
magnesium alloy
rolling
temperature
annealing
alloy sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008241162A
Other languages
Japanese (ja)
Other versions
JP5527498B2 (en
Inventor
Masahide Takatsu
正秀 高津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka University NUC
Osaka Prefecture University PUC
Original Assignee
Osaka University NUC
Osaka Prefecture University PUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka University NUC, Osaka Prefecture University PUC filed Critical Osaka University NUC
Priority to JP2008241162A priority Critical patent/JP5527498B2/en
Publication of JP2010070821A publication Critical patent/JP2010070821A/en
Application granted granted Critical
Publication of JP5527498B2 publication Critical patent/JP5527498B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Metal Rolling (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve the room temperature formability of a magnesium alloy sheet. <P>SOLUTION: The method for treating a magnesium alloy sheet is characterized in that a magnesium alloy sheet is pre-annealed at a temperature of &ge;450&deg;C to hold its shape so as to grow crystal grains, is thereafter rolled, is post-annealed at a temperature of &ge;450&deg;C to hold its shape so as to swiftly recrystallize, and a crystal orientation distribution is made random, thus obtaining a magnesium alloy sheet having excellent room temperature formability. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、マグネシウム合金板の室温成形性を向上させる処理方法に関する。   The present invention relates to a processing method for improving room temperature formability of a magnesium alloy plate.

近年、CO2削減の観点から輸送機器の軽量化が強く要求されるようになってきており、比強度・比剛性の大きいマグネシウム合金(Mg合金)の使用が注目されている。
マグネシウム合金からなるシェル構造部材は、生産性や靭性の点で圧延板からのプレス加工が望ましく、携帯用電子機器の筐体では、従来のダイカストやチクソモールディングに変って250℃以上の加熱プレス成形が実用化している。しかし、自動車のシェル構造部品で鋼板やアルミニウム合金板に取って代わるには、室温でプレス成形できることがコスト面で不可欠とされている。室温でプレス成形が可能なマグネシウム合金としてMg-Li合金があるが、通常の展伸用マグネシウム合金AZ31に比べ高価で、強度、耐食性、耐燃性に劣る(例えば、特許文献1参照)。
一方、AZ31合金の板材への加工工程を工夫することで、より低温でのプレス成形性を向上させる試みもなされているが、特殊な装置を必要とする上、室温でのプレス成形には至っていない(例えば、特許文献2参照)。
特許公開2003−226929、マグネシウム合金材の冷間プレス成形方法、出願人 : 株式会社カサタニ、発明者 : 矢野 正之 外1名 特許公開2007−083261、マグネシウム合金大クロス圧延材によるプレス成形体、出願人 : 独立行政法人産業技術総合研究所、発明者 : 千野 靖正 外2名
In recent years, weight reduction of transportation equipment has been strongly demanded from the viewpoint of CO 2 reduction, and the use of a magnesium alloy (Mg alloy) having a large specific strength and specific rigidity has attracted attention.
Shell structural members made of magnesium alloy are preferably pressed from rolled plates in terms of productivity and toughness. For portable electronic equipment casings, hot-press molding at 250 ° C or higher instead of conventional die casting or thixomolding Is in practical use. However, in order to replace a steel plate or an aluminum alloy plate with a shell structural component of an automobile, it is indispensable in terms of cost that it can be press-formed at room temperature. There is an Mg-Li alloy as a magnesium alloy that can be press-formed at room temperature, but it is more expensive than ordinary magnesium alloy AZ31 for extension and inferior in strength, corrosion resistance, and flame resistance (see, for example, Patent Document 1).
On the other hand, attempts have been made to improve press formability at lower temperatures by devising the processing process of AZ31 alloy to plate material, but it requires special equipment and has led to press forming at room temperature. (For example, refer to Patent Document 2).
Patent Publication 2003-226929, Cold Press Forming Method of Magnesium Alloy Material, Applicant: Kasa Thani Co., Inventor: Masayuki Yano and 1 other Patent Publication 2007-083261, Press-molded body made of magnesium alloy large cross-rolled material, Applicant: National Institute of Advanced Industrial Science and Technology, Inventor: Masamasa Chino and two others

これらの既存技術に対し、本発明は、通常の展伸用マグネシウム合金を用い、通常の圧延機による圧延と熱処理の組合せのみで、圧延板の集合組織(結晶方位分布)を制御し室温成形が可能な板の量産を実現しようとするものである。   In contrast to these existing technologies, the present invention uses ordinary magnifying magnesium alloy, and can control the texture (crystal orientation distribution) of the rolled plate and form at room temperature only by a combination of rolling and heat treatment by a normal rolling mill. It aims to realize mass production of possible plates.

かくして、本発明によれば、Al:2.5〜3.5重量%、Zn:0.5〜1.5重量%、Mn:0.2〜1.0重量%を含有し、残部がMgおよび不可避不純物からなる組成を有し、X線回折(シュルツの反射法)による[0001]極点図の正規化したピーク強度値で5以下まで結晶方位分布がランダム化した集合組織を有する室温成形性に優れたマグネシウム合金板が提供される。
また、本発明の別の観点によれば、マグネシウム合金板を450℃以上の形状を保持できる温度で前焼きなましして結晶粒を成長させた後圧延し、再び450℃以上の形状を保持できる温度で後焼きなましして迅速に再結晶させ、結晶方位分布をランダム化させることにより、室温成形性に優れたマグネシウム合金板を得るマグネシウム合金板の処理方法が提供される。
Thus, according to the present invention, Al: 2.5-3.5 wt%, Zn: 0.5-1.5 wt%, Mn: 0.2-1.0 wt%, with the balance being Mg Room temperature formability with a composition consisting of inevitable impurities and a texture in which the crystal orientation distribution is randomized up to 5 or less in the normalized peak intensity value of the [0001] pole figure by X-ray diffraction (Schulz reflection method) An excellent magnesium alloy sheet is provided.
Further, according to another aspect of the present invention, the magnesium alloy sheet is pre-annealed at a temperature capable of maintaining a shape of 450 ° C. or higher, grown after growing crystal grains, and again maintained at a temperature of 450 ° C. or higher. A method for treating a magnesium alloy plate is provided, in which after annealing is rapidly recrystallized and the crystal orientation distribution is randomized, a magnesium alloy plate having excellent room temperature formability is obtained.

本発明によれば、前記一連の工程により、マグネシウム合金板の集合組織(結晶方位分布)がランダム化し、これにより、例えばV曲げでの最小曲げ半径が小さく(AZ31合金板の場合は通常の1/2程度)、優れた低温成形性を有するマグネシウム合金板を創製することができる。   According to the present invention, the texture (crystal orientation distribution) of the magnesium alloy plate is randomized by the above-described series of steps, whereby the minimum bending radius in, for example, V bending is small (in the case of an AZ31 alloy plate, the normal 1 / 2), it is possible to create a magnesium alloy sheet having excellent low-temperature formability.

