WO2012077758A1 - Method for producing magnesium alloy rolled stock, magnesium alloy rolled stock, and press-molded body - Google Patents

Method for producing magnesium alloy rolled stock, magnesium alloy rolled stock, and press-molded body Download PDF

Info

Publication number
WO2012077758A1
WO2012077758A1 PCT/JP2011/078455 JP2011078455W WO2012077758A1 WO 2012077758 A1 WO2012077758 A1 WO 2012077758A1 JP 2011078455 W JP2011078455 W JP 2011078455W WO 2012077758 A1 WO2012077758 A1 WO 2012077758A1
Authority
WO
WIPO (PCT)
Prior art keywords
rolling
magnesium alloy
alloy rolled
rolled
less
Prior art date
Application number
PCT/JP2011/078455
Other languages
French (fr)
Japanese (ja)
Inventor
新ショウ 黄
鈴木 一孝
千野 靖正
満 坂本
馬渕 守
英樹 森
Original Assignee
独立行政法人産業技術総合研究所
国立大学法人京都大学
日立金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人産業技術総合研究所, 国立大学法人京都大学, 日立金属株式会社 filed Critical 独立行政法人産業技術総合研究所
Priority to JP2012547910A priority Critical patent/JP5700379B2/en
Publication of WO2012077758A1 publication Critical patent/WO2012077758A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/06Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of magnesium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/02Alloys based on magnesium with aluminium as the next major constituent

Definitions

  • the present invention relates to a method for producing a magnesium alloy rolled material, a magnesium alloy rolled material produced using the production method, and a press-molded body obtained by press-working the rolled material.
  • Magnesium has the lowest density among practical structural metal materials, and its density is 1.7 g / cm 3 . Magnesium is attracting high attention as a next-generation structural lightweight material because it has the ease of recycling unique to metal materials and has abundant resources, and is used as a structural member for home appliances and transportation equipment. Has been.
  • many magnesium products in Japan are manufactured by casting methods such as die casting.
  • the current production methods using casting methods have problems such as the need for post-processing to compensate for casting defects, low yield, and problems with the strength and rigidity of members.
  • press molding has a high yield, and it can be said that it is an effective means of expanding demand for magnesium products because it can increase the strength and toughness of the product simultaneously with molding. If a molded body can be manufactured by press molding from a magnesium alloy rolled material manufactured using a magnesium alloy, a thin and high-strength molded body can be manufactured by an inexpensive process. Many demands can be expected for the products.
  • magnesium alloys have room temperature formability due to the fact that non-bottom slip hardly occurs at room temperature due to their crystal structure and that a strong (0002) plane texture is formed simultaneously with rolling. Very low is a problem.
  • the magnesium alloy rolled material is given a property of room temperature formability comparable to that of aluminum alloy rolled material, that is, an Erichsen value at room temperature of at least 7.0 or more.
  • an Erichsen value at room temperature of at least 7.0 or more is a strong demand for the development of a new magnesium alloy rolled material manufacturing technology and products having excellent easy formability.
  • the (0002) plane texture of the magnesium alloy rolled material obtained by the above-described method has a pole inclined about 35 degrees in the TD direction, that is, the direction perpendicular to the rolling direction. It is relatively difficult to deform in the direction, that is, the rolling direction. Therefore, eliminating the anisotropy of the mechanical properties has become a problem for practical use of the magnesium alloy rolled material.
  • the magnesium alloy rolled material that has been subjected to repeated bending work tends to deform in the RD direction because a pole inclined about 45 degrees in the RD direction appears in the (0002) plane texture, but in the TD direction, It is difficult to deform. Therefore, as in the case of the above-described Patent Document 1, eliminating the anisotropy of mechanical properties is a problem for practical use of the magnesium alloy rolled material manufactured by the above-described method. Moreover, in order to implement this method, it is necessary to install ancillary equipment for performing repeated bending work, which is also a barrier to the practical use of the magnesium alloy rolled material.
  • the present inventors have used a plate material made of an Mg—Al—Zn based magnesium alloy up to a predetermined sample temperature, that is, 490 ° C. to 566 ° C.
  • Patent Document 3 The principle of this method is that the sample surface temperature at the time of rolling is raised to a high temperature of 450 ° C. or higher, and rolling is performed in a state where the activity of non-bottom sliding is activated.
  • the magnesium alloy rolled material produced by this method does not have poles greatly inclined in the TD direction or the RD direction, it has less anisotropy than the inventions described in Patent Document 1 and Patent Document 2, and (0002 )
  • the relative strength of the surface texture becomes lower than that of the conventional magnesium alloy rolled material, and exhibits an excellent room temperature formability equivalent to that of the aluminum alloy rolled material, that is, an Erichsen value of 7.0 or more.
  • this technique is attracting attention as a technique that can produce a magnesium alloy rolled material with excellent formability at low cost by using existing rolling equipment without using expensive elements such as light rare earth elements.
  • the composition of the sample, the heating time of the sample, the heating temperature of the sample, and the total rolling rate of the sample are defined.
  • the rolling process of the magnesium alloy rolled material has other important operation parameters such as the surface temperature of the rolling roll, and the resulting magnesium alloy rolled material has excellent room temperature forming due to fluctuations in various conditions other than those specified above. There is a case where it does not exhibit sex, which is a problem in practical use.
  • the present invention provides a method for producing a magnesium alloy rolled material, which can produce an Mg—Al—Mn based or Mg—Al—Zn based magnesium alloy rolled material containing a small amount of Mn with a high yield, and aluminum.
  • Magnesium alloy rolled material produced by using the above production method which has a room temperature formability comparable to that of a rolled alloy material and can be used in a wide range of fields such as space, aeronautical materials, electronic equipment materials, and automotive parts, and the magnesium
  • An object of the present invention is to provide a press-formed body obtained by pressing a rolled alloy material.
  • the present inventors have appropriately set the surface temperature of the plate material to be rolled and the temperature rising time for the surface temperature. And having the same room temperature formability as aluminum alloy rolled material by optimizing the surface temperature of the rolling roll used for rolling the plate material, and rolling the plate material and annealing the rolled plate material. The inventors have found that a rolled magnesium alloy material can be produced with a high yield, and have reached the present invention.
  • the present invention for solving the above-described problems comprises the following technical means.
  • aluminum (Al) is contained in an amount of 2.0 to 8.0%
  • manganese (Mn) is contained in an amount of 0 to 1.0% or less (not including 0)
  • the balance being magnesium (Mg) and inevitable
  • the surface temperature of the plate is set to 480 to 566 ° C. in advance in less than 8 minutes
  • the surface temperature of the rolling roll for rolling the plate is set to 50 to 250 ° C.
  • a method for producing a magnesium alloy rolled material the method comprising rolling at a rolling rate of 5% or more, and annealing the plate material after rolling by the rolling.
  • a rolled magnesium alloy material having excellent formability which is made of an Mg—Al—Mn alloy or an Mg—Al—Zn alloy containing a very small amount of Mn, can be produced.
  • the obtained rolled magnesium alloy material has a fine average crystal grain size, that is, less than 30 ⁇ m, and the normality of the (0002) pole figure as measured by the XRD method (Schulz reflection method).
  • the relative strength of the (0002) plane texture in the central part of the thickness of the converted RD-TD plane is less than 5.0 and the room temperature Erichsen value is 7.0 or more, which shows excellent room temperature formability.
  • a magnesium alloy rolled material having excellent room temperature formability can be obtained without using rare earth elements that are feared of resource depletion and price increase, and using existing equipment. It can be manufactured with high process and low cost.
  • the magnesium alloy rolled material of the present invention is excellent in formability, the formability by press working is good, so that a press-formed product can be produced easily and easily. Manufacture of articles such as a body casing is facilitated.
  • [Comparative Example 1] shows the result of the sample produced in Comparative Example 1
  • [ [Example 1] shows the result of the sample manufactured in Example 1
  • [Comparative Example 2] shows the result of the sample manufactured in Comparative Example 2.
  • FIG. 3 is a result of observing the structure of an RD-ND surface of the rolled AZ31B alloy manufactured in the examples by an optical microscope, and shows the structures before and after annealing.
  • [Comparative Example 1] is Comparative Example 1
  • Example 1] shows the result of the sample manufactured in Example 1
  • [Comparative Example 2] shows the result of the sample manufactured in Comparative Example 2.
  • the surface temperature of the plate material to be rolled and the temperature rising time to the surface temperature are optimized and the rolling roll used for rolling the plate material is used.
  • the purpose is to optimize the surface temperature and to roll the plate.
  • the surface temperature of the plate material to be rolled is previously raised to 480 to 566 ° C. for less than 8 minutes, preferably less than 5 minutes, and the surface temperature of the rolling roll used for rolling is previously set to 50 to 250.
  • the temperature is raised to 0 ° C., preferably 60 to 220 ° C.
  • the magnesium alloy rolling material of this invention excellent in formability can be obtained by annealing with respect to the plate material after rolling which rolled the said plate material.
  • the plate material to be rolled contains 2.0% to 8.0% aluminum (Al) and 0% to 1.0% (not including 0) manganese (Mn) in mass%.
  • Al aluminum
  • Mn manganese
  • the above-mentioned plate material composed of magnesium (Mg) and unavoidable impurities is applied, but a plate material containing 0.2 to 2.0% by mass of zinc (Zn) is also applicable.
  • the structure of the post-rolled plate material before annealing shows a deformation structure including twins
  • the structure of the post-annealed plate material after annealing the rolled plate material has an average crystal grain size It shows a fine structure of less than 30 ⁇ m.
  • the post-annealed plate material having such a structure is measured by the XRD method (Schulz reflection method), and the (0002) plane texture in the central portion of the plate thickness of the normalized RD-TD surface of the (0002) pole figure is shown. It exhibits excellent room temperature formability with a relative strength of less than 5.0 and a room temperature Erichsen value of 7.0 or more, that is, the magnesium alloy rolled material of the present invention.
  • room temperature may be the same as room temperature as a commonly used term.
  • the magnesium alloy rolled material of the present invention has excellent room temperature formability, it can be easily and easily pressed. Therefore, the rolled material is pressed to easily produce the press-formed body of the present invention. It is possible to provide various machined products that take advantage of the superior properties of magnesium alloys.
  • the (0002) plane texture (crystal orientation distribution) is measured by X-ray diffraction (Schulz reflection method), and the X-ray diffraction strength from the (0002) plane—crystal Corresponding to the strength of the orientation of the axis ⁇ is obtained as a relative intensity value, and can be expressed, for example, in a (0002) pole figure to obtain the distribution pattern of the relative intensity value and the peak intensity value. Based on the information obtained in this way, it is possible to compare and compare the degree of randomization of the texture, that is, the degree of weakening of the anisotropy, etc. with respect to the post-rolled plate material and post-annealed plate material manufactured under various conditions. it can.
  • “relative strength” is based on internal standards.
  • Internal standards are all applied to the texture analysis used in the present invention.
  • the internal standard is a technique for standardizing data using intensity data of the test sample itself.
  • For the definition of the internal standard see, for example, the RIGAKU X-ray Manual, Windows (registered trademark) version Cat. No. 9258J102 / P101, RINT 2000 / PC Software Positive Point Analysis (Ver.2.0) Instruction Manual Manual No. There is an explanation in MJ13203B05.
  • the outline of the measurement by X-ray diffraction will be supplemented below.
  • the measurement is performed by adjusting a holder that can rotate the sample to be measured around the vertical axis of the sample surface, that is, the normal line and the horizontal axis, and satisfying the Bragg angle satisfying the target reflection diffraction condition, and the measurement.
  • the holder After fixing the sample to the Bragg angle of the pole, the holder is rotated around the vertical axis and the horizontal axis at angles ⁇ and ⁇ , respectively, and the diffraction intensity at that time is measured.
  • the measured diffraction intensity represents the density of the pole (pole density), and if correction is required depending on the thickness of the sample, etc., it is passed through common sense correction, and the obtained pole density is plotted with respect to ⁇ angle and ⁇ angle using contour lines. By doing so, the above-described pole figure can be obtained.
  • the production method of the present invention contains 2.0 to 8.0% of aluminum (Al) and 0 to 1.0% or less (not including 0) of manganese (Mn) in mass%. Then, a plate material comprising the balance of magnesium (Mg) and inevitable impurities, or a plate material containing 0.2 to 2.0% by mass of zinc (Zn) is subjected to rolling.
  • AZ31B, AZ61, AZ80, AM50, AM60 etc. are mentioned as those corresponding to the chemical component.
  • magnesium has the lowest density among practical structural metal materials, has ease of recycling unique to metal materials, and has abundant resources, making it suitable as a next-generation structural lightweight material. It is.
  • Aluminum (Al) is preferably 2.0 to 8.0%, and manganese (Mn) is preferably 0 to 1.0% or less (excluding 0).
  • Mn manganese
  • Al is contained in this range, significant solid solution strengthening is achieved, and when Al and Mn are contained in this range, an Al—Mn intermetallic compound is precipitated inside the Mg alloy, which is suitable as an alloy. This is because it is possible to have a high strength. If the Al content exceeds 8.0%, the hot workability decreases, and if it is less than 2.0%, it is difficult to provide a suitable strength, so this should be avoided. Further, if the content of Mn exceeds 1.0%, the intermetallic compound is coarsened and the strength tends to be lowered, so this should be avoided.
  • Zn zinc
  • it can contain 0.2 to 2.0% by mass of zinc (Zn). This is because, if Zn is further contained in the range, it can contribute to improvement of mechanical properties such as strength as in the case of Al. Note that if the Zn content exceeds 2.0%, the hot workability deteriorates and should be avoided.
  • the plate material to be rolled has a surface temperature of 480 to 566 ° C. for less than 8 minutes in advance. More preferably, the temperature is raised in less than 5 minutes, and the surface temperature of the rolling roll used for rolling is raised to 50 to 250 ° C., more preferably 60 to 220 ° C., and then rolling.
  • the deformation structure including twins formed in the plate material after rolling before annealing was weakened by the (0002) plane texture accompanying recrystallization during annealing, and excellent after annealing. It was found that room temperature formability was developed.
  • the surface temperature of the plate material used for rolling is preliminarily raised to 480 to 566 ° C. in less than 8 minutes because the plate material itself has a temperature range of 450 ° C. or higher where the non-bottom slide can slide at the moment of rolling. This is to keep non-bottom dislocations at the grain boundaries of the deformed structure.
  • the lower limit of the surface temperature of the plate material to be preliminarily raised is defined as 480 ° C. or higher because the surface temperature of the plate material is lowered by the contact with the rolling roll during rolling. This is because the surface temperature of the plate material should be increased by an amount corresponding to the temperature drop.
  • the reason why the upper limit value is set to 566 ° C. or less is that when the plate material is heated to a temperature exceeding the upper limit value, the plate material ignites and easily burns.
  • Patent Document 3 stipulates that the surface temperature of the plate material used for rolling is raised to 490 to 566 ° C.
  • the present invention specifies that the surface temperature of the plate material used for rolling is raised to 480 to 566 ° C. did. Both have a temperature difference of 10 ° C. at the lower limit. This is because, in the present invention, by optimizing the relationship between the surface temperature of the plate material to be rolled and the surface temperature of the rolling roll, even when the lower limit is lowered by 10 ° C., This is because it can be maintained in the temperature range of 450 ° C. or higher, and rolling can be performed under conditions in which non-bottom sliding is active.
  • the temperature is raised to a target temperature in less than 5 minutes.
  • a method for raising the surface temperature of the plate material used for rolling in a short time for example, a simple method in which the temperature of the heating furnace used for raising the temperature is set high or a rapid heating method, that is, electric heating or infrared heating. There is a way to use. It should be noted that when the temperature of the plate material is increased, it will be dissolved if it exceeds the solidus temperature of 566 ° C., so this temperature should not be exceeded.
  • the surface temperature of the rolling roll used for rolling which greatly affects the temperature state of the plate material during rolling, is important.
  • the surface temperature of the rolling roll is set to 50 to 250 ° C. in advance. As described above, this is to maintain the sheet material at the moment of rolling in a temperature range of 450 ° C. or higher where the non-bottom slide slides, and the relationship with the surface temperature of the sheet material used for rolling, and the rolling roll
  • the surface temperature of the rolling roll used for rolling was defined as an appropriate range in consideration of the surface state that does not cause rough surface.
  • the surface temperature of the rolling roll is set to less than 50 ° C., even if the surface temperature of the plate material used for rolling is raised to 480-566 ° C. in a short time, the surface of the plate material is brought into contact with the rolling roll during rolling. The temperature drops to a temperature lower than 450 ° C.
  • the surface temperature of the rolling roll is set to a temperature exceeding 250 ° C.
  • recrystallization occurs during rolling, and it becomes difficult to accumulate high-density non-bottom dislocations at grain boundaries and twin interfaces. That is, under this condition, static recrystallization cannot be caused in the annealing process after rolling, it becomes difficult to generate recrystallized grains having an orientation different from that of the base material, and the surface of the rolling roll Rough skin and fine cracks occur, and in some cases, there is an increased possibility of serious problems such as surface peeling.
  • a method of raising the temperature of the surface of the rolling roll there is a method of using an external heating device such as a hot air dryer, a gas burner, a resistance furnace or the like disposed in the immediate vicinity of the rolling roll.
  • an external heating device such as a hot air dryer, a gas burner, a resistance furnace or the like disposed in the immediate vicinity of the rolling roll.
  • a SiC hot spring or a heating fluid is disposed as a heat source inside the rolling roll and the temperature is raised not only on the surface of the rolling roll, but can be selected according to manufacturing conditions.
  • Non-patent Document 3 Li et al. (Non-patent Document 3) and Barnett et al. (Non-Patent Document 4) have found that a deformed structure containing twins is formed in the Mg alloy structure subjected to cold rolling, and the sample is annealed. It is reported that recrystallized grains are generated with twins as nuclei. These findings suggest that the deformed structure becomes a nucleus for generating recrystallized grains.
  • the surface temperature of the rolling roll used for rolling is set to 50 to 250 ° C., and the surface temperature of the plate material used for rolling is raised to the above-described temperature in advance.
  • the sheet material can be maintained in a temperature range of 450 ° C. or higher where non-bottom sliding can be active during rolling, so that non-bottom dislocations are accumulated at the grain boundaries or twin interfaces at high density during rolling. An organization can be formed.
  • tissue when the board
  • the surface temperature of the rolling roll should be 60 to 220 ° C. in consideration of the relationship with the surface temperature of the plate material to be heated in advance, so that the surface condition of the plate material and the rolling roll during rolling is more stable. desirable.
  • Non-patent Document 5 when high-density dislocations are accumulated at grain boundaries and twin interfaces in a plate after rolling, static recrystallization occurs with annealing.
  • the criticality of the column surface ⁇ a> slip and the conical surface ⁇ c + a> slip (non-bottom slip) Since the decomposition shear stress (CRSS) is sufficiently larger than the CRSS of the bottom surface ⁇ a> slip, the non-bottom slip can hardly be activated.
  • the surface temperature of the plate is rolled at 450 ° C.
  • the non-bottom slip CRSS is almost the same value as the bottom ⁇ a> slip CRSS, so the non-bottom slip is active.
  • Patent Document 3 Therefore, when rolling is performed with the surface temperature of the plate material raised to 450 ° C. or higher, non-bottom slip is active in the deformed rolling grains. Will accumulate at grain boundaries and twin interfaces.
  • non-bottom sliding occurs actively along with bottom sliding during rolling, and conventional warm rolling
  • the accumulation of non-bottom dislocations that could not be obtained in the case occurs at grain boundaries or twin interfaces.
  • a plate material in which non-bottom dislocations are accumulated at a high density can accumulate different types of dislocations at grain boundaries from a plate material obtained by warm rolling in which bottom dislocations are accumulated at a high density.
  • the present invention is applied only to final rolling. By rolling, abnormal grain growth of crystal grains in the plate after rolling can be minimized.
  • the texture strength is weakened by utilizing a deformed structure and high-density dislocations including twins accumulated in the post-rolled sheet material after the rolling described above. It is necessary to perform annealing, that is, complete annealing on the above-described rolled plate material. Specifically, it is preferable to perform heat treatment at 300 to 450 ° C. for 10 minutes or more. It should be noted that when the heat treatment is performed at a temperature exceeding 450 ° C., abnormal grain growth may occur.
  • aluminum (Al) is 2.0 to 8.0% and manganese (Mn) is 0 to 1.0% or less (0% by mass).
  • Mn manganese
  • a plate material containing 0.2 to 2.0% zinc (Zn) and the balance being magnesium (Mg) and inevitable impurities, and the surface temperature of the plate material is set to 8 minutes in advance. Less than 5 minutes, preferably less than 5 minutes, and after the surface temperature of the rolling roll for rolling the sheet material is set to 50 to 250 ° C., preferably 60 to 220 ° C., the sheet material is at least fully rolled.
  • the plate By rolling at a rate of 5% or more, preferably 15% or more, and annealing the plate after rolling by the rolling, the plate has a fine structure, that is, an average crystal grain size of less than 30 ⁇ m, and a (0002) plane texture
  • the relative intensity of A plate is less than can be manufactured at low cost, and high yield process.
  • the plate material made of the magnesium alloy thus obtained has excellent formability at room temperature of 30 ° C., having a formability comparable to that of a rolled aluminum alloy, that is, having a room temperature Erichsen value of at least 7.0 or more. It becomes the magnesium alloy rolled material of the present invention.
  • the Erichsen value was adopted as an index representing the formability of the magnesium alloy rolled material.
  • the Erichsen test for obtaining the Erichsen value is intended to be a test according to JIS-B7729 and JIS-Z2274.
  • the magnesium alloy rolled material of the present invention is measured by the XRD method (Schulz reflection method), and the (0002) plane texture relative to the (0002) pole figure normalized RD-TD surface central portion is measured. It has a (0002) plane texture whose strength is less than 5.0 (however, RD: rolling direction, TD: sheet width direction).
  • RD rolling direction
  • TD sheet width direction.
  • the relative strength shows a value of less than 5.0
  • a room temperature Erichsen value of less than 7.0 may not develop.
  • a magnesium alloy rolled material having excellent room temperature formability that is, a room temperature Erichsen value of 7.0 or more, exhibits a value with a relative strength of the (0002) plane texture of less than 5.0.
  • the relative strength of the (0002) plane texture of the surface layer portion and the central portion of the magnesium alloy rolled material shows different values, and generally a strong relative strength is measured at the surface layer portion. Therefore, in the present invention, as described above, the peak intensity detected when the (0002) plane texture of the RD-TD plane is measured in the central portion, which is the region where the relative intensity is the weakest, is (0002). The relative strength of the surface texture was adopted.
  • the rolling conditions of each sample are as shown in Table 1.
  • the sample was put into a muffle furnace previously maintained at 470 ° C., and when the surface temperature reached 450 ° C. lower than 480 ° C., the sample was taken out and rolled at a rolling rate of 21% per pass. A total of 6 rollings were performed on the same rolling schedule, and a sample having an initial thickness of 5.0 mm was rolled to 1.26 mm. The rolling so far is rolling step 1 shown in Table 1.
  • the sample is put into a muffle furnace previously maintained at 560 ° C., and when the surface temperature reaches 525 ° C. within the range of 480 to 566 ° C. defined in the present invention, the sample is taken out immediately, Rolling was performed at a rolling rate of 21% by pass to obtain a plate material having a thickness of 1.0 mm.
  • This rolling is rolling step 2 shown in Table 1.
  • the total rolling ratio in rolling in which the surface temperature of the sample falls within the range of 480 to 566 ° C. defined in the present invention is 21%.
  • the total rolling rate by 7-pass rolling performed with the sample surface temperature set at 470 ° C. or higher is 80%.
  • the sample was subjected to reverse rolling by rotating 180 ° about ND.
  • the plate material was annealed under the conditions of 350 ° C. and a keeping time of 60 minutes.
  • Examples 3 to 9 In [Example 3] to [Example 9], in order to manufacture AZ61 which is a sample for evaluation, AZ61 alloy; the composition is mass%, Mg-5.9% Al-0.5% Zn-0.3% Mn was used as a test material.
  • the shape of the sample before rolling was 80 ⁇ 140 ⁇ 2.0 mm 3 .
  • a two-stage rolling mill having a rolling roll diameter of 160 mm and a rolling roll width of 250 mm was used, and rolling was performed after setting the surface temperature of the rolling roll to a predetermined temperature of 60 to 210 ° C. .
  • the rolling roll rotation speed was 10 m / min.
  • the rolling conditions of each sample are as shown in Table 1.
  • the sample was put in a muffle furnace previously maintained at 540 ° C. or 500 ° C., and the sample was taken out when the surface temperature reached 505 ° C. or 480 ° C. and rolled at a rolling rate of 26% per pass.
  • a total of 3 times of rolling was performed, the sample with an initial thickness of 2.0 mm was rolled, and a plate material with a thickness of 0.8 mm was obtained.
  • This rolling is rolling step 1 shown in Table 1.
  • the total rolling ratio in rolling in which the surface temperature of the sample falls within the range of 480 to 566 ° C. defined in the present invention is 59.5%.
  • rolling was performed by reverse rolling in which the sample was rotated 180 ° about ND for each rolling pass.
  • the plate material was annealed under conditions of 350 ° C. and a keeping time of 60 minutes.
  • the rolling conditions of each sample are as shown in Table 1.
  • the sample was put into a muffle furnace in which the furnace temperature was previously maintained at 500 ° C., and when the surface temperature reached 480 ° C., which is the lower limit of the range of 480 to 566 ° C. defined in the present invention, the sample was taken out immediately.
  • Rolling was performed at a rolling rate of 26% per pass.
  • a total of two rollings were performed on the same rolling schedule, and a sample having an initial thickness of 2.0 mm was rolled to 1.1 mm.
  • the rolling so far is rolling step 1 shown in Table 1.
  • the sample is put into a muffle furnace previously maintained at 575 ° C. or 555 ° C., and when the surface temperature reaches 545 ° C. or 520 ° C. which falls within the range of 480 to 566 ° C. defined in the present invention, the sample is Was immediately rolled at a rolling rate of 27% in one pass to obtain a plate material having a thickness of 0.8 mm.
  • This rolling is rolling step 2 shown in Table 1.
  • the total rolling ratio in rolling in which the surface temperature of the sample falls within the range of 480 to 566 ° C. defined in the present invention is 27%.
  • the total rolling rate by three-pass rolling performed with the sample surface temperature set to 470 ° C. or higher is 60%.
  • the sample was subjected to reverse rolling by rotating 180 ° about ND.
  • the plate material was annealed under the conditions of 350 ° C. and a keeping time of 60 minutes.
  • the plate material manufactured as described above that is, a magnesium alloy rolled material
  • the Eriksen test was conducted according to JIS-B7729 and JIS-Z2247.
  • the blank shape is ⁇ 60 mm for convenience of the plate material shape, the thickness is 1 mm or 0.8 mm, the mold temperature (sample temperature) is 30 ° C., the molding speed is 5 mm / min, and the wrinkle holding force is 10 kN.
  • Graphite grease was used as the lubricant.
  • the (0002) plane texture of the magnesium alloy rolled material was measured by the XRD method (Schulz reflection method), and the relative strength of the (0002) plane texture normalized using the internal standard was determined. The texture strength of the normalized (0002) plane was determined.
  • a ⁇ 34 mm disk was cut out from each rolled magnesium alloy sample, and the RD-TD surface was ground to a thickness of 0.4 mm to 0.5 mm, and then # 2400 SiC abrasive paper was used. Then, the surface was polished to obtain a measurement sample.
  • Table 2 shows the room temperature Erichsen value, texture strength, and average crystal grain size of each measurement sample.
  • [Comparative Example 1], [Comparative Example 2], [Example 1], and [Example 2] are the results of the AZ31B alloy.
  • [Comparative Example 1] in which the surface temperature of the rolling roll was set to 30 ° C. at normal temperature and [Comparative Example 2] set to 300 ° C. the texture strength was not significantly weakened, and the Erichsen value of less than 7.0 Met.
  • the roll surface temperature was set to 90 ° C.
  • Example 2 in which the roll temperature was set to 150 ° C., the texture strength was significantly weakened, and the Erichsen value was 7.0 or more. It was. In addition, as an average crystal grain diameter, all had fine crystal grains of less than 30 ⁇ m.
  • FIG. 1 shows a pole figure, a peak intensity value, and a room temperature Erichsen value, which are relative intensity distributions of the (0002) plane texture before and after annealing for each sample. All samples were rolled after the surface temperature of the sample was heated to 525 ° C. in about 2 minutes in the final rolling.
  • the texture strength indicating the degree of orientation of the (0002) plane is around 6.0 for any sample. From the viewpoint of the texture strength, each sample I could not find any difference. On the other hand, paying attention to the (0002) plane texture after annealing, it was confirmed that there was a difference in the change in texture strength with the difference in the surface temperature of the rolling roll.
  • the room temperature Erichsen value of each sample was 6.7 in [Comparative Example 1] in which the surface temperature of the rolling roll was kept at room temperature, and 8.8 in [Example 1], which was 90 ° C. in advance. Yes, it was 4.0 in [Comparative Example 2] at 300 ° C. in advance. Therefore, from this result, it was confirmed that the room temperature formability of the sample, that is, the magnesium alloy rolled material, was improved according to the weakening of the texture strength generated during annealing.
  • the surface temperature of the rolling roll Even if the rolling is carried out after raising the surface temperature of the plate material to be rolled up to 450 ° C. or higher, which is the temperature at which non-bottom slip is active, the surface temperature of the rolling roll. If it is not optimized, it is confirmed that even if annealing is performed on the plate material after rolling, the strength of the texture does not weaken, and the magnesium alloy rolled material after annealing does not exhibit excellent room temperature formability. It was.
  • Example 3] to [Example 9] are the results of evaluation using AZ61 alloy in the same manner as described above.
  • the above Eriksen value was obtained.
  • [Comparative Example 3] and [Example 10] to [Example 16] are the results of evaluation using the AM60 alloy in the same manner as described above.
  • [Comparative Example 3] in which the surface temperature of the rolling roll was 30 ° C., which was normal temperature, the Erichsen value was less than 7.0.
  • the textures of [Example 10] to [Example 16] in which the surface temperature of the rolling roll was 60 to 210 ° C. showed marked weakening and had fine crystal grains of less than 30 ⁇ m.
  • the Eriksen value was 0 or more.
  • the present invention relates to a method for producing a magnesium alloy rolled material, a magnesium alloy rolled material, and a press-formed body.
  • a rare earth element that is feared of resource depletion and price increase is used.
  • the anisotropy and formability are improved at the same time, and the average crystal grain size has a fine structure of less than 30 ⁇ m, and the strength of the (0002) plane texture is less than 5.0.
  • a cold-formability comparable to that of a rolled aluminum alloy that is, an excellent cold-formability of Mg—Al—Mn or Mg—Al—Zn containing a small amount of Mn, having an Erichsen value of at least 7.0 or more.
  • a magnesium alloy rolled material and a press-molded body using the same can be easily and inexpensively manufactured.
  • a magnesium alloy rolled material that can be used in a wide range of fields such as space / aeronautical materials / electronic equipment materials, automobile members, etc., as well as home appliances such as digital cameras, notebook computers, and PDAs, and the like are used.
  • a press-molded body can be provided at a low cost.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metal Rolling (AREA)

Abstract

The present invention provides a method for producing magnesium alloy rolled stock having excellent ambient temperature moldability rivaling that of aluminum alloy rolled stock, the method for producing magnesium alloy rolled stock including: using a base material comprising, in mass percent, Al in the amount of 2.0-8.0%, and Mn in the amount 0-1.0% or less (not including 0), or also Zn in the amount of 0.2-2.0%, with the remainder being Mg and inevitable impurities; setting the surface temperature of the base material to 480-566°C less than 8 minutes in advance, and setting the surface temperature of the mill roll for rolling the base material to 50-250°C in advance; then rolling the base material to a minimum overall reduction rate of 5% or more; and annealing the base material after rolling. Further provided are magnesium alloy rolled stock and a press-molded body, the magnesium alloy rolled stock and the press-molded body produced using this method having an average grain size of less than 30μm, having a relative strength of (0002) plane rolling texture in the base material thickness center section in a normalized RD-TD plane in the (0002) pole figure of less than 5.0, and having an ambient temperature Erichsen value of at least 7.0.