本発明者は、マグネシウム合金板の200℃以下の低温成形性について研究を重ねたところ、圧延集合組織が低温成形性に大きく影響し、特に、圧延の前後の焼きなまし温度で後焼きなまし後の集合組織が大きく変化することを突き止め、本発明を見出した。
すなわち、本発明のマグネシウム合金板の処理方法は、最終圧延パスの前にマグネシウム合金板を450℃以上の形状が保持できる範囲の高温で前焼きなましして結晶粒を粗大化させることで変形双晶や変形帯を多く含む圧延加工組織を形成させた後、再び450℃以上の形状が保持できる範囲の高温で後焼きなましして迅速に再結晶させるものである。本発明は、この一連の処理方法により集合組織(結晶方位分布)がランダム化する現象を利用して、室温成形性に優れたマグネシウム合金板を得ることを特徴とする。
なお、450℃以上の高温焼きなましにおいては、安全上、不活性ガス雰囲気下で行うなどの燃焼防止措置を講じる必要がある。
The present inventor has conducted research on low-temperature formability of a magnesium alloy sheet at 200 ° C. or lower, and the rolling texture greatly affects the low-temperature formability. In particular, the texture after post-annealing at the annealing temperature before and after rolling. Was found to change greatly, and the present invention was found.
That is, the magnesium alloy sheet processing method of the present invention is a modified twin by pre-annealing the magnesium alloy sheet at a high temperature within a range capable of maintaining a shape of 450 ° C. or higher before the final rolling pass to coarsen the crystal grains. And after forming a rolled structure containing a large amount of deformation bands, it is re-crystallized rapidly by post-annealing at a high temperature within a range where the shape of 450 ° C. or higher can be maintained. The present invention is characterized in that a magnesium alloy sheet excellent in room temperature formability is obtained by utilizing the phenomenon that the texture (crystal orientation distribution) is randomized by this series of processing methods.
In the case of high-temperature annealing at 450 ° C. or higher, it is necessary to take measures to prevent combustion such as performing in an inert gas atmosphere for safety.

(前焼きなまし)
図1は、恒温圧延の前後に高温焼きなましする本発明の実施例1の工程(右列)と、通常の低温前焼きなましの後、恒温圧延および恒温後焼きなましする比較例1の工程(左列)の各段階におけるミクロ組織を示している。
前焼きなましでは、通常の圧延工程で得られたマグネシウム合金元板を450℃以上の形状が保持できる範囲の高温で処理することにより、図1右上に示すように、その結晶粒径を30μm以上に粗大化させる。このとき、この図のように、異常成長した粒があっても差し支えない。
なお、前焼きなましの温度が450℃未満であると、結晶粒の成長が不十分で最終工程の後焼きなまし後に十分な室温成形性が得られなかったり、成長に多大な時間を要したりするため好ましくない。また、高温焼きなましでは、安全上、不活性ガス雰囲気下で行うなどのマグネシウム合金の発火を回避する措置が必要である。
また、30μm以上の結晶粒径まで粒成長させるための前焼きなましの処理条件(加熱温度および時間)は、結晶粒の成長速度は化学組成、特にAZ31合金ではマンガン量に依存するため画一的なものではなく、要は、30μm以上の粒径まで粗大化させることができればよい。
(Pre-annealing)
FIG. 1 shows the steps (right column) of Example 1 of the present invention in which high-temperature annealing is performed before and after isothermal rolling, and the steps of Comparative Example 1 (left column) in which isothermal rolling and post-isothermal annealing are performed after normal low-temperature pre-annealing. The microstructure in each stage is shown.
In the pre-annealing, the crystal grain size is increased to 30 μm or more as shown in the upper right of FIG. Make it coarse. At this time, there is no problem even with abnormally grown grains as shown in this figure.
If the pre-annealing temperature is less than 450 ° C., the crystal grains are not sufficiently grown, so that sufficient room temperature formability cannot be obtained after post-annealing in the final process, or a long time is required for the growth. It is not preferable. In addition, in high-temperature annealing, it is necessary to take measures to avoid ignition of the magnesium alloy, for example, in an inert gas atmosphere for safety.
In addition, the pre-annealing treatment conditions (heating temperature and time) for growing grains to a grain size of 30 μm or more are uniform because the growth rate of the grains depends on the chemical composition, especially the amount of manganese in the AZ31 alloy. In short, what is essential is that it can be coarsened to a particle size of 30 μm or more.

図2は、実施例1および比較例の各段階における集合組織(結晶方位分布)をX線回折(シュルツの反射法)で求めた[0001]極点図、およびその極点図のRD方向(圧延方向)断面である。
前焼きなまし後の集合組織(結晶方位分布)を[0001]極点図で示すと、図2右上のように供試材と同様の同心円のまま、すなわち、六方晶の軸(C軸)が圧延面に垂直な方向(円の中心)に配向している。この場合の[0001]面(六方晶の底面)からのX線の回折ピーク強度(配向の強さに対応)は、供試材よりむしろ強まる傾向にあり、異常成長した粒の影響で極端に高い値を示すこともある。
FIG. 2 shows the [0001] pole figure obtained by X-ray diffraction (Schulz reflection method) of the texture (crystal orientation distribution) in each stage of Example 1 and the comparative example, and the RD direction (rolling direction) of the pole figure ) Cross section.
When the texture (crystal orientation distribution) after pre-annealing is shown in the [0001] pole figure, it remains in the same concentric circle as the specimen, as shown in the upper right of FIG. 2, that is, the hexagonal axis (C axis) is the rolling surface. It is oriented in the direction perpendicular to the center (the center of the circle). In this case, the X-ray diffraction peak intensity (corresponding to the strength of the orientation) from the [0001] plane (hexagonal bottom) tends to increase rather than the specimen, and is extremely affected by the abnormally grown grains. May show a high value.

(圧延)
圧延では、前焼きなましで結晶粒を粗大化させたマグネシウム合金板を所定の圧下率で圧延することにより、図1右中に示すようにマグネシウム合金板のミクロ組織に多数の変形双晶や変形帯を導入する。一方、高温の前焼きなましを行わず、加工ひずみ除去のための低温焼きなまし(300℃、30分)のみで、結晶粒が微細なまま圧延した場合には、図1左中に示すように双晶は少なく、200℃以上での圧延では10%を超える程度の圧下率から極めて微細な動的再結晶粒が出現する。
(rolling)
In rolling, a magnesium alloy sheet having coarsened grains by pre-annealing is rolled at a predetermined reduction ratio, so that a large number of deformation twins and deformation bands are formed in the microstructure of the magnesium alloy sheet as shown in the right side of FIG. Is introduced. On the other hand, when high-temperature pre-annealing is not performed and the crystal grains are rolled with only low-temperature annealing (300 ° C., 30 minutes) for removing processing strain, twins are formed as shown in the left middle of FIG. In rolling at 200 ° C. or higher, extremely fine dynamic recrystallized grains appear from a rolling reduction exceeding 10%.

圧延を行った段階での集合組織(結晶方位分布)は、高温後焼きなまし後にランダム化する高温前焼きなましした試料でも、図2右中に示すようにまだランダム化していない。図2右中では、高圧下率圧延の特徴である圧延方向の前後ピーク位置が分かれて傾くダブルピーク集合組織を示しているが、同心円のままの11%圧延の場合(図示省略)でも高温後焼きなましでランダム化する。また逆に、高温前焼きなまし無しの高圧下率圧延で得た明確なダブルピーク材(図示省略)は、高温後焼きなましでランダム化しない。これらのことから、集合組織のダブルピーク化は高温後焼きなまし後のランダム化とは関係ないようである。   The texture (crystal orientation distribution) at the stage of rolling is not yet randomized, as shown in the right part of FIG. 2, even in the high-temperature pre-annealed sample that is randomized after high-temperature post-annealing. The right side of FIG. 2 shows a double-peak texture in which the front and rear peak positions in the rolling direction, which is a feature of high-pressure reduction rolling, are inclined, but in the case of 11% rolling with concentric circles (not shown) after high temperature Randomize by annealing. Conversely, a clear double peak material (not shown) obtained by high pressure rolling without high temperature pre-annealing is not randomized by high temperature post-annealing. From these facts, the double peaking of texture does not seem to be related to the randomization after high temperature post annealing.