Description

マグネシウム合金圧延材の製造方法及びマグネシウム合金圧延材並びにプレス成形体Magnesium alloy rolled material manufacturing method, magnesium alloy rolled material, and press-formed body
 本発明は、マグネシウム合金圧延材の製造方法、及び該製造方法を用いて製造したマグネシウム合金圧延材、並びに該圧延材をプレス加工したプレス成形体に関するものである。 The present invention relates to a method for producing a magnesium alloy rolled material, a magnesium alloy rolled material produced using the production method, and a press-molded body obtained by press-working the rolled material.
 マグネシウムは、実用構造金属材料中、最も低密度で、その密度は1.7g/cmである。該マグネシウムは、金属材料特有のリサイクルの容易性を有し、資源も豊富に存在することから、次世代の構造用軽量材料として高く注目されており、家電製品筐体や輸送機器構造部材に利用されている。現在、日本におけるマグネシウム製品の多くは、ダイキャストなどの鋳造法により製造されている。しかし、現状の鋳造法による生産手法には、鋳造欠陥を補うための後処理が必要であること、歩留りが低いこと、部材の強度・剛性に問題があること、などの問題が存在する。 Magnesium has the lowest density among practical structural metal materials, and its density is 1.7 g / cm 3 . Magnesium is attracting high attention as a next-generation structural lightweight material because it has the ease of recycling unique to metal materials and has abundant resources, and is used as a structural member for home appliances and transportation equipment. Has been. Currently, many magnesium products in Japan are manufactured by casting methods such as die casting. However, the current production methods using casting methods have problems such as the need for post-processing to compensate for casting defects, low yield, and problems with the strength and rigidity of members.
 一般的に、プレス成形は、歩留まりが高く、成形と同時に、製品の高強度・高靭性化を図ることができることから、マグネシウム製品の需要拡大の有効な手段と言える。マグネシウム合金を用いて製造されたマグネシウム合金圧延材から、プレス成形により、成形体を製造することができれば、薄肉、かつ高強度な成形体を、安価なプロセスで製造することが可能となり、当該マグネシウム製品に、多くの需要を見込むことができる。 Generally, press molding has a high yield, and it can be said that it is an effective means of expanding demand for magnesium products because it can increase the strength and toughness of the product simultaneously with molding. If a molded body can be manufactured by press molding from a magnesium alloy rolled material manufactured using a magnesium alloy, a thin and high-strength molded body can be manufactured by an inexpensive process. Many demands can be expected for the products.
 一方、マグネシウム合金は、その結晶構造に起因して、常温で非底面すべりが殆ど活動しないことや、圧延と同時に強い(0002)面集合組織が形成されることに起因して、常温成形性が極めて低いこと、が問題となっている。 On the other hand, magnesium alloys have room temperature formability due to the fact that non-bottom slip hardly occurs at room temperature due to their crystal structure and that a strong (0002) plane texture is formed simultaneously with rolling. Very low is a problem.
 現在、幅広い分野で利用されているアルミニウム合金を用いて製造されたアルミニウム合金圧延材の常温成形性、すなわちエリクセン値は、5000系合金であると、8.3(5083-O材)であり、6000系合金であると、9.2(6061-T4材)であり、1000系合金であると、11.0(1100-O材)である(非特許文献1)。一方、マグネシウム合金圧延材の常温成形性、すなわちエリクセン値は、せいぜい2.0~5.0である(非特許文献2)。 At room temperature formability, that is, Erichsen value of aluminum alloy rolled material produced using aluminum alloys currently used in a wide range of fields is 8.3 (5083-0 material) when it is a 5000 series alloy, It is 9.2 (6061-T4 material) for the 6000 series alloy, and 11.0 (1100-O material) for the 1000 series alloy (Non-patent Document 1). On the other hand, the room temperature formability of the rolled magnesium alloy material, that is, the Erichsen value, is at most 2.0 to 5.0 (Non-patent Document 2).
 今後、マグネシウム合金圧延材の需要増加を見込むためには、該マグネシウム合金圧延材に、アルミニウム合金圧延材に匹敵する常温成形性、すなわち常温でのエリクセン値が、少なくとも7.0以上の特性を付与することが必要であり、当技術分野においては、優れた易成形性を有する、新しいマグネシウム合金圧延材の製造技術及びその製品を開発することが強く要請されている。 In the future, in order to anticipate an increase in demand for rolled magnesium alloy, the magnesium alloy rolled material is given a property of room temperature formability comparable to that of aluminum alloy rolled material, that is, an Erichsen value at room temperature of at least 7.0 or more. In this technical field, there is a strong demand for the development of a new magnesium alloy rolled material manufacturing technology and products having excellent easy formability.
 マグネシウム合金圧延材を、常温でプレス成形する手法としては、上述した集合組織を制御したマグネシウム合金圧延材を利用することが挙げられる。近年、本発明者らは、規定量の軽希土類元素、Zn、Mn、Zrを添加したマグネシウム合金、もしくは規定量のCa、Zn、Al、Mn、Zrを添加したマグネシウム合金を、特定の条件で、圧延及び焼鈍すると、(0002)面集合組織に、TD方向に約35度傾いた極が現れ、成形性が著しく改善し、エリクセン値が8.0以上になることを発見した(特許文献1)。この方法を利用すると、アルミニウム合金並の常温成形性を有するマグネシウム合金圧延材を製造することができる。 As a method of press-forming a magnesium alloy rolled material at room temperature, there is a method of using the magnesium alloy rolled material with the texture controlled as described above. In recent years, the present inventors have developed a magnesium alloy to which a specified amount of light rare earth elements, Zn, Mn, and Zr are added or a magnesium alloy to which specified amounts of Ca, Zn, Al, Mn, and Zr are added under specific conditions. It has been discovered that, when rolled and annealed, a pole inclined about 35 degrees in the TD direction appears in the (0002) plane texture, the formability is remarkably improved, and the Erichsen value is 8.0 or more (Patent Document 1). ). When this method is used, a magnesium alloy rolled material having room temperature formability comparable to that of an aluminum alloy can be produced.
 しかし、上述の方法でマグネシウム合金圧延材を製造するためには、軽希土類元素などの高価な元素を利用する必要があり、Mg-Al-Zn系やMg-Al-Mn系のマグネシウム合金圧延材と比較すると、製品コストは高くなる。また、上述の方法により得られるマグネシウム合金圧延材の(0002)面集合組織は、TD方向、すなわち圧延直角方向に約35度傾いた極を有するため、TD方向には、変形し易いが、RD方向、すなわち圧延方向には、相対的に変形しにくい。それゆえに、機械的特性の異方性を解消することが、マグネシウム合金圧延材の実用化に向けた課題となっている。 However, in order to produce a magnesium alloy rolled material by the above-described method, it is necessary to use an expensive element such as a light rare earth element, and a Mg—Al—Zn based or Mg—Al—Mn based magnesium alloy rolled material is required. Compared with, the product cost is high. Further, the (0002) plane texture of the magnesium alloy rolled material obtained by the above-described method has a pole inclined about 35 degrees in the TD direction, that is, the direction perpendicular to the rolling direction. It is relatively difficult to deform in the direction, that is, the rolling direction. Therefore, eliminating the anisotropy of the mechanical properties has become a problem for practical use of the magnesium alloy rolled material.
 マグネシウム合金圧延材の集合組織を改質する別の手法としては、マグネシウム合金圧延材に、繰り返し曲げ加工を施す手法が提案されている。本手法は、Mg-Al-Zn系のマグネシウム合金圧延材に適用することができ、常温成形性を、アルミニウム合金圧延材程度であるエリクセン値6.5以上に高めることができる(特許文献2)。この手法は、Mg-Al-Zn系のマグネシウム合金圧延材の常温成形性を改善手法として注目されている。 As another method for modifying the texture of the rolled magnesium alloy material, a method of repeatedly bending the rolled magnesium alloy material has been proposed. This method can be applied to a Mg—Al—Zn-based magnesium alloy rolled material, and the room temperature formability can be increased to an Erichsen value of 6.5 or more, which is comparable to that of an aluminum alloy rolled material (Patent Document 2). . This technique is attracting attention as a technique for improving the room temperature formability of Mg—Al—Zn-based magnesium alloy rolled material.
 しかし、繰り返し曲げ加工を施したマグネシウム合金圧延材は、その(0002)面集合組織に、RD方向に約45度傾いた極が現れるため、RD方向には変形し易いが、TD方向には、変形しにくいという性質を持つ。それゆえに、上述の特許文献1の場合と同様に、機械的特性の異方性を解消することが、上述の手法により製造されるマグネシウム合金圧延材の実用化に向けた課題となっている。また、本手法を実施するためには、繰り返し曲げ加工を行うための付帯設備を設置する必要があることも、該マグネシウム合金圧延材の実用化に際しての障壁となっている。 However, the magnesium alloy rolled material that has been subjected to repeated bending work tends to deform in the RD direction because a pole inclined about 45 degrees in the RD direction appears in the (0002) plane texture, but in the TD direction, It is difficult to deform. Therefore, as in the case of the above-described Patent Document 1, eliminating the anisotropy of mechanical properties is a problem for practical use of the magnesium alloy rolled material manufactured by the above-described method. Moreover, in order to implement this method, it is necessary to install ancillary equipment for performing repeated bending work, which is also a barrier to the practical use of the magnesium alloy rolled material.
 近年、本発明者らは、マグネシウム合金圧延材の集合組織を改質する他の手法として、Mg-Al-Zn系のマグネシウム合金でなる板材を、所定の試料温度、すなわち490℃~566℃まで、短時間で、好ましくは5分未満で昇温し、圧延率5%以上で、好ましくは5~50%の範囲で、熱間圧延を行い、その圧延後板材に対して焼鈍を行う手法を提案した(特許文献3)。本手法の原理は、圧延時の試料表面温度を450℃以上の高い温度に昇温して、非底面すべりの活動を活発化した状態で、圧延を行うことにある。 In recent years, as another method for modifying the texture of a magnesium alloy rolled material, the present inventors have used a plate material made of an Mg—Al—Zn based magnesium alloy up to a predetermined sample temperature, that is, 490 ° C. to 566 ° C. A method of heating in a short time, preferably less than 5 minutes, performing hot rolling at a rolling rate of 5% or more, preferably in the range of 5 to 50%, and annealing the plate material after the rolling. Proposed (Patent Document 3). The principle of this method is that the sample surface temperature at the time of rolling is raised to a high temperature of 450 ° C. or higher, and rolling is performed in a state where the activity of non-bottom sliding is activated.
 本手法により製造されるマグネシウム合金圧延材は、TD方向もしくはRD方向に大きく傾いた極を有しないため、上述の特許文献1及び特許文献2に記載の発明よりも異方性が少なく、(0002)面集合組織の相対強度が従来のマグネシウム合金圧延材よりも低くなって、アルミニウム合金圧延材並みの優れた常温成形性、すなわちエリクセン値7.0以上を示すものとなる。また、本手法は、軽希土類元素などの高価な元素を利用せず、既存圧延設備を流用して、成形性の優れたマグネシウム合金圧延材を低コストで製造できる技術として注目されている。 Since the magnesium alloy rolled material produced by this method does not have poles greatly inclined in the TD direction or the RD direction, it has less anisotropy than the inventions described in Patent Document 1 and Patent Document 2, and (0002 ) The relative strength of the surface texture becomes lower than that of the conventional magnesium alloy rolled material, and exhibits an excellent room temperature formability equivalent to that of the aluminum alloy rolled material, that is, an Erichsen value of 7.0 or more. In addition, this technique is attracting attention as a technique that can produce a magnesium alloy rolled material with excellent formability at low cost by using existing rolling equipment without using expensive elements such as light rare earth elements.
特開2010-013725号公報JP 2010-013725 A 特開2005-298885号公報JP-A-2005-298888 特開2010-133005号公報JP 2010-133005 A
 上述の特許文献3の発明では、試料の組成、試料の加熱時間、試料の加熱温度、試料の総圧延率を規定している。しかしながら、マグネシウム合金圧延材の圧延プロセスには、圧延ロールの表面温度など、他に重要な操作パラメータがあり、前記規定以外の諸条件の変動により、得られたマグネシウム合金圧延材が優れた常温成形性を発現しない場合があり、それが実用化に際しての問題となっている。 In the invention of Patent Document 3 described above, the composition of the sample, the heating time of the sample, the heating temperature of the sample, and the total rolling rate of the sample are defined. However, the rolling process of the magnesium alloy rolled material has other important operation parameters such as the surface temperature of the rolling roll, and the resulting magnesium alloy rolled material has excellent room temperature forming due to fluctuations in various conditions other than those specified above. There is a case where it does not exhibit sex, which is a problem in practical use.
 本発明は、上述の解決課題に鑑み、Mg-Al-Mn系あるいはMnを微量含むMg-Al-Zn系のマグネシウム合金圧延材を、高い歩留まりで製造できるマグネシウム合金圧延材の製造方法、及びアルミニウム合金圧延材と同程度の常温成形性を有し、宇宙・航空材料・電子機器材料、自動車部材などの幅広い分野で利用できる、前記製造方法を用いて製造されたマグネシウム合金圧延材、並びに該マグネシウム合金圧延材をプレス加工されたプレス成形体の提供を目的とするものである。 In view of the above-described problems, the present invention provides a method for producing a magnesium alloy rolled material, which can produce an Mg—Al—Mn based or Mg—Al—Zn based magnesium alloy rolled material containing a small amount of Mn with a high yield, and aluminum. Magnesium alloy rolled material produced by using the above production method, which has a room temperature formability comparable to that of a rolled alloy material and can be used in a wide range of fields such as space, aeronautical materials, electronic equipment materials, and automotive parts, and the magnesium An object of the present invention is to provide a press-formed body obtained by pressing a rolled alloy material.
 本発明者らは、上述の従来技術における問題を解決できる新しい技術を開発することを目標として鋭意研究開発を積み重ねた結果、圧延に供する板材の表面温度及び該表面温度にする昇温時間を適正化し、かつ該板材の圧延に用いる圧延ロールの表面温度を適正化し、そして、該板材を圧延し、該圧延後の板材を焼鈍することにより、アルミニウム合金圧延材と同程度の常温成形性を有するマグネシウム合金圧延材が高い歩留まりで製造可能となることを見出し、本発明に到達した。 As a result of intensive research and development aimed at developing a new technology capable of solving the problems in the above-described conventional technology, the present inventors have appropriately set the surface temperature of the plate material to be rolled and the temperature rising time for the surface temperature. And having the same room temperature formability as aluminum alloy rolled material by optimizing the surface temperature of the rolling roll used for rolling the plate material, and rolling the plate material and annealing the rolled plate material The inventors have found that a rolled magnesium alloy material can be produced with a high yield, and have reached the present invention.
 上述した課題を解決するための本発明は、以下の技術的手段から構成される。
(1)質量%で、アルミニウム(Al)を2.0~8.0%、マンガン(Mn)を0~1.0%以下(0を含まず)含有し、残部がマグネシウム(Mg)及び不可避不純物からなる板材を用い、該板材の表面温度を予め8分未満で480~566℃とし、かつ該板材を圧延する圧延ロールの表面温度を予め50~250℃とした後に、該板材を少なくとも総圧延率5%以上で圧延し、該圧延による圧延後板材に焼鈍を行うことを特徴とするマグネシウム合金圧延材の製造方法。
(2)板材が、さらに亜鉛(Zn)を0.2~2.0質量%含有する、前記(1)に記載のマグネシウム合金圧延材の製造方法。
(3)前記圧延ロールの表面温度を予め60~220℃とする、前記(1)又は(2)に記載のマグネシウム合金圧延材の製造方法。
(4)外部加熱装置を用いて、前記圧延ロールの表面を昇温して所定の温度とする、前記(1)から(3)のいずれかに記載のマグネシウム合金圧延材の製造方法。
(5)前記圧延ロール内部に熱源を設置して、前記圧延ロールの表面を昇温して所定の温度とする、前記(1)から(4)のいずれかに記載のマグネシウム合金圧延材の製造方法。
(6)前記板材を総圧延率15%以上で圧延する、前記(1)から(5)のいずれかに記載のマグネシウム合金圧延材の製造方法。
(7)前記板材の表面温度を予め5分未満で昇温して所定の温度とする、前記(1)から(6)のいずれかに記載のマグネシウム合金圧延材の製造方法。
(8)前記(1)から(7)のいずれかに記載の製造方法を、全圧延プロセスの一部に含むことを特徴とするマグネシウム合金圧延材の製造方法。
(9)前記圧延後板材が、焼鈍前に双晶を含む変形組織を有する、前記(1)から(8)のいずれかに記載のマグネシウム合金圧延材の製造方法。
(10)前記圧延後板材が、焼鈍後に30μm未満の平均結晶粒径を有する、前記(1)から(9)のいずれかに記載のマグネシウム合金圧延材の製造方法。
(11)前記(1)から(10)のいずれかに記載の製造方法によって製造されたマグネシウム合金圧延材であって、
 質量%で、アルミニウム(Al)を2.0~8.0%、マンガン(Mn)を0~1.0%以下(0を含まず)含有し、あるいは、さらに亜鉛(Zn)を0.2~2.0%含有し、残部がマグネシウム(Mg)及び不可避不純物からなり、平均結晶粒径が30μm未満であり、XRD法(シュルツの反射法)による測定で、(0002)極点図の正規化したRD-TD面の板厚中央部における(0002)面集合組織の相対強度が5.0未満(但し、RD:圧延方向、TD:板幅方向)で、室温エリクセン値が7.0以上である、ことを特徴とするマグネシウム合金圧延材。
(12)前記(11)に記載のマグネシウム合金圧延材が所定の形態にプレス加工された成形体からなることを特徴とするプレス成形体。
The present invention for solving the above-described problems comprises the following technical means.
(1) By mass%, aluminum (Al) is contained in an amount of 2.0 to 8.0%, manganese (Mn) is contained in an amount of 0 to 1.0% or less (not including 0), the balance being magnesium (Mg) and inevitable After using a plate made of impurities, the surface temperature of the plate is set to 480 to 566 ° C. in advance in less than 8 minutes, and the surface temperature of the rolling roll for rolling the plate is set to 50 to 250 ° C. A method for producing a magnesium alloy rolled material, the method comprising rolling at a rolling rate of 5% or more, and annealing the plate material after rolling by the rolling.
(2) The method for producing a rolled magnesium alloy material according to (1), wherein the plate material further contains 0.2 to 2.0% by mass of zinc (Zn).
(3) The method for producing a magnesium alloy rolled material according to (1) or (2), wherein the surface temperature of the rolling roll is set to 60 to 220 ° C. in advance.
(4) The method for producing a magnesium alloy rolled material according to any one of (1) to (3), wherein the surface of the rolling roll is heated to a predetermined temperature using an external heating device.
(5) Manufacture of the magnesium alloy rolled material according to any one of (1) to (4), wherein a heat source is installed inside the rolling roll and the surface of the rolling roll is heated to a predetermined temperature. Method.
(6) The manufacturing method of the magnesium alloy rolled material according to any one of (1) to (5), wherein the plate material is rolled at a total rolling rate of 15% or more.
(7) The method for producing a magnesium alloy rolled material according to any one of (1) to (6), wherein the surface temperature of the plate material is preliminarily raised to a predetermined temperature in less than 5 minutes.
(8) A method for producing a magnesium alloy rolled material, comprising the production method according to any one of (1) to (7) as a part of a total rolling process.
(9) The manufacturing method of the magnesium alloy rolled material according to any one of (1) to (8), wherein the post-rolled plate material has a deformation structure including twins before annealing.
(10) The method for producing a magnesium alloy rolled material according to any one of (1) to (9), wherein the post-rolled sheet material has an average crystal grain size of less than 30 μm after annealing.
(11) A magnesium alloy rolled material produced by the production method according to any one of (1) to (10),
In mass%, aluminum (Al) is contained in an amount of 2.0 to 8.0%, manganese (Mn) is contained in an amount of 0 to 1.0% or less (not including 0), or zinc (Zn) is further added in an amount of 0.2. It contains ~ 2.0%, the balance is magnesium (Mg) and inevitable impurities, the average crystal grain size is less than 30μm, and the (0002) pole figure is normalized by measurement by XRD method (Schulz reflection method) The relative strength of the (0002) plane texture at the center of the thickness of the RD-TD surface is less than 5.0 (however, RD: rolling direction, TD: plate width direction), and the room temperature Erichsen value is 7.0 or more. Magnesium alloy rolled material characterized by being.
(12) A press-molded product comprising a molded product obtained by pressing the magnesium alloy rolled material according to (11) into a predetermined form.
 本発明により、次のような効果が奏される。
(1)Mg-Al-Mn系合金あるいはMnを微量含むMg-Al-Zn系合金でなる、成形性に優れたマグネシウム合金圧延材を製造することができる。
(2)具体的には、得られたマグネシウム合金圧延材は、平均結晶粒径が微細で、すなわち30μm未満であり、XRD法(シュルツの反射法)による測定で、(0002)極点図の正規化したRD-TD面の板厚中央部における(0002)面集合組織の相対強度が5.0未満で、室温エリクセン値が7.0以上であり、優れた常温成形性を示すものとなる。
(3)本発明を利用すると、資源枯渇・価格高騰が懸念される希土類元素を利用せずに、また、既存設備を利用して、優れた常温成形性を有するマグネシウム合金圧延材を、歩留まりの高いプロセスで、低コストで、製造することができる。
(4)本発明を利用すると、幅広い用途に適用可能な、機械的特性の異方性が少ない、成形性に優れたマグネシウム合金圧延材を提供することができる。
(5)本発明のマグネシウム合金圧延材は、成形性に優れているため、プレス加工による成形性が良く、よって、簡易、かつ容易にプレス成形体を製造することができ、また、該プレス成形体からなる筐体などの物品の製造が容易となる。
The present invention has the following effects.