マグネシウム合金板の圧延時の圧下率としては11〜22%が適当であり、圧下率に応じて割れを生じることなく圧延できる温度に加熱されている必要がある。なお、高温前焼きなましした試料の11%圧延では、室温(30℃)でも割れを生じなかった。恒温圧延による基礎実験でのこの温度としては室温(30℃)〜200℃程度が適当である。なお、マグネシウム合金板の圧延中の温度が前記温度範囲にあれば、ロール加熱を行わない通常の圧延機で圧延前にマグネシウム合金板を予加熱して圧延を行ってもよく、この予加熱の温度としては、圧延速度100mm/sの圧延機で圧下率20%で圧延する場合には、350℃が好ましく、400℃では通常の底面配向の強い結晶方位分布となる。
この場合、圧延速度は圧延時の温度変化に大きく影響し、遅い場合には温度低下が大きいので高目の温度に予加熱する必要があるが、少なくとも温度変化がこの範囲に収まるような速度でなければならない。また、圧延速度が速い場合には、加工発熱により逆に圧延時に温度上昇する場合もある。
The rolling reduction of the magnesium alloy sheet is appropriately 11 to 22%, and it is necessary to be heated to a temperature at which rolling can be performed without causing cracks depending on the rolling reduction. In addition, in the 11% rolling of the high-temperature pre-annealed sample, no crack was generated even at room temperature (30 ° C.). A room temperature (30 ° C.) to about 200 ° C. is appropriate as this temperature in a basic experiment by isothermal rolling. If the temperature during the rolling of the magnesium alloy sheet is within the above temperature range, the magnesium alloy sheet may be preheated and rolled before rolling with a normal rolling mill that does not perform roll heating. The temperature is preferably 350 ° C. when rolling at a rolling reduction rate of 20% with a rolling mill with a rolling speed of 100 mm / s, and a normal crystal orientation distribution with a strong bottom orientation is obtained at 400 ° C.
In this case, the rolling speed greatly affects the temperature change during rolling, and if it is slow, the temperature drop is large, so it is necessary to preheat to a higher temperature, but at a speed that at least keeps the temperature change within this range. There must be. On the other hand, when the rolling speed is high, the temperature may rise during rolling due to processing heat generation.

(後焼きなまし)
後焼きなましでは、450℃以上の高温で、かつマグネシウム合金板が形状を保持できる範囲の温度で、前記高温前焼きなまし後に圧延したマグネシウム合金板を処理して迅速に再結晶させることにより、図2右下のように、この再結晶過程でマグネシウム合金板の集合組織(結晶方位分布)がランダム化する。つまり、集合組織における特定方位への配向が極端に弱まる。なお、後焼きなましの温度が450℃未満であると、ランダム化が不十分で、十分な室温成形性が得られないため好ましくない。一方、通常の低温焼きなまし(300℃、30分)のみで圧延した試料では、圧延条件にかかわらず高温後焼きなましを行っても図2左下に示すように六方晶の軸(C軸)が圧延面に垂直に強く配向した底面集合組織になる。
(Post-annealing)
In post-annealing, the magnesium alloy sheet rolled after the high-temperature pre-annealing is processed and rapidly recrystallized at a high temperature of 450 ° C. or higher and in a range where the shape of the magnesium alloy sheet can be maintained. As described below, the texture (crystal orientation distribution) of the magnesium alloy plate is randomized in this recrystallization process. That is, the orientation in a specific direction in the texture is extremely weakened. A post-annealing temperature of less than 450 ° C. is not preferable because randomization is insufficient and sufficient room temperature formability cannot be obtained. On the other hand, in the sample rolled only by ordinary low-temperature annealing (300 ° C., 30 minutes), the hexagonal axis (C-axis) is the rolled surface as shown in the lower left of FIG. 2 even if high-temperature post-annealing is performed regardless of the rolling conditions. The bottom texture is strongly oriented perpendicular to the surface.

後焼きなましの処理時間としては、20〜60分程度が適当である。なお、この処理時間は、低めの温度450℃では、長めに設定する必要があり、必ずしも20〜60分に限定されるものではない。
高温後焼きなまし後のミクロ組織は、図1下に示すように、前記高温前焼きなましを行った場合と行わなかった場合で差がなく、ともに平均粒径30μm程度の均一な等軸粒からなるが、室温成形性は大きく異なる。一般に、六方晶マグネシウム合金の成形性には結晶粒の微細化が有効とされているが、室温成形性に関しては、粗大粒でも(少なくとも30μm程度なら)問題なく、集合組織のみが影響すると言える。
The post-annealing treatment time is appropriately about 20 to 60 minutes. Note that this processing time needs to be set longer at a lower temperature of 450 ° C., and is not necessarily limited to 20 to 60 minutes.
As shown in the lower part of FIG. 1, the microstructure after the high-temperature post-annealing is not different between the case where the high-temperature pre-annealing is performed and the case where the high-temperature pre-annealing is not performed, and both are composed of uniform equiaxed grains having an average particle size of about 30 μm. The room temperature moldability is greatly different. Generally, refinement of crystal grains is effective for the formability of a hexagonal magnesium alloy. However, regarding room temperature formability, even coarse grains can be said to have no problem (if at least about 30 μm) and only the texture is affected.

<実施例1>
(供試材と試料)
供試材として、化学組成が、Al:3.5重量%、Zn:0.9重量%、Mn:0.64重量%、Si:0.01重量%、Cu:0.01重量%、Fe:0.002重量%、Ni:0.001重量%、Ca:0.01重量%、Mg:残部で、厚さが1.6mmの市販AZ31マグネシウム合金圧延板を用いた。なお、Si、Cu、FeおよびCaは不可避不純物である。
そのAZ31マグネシウム合金圧延板から圧延方向を長手方向として200mm×20mmの試料を切り出し、前記前焼きなまし、圧延、後焼きなましの一連の工程を順次行った。なお、図1および図2で説明した一連の工程にもこの試料が用いられている。
<Example 1>
(Sample material and sample)
As a test material, the chemical composition is Al: 3.5 wt%, Zn: 0.9 wt%, Mn: 0.64 wt%, Si: 0.01 wt%, Cu: 0.01 wt%, Fe: 0.002 wt%, Ni: 0.001 wt% A commercially available AZ31 magnesium alloy rolled plate having a thickness of 1.6 mm, Ca: 0.01 wt%, Mg: balance was used. Si, Cu, Fe and Ca are inevitable impurities.
A 200 mm × 20 mm sample was cut from the rolled AZ31 magnesium alloy sheet with the rolling direction as the longitudinal direction, and the series of steps of pre-annealing, rolling, and post-annealing were sequentially performed. Note that this sample is also used in the series of steps described in FIGS.