(1) A rolled magnesium alloy material having excellent formability, which is made of an Mg—Al—Mn alloy or an Mg—Al—Zn alloy containing a very small amount of Mn, can be produced.
(2) Specifically, the obtained rolled magnesium alloy material has a fine average crystal grain size, that is, less than 30 μm, and the normality of the (0002) pole figure as measured by the XRD method (Schulz reflection method). The relative strength of the (0002) plane texture in the central part of the thickness of the converted RD-TD plane is less than 5.0 and the room temperature Erichsen value is 7.0 or more, which shows excellent room temperature formability.
(3) By using the present invention, a magnesium alloy rolled material having excellent room temperature formability can be obtained without using rare earth elements that are feared of resource depletion and price increase, and using existing equipment. It can be manufactured with high process and low cost.
(4) By using the present invention, it is possible to provide a magnesium alloy rolled material that is applicable to a wide range of applications and has low mechanical property anisotropy and excellent formability.
(5) Since the magnesium alloy rolled material of the present invention is excellent in formability, the formability by press working is good, so that a press-formed product can be produced easily and easily. Manufacture of articles such as a body casing is facilitated.
実施例にて製造したAZ31B合金圧延材の、焼鈍前後の(0002)面集合組織とエリクセン値を示したものであり、[比較例1]は、比較例1で製造した試料の結果を、[実施例1]は、実施例1で製造した試料の結果を、[比較例2]は、比較例2で製造した試料の結果をそれぞれ示す。The (0002) plane texture before and after annealing and the Erichsen value of the rolled AZ31B alloy produced in the example are shown. [Comparative Example 1] shows the result of the sample produced in Comparative Example 1, [ [Example 1] shows the result of the sample manufactured in Example 1, and [Comparative Example 2] shows the result of the sample manufactured in Comparative Example 2. 実施例にて製造したAZ31B合金圧延材の、RD-ND面の光学顕微鏡による組織観察の結果であって、焼鈍前後の組織をそれぞれ示したものであり、[比較例1]は、比較例1で製造した試料の結果を、[実施例1]は、実施例1で製造した試料の結果を、[比較例2]は、比較例2で製造した試料の結果をそれぞれ示す。FIG. 3 is a result of observing the structure of an RD-ND surface of the rolled AZ31B alloy manufactured in the examples by an optical microscope, and shows the structures before and after annealing. [Comparative Example 1] is Comparative Example 1 [Example 1] shows the result of the sample manufactured in Example 1, and [Comparative Example 2] shows the result of the sample manufactured in Comparative Example 2.
 本発明のマグネシウム合金圧延材の製造方法において、特に重要な技術的特徴は、圧延に供する板材の表面温度及び該表面温度にする昇温時間を適正化し、かつ該板材の圧延に用いる圧延ロールの表面温度を適正化し、そして、該板材を圧延することにある。具体的には、圧延に供する板材の表面温度を予め8分未満、好ましくは5分未満で、480~566℃に昇温しておき、かつ圧延に用いる圧延ロールの表面温度を予め50~250℃、好ましくは60~220℃に昇温しておく。このようにして前記板材を圧延した圧延後板材に対して焼鈍を行うことにより、成形性に優れた本発明のマグネシウム合金圧延材を得ることができる。 In the method for producing a magnesium alloy rolled material according to the present invention, particularly important technical features are that the surface temperature of the plate material to be rolled and the temperature rising time to the surface temperature are optimized and the rolling roll used for rolling the plate material is used. The purpose is to optimize the surface temperature and to roll the plate. Specifically, the surface temperature of the plate material to be rolled is previously raised to 480 to 566 ° C. for less than 8 minutes, preferably less than 5 minutes, and the surface temperature of the rolling roll used for rolling is previously set to 50 to 250. The temperature is raised to 0 ° C., preferably 60 to 220 ° C. Thus, the magnesium alloy rolling material of this invention excellent in formability can be obtained by annealing with respect to the plate material after rolling which rolled the said plate material.
 本発明において、圧延に供する前記板材には、質量%で、アルミニウム(Al)を2.0~8.0%、マンガン(Mn)を0~1.0%以下(0を含まず)含有し、残部がマグネシウム(Mg)及び不可避不純物からなる前記板材が適用されるが、さらに、亜鉛(Zn)を0.2~2.0質量%含有する板材も適用できる。 In the present invention, the plate material to be rolled contains 2.0% to 8.0% aluminum (Al) and 0% to 1.0% (not including 0) manganese (Mn) in mass%. The above-mentioned plate material composed of magnesium (Mg) and unavoidable impurities is applied, but a plate material containing 0.2 to 2.0% by mass of zinc (Zn) is also applicable.
 前記板材を圧延する本発明の製造方法において、焼鈍前の前記圧延後板材の組織は、双晶を含む変形組織を示し、前記圧延後板材を焼鈍した焼鈍後板材の組織は、平均結晶粒径30μm未満の微細組織を示すものとなる。このような組織を有する前記焼鈍後板材は、XRD法(シュルツの反射法)による測定で、(0002)極点図の正規化したRD-TD面の板厚中央部における(0002)面集合組織の相対強度が5.0未満で、室温エリクセン値が7.0以上である優れた常温成形性を発現するものとなり、すなわち、本発明のマグネシウム合金圧延材となる。ここで、室温は、一般に使用される用語としての常温と同意であってよい。 In the manufacturing method of the present invention for rolling the plate material, the structure of the post-rolled plate material before annealing shows a deformation structure including twins, and the structure of the post-annealed plate material after annealing the rolled plate material has an average crystal grain size It shows a fine structure of less than 30 μm. The post-annealed plate material having such a structure is measured by the XRD method (Schulz reflection method), and the (0002) plane texture in the central portion of the plate thickness of the normalized RD-TD surface of the (0002) pole figure is shown. It exhibits excellent room temperature formability with a relative strength of less than 5.0 and a room temperature Erichsen value of 7.0 or more, that is, the magnesium alloy rolled material of the present invention. Here, room temperature may be the same as room temperature as a commonly used term.
 また、前記本発明のマグネシウム合金圧延材は、優れた常温成形性を有するため、簡易、かつ容易にプレス加工できることから、該圧延材をプレス加工して本発明のプレス成形体を容易に製造することができ、マグネシウム合金の優れた特性を活かした多様な機械成形製品を提供できるようになる。 In addition, since the magnesium alloy rolled material of the present invention has excellent room temperature formability, it can be easily and easily pressed. Therefore, the rolled material is pressed to easily produce the press-formed body of the present invention. It is possible to provide various machined products that take advantage of the superior properties of magnesium alloys.
 上述した圧延後板材や焼鈍後板材に関し、(0002)面集合組織(結晶方位分布)をX線回折(シュルツの反射法)で測定し、(0002)面からのX線の回析強度-結晶の軸の配向の強さに対応-を相対的な強度値として求め、例えば(0002)極点図に表して相対強度値の分布パターンやピーク強度値を知得することができる。こうして得た情報に基いて、種々に条件を変更して製造した圧延後板材や焼鈍後板材に関して、その集合組織のランダム化の程度、つまり異方性の弱化の程度などを比較対比することができる。 With regard to the above-mentioned rolled sheet and annealed sheet, the (0002) plane texture (crystal orientation distribution) is measured by X-ray diffraction (Schulz reflection method), and the X-ray diffraction strength from the (0002) plane—crystal Corresponding to the strength of the orientation of the axis − is obtained as a relative intensity value, and can be expressed, for example, in a (0002) pole figure to obtain the distribution pattern of the relative intensity value and the peak intensity value. Based on the information obtained in this way, it is possible to compare and compare the degree of randomization of the texture, that is, the degree of weakening of the anisotropy, etc. with respect to the post-rolled plate material and post-annealed plate material manufactured under various conditions. it can.
 ここで、「相対強度」とは、内部規格によるものである。本発明で用いた集合組織解析には、すべて内部規格を適用している。内部規格とは、被験試料自身の強度データを使用してデータを規格する手法であり、該内部規格の定義については、例えば、RIGAKU X線マニュアル、Windows(登録商標)版 Cat.No.9258J102/P101,RINT 2000/PCソフトウェア 正極点分析(Ver.2.0)取扱説明書Manual No.MJ13203B05に説明がある。 Here, “relative strength” is based on internal standards. Internal standards are all applied to the texture analysis used in the present invention. The internal standard is a technique for standardizing data using intensity data of the test sample itself. For the definition of the internal standard, see, for example, the RIGAKU X-ray Manual, Windows (registered trademark) version Cat. No. 9258J102 / P101, RINT 2000 / PC Software Positive Point Analysis (Ver.2.0) Instruction Manual Manual No. There is an explanation in MJ13203B05.
 X線回折(シュルツの反射法)による測定について、以下にその概略を補足しておく。該測定は、被測定試料を該試料面の垂直軸、すなわち法線の周りに、また水平軸の周りに回転可能なホルダを調整し、目的の反射の回折条件を満たすブラッグ角、及び測定したい極のブラッグ角に、該試料を固定した後、ホルダを垂直軸と水平軸の周りにそれぞれ角度α、βで回転し、そのときの回折強度を測定するものである。測定された回折強度は、その極の密度(極密度)を現し、試料の厚さなどによって補正を要する場合は常識的補正を経て、求められた極密度を等高線でα角、β角についてプロットすることで、上述した極点図を得ることができる。 The outline of the measurement by X-ray diffraction (Schulz reflection method) will be supplemented below. The measurement is performed by adjusting a holder that can rotate the sample to be measured around the vertical axis of the sample surface, that is, the normal line and the horizontal axis, and satisfying the Bragg angle satisfying the target reflection diffraction condition, and the measurement. After fixing the sample to the Bragg angle of the pole, the holder is rotated around the vertical axis and the horizontal axis at angles α and β, respectively, and the diffraction intensity at that time is measured. The measured diffraction intensity represents the density of the pole (pole density), and if correction is required depending on the thickness of the sample, etc., it is passed through common sense correction, and the obtained pole density is plotted with respect to α angle and β angle using contour lines. By doing so, the above-described pole figure can be obtained.
 本発明の製造方法、並びに該製造方法において圧延に供するマグネシウム合金製の板材について、以下にさらに詳細に説明する。
 本発明の製造方法では、上述したように、質量%で、アルミニウム(Al)を2.0~8.0%、マンガン(Mn)を0~1.0%以下(0を含まず)含有し、残部がマグネシウム(Mg)及び不可避不純物からなる板材を、あるいは、さらに亜鉛(Zn)を0.2~2.0質量%含有する板材を、圧延に供する。市場に流通している汎用マグネシウム合金の中で、前記化学成分に該当するものとしては、AZ31B、AZ61、AZ80、AM50、AM60などが挙げられる。マグネシウムは、前述したように、実用構造金属材料中で最も低密度であり、金属材料特有のリサイクルの容易性を有し、資源も豊富に存在することから、次世代の構造用軽量材料として好適である。
The production method of the present invention and the magnesium alloy plate used for rolling in the production method will be described in more detail below.
As described above, the production method of the present invention contains 2.0 to 8.0% of aluminum (Al) and 0 to 1.0% or less (not including 0) of manganese (Mn) in mass%. Then, a plate material comprising the balance of magnesium (Mg) and inevitable impurities, or a plate material containing 0.2 to 2.0% by mass of zinc (Zn) is subjected to rolling. Among general-purpose magnesium alloys distributed in the market, AZ31B, AZ61, AZ80, AM50, AM60 etc. are mentioned as those corresponding to the chemical component. As mentioned above, magnesium has the lowest density among practical structural metal materials, has ease of recycling unique to metal materials, and has abundant resources, making it suitable as a next-generation structural lightweight material. It is.
 アルミニウム(Al)は2.0~8.0%、マンガン(Mn)は0~1.0%以下(0を含まず)であるのが良い。これは、該範囲でAlを含有すると有意の固溶強化が達成され、また、該範囲でAl、Mnを含有するとMg合金内部にAl-Mn系金属間化合物が析出されるため、合金として好適な強度を持たせることができるからである。なお、Alの含有量が8.0%を超えると熱間加工性が低下し、2.0%未満であると好適な強度を持たせ難くなるため、避けるべきである。また、Mnの含有量が1.0%を超えると、金属間化合物が粗大化して強度が低下しやすいため、避けるべきである。 Aluminum (Al) is preferably 2.0 to 8.0%, and manganese (Mn) is preferably 0 to 1.0% or less (excluding 0). When Al is contained in this range, significant solid solution strengthening is achieved, and when Al and Mn are contained in this range, an Al—Mn intermetallic compound is precipitated inside the Mg alloy, which is suitable as an alloy. This is because it is possible to have a high strength. If the Al content exceeds 8.0%, the hot workability decreases, and if it is less than 2.0%, it is difficult to provide a suitable strength, so this should be avoided. Further, if the content of Mn exceeds 1.0%, the intermetallic compound is coarsened and the strength tends to be lowered, so this should be avoided.
 また、さらに亜鉛(Zn)を0.2~2.0質量%含有することができる。これは、該範囲でさらにZnを含有すると、Alと同様に、強度などの機械的性質の向上に寄与することができるからである。なお、Znの含有量が、2.0%を超えると、熱間加工性が低下するため、避けるべきである。 Furthermore, it can contain 0.2 to 2.0% by mass of zinc (Zn). This is because, if Zn is further contained in the range, it can contribute to improvement of mechanical properties such as strength as in the case of Al. Note that if the Zn content exceeds 2.0%, the hot workability deteriorates and should be avoided.
 本発明者らは、上述したマグネシウム合金からなる板材を用いて、詳細かつ系統的な実験を試みた結果、圧延に供する前記板材を、該板材の表面温度を予め480~566℃に8分未満で、より好ましくは5分未満で昇温し、かつ圧延に用いる圧延ロールの表面温度を予め50~250℃に、より好ましくは60~220℃に昇温した上で、圧延し、その圧延後板材に対して焼鈍を行うことによって、焼鈍前の圧延後板材に形成された双晶を含む変形組織が、焼鈍中の再結晶に伴って(0002)面集合組織が弱化し、焼鈍後に優れた常温成形性が発現することを見出した。 As a result of attempting detailed and systematic experiments using the above-described magnesium alloy plate, the present inventors have determined that the plate material to be rolled has a surface temperature of 480 to 566 ° C. for less than 8 minutes in advance. More preferably, the temperature is raised in less than 5 minutes, and the surface temperature of the rolling roll used for rolling is raised to 50 to 250 ° C., more preferably 60 to 220 ° C., and then rolling. By annealing the plate material, the deformation structure including twins formed in the plate material after rolling before annealing was weakened by the (0002) plane texture accompanying recrystallization during annealing, and excellent after annealing. It was found that room temperature formability was developed.
 本発明において、圧延に供する板材の表面温度を予め480~566℃に8分未満で昇温するのは、該板材自体を、圧延される瞬間に非底面すべりが滑動できる450℃以上の温度域に保持し、これにより非底面転位を変形組織の粒界に蓄積させるためである。予め昇温する該板材の表面温度の下限値を480℃以上に規定するのは、圧延時には圧延ロールとの接触により板材の表面温度が低下することを考慮し、本発明者らが得た知見に基いて、その温度低下の相当分だけ該板材の表面温度を高くすべきと考えたからである。また、上限値を566℃以下に規定するのは、それを超える温度まで該板材を昇温した場合には、該板材が発火して燃焼しやすくなるからである。 In the present invention, the surface temperature of the plate material used for rolling is preliminarily raised to 480 to 566 ° C. in less than 8 minutes because the plate material itself has a temperature range of 450 ° C. or higher where the non-bottom slide can slide at the moment of rolling. This is to keep non-bottom dislocations at the grain boundaries of the deformed structure. The lower limit of the surface temperature of the plate material to be preliminarily raised is defined as 480 ° C. or higher because the surface temperature of the plate material is lowered by the contact with the rolling roll during rolling. This is because the surface temperature of the plate material should be increased by an amount corresponding to the temperature drop. The reason why the upper limit value is set to 566 ° C. or less is that when the plate material is heated to a temperature exceeding the upper limit value, the plate material ignites and easily burns.
 なお、特許文献3では、圧延に供する板材の表面温度を490~566℃に昇温することを規定したが、本発明では、圧延に供する板材の表面温度を480~566℃に昇温すると規定した。両者は、下限値において、10℃の温度差がある。これは、本発明において、圧延に供する板材の表面温度と圧延ロールの表面温度との関係を適正化したことによって、該下限値を10℃低くした場合であっても、圧延加工中の板材を前記450℃以上の温度域に保持でき、非底面すべりが活動する条件での圧延を可能としたことによる。 Although Patent Document 3 stipulates that the surface temperature of the plate material used for rolling is raised to 490 to 566 ° C., the present invention specifies that the surface temperature of the plate material used for rolling is raised to 480 to 566 ° C. did. Both have a temperature difference of 10 ° C. at the lower limit. This is because, in the present invention, by optimizing the relationship between the surface temperature of the plate material to be rolled and the surface temperature of the rolling roll, even when the lower limit is lowered by 10 ° C., This is because it can be maintained in the temperature range of 450 ° C. or higher, and rolling can be performed under conditions in which non-bottom sliding is active.
 また、本発明では、圧延後板材の組織を異常粒成長が抑制された組織にするべく、圧延前に板材の表面温度を昇温するに当たり、なるべく短時間で、好ましくは8分未満で、より好ましくは5分未満で、目的とする温度に昇温する。これにより、昇温中に板材の組織において異常粒の成長が起こらないようにできる。圧延に供する板材の表面温度を、短時間で昇温する手法としては、例えば昇温に用いる加熱炉の温度を高めに設定しておく簡易な方法や、急速加熱法、すなわち通電加熱や赤外線加熱などを利用する方法がある。なお、板材を昇温する場合、固相線温度である566℃を超えると溶解するため、この温度を超えないようにするべきである。 Further, in the present invention, in order to make the structure of the plate material after rolling into a structure in which abnormal grain growth is suppressed, in raising the surface temperature of the plate material before rolling, in as short a time as possible, preferably less than 8 minutes, Preferably, the temperature is raised to a target temperature in less than 5 minutes. Thereby, it is possible to prevent the growth of abnormal grains in the structure of the plate material during the temperature rise. As a method for raising the surface temperature of the plate material used for rolling in a short time, for example, a simple method in which the temperature of the heating furnace used for raising the temperature is set high or a rapid heating method, that is, electric heating or infrared heating. There is a way to use. It should be noted that when the temperature of the plate material is increased, it will be dissolved if it exceeds the solidus temperature of 566 ° C., so this temperature should not be exceeded.
 上述した圧延に供する板材の表面温度とともに、圧延中の板材の温度状態に大きな影響を及ぼす、圧延に用いる圧延ロールの表面温度は重要である。本発明においては、圧延ロールの表面温度は予め50~250℃にする。これは、上述したように、圧延される瞬間の板材を非底面すべりが滑動する450℃以上の温度域に保持するためであって、圧延に供する板材の表面温度との関係、並びに圧延ロールの表面に肌荒れを生じない表面状態を考慮し、圧延に用いる圧延ロールの表面温度を適正な範囲として規定した。 As well as the surface temperature of the plate material used for rolling described above, the surface temperature of the rolling roll used for rolling, which greatly affects the temperature state of the plate material during rolling, is important. In the present invention, the surface temperature of the rolling roll is set to 50 to 250 ° C. in advance. As described above, this is to maintain the sheet material at the moment of rolling in a temperature range of 450 ° C. or higher where the non-bottom slide slides, and the relationship with the surface temperature of the sheet material used for rolling, and the rolling roll The surface temperature of the rolling roll used for rolling was defined as an appropriate range in consideration of the surface state that does not cause rough surface.
 圧延ロールの表面温度を50℃未満に設定すると、圧延に供する板材の表面温度を予め480~566℃に短時間で昇温しても、圧延中の圧延ロールとの接触により、該板材の表面温度が450℃よりも低い温度に低下してしまう。このため、この条件では、圧延中に非底面すべりの活動が低下し、その結果、非底面転位の活動が抑制され、底面転位が粒界や双晶界面に蓄積されるようになり、一方、高密度の非底面転位が、粒界、双晶界面に蓄積され難くなって、焼鈍に際して、温間圧延後の板材に近似の再結晶挙動が現れ、その結果として、母材と異なる方位を有する再結晶粒の生成が不十分になってしまう。 If the surface temperature of the rolling roll is set to less than 50 ° C., even if the surface temperature of the plate material used for rolling is raised to 480-566 ° C. in a short time, the surface of the plate material is brought into contact with the rolling roll during rolling. The temperature drops to a temperature lower than 450 ° C. For this reason, under this condition, the activity of non-bottom slip decreases during rolling, and as a result, the activity of non-bottom dislocations is suppressed, and the bottom dislocations accumulate at the grain boundaries and twin interfaces, High-density non-bottom dislocations are less likely to accumulate at grain boundaries and twin interfaces, and during annealing, approximate recrystallization behavior appears in the plate after warm rolling, resulting in a different orientation from the base metal. The generation of recrystallized grains becomes insufficient.
 また、圧延ロールの表面温度を250℃を超える温度に設定すると、圧延中に再結晶が起こり、高密度の非底面転位を、粒界や双晶界面に蓄積することが困難になる。すなわち、この条件では、圧延後の焼鈍過程において静的再結晶を起こすことができなくなり、母材とは異なる方位を有する再結晶粒を生成することが困難になり、また、圧延ロールの表面に肌荒れや微細なクラックを生じ、場合によっては表面剥離のような重篤な不具合を生じる可能性が高まる。 Also, if the surface temperature of the rolling roll is set to a temperature exceeding 250 ° C., recrystallization occurs during rolling, and it becomes difficult to accumulate high-density non-bottom dislocations at grain boundaries and twin interfaces. That is, under this condition, static recrystallization cannot be caused in the annealing process after rolling, it becomes difficult to generate recrystallized grains having an orientation different from that of the base material, and the surface of the rolling roll Rough skin and fine cracks occur, and in some cases, there is an increased possibility of serious problems such as surface peeling.
 圧延ロールの表面を昇温する手法としては、圧延ロールの直近に配置した熱風ドライヤー、ガスバーナー、抵抗炉などの外部加熱装置を用いる手法がある。また、圧延ロール内部に熱源としてSiC発熱帯や加熱流体などを配置し、圧延ロールの表面に限らず昇温する手法もあり、製造条件に応じて選択することができる。 As a method of raising the temperature of the surface of the rolling roll, there is a method of using an external heating device such as a hot air dryer, a gas burner, a resistance furnace or the like disposed in the immediate vicinity of the rolling roll. In addition, there is a method in which a SiC hot spring or a heating fluid is disposed as a heat source inside the rolling roll and the temperature is raised not only on the surface of the rolling roll, but can be selected according to manufacturing conditions.
 実際に、圧延ロールの表面温度を50℃未満である常温の30℃とし、板材の表面温度を予め前記温度範囲に昇温した試料を用いて圧延を行った。その結果を、後述する[比較例1]の結果として図2に示すが、焼鈍前の試料の組織には、双晶を含む変形組織が確認された。このため、焼鈍に伴う集合組織強度はやや弱化するものの不十分であって、アルミニウム合金圧延材と同程度の優れた常温成形性であるエリクセン値7.0以上を発現させることができなかった。 Actually, rolling was performed using a sample in which the surface temperature of the rolling roll was set to 30 ° C., which is less than 50 ° C., and the surface temperature of the plate material was previously increased to the above temperature range. The result is shown in FIG. 2 as a result of [Comparative Example 1] described later. A deformed structure containing twins was confirmed in the structure of the sample before annealing. For this reason, although the texture strength accompanying annealing is somewhat weakened, it is insufficient, and an Erichsen value of 7.0 or more, which is excellent at room temperature as well as a rolled aluminum alloy material, could not be expressed.
 また、圧延ロールの表面温度を250℃を超える300℃とし、板材の表面温度を予め前記温度範囲に昇温した試料を用いて圧延を行ったところ、これを後述する[比較例2]の結果として図2に示すように、焼鈍前の試料の組織には、双晶を含む変形組織を確認されなかった。これは、圧延中によって試料に再結晶が起こったことを示唆しており、転位の再配列に伴い、転位密度が減少したことを示している。この転位密度に関しては、図2に示すように、圧延ロールの表面温度を、常温の30℃とした後述する[比較例1]、並びに90℃とした[実施例1]と、300℃とした[比較例2]とを比較し、[比較例1]並びに[実施例1]では、双晶を含む変形組織が残っており、[比較例2]よりも試料内部の転位密度が高いと考えることができる。 In addition, when rolling was performed using a sample in which the surface temperature of the rolling roll was set to 300 ° C. exceeding 250 ° C. and the surface temperature of the plate material was preliminarily raised to the above temperature range, the result of [Comparative Example 2] described later As shown in FIG. 2, a deformed structure including twins was not confirmed in the structure of the sample before annealing. This suggests that recrystallization occurred in the sample during rolling, indicating that the dislocation density decreased with rearrangement of dislocations. Regarding the dislocation density, as shown in FIG. 2, the surface temperature of the rolling roll was set to 30 ° C., which will be described later, [Comparative Example 1] described later, and 90 ° C. [Example 1], and 300 ° C. [Comparative Example 2] is compared, and in [Comparative Example 1] and [Example 1], a deformed structure containing twins remains, and it is considered that the dislocation density inside the sample is higher than that of [Comparative Example 2]. be able to.
 変形組織に関して、Liら(非特許文献3)及びBarnettら(非特許文献4)は、冷間圧延に供したMg合金の組織には、双晶を含む変形組織が形成され、その試料を焼鈍に供すると、双晶を核として、再結晶粒が生成することを報告している。これらの知見は、変形組織が、再結晶粒を生成するための核になることを示唆している。 Regarding the deformation structure, Li et al. (Non-patent Document 3) and Barnett et al. (Non-Patent Document 4) have found that a deformed structure containing twins is formed in the Mg alloy structure subjected to cold rolling, and the sample is annealed. It is reported that recrystallized grains are generated with twins as nuclei. These findings suggest that the deformed structure becomes a nucleus for generating recrystallized grains.
 上述したように、前記マグネシウム合金でなる板材を用いて、圧延に用いる圧延ロールの表面温度を予め50~250℃とし、かつ圧延に供する板材の表面温度を予め上述した温度に昇温した上で、圧延を行うと、圧延中に該板材が非底面すべりが活動できる450℃以上の温度域に保持できるため、圧延中に非底面転位が粒界もしくは双晶界面に高密度に蓄積された変形組織を形成することができる。そして、上述した変形組織に関する知見からしても、その圧延後板材を焼鈍すると、高密度の非底面転位を吸収した再結晶核が生成されることが期待できる。なお、圧延ロールの表面温度は、予め昇温する板材の表面温度との関係を考慮の上、圧延中の板材や圧延ロールの表面肌の状態がより安定しやすい60~220℃にすることが望ましい。 As described above, using the plate material made of the magnesium alloy, the surface temperature of the rolling roll used for rolling is set to 50 to 250 ° C., and the surface temperature of the plate material used for rolling is raised to the above-described temperature in advance. When rolling is performed, the sheet material can be maintained in a temperature range of 450 ° C. or higher where non-bottom sliding can be active during rolling, so that non-bottom dislocations are accumulated at the grain boundaries or twin interfaces at high density during rolling. An organization can be formed. And also from the knowledge regarding the deformation | transformation structure | tissue mentioned above, when the board | plate material after the rolling is annealed, it can be anticipated that the recrystallized nucleus which absorbed the high-density non-bottom dislocation was generated. Note that the surface temperature of the rolling roll should be 60 to 220 ° C. in consideration of the relationship with the surface temperature of the plate material to be heated in advance, so that the surface condition of the plate material and the rolling roll during rolling is more stable. desirable.
 例えば、圧延後板材において、粒界、双晶界面に高密度の転位が蓄積されている場合は、焼鈍に伴って静的再結晶が生じる(非特許文献5)。また、一般に、圧延に供する前記板材の表面温度を常温の30℃~200℃に昇温して圧延した場合は、柱面<a>すべりや錐面<c+a>すべり(非底面すべり)の臨界分解せん断応力(CRSS)が底面<a>すべりのCRSSよりも十分大きいため、非底面すべりは殆ど活動できない。しかし、前記板材の表面温度を450℃以上に昇温して圧延した場合は、非底面すべりのCRSSが底面<a>すべりのCRSSとほぼ同じ値となるため、非底面すべりが活発に活動するようになる(特許文献3)。それゆえに、前記板材の表面温度を450℃以上に昇温して圧延を行うと、圧延変形粒に非底面すべりが活発に活動するため、温間圧延と比較して、高密度の非底面転位が粒界、双晶界面に蓄積されるようになる。 For example, when high-density dislocations are accumulated at grain boundaries and twin interfaces in a plate after rolling, static recrystallization occurs with annealing (Non-patent Document 5). Also, in general, when the surface temperature of the plate material used for rolling is raised to a room temperature of 30 ° C. to 200 ° C. and rolled, the criticality of the column surface <a> slip and the conical surface <c + a> slip (non-bottom slip) Since the decomposition shear stress (CRSS) is sufficiently larger than the CRSS of the bottom surface <a> slip, the non-bottom slip can hardly be activated. However, when the surface temperature of the plate is rolled at 450 ° C. or higher, the non-bottom slip CRSS is almost the same value as the bottom <a> slip CRSS, so the non-bottom slip is active. (Patent Document 3). Therefore, when rolling is performed with the surface temperature of the plate material raised to 450 ° C. or higher, non-bottom slip is active in the deformed rolling grains. Will accumulate at grain boundaries and twin interfaces.
 圧延中に板材を表面温度150~300℃で圧延を行う温間圧延では、本発明とは異なり、一般に、高密度の底面転位が、粒界もしくは双晶界面に蓄積されると考えられる。このように、高密度の底面転位を蓄積した粒界もしくは双晶界面では、焼鈍時に、母材と同じ方位を有する再結晶粒がしばしば生成してしまう。これに比べ、上述したように高密度の非底面転位を吸収した再結晶核を生成させた場合は、該再結晶核が底面転位を多く吸収した再結晶核とは異なる粒界傾角を示し、結果として、母材とは異なる方位の再結晶粒を数多く生成する。 Unlike the present invention, in warm rolling in which a plate material is rolled at a surface temperature of 150 to 300 ° C. during rolling, it is generally considered that high-density bottom dislocations are accumulated at grain boundaries or twin interfaces. Thus, recrystallized grains having the same orientation as the base material are often generated at the grain boundaries or twin interfaces where high-density bottom dislocations are accumulated during annealing. Compared to this, when recrystallized nuclei that absorbed high-density non-bottom dislocations were generated as described above, the recrystallized nuclei showed a grain boundary tilt angle different from the recrystallized nuclei that absorbed many bottom dislocations, As a result, many recrystallized grains having different orientations from the base material are generated.
 圧延中に板材を450℃以上の温度域に保持して圧延を行った場合の熱間圧延では、圧延加工中に底面すべりと一緒に非底面すべりの活動が活発に起こり、従来の温間圧延では得られなかった、非底面転位の蓄積が、粒界もしくは双晶界面で発生する。非底面転位が高密度に蓄積された板材は、底面転位が高密度に蓄積された温間圧延による板材とは異なる種類の転位を粒界に蓄積することができる。このため、圧延後板材を焼鈍すると、温間圧延の場合とは異なる核生成挙動が起こり、もしくは核生成直後に温間圧延の場合とは異なる結晶回転が起こり、母材とは異なる方位の再結晶粒が生成し、結果として、ランダムな集合組織が形成される。 In the case of hot rolling in which rolling is performed while holding the plate material in a temperature range of 450 ° C. or higher during rolling, the activity of non-bottom sliding occurs actively along with bottom sliding during rolling, and conventional warm rolling The accumulation of non-bottom dislocations that could not be obtained in the case occurs at grain boundaries or twin interfaces. A plate material in which non-bottom dislocations are accumulated at a high density can accumulate different types of dislocations at grain boundaries from a plate material obtained by warm rolling in which bottom dislocations are accumulated at a high density. For this reason, if the plate material after rolling is annealed, nucleation behavior different from that in the case of warm rolling occurs, or crystal rotation different from that in the case of warm rolling occurs immediately after nucleation, and the orientation is different from that of the base material. Crystal grains are formed, and as a result, a random texture is formed.
 上述したように、非底面転位を高密度に吸収した粒界もしくは双晶界面では、底面転位を高密度に吸収した粒界もしくは双晶界面とは異なる種類の転位が蓄積されるため、焼鈍時に、母相とは全く異なる方位を有する再結晶粒が形成される。それゆえに、後述する[実施例1]で観察された焼鈍に伴う集合組織強度の低下は、焼鈍に伴い、高密度の非底面転位を蓄積した粒界もしくは双晶界面を起点として、母材とは異なる方位の再結晶粒が生成した結果であると考えることができる。 As described above, at the grain boundaries or twin interfaces that absorb non-bottom dislocations at high density, different types of dislocations accumulate at the grain boundaries or twin interfaces that absorb bottom dislocations at high density. Thus, recrystallized grains having a completely different orientation from the parent phase are formed. Therefore, the decrease in the texture strength accompanying annealing observed in [Example 1] described later is based on the grain boundary or twin interface where high-density non-bottom dislocations are accumulated accompanying annealing. Can be considered as a result of the formation of recrystallized grains with different orientations.
 本発明において、焼鈍中に、圧延後板材の集合組織強度を弱化させるためには、上述した圧延中に、十分な塑性変形を付与し、圧延後板材の内部に、双晶を含む変形組織もしくは高密度転位を蓄積する必要がある。そのため、上述した圧延において、少なくとも総圧延率5%以上、好ましくは15%以上の圧延加工を行う必要がある。 In the present invention, during annealing, in order to weaken the texture strength of the sheet material after rolling, sufficient plastic deformation is imparted during the above-described rolling, and the deformation structure containing twins or the inside of the sheet material after rolling, It is necessary to accumulate high density dislocations. Therefore, in the rolling described above, it is necessary to perform a rolling process of at least a total rolling rate of 5% or more, preferably 15% or more.
 圧延後板材中の結晶粒の異常粒成長を極少化するためには、圧延に供する板材を、圧延前から圧延中にかけて、高温に晒す機会をなるべく減らすことが効果的である。例えば所定に近い厚みまでは、冷間圧延や温間圧延あるいは480℃に近い低温側の表面温度に昇温して熱間圧延を行い、最終的な圧延に限って、本発明を適用して圧延を行うことで、圧延後板材中の結晶粒の異常粒成長を極少化することができる。 In order to minimize the abnormal grain growth of the crystal grains in the plate after rolling, it is effective to reduce as much as possible the opportunity to expose the plate used for rolling to a high temperature from before the rolling to during rolling. For example, up to a predetermined thickness, cold rolling or warm rolling or hot rolling by raising the surface temperature to a low temperature side close to 480 ° C., the present invention is applied only to final rolling. By rolling, abnormal grain growth of crystal grains in the plate after rolling can be minimized.
 また、本発明においては、上述した圧延を行った後の圧延後板材に蓄積された双晶を含む変形組織や高密度転位を利用して集合組織強度を弱化するのであるが、そのためには、上述した圧延後板材に対して焼鈍、すなわち完全焼なましを行う必要がある。具体的には、300~450℃にて10分以上の熱処理を行うことが好ましい。450℃を超えて熱処理を行うと、結晶粒の異常粒成長が起こる恐れがあるため、留意すべきである。 In the present invention, the texture strength is weakened by utilizing a deformed structure and high-density dislocations including twins accumulated in the post-rolled sheet material after the rolling described above. It is necessary to perform annealing, that is, complete annealing on the above-described rolled plate material. Specifically, it is preferable to perform heat treatment at 300 to 450 ° C. for 10 minutes or more. It should be noted that when the heat treatment is performed at a temperature exceeding 450 ° C., abnormal grain growth may occur.
 以上、本発明者らの一連の研究開発から得られた知見より、質量%で、アルミニウム(Al)を2.0~8.0%、マンガン(Mn)を0~1.0%以下(0を含まず)含有し、あるいは、さらに亜鉛(Zn)を0.2~2.0%含有し、残部がマグネシウム(Mg)及び不可避不純物からなる板材を用い、該板材の表面温度を予め8分未満で、好ましくは5分未満で480~566℃とし、かつ、該板材を圧延する圧延ロールの表面温度を予め50~250℃、好ましくは60~220℃とした後に、該板材を少なくとも総圧延率5%以上、好ましくは15%以上で圧延し、該圧延による圧延後板材に焼鈍を行うことによって、前記板材は、組織が微細、すなわち平均結晶粒径30μm未満で、(0002)面集合組織の相対強度が5.0未満である板材を、低コスト、かつ歩留まりの高いプロセスで製造することができる。 As described above, based on the knowledge obtained from the series of research and development by the present inventors, aluminum (Al) is 2.0 to 8.0% and manganese (Mn) is 0 to 1.0% or less (0% by mass). Or a plate material containing 0.2 to 2.0% zinc (Zn) and the balance being magnesium (Mg) and inevitable impurities, and the surface temperature of the plate material is set to 8 minutes in advance. Less than 5 minutes, preferably less than 5 minutes, and after the surface temperature of the rolling roll for rolling the sheet material is set to 50 to 250 ° C., preferably 60 to 220 ° C., the sheet material is at least fully rolled. By rolling at a rate of 5% or more, preferably 15% or more, and annealing the plate after rolling by the rolling, the plate has a fine structure, that is, an average crystal grain size of less than 30 μm, and a (0002) plane texture The relative intensity of A plate is less than can be manufactured at low cost, and high yield process.
 こうして得られたマグネシウム合金でなる板材は、常温の30℃で、アルミニウム合金圧延材に匹敵する成形性、すなわち室温エリクセン値で少なくとも7.0以上を有してなる、優れた常温成形性を示す本発明のマグネシウム合金圧延材となる。ここでは、マグネシウム合金圧延材の成形性を表す指標として、エリクセン値を採用した。このエリクセン値を求めるエリクセン試験とは、JIS-B7729及びJIS-Z2274に準ずる試験を意図するものである。 The plate material made of the magnesium alloy thus obtained has excellent formability at room temperature of 30 ° C., having a formability comparable to that of a rolled aluminum alloy, that is, having a room temperature Erichsen value of at least 7.0 or more. It becomes the magnesium alloy rolled material of the present invention. Here, the Erichsen value was adopted as an index representing the formability of the magnesium alloy rolled material. The Erichsen test for obtaining the Erichsen value is intended to be a test according to JIS-B7729 and JIS-Z2274.
 また、本発明のマグネシウム合金圧延材は、XRD法(シュルツの反射法)による測定で、(0002)極点図の正規化したRD-TD面の板厚中央部における(0002)面集合組織の相対強度が5.0未満(但し、RD:圧延方向、TD:板幅方向)である、(0002)面集合組織を有する。実際には、[比較例1]として後述するように、相対強度が5.0未満の値を示していても、マイクロクラックなどの特別な事象が要因となって、優れた常温成形性、すなわち室温エリクセン値7.0未満が発現しない場合もある。しかしながら、優れた常温成形性、すなわち室温エリクセン値7.0以上を示すマグネシウム合金圧延材は、(0002)面集合組織の相対強度が5.0未満の値を示すものとなる。 Further, the magnesium alloy rolled material of the present invention is measured by the XRD method (Schulz reflection method), and the (0002) plane texture relative to the (0002) pole figure normalized RD-TD surface central portion is measured. It has a (0002) plane texture whose strength is less than 5.0 (however, RD: rolling direction, TD: sheet width direction). Actually, as will be described later as [Comparative Example 1], even if the relative strength shows a value of less than 5.0, due to special events such as microcracks, excellent room temperature moldability, A room temperature Erichsen value of less than 7.0 may not develop. However, a magnesium alloy rolled material having excellent room temperature formability, that is, a room temperature Erichsen value of 7.0 or more, exhibits a value with a relative strength of the (0002) plane texture of less than 5.0.
 なお、マグネシウム合金圧延材の表層部と中央部の(0002)面集合組織の相対強度は異なる値を示し、一般的に、表層部で、強い相対強度が測定される。そこで、本発明においては、相対強度が最も弱くなる領域である中央部において、RD-TD面の(0002)面集合組織を測定した際に検出されるピーク強度を、上述のように(0002)面集合組織の相対強度として採用した。 In addition, the relative strength of the (0002) plane texture of the surface layer portion and the central portion of the magnesium alloy rolled material shows different values, and generally a strong relative strength is measured at the surface layer portion. Therefore, in the present invention, as described above, the peak intensity detected when the (0002) plane texture of the RD-TD plane is measured in the central portion, which is the region where the relative intensity is the weakest, is (0002). The relative strength of the surface texture was adopted.
 次に、本発明について、実施例と比較例(実施例1~16、比較例1~3)に基づいて具体的に説明する。なお、本発明は、これらの実施例によって何ら限定されるものではない。 Next, the present invention will be specifically described based on Examples and Comparative Examples (Examples 1 to 16, Comparative Examples 1 to 3). In addition, this invention is not limited at all by these Examples.
[実施例1~2]と[比較例1~2]