(実験方法−圧延)
ここでの圧延は、恒温での基礎データを得るため、ロールを試料とともに均一加熱でき、1パスで圧下率が連続的に変化した板が得られる偏心ロール引抜きによる模擬圧延とした。その原理は、図3に示すように、軸が偏心した一組のロール間に試料を図3(A)のようにセットし、100mm/sの高速引張試験機で引き抜くというものであり、幾何学的な計算では、板厚1.6mmの場合、ロールが半回転する間に圧下率は0から50%まで連続的に変化することになる。しかしながら、実際にはそれまでに試料が破断するため、データとしては圧下率の上限を32%(破断位置から10mm以上手前での値)とした。
なお、圧延温度が低い場合には、圧下率の上限がこれより低くなることもある。このロール引抜きでは、ロールと軸の間にベアリングが組み込まれており、ロールの駆動シャフトがないので、ロールを素板とともに炉で囲って均一加熱することができる。ロール、素板間は二硫化モリブデンで潤滑を行った。以下、このロール引抜きによる模擬圧延を恒温圧延と称する。
(Experimental method-rolling)
In order to obtain basic data at a constant temperature, the rolling here was simulated rolling by eccentric roll drawing, in which the roll could be uniformly heated together with the sample, and a plate whose rolling reduction ratio was continuously changed in one pass was obtained. The principle is that, as shown in FIG. 3, a sample is set between a pair of rolls whose shafts are eccentric as shown in FIG. 3 (A) and pulled out with a 100 mm / s high-speed tensile tester. According to scientific calculation, when the plate thickness is 1.6 mm, the rolling reduction continuously changes from 0 to 50% during the half rotation of the roll. However, in actuality, since the sample broke up to that point, the upper limit of the rolling reduction was 32% (value before 10 mm or more from the breaking position) as data.
In addition, when rolling temperature is low, the upper limit of rolling reduction may become lower than this. In this roll drawing, since a bearing is incorporated between the roll and the shaft and there is no drive shaft for the roll, the roll can be heated uniformly by surrounding it with a base plate in a furnace. The gap between the roll and the base plate was lubricated with molybdenum disulfide. Hereinafter, this simulated rolling by roll drawing is referred to as constant temperature rolling.

(実験方法−集合組織測定)
集合組織は、40kV、100mAの銅X線管球を用いたシュルツの反射法により求めた[0001]面(六方晶の底面)の極点図として示した(図2参照)。この極点図は、C軸(六方晶の軸)が圧延面に垂直な方位を中心(0°)として各方向へ90°傾いた方位を外周円とする極座標上に[0001]面で反射した回折X線の強度を等強度線で描いたものである。そしてこれは、六方晶の軸方位分布、すなわち、六方晶の底面が圧延面から種々の方向に種々の角度傾いた結晶の量的な分布と対応している(あくまで回折X線の強度分布であり、結晶の量の分布そのものではない)。なお、回折X線強度はランダム方位の粉体試料に対する値を1として正規化されており、75°(内側の円)以上は測定できない。ここでは、すべての極点図において等強度線の間隔を0.13に統一した。
(Experimental method-texture measurement)
The texture was shown as a pole figure of the [0001] plane (hexagonal bottom) obtained by Schulz reflection using a 40 kV, 100 mA copper X-ray tube (see FIG. 2). In this pole figure, the C-axis (hexagonal axis) is reflected on the [0001] plane on the polar coordinates with the direction perpendicular to the rolling surface as the center (0 °) and the direction inclined 90 ° in each direction as the outer circumference circle. The intensity of diffracted X-rays is drawn with isointensity lines. This corresponds to the hexagonal crystal orientation distribution, that is, the quantitative distribution of crystals in which the bottom surface of the hexagonal crystal is inclined at various angles from the rolling surface in various directions (the intensity distribution of diffracted X-rays to the last). Yes, not the distribution of the amount of crystals itself). The diffracted X-ray intensity is normalized with a value of 1 for a powder sample having a random orientation, and cannot be measured beyond 75 ° (inner circle). Here, the interval of isointensity lines was unified to 0.13 in all pole figures.

通常、マグネシウム合金圧延板では、等強度線は0°方向をピークとする同心円状になり、ピーク強度が大きく等強度線の間隔が密なほど底面配向が強いことを示す。逆に、等強度線が拡がり疎になれば、集合組織(結晶方位分布)がランダム化したことになる。
集合組織測定用試料は、前記恒温圧延した圧下率が連続的に変化した試料から圧下率4%、11%、22%、32%の各部分がそれぞれ中心に来るように20mm角に切り出した。なお、圧延温度が120℃の場合には、破断のため22%まで、室温(30℃)の場合には11%までしか取れない。
Usually, in a magnesium alloy rolled sheet, the isointensity lines are concentric with a peak in the 0 ° direction, indicating that the bottom intensity is stronger as the peak intensity is larger and the distance between the isointensity lines is closer. On the contrary, if the isointensity line spreads and becomes sparse, the texture (crystal orientation distribution) is randomized.
Samples for texture measurement were cut into 20 mm squares so that each of the rolling reduction ratios of 4%, 11%, 22%, and 32% would be centered from the above-described sample with constant rolling reduction. In addition, when the rolling temperature is 120 ° C., it can be taken up to 22% due to breakage, and up to 11% at room temperature (30 ° C.).

(実権方法−成形性評価)
室温成形性の指標としての90°室温V曲げ試験を行った。パンチ先端の曲率半径Rは4.8、3.8、3.0、2.4、2.0、1.7、1.5、1.25、1.0 mmの9種類とした。試験片寸法は、圧延方向に長さ20mm、幅12mmとし、厚さtは均一に0.90mmまで研磨した。試験片はその長さ中心で圧延方向に曲げ、曲げ位置が前記集合組織測定試料と同様に圧下率4%、11%、22%、32%の各部分に対応するようにした。
試験手順としては、緩衝用ゴム板上のVブロックの上に試験片をセットし、パンチ速度10mm/sでV溝に押し込んで曲げ、パンチ-工具間の隙間が小さくなって荷重が定常値の5倍以上に上昇したところで除荷して試験片の割れの有無を確認する。そして、この一連の作業を、前記パンチ曲率半径の範囲で割れずに曲げることができる臨界R/t値が確定するまで繰返し行った。この臨界値の判定基準は、曲げの外側表面に微小クラックや肌荒れすらない健全な状態で曲げることができた最小のR/t値とした。曲げ性はR/t値が小さいほどよいことになる。
(Practical rights method-Formability evaluation)
A 90 ° room temperature V-bending test was performed as an index of room temperature formability. Nine types of curvature radius R of the punch tip were 4.8, 3.8, 3.0, 2.4, 2.0, 1.7, 1.5, 1.25 and 1.0 mm. The test piece dimensions were 20 mm long and 12 mm wide in the rolling direction, and the thickness t was uniformly polished to 0.90 mm. The test piece was bent in the rolling direction at the center of its length, and the bending position was made to correspond to each of the rolling reduction ratios of 4%, 11%, 22%, and 32% in the same manner as the texture measurement sample.
As a test procedure, a test piece is set on a V block on a shock-absorbing rubber plate and is bent by being pushed into a V-groove at a punch speed of 10 mm / s. Unload at 5 times or more and check for cracks in the specimen. This series of operations was repeated until a critical R / t value that could be bent without breaking within the range of the radius of curvature of the punch was determined. The criterion for determining the critical value was the minimum R / t value at which the outer surface of the bending could be bent in a healthy state without causing microcracks or rough skin. The bendability is better as the R / t value is smaller.

前記圧延と焼きなましを組み合わせた一連の工程の中での集合組織変化とその室温成形性(V曲げで検証)との対応については、すでに述べているので、ここでは、個々の工程における試験条件がこの一連の工程で最終的に得られた試料の集合組織に及ぼす影響、および一部の代表的な試料の室温成形性を示す。
恒温圧延の前後の焼きなまし温度が450℃以上の高温の場合について、種々の試験条件の組合せにおける極点図のピーク強度と室温V曲げ試験におけるR/t値(一部の試料のみ)を表1に示した。さらに、比較例として、恒温圧延前後の少なくとも一方の焼きなましを450℃未満の低温で行った場合の同様のデータを表2に示した。なお、図1および図2の右列は表1のNo.10に対応し、図1および図2の左列は表2のNo.12に対応する。
Since the correspondence between the texture change in the series of processes combining rolling and annealing and the room temperature formability (verified by V-bending) has already been described, the test conditions in each process are described here. The influence on the texture of the sample finally obtained in this series of steps and the room temperature formability of some representative samples are shown.
Table 1 shows the peak intensity of the pole figure and the R / t value (only for some samples) in the room temperature V-bending test for various combinations of test conditions when the annealing temperature before and after isothermal rolling is higher than 450 ° C. Indicated. Furthermore, as a comparative example, Table 2 shows similar data when at least one annealing before and after isothermal rolling was performed at a low temperature of less than 450 ° C. The right column in FIGS. 1 and 2 corresponds to No. 10 in Table 1, and the left column in FIGS. 1 and 2 corresponds to No. 12 in Table 2.

表1および表2から、極点図のピーク強度を下げる、すなわち、集合組織(結晶方位分布)のランダム化には、前焼きなまし、後焼きなましともに高温焼きなましが不可欠である。特に、前焼きなましは、高温で長時間かけて結晶粒を十分粗大化させるのに有効であり、後焼きなましは、高温短時間で迅速に再結晶させるのに有効である。また、圧延の圧下率は11〜22%が適切であり、少なくとも室温(30℃)〜200℃の範囲ではランダム化に対する圧延温度の影響はほとんどないことがわかる。そして、ピーク強度4前後までランダム化した場合の前記室温V曲げ試験でのR/t値(2以下)は、ピーク強度6以上の通常の底面配向した集合組織の場合の半分程度になっており、集合組織(結晶方位分布)のランダム化が室温成形性向上にいかに有効であるかがわかる。   From Table 1 and Table 2, high temperature annealing is indispensable for both pre-annealing and post-annealing in order to lower the peak intensity of the pole figure, that is, to randomize the texture (crystal orientation distribution). In particular, pre-annealing is effective for sufficiently coarsening crystal grains over a long period of time at a high temperature, and post-annealing is effective for rapid recrystallization in a short period of time at a high temperature. Moreover, 11-22% is appropriate for the rolling reduction of rolling, and it turns out that there is almost no influence of the rolling temperature with respect to randomization at least in the range of room temperature (30 degreeC) -200 degreeC. The R / t value (2 or less) in the room temperature V-bending test when randomized up to around peak intensity 4 is about half that of a normal bottom-oriented texture with a peak intensity of 6 or more. It can be seen how the randomization of the texture (crystal orientation distribution) is effective for improving the room temperature formability.

図4は、500℃、60分の前焼きなまし後、200℃で圧延した後焼きなまし条件のみが異なる試料(表1のNo.7〜10)に対する圧下率−ピーク強度図を示す。後焼きなましでは、450℃でも60分保持すれば、22%以上の高圧下率側で極点図ピーク強度5以下まで結晶包囲がランダム化している。500℃の場合、11〜22%の中間圧下率でピーク強度は5以下までランダム化が進み、特に短時間の20分(△、No.9)では、4以下のきわめて低いピーク強度となる。
全体として、圧下率4%と32%では底面配向の傾向が強く、11〜22%の圧下率が適当と言える。以上の結果から、以下、後焼きなまし条件は最もランダム化が進む500℃、20分とした。なお、データは載せていないが、500℃、10分ではランダム化がやや不十分であった。
FIG. 4 shows a rolling reduction-peak intensity diagram for samples (Nos. 7 to 10 in Table 1) that differ only in annealing conditions after rolling at 200 ° C. after pre-annealing at 500 ° C. for 60 minutes. In post-annealing, if it is kept at 450 ° C. for 60 minutes, the crystal surroundings are randomized to a pole figure peak intensity of 5 or less on the high-pressure ratio side of 22% or more. In the case of 500 ° C., the peak intensity is randomized to 5 or less at an intermediate rolling ratio of 11 to 22%, and in particular, a very low peak intensity of 4 or less in 20 minutes (Δ, No. 9) in a short time.
Overall, the bottom orientation tends to be strong at rolling reductions of 4% and 32%, and a rolling reduction of 11-22% is appropriate. From the above results, the post-annealing conditions were set to 500 ° C. and 20 minutes, where randomization is most advanced. Although data are not listed, randomization was somewhat insufficient at 500 ° C for 10 minutes.

図5は、200℃の圧延後、500℃、20分で後焼きなましする条件で、圧延前の前焼きなまし条件のみが異なる試料(表1のNo.1〜3および9)に対する後焼きなまし後の圧下率−ピーク強度図を示す。前焼きなましは、温度が高いほど、また、時間が長いほど最終工程でのランダム化が進んだ。高温焼きなましの効果として、粒界に偏析したAlの拡散とそれに伴う粒界析出物Mg17Al12の固溶が挙げられ、これには450℃、30分の焼きなましで十分である。それにもかかわらず、各圧下率でのピーク強度は高く、強い底面配向を示すこと、そして、高温、長時間で焼きなますほどピーク強度が低下していることから、後工程でのランダム化には圧延前の素板の結晶粒を粗大化させることが必要条件といえる。以下、圧延前の焼きなまし条件は、最もランダム化が進む500℃、60分とした。 Fig. 5 shows the reduction after post-annealing for samples (No. 1 to 3 and 9 in Table 1) that differ only in pre-annealing conditions before rolling under conditions of post-annealing at 500 ° C for 20 minutes after rolling at 200 ° C. A rate-peak intensity diagram is shown. In the pre-annealing, the higher the temperature and the longer the time, the more randomized in the final process. The effect of high temperature annealing includes diffusion of Al segregated at the grain boundaries and solid solution of the grain boundary precipitate Mg 17 Al 12 associated therewith, annealing at 450 ° C. for 30 minutes is sufficient. Nevertheless, the peak intensity at each rolling reduction is high, showing a strong bottom orientation, and the peak intensity decreases with annealing at a high temperature for a long time. It can be said that it is a necessary condition that the crystal grains of the base plate before rolling are coarsened. Hereinafter, the annealing conditions before rolling were set to 500 ° C. and 60 minutes where randomization proceeds most.

図6は、500℃、60分と500℃、20分でそれぞれ前焼きなましと後焼きなましを行う条件で、圧延温度のみが異なる試料(表1のNo.5、6および9)に対する後焼きなまし後の圧下率−ピーク強度図を示す。なお、プロットが錯綜するので室温(30℃)圧延のデータ(表1のNo.4)は省いた。
いずれの圧延温度でも中間圧下率の11、22%で最終的にランダム化が進んでいる。この中間圧下率でランダム化が進む傾向は、前述の前後の焼きなまし条件を振った場合と同様である。しかしながら、圧延温度に関しては、この圧下率の範囲でのピーク強度への影響は小さく、有意差は認められなかった。このことから、圧延中に板の温度が大きく変化する通常圧延(ロール非加熱)でも、同様のプロセスでランダム方位の板材の製造が可能ではないかと考えられる。なお、120℃圧延と室温圧延(30℃)のデータは、破断のためそれぞれ圧下率22%と11%までしか得られていない。
Fig. 6 shows the results after post-annealing for samples (Nos. 5, 6 and 9 in Table 1) that differ only in rolling temperature under conditions of pre-annealing and post-annealing at 500 ° C, 60 minutes, 500 ° C, and 20 minutes, respectively. A rolling reduction-peak intensity diagram is shown. Since the plots were complicated, room temperature (30 ° C.) rolling data (No. 4 in Table 1) was omitted.
Randomization is finally progressing at 11 and 22% of the intermediate rolling reduction at any rolling temperature. The tendency for randomization to proceed at the intermediate rolling reduction rate is the same as the case where the annealing conditions before and after the above are applied. However, regarding the rolling temperature, the influence on the peak intensity within the range of the rolling reduction was small, and no significant difference was observed. From this, it is considered that even in normal rolling (roll non-heating) in which the temperature of the plate greatly changes during rolling, it is possible to produce a plate with random orientation by the same process. The data for 120 ° C. rolling and room temperature rolling (30 ° C.) have been obtained only up to 22% and 11%, respectively, due to fracture.