 [実施例1]、[実施例2]と、[比較例1]、[比較例2]では、評価のための試料であるAZ31Bの製造を行うために、AZ31B合金;組成が、質量%で、Mg-2.7%Al-0.8%Zn-0.4%Mnを、供試材とした。圧延前の試料の形状は、80×110×5.0mmであった。圧延には、圧延ロール直径が160mm、圧延ロール幅が250mmの2段圧延機を利用し、圧延ロールの表面温度を、所定条件の温度の常温~300℃に設定した上で、圧延を行った。圧延ロールの回転速度は、10m/minとした。
[Examples 1 and 2] and [Comparative Examples 1 and 2]
In [Example 1], [Example 2], [Comparative Example 1], and [Comparative Example 2], in order to produce AZ31B, which is a sample for evaluation, an AZ31B alloy; Mg-2.7% Al-0.8% Zn-0.4% Mn was used as a test material. The shape of the sample before rolling was 80 × 110 × 5.0 mm 3 . Rolling was performed using a two-stage rolling mill having a rolling roll diameter of 160 mm and a rolling roll width of 250 mm, and setting the surface temperature of the rolling roll to a predetermined temperature range from room temperature to 300 ° C. . The rotation speed of the rolling roll was 10 m / min.
 各試料の圧延条件などは、表1に示す通りである。試料を、予め470℃に保持したマッフル炉に投入し、その表面温度が480℃よりも低い450℃に到達した時点で試料を取り出し、1パス当たり21%の圧延率で圧延を行った。同じ圧延スケジュールで、計6回の圧延を行い、当初の厚み5.0mmの試料を1.26mmまで圧延した。ここまでの圧延が、表1に示す圧延ステップ1である。 The rolling conditions of each sample are as shown in Table 1. The sample was put into a muffle furnace previously maintained at 470 ° C., and when the surface temperature reached 450 ° C. lower than 480 ° C., the sample was taken out and rolled at a rolling rate of 21% per pass. A total of 6 rollings were performed on the same rolling schedule, and a sample having an initial thickness of 5.0 mm was rolled to 1.26 mm. The rolling so far is rolling step 1 shown in Table 1.
 次に、試料を、予め560℃に保持したマッフル炉に投入し、その表面温度が本発明で規定する480~566℃の範囲内となる525℃に到達した時点で試料を取り出し、即時、1パスで21%の圧延率で圧延を行い、厚み1.0mmの板材を得た。この圧延が、表1に示す圧延ステップ2である。試料の表面温度が本発明で規定する480~566℃の範囲内となる圧延における総圧延率は21%である。 Next, the sample is put into a muffle furnace previously maintained at 560 ° C., and when the surface temperature reaches 525 ° C. within the range of 480 to 566 ° C. defined in the present invention, the sample is taken out immediately, Rolling was performed at a rolling rate of 21% by pass to obtain a plate material having a thickness of 1.0 mm. This rolling is rolling step 2 shown in Table 1. The total rolling ratio in rolling in which the surface temperature of the sample falls within the range of 480 to 566 ° C. defined in the present invention is 21%.
 上述した圧延ステップ1、2においては、試料の表面温度を470℃以上として行った7パスの圧延による総圧延率は80%となる。なお、圧延ステップ1、2では、圧延パス毎に、試料を、NDを軸として180°回転させるリバース圧延により実施した。また、圧延ステップ2の後、つまり最終圧延後には、前記板材に対し、350℃、キープ時間60分間の条件で、焼鈍を行った。 In the rolling steps 1 and 2 described above, the total rolling rate by 7-pass rolling performed with the sample surface temperature set at 470 ° C. or higher is 80%. In rolling steps 1 and 2, for each rolling pass, the sample was subjected to reverse rolling by rotating 180 ° about ND. Moreover, after the rolling step 2, that is, after the final rolling, the plate material was annealed under the conditions of 350 ° C. and a keeping time of 60 minutes.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
[実施例3~9]
 [実施例3]~[実施例9]では、評価のための試料であるAZ61の製造を行うために、AZ61合金;組成が、質量%で、Mg-5.9%Al-0.5%Zn-0.3%Mnを、供試材とした。圧延前の試料の形状は、80×140×2.0mmであった。圧延には、圧延ロール直径が160mm、圧延ロール幅が250mmの2段圧延機を利用し、圧延ロールの表面温度を、所定条件の温度の60~210℃に設定した上で、圧延を行った。圧延ロール回転速度は、10m/minとした。
[Examples 3 to 9]
In [Example 3] to [Example 9], in order to manufacture AZ61 which is a sample for evaluation, AZ61 alloy; the composition is mass%, Mg-5.9% Al-0.5% Zn-0.3% Mn was used as a test material. The shape of the sample before rolling was 80 × 140 × 2.0 mm 3 . For rolling, a two-stage rolling mill having a rolling roll diameter of 160 mm and a rolling roll width of 250 mm was used, and rolling was performed after setting the surface temperature of the rolling roll to a predetermined temperature of 60 to 210 ° C. . The rolling roll rotation speed was 10 m / min.
 各試料の圧延条件などは、表1に示す通りである。試料を、予め540℃もしくは500℃に保持したマッフル炉に投入し、その表面温度が505℃もしくは480℃に到達した時点で試料を取り出し、1パス当たり26%の圧延率で圧延を行った。同じ圧延スケジュールで、計3回の圧延を行い、当初の厚み2.0mmの試料を圧延し、厚み0.8mmの板材を得た。この圧延が、表1に示す圧延ステップ1である。試料の表面温度が本発明で規定する480~566℃の範囲内となる圧延における総圧延率は、59.5%である。この圧延ステップ1では、圧延を、圧延パス毎に、試料を、NDを軸として180°回転させるリバース圧延により実施した。また、圧延ステップ1の後、つまり最終圧延後には、前記板材に対し、350℃、キープ時間60分間の条件で、焼鈍を行った。 The rolling conditions of each sample are as shown in Table 1. The sample was put in a muffle furnace previously maintained at 540 ° C. or 500 ° C., and the sample was taken out when the surface temperature reached 505 ° C. or 480 ° C. and rolled at a rolling rate of 26% per pass. On the same rolling schedule, a total of 3 times of rolling was performed, the sample with an initial thickness of 2.0 mm was rolled, and a plate material with a thickness of 0.8 mm was obtained. This rolling is rolling step 1 shown in Table 1. The total rolling ratio in rolling in which the surface temperature of the sample falls within the range of 480 to 566 ° C. defined in the present invention is 59.5%. In this rolling step 1, rolling was performed by reverse rolling in which the sample was rotated 180 ° about ND for each rolling pass. In addition, after the rolling step 1, that is, after the final rolling, the plate material was annealed under conditions of 350 ° C. and a keeping time of 60 minutes.
[比較例3]と[実施例10]~[実施例16]
 [比較例3]と[実施例10]~[実施例16]では、評価のための試料であるAM60の製造を行うために、AM60合金;組成が、質量%で、Mg-6.2%Al-0.4%Mnを、供試材とした。圧延前の試料形状は、80×140×2.0mmであった。圧延には、圧延ロール直径が160mm、圧延ロール幅が250mmの2段圧延機を利用し、圧延ロールの表面温度を、所定条件の温度の常温~210℃に設定した上で、圧延を行った。圧延ロール回転速度は、10m/minとした。
[Comparative Example 3] and [Example 10] to [Example 16]
In [Comparative Example 3] and [Example 10] to [Example 16], in order to manufacture AM60 which is a sample for evaluation, AM60 alloy; the composition is Mg-6.2% by mass%. Al-0.4% Mn was used as a test material. The sample shape before rolling was 80 × 140 × 2.0 mm 3 . The rolling was performed using a two-stage rolling mill having a rolling roll diameter of 160 mm and a rolling roll width of 250 mm, and setting the surface temperature of the rolling roll to a predetermined temperature range of room temperature to 210 ° C. . The rolling roll rotation speed was 10 m / min.
 各試料の圧延条件などは、表1に示す通りである。試料を、予め500℃に炉温を保持したマッフル炉に投入し、その表面温度が本発明で規定する480~566℃の範囲の下限となる480℃に到達した時点で試料を取り出し、即時、1パス当たり26%の圧延率で圧延を行った。同じ圧延スケジュールで、計2回の圧延を行い、当初の厚み2.0mmの試料を1.1mmまで圧延した。ここまでの圧延が、表1に示す圧延ステップ1である。 The rolling conditions of each sample are as shown in Table 1. The sample was put into a muffle furnace in which the furnace temperature was previously maintained at 500 ° C., and when the surface temperature reached 480 ° C., which is the lower limit of the range of 480 to 566 ° C. defined in the present invention, the sample was taken out immediately. Rolling was performed at a rolling rate of 26% per pass. A total of two rollings were performed on the same rolling schedule, and a sample having an initial thickness of 2.0 mm was rolled to 1.1 mm. The rolling so far is rolling step 1 shown in Table 1.
 次に、試料を、予め575℃もしくは555℃に保持したマッフル炉に投入し、その表面温度が本発明で規定する480~566℃の範囲内となる545℃もしくは520℃に到達した時点で試料を取り出し、即時、1パスで27%の圧延率で圧延を行い、厚み0.8mmの板材を得た。この圧延が、表1に示す圧延ステップ2である。試料の表面温度が本発明で規定する480~566℃の範囲内となる圧延における総圧延率は27%である。 Next, the sample is put into a muffle furnace previously maintained at 575 ° C. or 555 ° C., and when the surface temperature reaches 545 ° C. or 520 ° C. which falls within the range of 480 to 566 ° C. defined in the present invention, the sample is Was immediately rolled at a rolling rate of 27% in one pass to obtain a plate material having a thickness of 0.8 mm. This rolling is rolling step 2 shown in Table 1. The total rolling ratio in rolling in which the surface temperature of the sample falls within the range of 480 to 566 ° C. defined in the present invention is 27%.
 上述した圧延ステップ1、2においては、試料の表面温度を470℃以上として行った3パスの圧延による総圧延率は60%となる。なお、圧延ステップ1、2では、圧延パス毎に、試料を、NDを軸として180°回転させるリバース圧延により実施した。また、圧延ステップ2の後、つまり最終圧延後には、前記板材に対し、350℃、キープ時間60分間の条件で、焼鈍を行った。 In the rolling steps 1 and 2 described above, the total rolling rate by three-pass rolling performed with the sample surface temperature set to 470 ° C. or higher is 60%. In rolling steps 1 and 2, for each rolling pass, the sample was subjected to reverse rolling by rotating 180 ° about ND. Moreover, after the rolling step 2, that is, after the final rolling, the plate material was annealed under the conditions of 350 ° C. and a keeping time of 60 minutes.
 上述のようにして製造した板材、つまりマグネシウム合金圧延材の常温成形性を評価するために、エリクセン試験を実施した。エリクセン試験は、JIS-B7729及びJIS-Z2247に準拠して実施した。なお、ブランク形状は、板材形状の都合上φ60mm、その厚みは1mmもしくは0.8mmとし、金型温度(試料温度)は30℃とし、成形速度は5mm/minとし、しわ押さえ力は10kNとし、潤滑剤にはグラファイトグリスを利用した。 In order to evaluate the room temperature formability of the plate material manufactured as described above, that is, a magnesium alloy rolled material, an Erichsen test was conducted. The Eriksen test was conducted according to JIS-B7729 and JIS-Z2247. The blank shape is φ60 mm for convenience of the plate material shape, the thickness is 1 mm or 0.8 mm, the mold temperature (sample temperature) is 30 ° C., the molding speed is 5 mm / min, and the wrinkle holding force is 10 kN. Graphite grease was used as the lubricant.
 前記マグネシウム合金圧延材の(0002)面集合組織を、XRD法(シュルツの反射法)により測定し、前記、内部規格を用いて規格化した(0002)面の集合組織の相対強度を求めた。正規化した(0002)面の集合組織強度を求めた。測定に際しては、試料となるそれぞれのマグネシウム合金圧延材からφ34mmの円板を切り出し、RD-TD面を、厚み0.4mm~0.5mmまで面研削した上で、#2400のSiC研磨紙を用いて表面研磨し、測定用試料とした。 The (0002) plane texture of the magnesium alloy rolled material was measured by the XRD method (Schulz reflection method), and the relative strength of the (0002) plane texture normalized using the internal standard was determined. The texture strength of the normalized (0002) plane was determined. In the measurement, a φ34 mm disk was cut out from each rolled magnesium alloy sample, and the RD-TD surface was ground to a thickness of 0.4 mm to 0.5 mm, and then # 2400 SiC abrasive paper was used. Then, the surface was polished to obtain a measurement sample.
 また、それぞれの前記マグネシウム合金圧延材のRD-ND面の組織を、光学顕微鏡により観察し、切片法(文献:A.W.Thompson:Metallography,Vol.28(1972),p.366参照)により、平均結晶粒径を算出した。得られた平均切片長さに、係数1.74を乗じた値を、平均結晶粒径とした。 Further, the structure of the RD-ND plane of each of the rolled magnesium alloy materials was observed with an optical microscope, and by a section method (refer to literature: AW Thompson: Metallography, Vol. 28 (1972), p. 366). The average crystal grain size was calculated. A value obtained by multiplying the obtained average intercept length by a factor of 1.74 was defined as an average crystal grain size.
 各測定用試料の室温エリクセン値、集合組織強度、平均結晶粒径を、表2に示す。表2において、[比較例1]、[比較例2]及び[実施例1]、[実施例2]は、AZ31B合金の結果である。
 圧延ロールの表面温度を、常温の30℃に設定した[比較例1]及び300℃に設定した[比較例2]では、集合組織強度が顕著な弱化を示さず、7.0未満のエリクセン値であった。一方、圧延ロール表面温度を、90℃に設定した[実施例1]及び150℃に設定した[実施例2]では、集合組織強度が顕著な弱化を示し、7.0以上のエリクセン値であった。なお、平均結晶粒径としては、いずれも30μm未満の微細結晶粒を有していた。
Table 2 shows the room temperature Erichsen value, texture strength, and average crystal grain size of each measurement sample. In Table 2, [Comparative Example 1], [Comparative Example 2], [Example 1], and [Example 2] are the results of the AZ31B alloy.
In [Comparative Example 1] in which the surface temperature of the rolling roll was set to 30 ° C. at normal temperature and [Comparative Example 2] set to 300 ° C., the texture strength was not significantly weakened, and the Erichsen value of less than 7.0 Met. On the other hand, in [Example 1] in which the roll surface temperature was set to 90 ° C. and [Example 2] in which the roll temperature was set to 150 ° C., the texture strength was significantly weakened, and the Erichsen value was 7.0 or more. It was. In addition, as an average crystal grain diameter, all had fine crystal grains of less than 30 μm.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 また、本発明において特に重要な圧延ロールの表面温度の影響について、圧延ロールの表面温度に限り変更した[実施例1]、[比較例1]、[比較例2]を用いて説明する。
 各試料について、焼鈍前後の(0002)面集合組織の相対強度分布である極点図とそのピーク強度値、並びに室温エリクセン値を、図1に示す。いずれの試料も、最終圧延において、試料の表面温度を、525℃まで、約2分で加熱した上で、圧延を行ったものである。
Further, the influence of the surface temperature of the rolling roll, which is particularly important in the present invention, will be described using [Example 1], [Comparative Example 1], and [Comparative Example 2] which are changed only to the surface temperature of the rolling roll.
FIG. 1 shows a pole figure, a peak intensity value, and a room temperature Erichsen value, which are relative intensity distributions of the (0002) plane texture before and after annealing for each sample. All samples were rolled after the surface temperature of the sample was heated to 525 ° C. in about 2 minutes in the final rolling.
 焼鈍前の(0002)面集合組織に注目すると、(0002)面の配向の度合いを示す集合組織強度は、いずれの試料も、6.0前後であり、集合組織強度の観点からは、各試料の違いを見出すことはできなかった。一方、焼鈍後の(0002)面集合組織に注目すると、圧延ロールの表面温度の差異に伴って、集合組織強度の変化に差が生じることを確認できた。 When attention is paid to the (0002) plane texture before annealing, the texture strength indicating the degree of orientation of the (0002) plane is around 6.0 for any sample. From the viewpoint of the texture strength, each sample I could not find any difference. On the other hand, paying attention to the (0002) plane texture after annealing, it was confirmed that there was a difference in the change in texture strength with the difference in the surface temperature of the rolling roll.
 圧延ロールの表面温度を、常温のままとした[比較例1]の集合組織強度では、焼鈍後に3.6まで減少し、予め90℃とした[実施例1]の集合組織強度では、焼鈍後に2.8まで減少していた。しかし、圧延ロールの表面温度を予め300℃とした[比較例2]の試料では、焼鈍に伴う集合組織強度の弱化は確認できなかった。 In the texture strength of [Comparative Example 1] where the surface temperature of the rolling roll was kept at room temperature, it decreased to 3.6 after annealing, and in the texture strength of [Example 1] which was previously set to 90 ° C., after annealing. It decreased to 2.8. However, in the sample of [Comparative Example 2] in which the surface temperature of the rolling roll was set to 300 ° C. in advance, no weakening of the texture strength accompanying annealing could be confirmed.
 それぞれの試料の室温エリクセン値は、圧延ロールの表面温度を、常温のままとした[比較例1]では、6.7であり、予め90℃とした[実施例1]では、8.8であり、予め300℃とした[比較例2]では、4.0であった。よって、この結果から、焼鈍中に生じる集合組織強度の弱化に応じて、試料、すなわちマグネシウム合金圧延材の常温成形性が改善することが確認できた。 The room temperature Erichsen value of each sample was 6.7 in [Comparative Example 1] in which the surface temperature of the rolling roll was kept at room temperature, and 8.8 in [Example 1], which was 90 ° C. in advance. Yes, it was 4.0 in [Comparative Example 2] at 300 ° C. in advance. Therefore, from this result, it was confirmed that the room temperature formability of the sample, that is, the magnesium alloy rolled material, was improved according to the weakening of the texture strength generated during annealing.
 以上のことからして、非底面すべりが活発に活動する温度である450℃以上まで、圧延に供する板材の表面温度を短時間で昇温した後に圧延を実施したとしても、圧延ロールの表面温度が適正化されていなければ、圧延後板材に対して焼鈍を実施しても集合組織強度の弱化が起きず、焼鈍後のマグネシウム合金圧延材には、優れた常温成形性が発現しないことが確認された。 From the above, even if the rolling is carried out after raising the surface temperature of the plate material to be rolled up to 450 ° C. or higher, which is the temperature at which non-bottom slip is active, the surface temperature of the rolling roll. If it is not optimized, it is confirmed that even if annealing is performed on the plate material after rolling, the strength of the texture does not weaken, and the magnesium alloy rolled material after annealing does not exhibit excellent room temperature formability. It was.
 また、表2において、[実施例3]~[実施例9]は、AZ61合金を用いて上述と同様に評価した結果である。圧延ロールの表面温度を60~210℃とした[実施例3]~[実施例9]の集合組織強度は、顕著な弱化を示し、また、30μm未満の微細結晶粒を有し、7.0以上のエリクセン値となった。 In Table 2, [Example 3] to [Example 9] are the results of evaluation using AZ61 alloy in the same manner as described above. The texture strengths of [Example 3] to [Example 9] in which the surface temperature of the rolling roll was 60 to 210 ° C. showed a marked weakening, had fine crystal grains of less than 30 μm, and 7.0 The above Eriksen value was obtained.
 また、表2において、[比較例3]及び[実施例10]~[実施例16]は、AM60合金を用いて上述と同様に評価した結果である。圧延ロールの表面温度を常温の30℃とした[比較例3]では、7.0未満のエリクセン値となった。一方、圧延ロールの表面温度を60~210℃とした[実施例10]~[実施例16]の集合組織は、顕著な弱化を示し、また、30μm未満の微細結晶粒を有し、7.0以上のエリクセン値となった。 In Table 2, [Comparative Example 3] and [Example 10] to [Example 16] are the results of evaluation using the AM60 alloy in the same manner as described above. In [Comparative Example 3] in which the surface temperature of the rolling roll was 30 ° C., which was normal temperature, the Erichsen value was less than 7.0. On the other hand, the textures of [Example 10] to [Example 16] in which the surface temperature of the rolling roll was 60 to 210 ° C. showed marked weakening and had fine crystal grains of less than 30 μm. The Eriksen value was 0 or more.
 以上詳述した通り、本発明は、マグネシウム合金圧延材の製造方法及びマグネシウム合金圧延材並びにプレス成形体に係るものであり、本発明により、資源枯渇・価格高騰が懸念される希土類元素を利用せずに、既存の圧延設備を用い、異方性と成形性を同時に改善し、平均結晶粒径が30μm未満の微細組織を有し、(0002)面集合組織の強度は5.0未満となる、アルミニウム合金圧延材と同程度の常温成形性、すなわちエリクセン値で少なくとも7.0以上を有する、Mg-Al-Mn系あるいはMnを微量含むMg-Al-Zn系の優れた常温成形性を有するマグネシウム合金圧延材、並びに、これを用いたプレス成形体などを、簡易、かつ安価に製造できるようになる。そして、本発明により、例えばデジタルカメラ・ノートパソコン・PDAなどの家電製品に止まらず、宇宙・航空材料・電子機器材料、自動車部材などの幅広い分野で利用できる、マグネシウム合金圧延材やこれを用いたプレス成形体を安価に提供できるようになる。 As described above in detail, the present invention relates to a method for producing a magnesium alloy rolled material, a magnesium alloy rolled material, and a press-formed body. By the present invention, a rare earth element that is feared of resource depletion and price increase is used. Without using existing rolling equipment, the anisotropy and formability are improved at the same time, and the average crystal grain size has a fine structure of less than 30 μm, and the strength of the (0002) plane texture is less than 5.0. A cold-formability comparable to that of a rolled aluminum alloy, that is, an excellent cold-formability of Mg—Al—Mn or Mg—Al—Zn containing a small amount of Mn, having an Erichsen value of at least 7.0 or more. A magnesium alloy rolled material and a press-molded body using the same can be easily and inexpensively manufactured. According to the present invention, for example, a magnesium alloy rolled material that can be used in a wide range of fields such as space / aeronautical materials / electronic equipment materials, automobile members, etc., as well as home appliances such as digital cameras, notebook computers, and PDAs, and the like are used. A press-molded body can be provided at a low cost.