<実施例2>
実施例2では、実施例1と同じ供試材、同じ寸法の圧延用試料を用い、実施例1で総合的に良好な結果が得られた圧延前後の焼きなまし条件、すなわち前焼きなましは500℃で60分、後焼きなましは500℃で20分の条件下で、圧延だけを偏心ロール引抜きによる恒温模擬圧延から非加熱ロールで試料のみを予加熱して行う通常圧延に置き換えた実験を行った。さらに、後焼きなましを圧延直後の集合組織が保持される200℃、5分のひずみ取り焼きなましに置き換えた実験も行った。圧延速度は実施例1と同じ100mm/sで生産ラインの実機に比べると遅く温度の低下も大きいが、これで割れずに圧延できる条件下で集合組織(結晶方位分布)が十分ランダム化すれば、工業的に十分実施可能であるといえる。圧下率は15%、17.5%および20%とし、350℃または400℃に予加熱した試料を炉から取り出して直ちに(5秒以内)圧延した。そして、実施例1と同様に、この通常圧延による一連の工程で得られた試料の極点図ピーク強度および室温V曲げ試験でのR/t値を表3に示した。
<Example 2>
In Example 2, the same specimens and rolling samples as in Example 1 were used, and the annealing conditions before and after rolling, in which comprehensively good results were obtained in Example 1, that is, the pre-annealing was at 500 ° C. An experiment was conducted in which the post-annealing was carried out at 500 ° C. for 20 minutes under the condition of 20 minutes at 500 ° C. and replaced with normal rolling in which only the sample was preheated with a non-heated roll from constant temperature simulated rolling by eccentric roll drawing. Furthermore, an experiment was conducted in which post-annealing was replaced with strain relief annealing at 200 ° C. for 5 minutes in which the texture immediately after rolling was maintained. The rolling speed is 100 mm / s, which is the same as that of Example 1, and is slower than the actual production line. However, if the texture (crystal orientation distribution) is sufficiently randomized under conditions that allow rolling without cracking, Therefore, it can be said that it is sufficiently industrially feasible. The reduction ratio was 15%, 17.5%, and 20%, and the sample preheated to 350 ° C. or 400 ° C. was taken out of the furnace and immediately rolled (within 5 seconds). Then, similarly to Example 1, Table 3 shows the pole figure peak intensity of the sample obtained in the series of steps by this normal rolling and the R / t value in the room temperature V bending test.

200℃、5分の低温、短時間の後焼きなましでは強い底面配向となることが、表3、No.15とNo.17の高いピーク強度よりわかる。そして、これらの試料ではR/t値も高い。
前焼きなまし500℃、60分、後焼きなまし500℃、20分の実施例1で確認した適正焼きなまし条件に対し、通常圧延での予加熱温度350℃において、少なくともここで行った15〜20%の圧下率では4前後の低いピーク強度とR/t値が2以下の良好な室温成形性(V曲げ特性)が得られた。一方、予加熱温度400℃においては、V曲げ特性はやや劣る程度であったが、ピーク強度は高く、底面配向が強まっている。
It can be seen from Table 3, the high peak intensities of No. 15 and No. 17 that a strong bottom orientation is obtained after low annealing at 200 ° C. for 5 minutes and short annealing. And these samples also have a high R / t value.
Pre-annealing 500 ° C., 60 minutes, post-annealing 500 ° C., 20 minutes For the proper annealing conditions confirmed in Example 1, at a preheating temperature of 350 ° C. in normal rolling, at least 15-20% reduction performed here. In terms of the ratio, a low peak strength of around 4 and a good room temperature formability (V bending property) with an R / t value of 2 or less were obtained. On the other hand, at the preheating temperature of 400 ° C., the V-bending characteristics were somewhat inferior, but the peak intensity was high and the bottom surface orientation was strengthened.

以上の結果より、非加熱ロールの圧延機で素板のみを予加熱して行う通常圧延での製造工程においても、最終パスの前後で500℃、1時間の前焼きなましと500℃、20分の後焼きなましにより、基礎実験と同様のランダム化した集合組織の板を製造することが十分可能であると言える。その際、予加熱温度が高過ぎると六方晶マグネシウム合金の非底面のすべり系が活動しやすくなるため、高温前焼鈍で得た粗大粒材の圧延に特徴的な双晶や変形帯を多く含んだ組織が形成されにくく、集合組織のランダム化が阻害される。この温度の上限は圧延条件(特に圧延速度)に依存するので一概に言えないが、エネルギー効率の点からも割れが生じない範囲で低めの予加熱温度に設定するのが望ましい。   From the above results, even in the manufacturing process in the normal rolling in which only the base plate is preheated with a rolling mill of a non-heated roll, 500 ° C., 1 hour pre-annealing and 500 ° C., 20 minutes before and after the final pass. By post-annealing, it can be said that it is sufficiently possible to produce a random textured plate similar to the basic experiment. At that time, if the preheating temperature is too high, the non-bottom slip system of the hexagonal magnesium alloy is likely to be active, so it contains many twins and deformation bands characteristic of rolling of coarse grains obtained by high-temperature pre-annealing. It is difficult to form a tissue, and the randomization of the texture is inhibited. The upper limit of this temperature depends on the rolling conditions (especially the rolling speed) and cannot be generally stated. From the viewpoint of energy efficiency, it is desirable to set a lower preheating temperature within a range in which cracking does not occur.

本発明は、合金組成を変更するのではなく、展伸用マグネシウム合金として唯一JISで規格化され、携帯用電子機器の筐体として実績のあるAZ31合金を、特殊な加工を施すことなく、通常の圧延工程の最終パスの前後に高温焼きなましを行うだけで、結晶方位分布がランダム化した底面配向のきわめて弱い集合組織にすることができ、その結果、室温成形性が飛躍的に向上することを特徴とする。本発明により、室温プレス成形できることが不可欠とされた自動車のシェル構造部品において、軽量化のためのマグネシウム合金の利用に大きな一歩を踏み出したと言える。なにより、既にマグネシウム合金の圧延ラインを有する工場であれば設備投資なしですぐにでも実施でき、わずかなランニングコストのアップでマグネシウム合金のネックであった低温、特に室温での成形性を改善できることのメリットは大きく、すでに加熱プレス成形で量産されている分野にも利用が拡がるものと期待できる。   The present invention does not change the alloy composition, it is the only magnesium magnesium alloy that is standardized by JIS and has a proven track record as a casing for portable electronic devices. By simply performing high-temperature annealing before and after the final pass of the rolling process, it is possible to obtain a texture with a very weak bottom orientation with randomized crystal orientation distribution, resulting in a dramatic improvement in room temperature formability. Features. According to the present invention, it can be said that a major step has been taken in the use of a magnesium alloy for reducing the weight of a shell structure part of an automobile, which is indispensable to be press-molded at room temperature. Above all, if it is a factory that already has a magnesium alloy rolling line, it can be carried out immediately without capital investment, and it can improve the formability at low temperatures, especially room temperature, which has been a bottleneck of magnesium alloys, with a slight increase in running costs. It is expected that the use will be expanded to fields already mass-produced by hot press molding.