Claims (12)

  1.  質量%で、アルミニウム(Al)を2.0~8.0%、マンガン(Mn)を0~1.0%以下(0を含まず)含有し、残部がマグネシウム(Mg)及び不可避不純物からなる板材を用い、該板材の表面温度を予め8分未満で480~566℃とし、かつ該板材を圧延する圧延ロールの表面温度を予め50~250℃とした後に、該板材を少なくとも総圧延率5%以上で圧延し、該圧延による圧延後板材に焼鈍を行うことを特徴とするマグネシウム合金圧延材の製造方法。 In mass%, aluminum (Al) is contained in 2.0 to 8.0%, manganese (Mn) is contained in 0 to 1.0% or less (not including 0), and the balance is composed of magnesium (Mg) and inevitable impurities. After using the plate material, the surface temperature of the plate material is set to 480 to 566 ° C. in advance in less than 8 minutes, and the surface temperature of the rolling roll for rolling the plate material is set to 50 to 250 ° C., the plate material is set to at least a total rolling rate of 5 A method for producing a magnesium alloy rolled material, comprising rolling at a rate of at least% and annealing the rolled plate after rolling.
  2.  板材が、さらに亜鉛(Zn)を0.2~2.0質量%含有する、請求項1に記載のマグネシウム合金圧延材の製造方法。 The method for producing a magnesium alloy rolled material according to claim 1, wherein the plate material further contains 0.2 to 2.0 mass% of zinc (Zn).
  3.  前記圧延ロールの表面温度を予め60~220℃とする、請求項1又は2に記載のマグネシウム合金圧延材の製造方法。 The method for producing a magnesium alloy rolled material according to claim 1 or 2, wherein the surface temperature of the rolling roll is set to 60 to 220 ° C in advance.
  4.  外部加熱装置を用いて、前記圧延ロールの表面を昇温して所定の温度とする、請求項1から3のいずれかに記載のマグネシウム合金圧延材の製造方法。 The method for producing a rolled magnesium alloy material according to any one of claims 1 to 3, wherein the surface of the rolling roll is heated to a predetermined temperature using an external heating device.
  5.  前記圧延ロール内部に熱源を設置して、前記圧延ロールの表面を昇温して所定の温度とする、請求項1から4のいずれかに記載のマグネシウム合金圧延材の製造方法。 The method for producing a magnesium alloy rolled material according to any one of claims 1 to 4, wherein a heat source is installed inside the rolling roll and the surface of the rolling roll is heated to a predetermined temperature.
  6.  前記板材を総圧延率15%以上で圧延する、請求項1から5のいずれかに記載のマグネシウム合金圧延材の製造方法。 The method for producing a magnesium alloy rolled material according to any one of claims 1 to 5, wherein the plate material is rolled at a total rolling rate of 15% or more.
  7.  前記板材の表面温度を予め5分未満で昇温して所定の温度とする、請求項1から6のいずれかに記載のマグネシウム合金圧延材の製造方法。 The method for producing a rolled magnesium alloy material according to any one of claims 1 to 6, wherein the surface temperature of the plate material is raised in advance in less than 5 minutes to a predetermined temperature.
  8.  請求項1から7のいずれかに記載の製造方法を、全圧延プロセスの一部に含むことを特徴とするマグネシウム合金圧延材の製造方法。 A manufacturing method of a magnesium alloy rolled material, characterized in that the manufacturing method according to any one of claims 1 to 7 is included in a part of the entire rolling process.
  9.  前記圧延後板材が、焼鈍前に双晶を含む変形組織を有する、請求項1から8のいずれかに記載のマグネシウム合金圧延材の製造方法。 The method for producing a magnesium alloy rolled material according to any one of claims 1 to 8, wherein the post-rolled sheet material has a deformation structure including twins before annealing.
  10.  前記圧延後板材が、焼鈍後に30μm未満の平均結晶粒径を有する、請求項1から9のいずれかに記載のマグネシウム合金圧延材の製造方法。 The method for producing a magnesium alloy rolled material according to any one of claims 1 to 9, wherein the post-rolled plate material has an average crystal grain size of less than 30 µm after annealing.
  11.  請求項1から10のいずれかに記載の製造方法によって製造されたマグネシウム合金圧延材であって、
     質量%で、アルミニウム(Al)を2.0~8.0%、マンガン(Mn)を0~1.0%以下(0を含まず)含有し、あるいは、さらに亜鉛(Zn)を0.2~2.0%含有し、残部がマグネシウム(Mg)及び不可避不純物からなり、平均結晶粒径が30μm未満であり、XRD法(シュルツの反射法)による測定で、(0002)極点図の正規化したRD-TD面の板厚中央部における(0002)面集合組織の相対強度が5.0未満(但し、RD:圧延方向、TD:板幅方向)で、室温エリクセン値が7.0以上である、ことを特徴とするマグネシウム合金圧延材。
    A magnesium alloy rolled material produced by the production method according to any one of claims 1 to 10,
    In mass%, aluminum (Al) is contained in an amount of 2.0 to 8.0%, manganese (Mn) is contained in an amount of 0 to 1.0% or less (not including 0), or zinc (Zn) is further added in an amount of 0.2. It contains ~ 2.0%, the balance is magnesium (Mg) and inevitable impurities, the average crystal grain size is less than 30μm, and the (0002) pole figure is normalized by measurement by XRD method (Schulz reflection method) The relative strength of the (0002) plane texture at the center of the thickness of the RD-TD surface is less than 5.0 (however, RD: rolling direction, TD: plate width direction), and the room temperature Erichsen value is 7.0 or more. Magnesium alloy rolled material characterized by being.
  12.  請求項11に記載のマグネシウム合金圧延材が所定の形態にプレス加工された成形体からなることを特徴とするプレス成形体。 A press-molded product comprising a molded product obtained by pressing the magnesium alloy rolled material according to claim 11 into a predetermined form.
PCT/JP2011/078455 2010-12-08 2011-12-08 Method for producing magnesium alloy rolled stock, magnesium alloy rolled stock, and press-molded body WO2012077758A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012547910A JP5700379B2 (en) 2010-12-08 2011-12-08 Magnesium alloy rolled material manufacturing method, magnesium alloy rolled material, and press-formed body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010274150 2010-12-08
JP2010-274150 2010-12-08

Publications (1)

Publication Number Publication Date
WO2012077758A1 true WO2012077758A1 (en) 2012-06-14

Family

ID=46207241

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/078455 WO2012077758A1 (en) 2010-12-08 2011-12-08 Method for producing magnesium alloy rolled stock, magnesium alloy rolled stock, and press-molded body

Country Status (2)

Country Link
JP (1) JP5700379B2 (en)
WO (1) WO2012077758A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101610360B1 (en) * 2014-12-12 2016-04-07 주식회사 포스코 Magnesium alloy sheet, method for manufacturing the same
JP2016083696A (en) * 2014-10-29 2016-05-19 権田金属工業株式会社 Magnesium alloy plate material, production method of magnesium alloy plate material, magnesium alloy product, production method of magnesium alloy product and magnesium alloy final product
CN113073275A (en) * 2021-03-22 2021-07-06 湖南工程学院 Preparation method of magnesium alloy plate with four-peak non-basal texture characteristics
CN115612953A (en) * 2022-11-17 2023-01-17 质子汽车科技有限公司 Method for reducing thermoplastic deformation stress of magnesium alloy

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105951011B (en) * 2016-06-01 2017-10-31 扬州诚德重工有限公司 A kind of manufacturing process of large-size high-strength magnesium alloy plate

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004115863A (en) * 2002-09-26 2004-04-15 Toyo Kohan Co Ltd Magnesium thin sheet for expansion excellent in formability and its manufacturing method
JP2010013725A (en) * 2008-06-05 2010-01-21 National Institute Of Advanced Industrial & Technology Easily formable magnesium alloy sheet and method for production thereof
JP2010070821A (en) * 2008-09-19 2010-04-02 Osaka Prefecture Univ Magnesium alloy sheet having excellent room temperature formability and method for treating magnesium alloy sheet
JP2010133005A (en) * 2008-10-28 2010-06-17 National Institute Of Advanced Industrial Science & Technology Commercial magnesium alloy sheet material whose cold formability is improved, and method for producing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004115863A (en) * 2002-09-26 2004-04-15 Toyo Kohan Co Ltd Magnesium thin sheet for expansion excellent in formability and its manufacturing method
JP2010013725A (en) * 2008-06-05 2010-01-21 National Institute Of Advanced Industrial & Technology Easily formable magnesium alloy sheet and method for production thereof
JP2010070821A (en) * 2008-09-19 2010-04-02 Osaka Prefecture Univ Magnesium alloy sheet having excellent room temperature formability and method for treating magnesium alloy sheet
JP2010133005A (en) * 2008-10-28 2010-06-17 National Institute Of Advanced Industrial Science & Technology Commercial magnesium alloy sheet material whose cold formability is improved, and method for producing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016083696A (en) * 2014-10-29 2016-05-19 権田金属工業株式会社 Magnesium alloy plate material, production method of magnesium alloy plate material, magnesium alloy product, production method of magnesium alloy product and magnesium alloy final product
KR101610360B1 (en) * 2014-12-12 2016-04-07 주식회사 포스코 Magnesium alloy sheet, method for manufacturing the same
CN113073275A (en) * 2021-03-22 2021-07-06 湖南工程学院 Preparation method of magnesium alloy plate with four-peak non-basal texture characteristics
CN115612953A (en) * 2022-11-17 2023-01-17 质子汽车科技有限公司 Method for reducing thermoplastic deformation stress of magnesium alloy

Also Published As

Publication number Publication date
JP5700379B2 (en) 2015-04-15
JPWO2012077758A1 (en) 2014-05-22

Similar Documents

Publication Publication Date Title
JP5515167B2 (en) Commercial magnesium alloy sheet with improved room temperature formability and method for producing the same
JP5467294B2 (en) Easy-formable magnesium alloy sheet and method for producing the same
JP5700379B2 (en) Magnesium alloy rolled material manufacturing method, magnesium alloy rolled material, and press-formed body
CN100441717C (en) Wrought magnesium alloy having excellent formability and method of producing same
CN101927312B (en) Method for processing TC4 titanium alloy into forged rings
Chino et al. Texture and stretch formability of Mg-1.5 mass% Zn-0.2 mass% Ce alloy rolled at different rolling temperatures
JP5557121B2 (en) Magnesium alloy
JP5660525B2 (en) General-purpose magnesium alloy sheet that exhibits formability similar to that of aluminum alloy and method for producing the same
Kocich et al. Texture, deformation twinning and hardening in a newly developed Mg–Dy–Al–Zn–Zr alloy processed with high pressure torsion
KR101785121B1 (en) Magnesium alloy sheet
Wang et al. Constitutive behavior and microstructure evolution of the as-extruded AE21 magnesium alloy during hot compression testing
JP5692847B2 (en) Magnesium alloy sheet with improved room temperature formability and strength and method for producing the same
JP2007138227A (en) Magnesium alloy material
JP6370298B2 (en) Aluminum foil for visible light reflecting material and manufacturing method thereof
JP5590660B2 (en) Magnesium alloy sheet with improved cold formability and in-plane anisotropy and method for producing the same
JP5252363B2 (en) Magnesium alloy press-molded body and method for producing the same
JP2014043601A (en) Magnesium alloy rolled material and method for manufacturing the same
JP2007039773A (en) Aluminum alloy plate to be formed and manufacturing method therefor
JP4599594B2 (en) Press molded body made of magnesium alloy large cross rolled material
JP7274585B2 (en) Magnesium alloy plate and manufacturing method thereof
JP5376507B2 (en) Magnesium alloy sheet having excellent cold formability and method for producing the same
JP6497686B2 (en) Magnesium alloy exhibiting superelastic effect and / or shape memory effect
JP5376508B2 (en) High strength magnesium alloy sheet having excellent cold formability and method for producing the same
JP2002371333A (en) Aluminum alloy sheet superior in formability, coating/ baking hardenability and corrosion resistance, and manufacturing method therefor
JP2011127163A (en) Magnesium alloy sheet material having excellent formability, and method for production thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11846574

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012547910

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11846574

Country of ref document: EP

Kind code of ref document: A1