恒温圧延の前後に高温焼きなましする本発明の実施例1中の表1、No.10の工程(右列)と、通常の低温前焼きなましの後、同様に恒温圧延および高温後焼きなましする表2、No.12(比較例)の工程(左列)の各段階におけるミクロ組織である。Table 1 in Example 1 of the present invention, which is subjected to high-temperature annealing before and after isothermal rolling, No. 10 step (right column), and after normal low-temperature pre-annealing, Table 2 is also subjected to constant-temperature rolling and high-temperature post-annealing. It is a microstructure in each stage of the process of No. 12 (comparative example) (left column). 図1と同じ二通りの工程の各段階における集合組織(結晶方位分布)を示すX線回折(シュルツの反射法)で求めた[0001]極点図、およびその極点図のRD方向(圧延方向)断面である。[0001] pole figure obtained by X-ray diffraction (Schulz reflection method) showing the texture (crystal orientation distribution) at each stage of the same two processes as in FIG. 1, and the RD direction (rolling direction) of the pole figure It is a cross section. 本発明のマグネシウム合金板の処理方法の実施例1で用いられた偏心ロール引抜きによる模擬圧延装置の原理図である。It is a principle figure of the simulation rolling apparatus by the eccentric roll drawing used in Example 1 of the processing method of the magnesium alloy plate of this invention. 実施例1(No.7,8,9,10)の最終段階での極点図のピーク強度に及ぼす前焼きなまし条件と圧下率の影響を示すグラフである。It is a graph which shows the influence of pre-annealing conditions and reduction ratio on the peak intensity of the pole figure in the final stage of Example 1 (No. 7, 8, 9, 10). 実施例1(No.1,2,3,9)の最終段階での極点図のピーク強度に及ぼす圧延温度と圧下率の影響を示すグラフである。It is a graph which shows the influence of the rolling temperature and the reduction rate on the peak intensity of the pole figure in the final stage of Example 1 (No. 1, 2, 3, 9). 実施例1(No.5,6,9)の最終段階での極点図のピーク強度に及ぼす前焼きなまし条件と圧下率の影響を示すグラフである。It is a graph which shows the influence of pre-annealing conditions and rolling reduction on the peak intensity of the pole figure in the final stage of Example 1 (No. 5, 6, 9).

符号の説明Explanation of symbols

1 偏心ロール
2 チャック
T 試料
1 Eccentric roll 2 Chuck T Sample

Claims (6)

Al:2.5〜3.5重量%、Zn:0.5〜1.5重量%、Mn:0.2〜1.0重量%を含有し、残部がMgおよび不可避不純物からなる組成を有し、X線回折(シュルツの反射法)による[0001]極点図の正規化したピーク強度値で5以下まで結晶方位分布がランダム化した集合組織を有することを特徴とする室温成形性に優れたマグネシウム合金板。   Al: 2.5 to 3.5% by weight, Zn: 0.5 to 1.5% by weight, Mn: 0.2 to 1.0% by weight, with the balance consisting of Mg and inevitable impurities Furthermore, it has excellent room temperature formability characterized by having a texture in which the crystal orientation distribution is randomized to 5 or less with a normalized peak intensity value of the [0001] pole figure by X-ray diffraction (Schulz reflection method) Magnesium alloy plate. マグネシウム合金板を450℃以上の形状を保持できる温度で前焼きなましして結晶粒を成長させた後圧延し、再び450℃以上の形状を保持できる温度で後焼きなましして迅速に再結晶させ、結晶方位分布をランダム化させることにより、室温成形性に優れたマグネシウム合金板を得ることを特徴とするマグネシウム合金板の処理方法。   A magnesium alloy sheet is pre-annealed at a temperature that can maintain a shape of 450 ° C. or higher, and is grown and then rolled, and then again annealed at a temperature that can hold a shape of 450 ° C. or higher and rapidly recrystallized to form a crystal. A magnesium alloy sheet processing method characterized by obtaining a magnesium alloy sheet excellent in room temperature formability by randomizing the orientation distribution. 前記前焼きなましの時間が30〜120分であり、前記後焼きなましの時間が20〜60分である請求項2に記載のマグネシウム合金板の処理方法。   The method for treating a magnesium alloy sheet according to claim 2, wherein the pre-annealing time is 30 to 120 minutes, and the post-annealing time is 20 to 60 minutes. 前記圧延において、前記前焼きなまししたマグネシウム合金板を室温または120〜200℃にロールごと均一加熱して恒温圧延する請求項2または3に記載のマグネシウム合金板の処理方法。   The processing method of the magnesium alloy plate of Claim 2 or 3 which carries out the isothermal rolling by heating uniformly the said alloy alloy plate annealed to the said room temperature or 120-200 degreeC with the roll in the said rolling. 前記圧延において、前記前焼きなまししたマグネシウム合金板を350℃以下の圧延時に割れを生じない温度に予加熱してからロール非加熱の圧延機で圧延する請求項2または3に記載のマグネシウム合金板の処理方法。   4. The magnesium alloy sheet according to claim 2, wherein in the rolling, the pre-annealed magnesium alloy sheet is preheated to a temperature at which cracking does not occur during rolling at 350 ° C. or lower, and then rolled with a non-rolling rolling mill. Processing method. 前記前焼きなまししたマグネシウム合金板を圧下率11〜22%で圧延する請求項2〜5のいずれか1つに記載のマグネシウム合金板の処理方法。   The method for processing a magnesium alloy plate according to any one of claims 2 to 5, wherein the pre-annealed magnesium alloy plate is rolled at a reduction rate of 11 to 22%.
JP2008241162A 2008-09-19 2008-09-19 Magnesium alloy plate excellent in room temperature formability and processing method of magnesium alloy plate Expired - Fee Related JP5527498B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008241162A JP5527498B2 (en) 2008-09-19 2008-09-19 Magnesium alloy plate excellent in room temperature formability and processing method of magnesium alloy plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008241162A JP5527498B2 (en) 2008-09-19 2008-09-19 Magnesium alloy plate excellent in room temperature formability and processing method of magnesium alloy plate

Publications (2)

Publication Number Publication Date
JP2010070821A true JP2010070821A (en) 2010-04-02
JP5527498B2 JP5527498B2 (en) 2014-06-18

Family

ID=42202881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008241162A Expired - Fee Related JP5527498B2 (en) 2008-09-19 2008-09-19 Magnesium alloy plate excellent in room temperature formability and processing method of magnesium alloy plate

Country Status (1)

Country Link
JP (1) JP5527498B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102304684A (en) * 2011-09-08 2012-01-04 重庆大学 Method for improving plastic deformation capacity of magnesium alloy plate
CN102492882A (en) * 2011-12-05 2012-06-13 大连理工大学 Capture and conversion rule for simulation of solidified microstructure of magnesium alloy
WO2012077758A1 (en) * 2010-12-08 2012-06-14 独立行政法人産業技術総合研究所 Method for producing magnesium alloy rolled stock, magnesium alloy rolled stock, and press-molded body
JP2012201928A (en) * 2011-03-25 2012-10-22 Nippon Kinzoku Co Ltd Magnesium alloy sheet material excellent in cold workability, and method for producing the same
CN102744258A (en) * 2012-07-27 2012-10-24 西部钛业有限责任公司 Rolling processing method of AZ31B magnesium alloy wide-width thin plates
CN103103463A (en) * 2011-11-11 2013-05-15 通用汽车环球科技运作有限责任公司 Making ductility-enhanced magnesium alloy sheet materials
WO2013132661A1 (en) 2012-03-09 2013-09-12 オムロン株式会社 Surface light source device
WO2013187419A1 (en) * 2012-06-13 2013-12-19 住友電気工業株式会社 Magnesium alloy plate and magnesium alloy member
CN109834169A (en) * 2017-11-24 2019-06-04 比亚迪股份有限公司 Magnesium alloy plate heat pressing forming device, hot-press molding method and its hot-forming part and application
JP2021055168A (en) * 2019-10-01 2021-04-08 国立研究開発法人産業技術総合研究所 Magnesium alloy sheet

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004027320A (en) * 2002-06-27 2004-01-29 Matsushita Electric Ind Co Ltd Block-like magnesium alloy material for plastic working, and its working method
JP2004084023A (en) * 2002-08-28 2004-03-18 Mitsubishi Heavy Ind Ltd Magnesium material having excellent workability
JP2005298885A (en) * 2004-04-09 2005-10-27 Nippon Kinzoku Co Ltd Magnesium or magnesium alloy sheet having excellent plastic workability and its production method
JP2006144059A (en) * 2004-11-18 2006-06-08 Mitsubishi Alum Co Ltd Magnesium alloy sheet superior in press formability, and manufacturing method therefor
JP2007083261A (en) * 2005-09-20 2007-04-05 National Institute Of Advanced Industrial & Technology Press-formed body using magnesium alloy large cross-rolled material
JP2007131915A (en) * 2005-11-10 2007-05-31 Univ Waseda Manufacturing method of magnesium alloy sheet, and the magnesium alloy sheet
JP2008214668A (en) * 2007-02-28 2008-09-18 National Institute Of Advanced Industrial & Technology Magnesium alloy press-formed body and its manufacturing method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004027320A (en) * 2002-06-27 2004-01-29 Matsushita Electric Ind Co Ltd Block-like magnesium alloy material for plastic working, and its working method
JP2004084023A (en) * 2002-08-28 2004-03-18 Mitsubishi Heavy Ind Ltd Magnesium material having excellent workability
JP2005298885A (en) * 2004-04-09 2005-10-27 Nippon Kinzoku Co Ltd Magnesium or magnesium alloy sheet having excellent plastic workability and its production method
JP2006144059A (en) * 2004-11-18 2006-06-08 Mitsubishi Alum Co Ltd Magnesium alloy sheet superior in press formability, and manufacturing method therefor
JP2007083261A (en) * 2005-09-20 2007-04-05 National Institute Of Advanced Industrial & Technology Press-formed body using magnesium alloy large cross-rolled material
JP2007131915A (en) * 2005-11-10 2007-05-31 Univ Waseda Manufacturing method of magnesium alloy sheet, and the magnesium alloy sheet
JP2008214668A (en) * 2007-02-28 2008-09-18 National Institute Of Advanced Industrial & Technology Magnesium alloy press-formed body and its manufacturing method

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012077758A1 (en) * 2010-12-08 2012-06-14 独立行政法人産業技術総合研究所 Method for producing magnesium alloy rolled stock, magnesium alloy rolled stock, and press-molded body
JP2012201928A (en) * 2011-03-25 2012-10-22 Nippon Kinzoku Co Ltd Magnesium alloy sheet material excellent in cold workability, and method for producing the same
CN102304684A (en) * 2011-09-08 2012-01-04 重庆大学 Method for improving plastic deformation capacity of magnesium alloy plate
CN103103463B (en) * 2011-11-11 2015-07-22 通用汽车环球科技运作有限责任公司 Making ductility-enhanced magnesium alloy sheet materials
CN103103463A (en) * 2011-11-11 2013-05-15 通用汽车环球科技运作有限责任公司 Making ductility-enhanced magnesium alloy sheet materials
CN102492882A (en) * 2011-12-05 2012-06-13 大连理工大学 Capture and conversion rule for simulation of solidified microstructure of magnesium alloy
WO2013132661A1 (en) 2012-03-09 2013-09-12 オムロン株式会社 Surface light source device
WO2013187419A1 (en) * 2012-06-13 2013-12-19 住友電気工業株式会社 Magnesium alloy plate and magnesium alloy member
JPWO2013187419A1 (en) * 2012-06-13 2016-02-04 住友電気工業株式会社 Magnesium alloy plate and magnesium alloy member
CN102744258A (en) * 2012-07-27 2012-10-24 西部钛业有限责任公司 Rolling processing method of AZ31B magnesium alloy wide-width thin plates
CN109834169A (en) * 2017-11-24 2019-06-04 比亚迪股份有限公司 Magnesium alloy plate heat pressing forming device, hot-press molding method and its hot-forming part and application
CN109834169B (en) * 2017-11-24 2020-11-06 比亚迪股份有限公司 Magnesium alloy plate hot-press forming method, hot-press formed part and application thereof
JP2021055168A (en) * 2019-10-01 2021-04-08 国立研究開発法人産業技術総合研究所 Magnesium alloy sheet
JP7410542B2 (en) 2019-10-01 2024-01-10 国立研究開発法人産業技術総合研究所 magnesium alloy plate

Also Published As

Publication number Publication date
JP5527498B2 (en) 2014-06-18

Similar Documents

Publication Publication Date Title
JP5527498B2 (en) Magnesium alloy plate excellent in room temperature formability and processing method of magnesium alloy plate
Wang et al. Effects of texture and grain size on mechanical properties of AZ80 magnesium alloys at lower temperatures
Shahmir et al. Using heat treatments, high-pressure torsion and post-deformation annealing to optimize the properties of Ti-6Al-4V alloys
JP5050199B2 (en) Magnesium alloy material manufacturing method and apparatus, and magnesium alloy material
JP2019173176A (en) Aluminum sheet for automobile having reduced or no surface roping and capable of being molded at high level, and manufacturing method therefor
JP4189687B2 (en) Magnesium alloy material
CN108472699B (en) Magnesium alloy sheet material and method for producing same
Kohzu et al. Texture randomization of AZ31 magnesium alloy sheets for improving the cold formability by a combination of rolling and high-temperature annealing
TWI547566B (en) Steel for mechanical construction for cold working and its manufacturing method
JP2004060048A (en) Magnesium alloy sheet and method for producing the same
WO2012032610A1 (en) Titanium material
KR101743380B1 (en) Titanium sheet
Lee et al. Enhanced yield symmetry and strength-ductility balance of caliber-rolled Mg–6Zn-0.5 Zr with ultrafine-grained structure and bulk dimension
JP4425368B2 (en) Manufacturing method of high carbon steel sheet with excellent local ductility
Lin et al. Impact of solid-solution treatment on microstructural characteristics and formability of rotary-swaged 2024 alloy tubes
CN114293102B (en) Manufacturing method of 17CrNiMo6 forge piece
JP5376507B2 (en) Magnesium alloy sheet having excellent cold formability and method for producing the same
JP4782987B2 (en) Magnesium-based alloy screw manufacturing method
JP4306547B2 (en) Magnesium alloy plate and manufacturing method thereof
WO2018030231A1 (en) Method for producing pure titanium metal material thin sheet and method for producing speaker diaphragm
JP2006299295A (en) High temperature molding method for aluminum alloy
JP2010082688A (en) METHOD FOR MANUFACTURING beta-TYPE TITANIUM ALLOY PLATE, AND beta-TYPE TITANIUM ALLOY PLATE
RU2692539C1 (en) Method of obtaining volumetric blanks of high-manganese steel with recrystallized fine-grained structure
Lee et al. Effects of {10–12} twins on dynamic torsional properties of extruded AZ31 magnesium alloy
JP2012201928A (en) Magnesium alloy sheet material excellent in cold workability, and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130611

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130702

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140325

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140401

R150 Certificate of patent or registration of utility model

Ref document number: 5527498

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees