JP2010066548A - 光学シートの製造方法及び光学シート - Google Patents
光学シートの製造方法及び光学シート Download PDFInfo
- Publication number
- JP2010066548A JP2010066548A JP2008233119A JP2008233119A JP2010066548A JP 2010066548 A JP2010066548 A JP 2010066548A JP 2008233119 A JP2008233119 A JP 2008233119A JP 2008233119 A JP2008233119 A JP 2008233119A JP 2010066548 A JP2010066548 A JP 2010066548A
- Authority
- JP
- Japan
- Prior art keywords
- optical sheet
- particles
- functional layer
- producing
- resin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Optical Elements Other Than Lenses (AREA)
- Liquid Crystal (AREA)
- Laminated Bodies (AREA)
Abstract
【解決手段】透明基材の少なくとも一方の面に機能層を有し、該機能層の最表面及び/又は内部に拡散要素を有する光学シートの製造方法であって、下記式(I)の関係を有するように製造条件を制御することを特徴とする表示素子表面に用いる光学シートの製造方法である。
0.19<R/V (I)
R(拡散正反射強度);拡散正反射方向の強度
V;光学シートに可視光線を照射した際の拡散正反射方向に対して−θ度〜+θ度まで1度ごとに測定した拡散反射強度の総和
【選択図】なし
Description
さらには、光学シート間の干渉斑や光学シートと表示素子との間での干渉斑を防ぐため、表面層、透明基材の裏面、各層間に可視光波長以上の凹凸を設けることも行われるが、この凹凸も同様に可視光を拡散する作用を有する。
コントラストを簡便に評価する方法として、ヘイズ値や内部ヘイズと総ヘイズの比が一般に用いられてきた。すなわち、光学シートの製造過程において、ヘイズ値を低くするように材料の特定、製造条件などを制御することで、コントラストの低下の少ない光学シートを製造し得ると考えられていた(特許文献1〜3参照)。
本発明はこのような状況下、コントラストの良い光学シートを安定して供給する製造方法及びコントラストの良い光学シートを提供することを目的とする。
一方、例えば、透過光の±2.5度以内の光量が30%で、透過光が70〜80度の角度まで散乱する光学シートと、透過光の±2.5度以内の光量が同様に30%で、透過光が5〜10度の角度に散乱する光学シートは、共にヘイズ値は70%となる。
本発明者らは、これらの知見を基に鋭意検討した結果、拡散による強度分布の概念を加えることで、従来のヘイズ値では評価し得なかったコントラストの評価が簡便に行えることを見出した。より具体的には、正反射の方向を中心にして、特定の角度範囲の拡散反射強度の総和を用いることで、コントラストの評価を簡便に行い得ること、及び光学シートの製造過程において、これを指標として、材料の特定、製造条件などを制御することで、コントラストの低下の少ない光学シートを効率よく、且つ安定して製造し得ることを見出した。本発明はこれらの知見を基に完成したものである。
0.19<R/V (I)
R(拡散正反射強度);拡散正反射方向の強度
V;光学シートに可視光線を照射した際の拡散正反射方向に対して−θ度〜+θ度まで1度ごとに測定した拡散反射強度の総和
以下、図3を用いて、R及びVの測定方法について説明する
図3に示すように、光学シート1に4の方向から可視光線を照射すると、5の方向に拡散正反射されるとともに、一部の光が拡散される。この5の方向が拡散正反射方向であり、拡散正反射方向における光の強度が、拡散正反射強度Rと定義される。なお、後に記載するように、裏面反射を抑制し、実使用時の条件とあわせるために、透明基材2の裏面には接着剤を介して黒色のアクリル板などの可視光線吸収材8を貼付する。
そして、光学シートの製造過程において、R/Vを指標として、材料の選定、製造条件の制御などを行い、上記式(I)を満足する光学シートを得るものである。
なお、拡散反射強度の測定は、具体的には以下のように測定する。
光学シートの裏面(表面層を有さない面、観察者側と反対側の面)を、透明粘着剤を介して凹凸や反りのない平坦な黒アクリル板に貼付して評価用サンプルを作製する。なお、ここで用いる黒色のアクリル板は、上述のように裏面反射を防止するためのものであり、光学シートの裏面に空気層を有さないように、かつ可視光を吸収し得るものであれば、特に制限はない。例えば、製造ラインにおいて測定する場合などでは、光学シートの検査用部分の裏面に黒色塗料を塗布する等の方法によりオンラインで測定することも可能である。
次に、評価用サンプルを測定装置に設置し、評価用サンプルの光学シート側の面に対し面の法線から45度の角度より光束を入射する。光束が評価用サンプルの光学シート面に入射し拡散反射した光を、拡散正反射方向に対し−θ度〜+θ度までの範囲で、1度ごとに受光器を走査することにより拡散反射強度を測定する。なお、入射光の正反射方向である45度を拡散正反射方向と定義する。また、拡散反射強度を測定する装置については、特に制限はないが、本発明においては、日本電色工業(株)製「GC5000L」を使用した。
図4中のaなる拡散反射強度分布を持つ透明基板に、bなる拡散反射強度分布を持つ表面層を積層すると、0度(拡散正反射方向)に近いほど拡散反射強度の減少割合は大きいので、0度に近いほど強度の低下が大きいこととなり、cなる拡散反射強度分布を持つ光学シートとなる。即ち、反射強度分布が広がると正反射強度Rは小さい値を示し、反射強度分布が狭くなると正反射強度Rは大きくなる。また、拡散角度が0度に近いほど強度分布の変化は大きいので、拡散角が大きな角度までテーリングすればするほど反射強度の総和は小さくなる。すなわち、R/Vは光学シートの拡散反射強度のテーリングと正反射の関係を示す指標となるためであると類推している。
0.19<R/V (I)
R/Vが0.19を超えるように製造することによって、コントラストの低下の小さい光学シートを得ることができる。コントラストの低下を抑制するとの観点から、R/Vは0.31を超えることが好ましく、0.48を超えることがさらに好ましい。
一方、R/Vは大きいほどコントラストの低下が見られず、R/Vが1で反射光の拡散がなくなる。本発明の光学シートは機能層を有し、何らかの拡散要素を有するが、機能層の種類に応じて、その上限値は変わる。一般には、R/Vは0.76未満であることが好ましい。0.76未満であると、例えば防眩シートの場合には、用途に応じた十分な防眩性が得られる。
内部拡散要素によって反射輝度分布及び強度を調整する方法として、機能層を構成する樹脂に透光性無機粒子及び/又は透光性有機粒子(以下、単に「透光性粒子」と記載することがある。)を分散させる方法がある。さらには、機能層を構成する透明樹脂、透明樹脂に分散される透光性粒子の形状、分散状態、粒子径、添加量、屈折率等を制御することにより行い得る。また、透明樹脂に添加し得る透光性粒子以外の添加剤の濃度等も前記内部拡散要素による拡散反射強度に影響を与える。
(1)表面に微細な凹凸を有する型を用いて光学シートの表面に凹凸形状を転写する方法、
(2)電離放射線硬化性樹脂など機能層を構成する樹脂の硬化収縮により表面に凹凸を形成する方法、
(3)透光性微粒子を前記表面層から突出固化させて表面に凹凸を形成する方法、
(4)外部からの圧力により表面凹凸を付与する方法、等がある。
上記(1)の方法としては、例えば、透明基材に電離放射線硬化性樹脂を配し、該電離放射線硬化性樹脂の塗工層に微細な凹凸を有する型を密着させ、電離放射線により硬化することで光学シートの表面に凹凸形状を設けることができる。
上記(2)の方法は、滑らかな表面を持つ微細な凹凸が得られることからギラツキ防止に有効であり、また上記(3)の方法は、透光性粒子と透明樹脂の選定、塗膜の厚さ、溶剤の選定、乾燥条件、透明基材への浸透性等により性能調整ができるため、プロセスが短くかつ作業が単純となり、低コストで製造できる点で有効である。
なお、凹凸表面に設ける反射防止層や、防汚層、ハードコート層、帯電防止層等の機能層も前記外部拡散要素による拡散反射強度に影響を与えるものである。具体的には、凹凸表面に他の機能層を設けて2層構成とすることで、表面凹凸を緩やかにし、表面拡散を抑制することができる。なお、前記他の機能層の塗膜の厚さを厚くすることで、表面凹凸を緩やかにしたり、塗布液組成、塗布及び乾燥条件等によっても表面拡散を制御することができる。
一方、上記(3)以外の方法を用いる場合には、外部拡散要素によって拡散反射強度を調整する方法と内部拡散要素によって拡散反射強度を調整する方法を、別個独立に設計することができるため、コントラスト以外の、解像度、ギラツキ、防眩性等の光学性能の調整が容易となる点で好ましい。しかも、用いる樹脂の光学性能を考慮することなく、外部拡散要素によって拡散反射強度を調整することができるため、表面樹脂のハードコート性、防汚性、帯電防止性等の物理性能を発揮する樹脂の選定が容易である。
透明樹脂に分散される透光性粒子の好ましい範囲について、以下詳細に記載する。
透光性粒子は有機粒子であっても、無機粒子であってもよいし、有機粒子と無機粒子を混合して使用してもよい。
本発明の光学シートにおいて、用いる透光性粒子の平均粒径は、0.5〜20μmの範囲が好ましく、より好ましくは1〜10μmである。この範囲内であれば、内部拡散及び/又は外部拡散による拡散反射強度分布を調整することが可能である。特に、透光性粒子の平均粒径が0.5μm以上であると、粒子の凝集が過度にならず、凹凸形成の調整が容易になり、20μm以下であると、ギラツキやざらついた画像が出にくいために、拡散反射強度分布を設計する上での自由度が確保される。
粒径のばらつきの調整方法としては、例えば、合成反応の条件を調整することで行うことができ、また、合成反応後に分級することも有力な手段である。分級では、その回数を上げることやその程度を強くすることで、望ましい分布の粒子を得ることができる。分級には風力分級法、遠心分級法、沈降分級法、濾過分級法、静電分級法等の方法を用いることが好ましい。
なお、比重は液相置換法、気相置換法(ピクノメーター法)等で、粒子径はコールターカウンター法や光回折散乱法等で、屈折率は、アッベ屈折計で直接測定するか、分光反射スペクトルや分光エリプソメトリーを測定するなどして定量的に評価できる。
また、透光性無機粒子としては、シリカ粒子、アルミナ粒子、ジルコニア粒子、チタニア粒子また中空や細孔を有する無機粒子等が挙げられる。
なお、透光性粒子の凝集防止には、可視光線の波長以下の粒子径、例えば50nm以下程度の粒子径を有するシリカなどを添加する方法が好適に挙げられる。
機能層を構成する透明樹脂としては、電離放射線硬化性樹脂又は熱硬化性樹脂を用いることができる。機能層を形成するには、電離放射線硬化性樹脂又は熱硬化性樹脂を含有する樹脂組成物を透明基材に塗布し、該樹脂組成物中に含まれるモノマー、オリゴマー及びプレポリマーを架橋及び/又は重合させることにより形成することができる。
モノマー、オリゴマー及びプレポリマーの官能基としては、電離放射線重合性のものが好ましく、中でも光重合性官能基が好ましい。
また、プレポリマー及びオリゴマーとしては、ウレタン(メタ)アクリレート、ポリエステル(メタ)アクリレート、エポキシ(メタ)アクリレート等のアクリレート、シロキサン等の珪素樹脂、不飽和ポリエステル、エポキシ樹脂等が挙げられる。
モノマーとしては、スチレン、α‐メチルスチレン等のスチレン系モノマー;(メタ)アクリル酸メチル、(メタ)アクリル酸‐2‐エチルヘキシル、ペンタエリスリトール(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート等のアクリル系モノマー;トリメチロールプロパントリチオグリコレート、トリメチロールプロパントリチオプロピレート、ペンタエリスリトールテトラチオグリコール等の分子中に2個以上のチオール基を有するポリオール化合物などが挙げられる。
また、上記樹脂組成物には、必要に応じて、光ラジカル重合開始剤を添加することができる。光ラジカル重合開始剤としては、アセトフェノン類、ベンゾイン類、ベンゾフェノン類、ホスフィンオキシド類、ケタール類、アントラキノン類、チオキサントン類、アゾ化合物等が用いられる。
アセトフェノン類としては、2,2−ジメトキシアセトフェノン、2,2−ジエトキシアセトフェノン、p−ジメチルアセトフェノン、1−ヒドロキシ−ジメチルフェニルケトン、1−ヒドロキシ−ジメチル−p−イソプロピルフェニルケトン、1−ヒドロキシシクロヘキシルフェニルケトン、2−メチル−4−メチルチオ−2−モルフォリノプロピオフェノン、2−ベンジル−2−ジメチルアミノ−1−(4−モルフォリノフェニル)−ブタノン、4−フェノキシジクロロアセトフェノン、4−t−ブチル−ジクロロアセトフェノン等が挙げられ、ベンゾイン類としては、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンジルジメチルケタール、ベンゾインベンゼンスルホン酸エステル、ベンゾイントルエンスルホン酸エステル、ベンゾインメチルエーテル、ベンゾインエチルエーテル等が挙げられる。また、ベンゾフェノン類としては、ベンゾフェノン、ヒドロキシベンゾフェノン、4−ベンゾイル−4’−メチルジフェニルサルファイド、2,4−ジクロロベンゾフェノン、4,4−ジクロロベンゾフェノンおよびp−クロロベンゾフェノン、4,4’−ジメチルアミノベンゾフェノン(ミヒラーケトン)、3,3’,4,4’−テトラ(t−ブチルパーオキシカルボニル)ベンゾフェノン等が使用可能である。
また、光増感剤を混合して用いることもでき、その具体例としては、n−ブチルアミン、トリエチルアミン、ポリ−n−ブチルホスフィン等が挙げられる。
組み合わせる樹脂の比率(質量比)は、1/99〜99/1の範囲から選択でき、5/95〜95/5の範囲が好ましく、10/90〜90/10の範囲がさらに好ましく、20/80〜80/20の範囲、特には30/70〜70/30の範囲が好ましい。
さらに詳細には、透明基材への含浸量と透光性粒子の大きさによって、拡散反射強度を制御することができる。具体的には、溶剤及び/又は電離放射線硬化性樹脂(以下「溶剤等」と表記する場合がある。)の基材への含浸量が小さく、かつ透光性粒子が小さい場合には、溶剤等の中に大部分の粒子が埋め込まれた形で機能層が形成されるが、透光性粒子が凝集しやすくなることから、表面の凹凸は比較的大きいものになる。一方、透明基材への含浸量の大きい溶剤等と小さい粒径の透光性粒子を組み合わせて用いた場合には、透光性粒子の凝集が少なくなるため、表面の凹凸は比較的小さいものになる。
また、透明基材への含浸量の大きい溶剤及び/又は電離放射線硬化性樹脂と大きい粒径の透光性粒子を組み合わせて用いた場合には、機能層の厚さが薄くなるために、透光性粒子が機能層から突出する形となり、透光性粒子に起因する表面凹凸が得られる。これに対し、透明基材への含浸量の小さい溶剤等と大きい粒径の透光性粒子を組み合わせて用いた場合には、機能層の厚さが厚くなるために、透光性粒子の表面への突出が抑制され、表面の凹凸は比較的小さいものになる。
このように、溶剤及び/又は電離放射線硬化性樹脂の透明基材への含浸量を調整し、これと透光性粒子の粒径を組み合わせて制御することで、種々の大きさの表面凹凸形状を形成させることができる。
特に、透明基材がセルロース系樹脂からなる場合に本手法は有効である。
具体的な溶剤としては、上記観点から適宜選択することができるが、具体的には、トルエン、キシレンなどの芳香族系溶剤や、メチルエチルケトン(MEK)、メチルイソブチルケトン(MIBK)、シクロヘキサノンなどのケトン類が好適に挙げられる。これらは1種を単独で、又は2種以上を組み合わせて用いることができる。芳香族系溶剤の少なくとも1種とケトン類の少なくとも1種を混合して使用することが好ましい。その他、乾燥速度を制御するために、メチルセロソルブ、エチルセロソルブ等のセロソルブ類やセロソルブアセテート類、エタノール、イソプロパノール、ブタノール、シクロヘキサノール等のアルコール類を混合してもよい。
無機粒子としては、ジルコニウム、チタン、アルミニウム、インジウム、亜鉛、錫、アンチモン等の金属やZrO2、TiO2、Al2O3、In2O3、ZnO、SnO2、Sb2O3、ITO、ATO、SiO2等の金属酸化物が挙げられる。その他カーボン、MgF、珪素、BaSO4、CaCO3、タルク、カオリンなどが含まれる。
該無機粒子の粒径は、拡散反射強度分布への影響を少なくするために、機能層を塗工する際の樹脂組成物中でなるべく微細化されていることが好ましく、平均粒径が100nm以下の範囲であることが好ましい。無機粒子を100nm以下に微細化することで透明性を損なわない光学シートを形成できる。なお、無機粒子の粒子径は、光散乱法や電子顕微鏡写真により測定できる。
さらに、本発明では防汚剤、帯電防止剤、着色剤(顔料、染料)、難燃剤、紫外線吸収剤、赤外線吸収剤、接着付与剤、重合禁止剤、酸化防止剤、表面改質剤などを添加することができる。
透明樹脂フィルムとしては、トリアセチルセルロースフィルム(TACフィルム)、ジアセチルセルロースフィルム、アセチルブチルセルロースフィルム、アセチルプロピルセルロースフィルム、環状ポリオレフィンフィルム、ポリエチレンテレフタレートフィルム、ポリエーテルスルホンフィルム、ポリアクリル系樹脂フィルム、ポリウレタン系樹脂フィルム、ポリエステルフィルム、ポリカーボネートフィルム、ポリスルホンフィルム、ポリエーテルフィルム、ポリメチルペンテンフィルム、ポリエーテルケトンフィルム、(メタ)アクリロニトリルフィルム、ポリノルボルネン系樹脂フィルム等が使用できる。特に、本発明の光学シートを偏光板とともに用いる場合では、偏光を乱さないことからTACフィルム、環状ポリオレフィンフィルムが、機械的強度と平滑性を重視する場合は、ポリエチレンテレフタレートフィルムなどのポリエステルフィルムが好ましい。
ハードコート性は、通常、鉛筆硬度(JIS K5400に準拠して測定)やスチールウール#0000で荷重をかけながら10往復擦り試験を行い、裏面に黒テープを貼付した状態でキズが確認されない最大荷重で評価する(耐スチールウール擦り性)。本発明にかかる光学シートにおいては、鉛筆硬度ではH以上が好ましく、2H以上がさらに好ましい。また、耐スチールウール擦り性では、200g/cm2以上であることが好ましく、500g/cm2以上であることがさらに好ましく、700g/cm2以上であることが特に好ましい。
(防眩性の評価方法)
平坦な黒アクリル板に光学シートを貼付することにより測定サンプルを作製する。測定サンプルの法線方向に対し15度の方向から光源を入射し、鏡面方向の位置に設置したCCDカメラにより光源の反射像を撮影し、反射光の最大ピーク強度を求める。この測定を、大きさの異なる2つの光源で行い、大きい光源で測定したときの反射光ピーク強度値をPL、小さい光源で測定したときの反射光ピーク強度値をPSとしたとき、以下の式(IV)により防眩性を評価する。
50×log(PL/PS) (IV)
この数値が大きいほど防眩性が高いことを表す。この評価では、20以上であることが好ましく、40以上であることがさらに好ましく、60以上であることが特に好ましい。
また、平坦な黒アクリル板に光学シートを貼付することにより測定サンプルを作製し、900ルクス程度の光源を、例えば、15度の角度で写し込んで、正反射方向から見たぼやけ具合を目視にて評価してもよい。
低屈折率層は、シリカ又はフッ化マグネシウムを含有する材料、低屈折率樹脂であるフッ素樹脂などにより形成される。
低屈折率層の厚さdは、d=mλ/4nを満たすものが好ましい。ここで、mは正の奇数を表し、nは低屈折率層の屈折率を表わし、λは波長を表わす。mは好ましくは1であり、λは好ましくは480〜580nmである。また、低反射率化の点から、120<n・d<145の関係を有することが好ましい。
帯電防止性を示す指標として表面抵抗値があり、本発明では、表面抵抗値が、1012Ω/□以下が好ましく、1011Ω/□以下がさらに好ましく、1010Ω/□以下が特に好ましい。また、該光学フィルムが蓄積できる最大電圧である、いわゆる飽和帯電圧としては、10kVの印加電圧で2kV以下であることが好ましい。
本発明の光学シートは、透明基材に機能層を構成する樹脂組成物を塗布して製造する。塗布の方法としては、種々の方法を用いることができ、例えば、ディップコート法、エアーナイフコート法、カーテンコート法、ロールコート法、ワイヤーバーコート法、グラビアコート法、ダイコート法、ブレードコート法、マイクログラビアコート法、スプレーコート法、スピンコート法等の公知の方法が用いられる。
本発明においては、塗布量により反射拡散輝度特性が変化するので、機能層の厚さを1〜20μmの範囲で安定して得やすいロールコート法、グラビアコート法、ダイコート法が好ましい。
より具体的には、乾燥温度を高くすることで、樹脂及び溶剤の基材への浸透性が向上する。すなわち、乾燥温度を制御することで、樹脂及び溶剤の基材への浸透性を制御することができ、上述したように、透光性粒子の粒径との関係で、拡散反射強度を制御することにつながる。
例えば、機能層を形成するための樹脂組成物が、透明樹脂、透光性粒子及び溶剤からなり、透明樹脂の浸透性を有する成分の屈折率が透光性粒子の屈折率より低く、レべリング性及び透光性粒子の沈降や凝集が同程度の場合には、硬化までの乾燥時間が長くなると、透明樹脂中の低屈折成分が透明基材に浸透し、透明樹脂の屈折率が上昇して、透光性粒子との屈折率差が減少する。一方、透明樹脂に対する透光性粒子の割合が増加するため、透光性粒子が表面に突出しやすくなり、表面凹凸が発現しやすくなる。従って、乾燥時間が長くなることにより、内部拡散は小さくなると同時に、外部拡散が大きくなる。なお、この浸透性を利用することによりアンカー効果による透明基材と機能層の密着性や、透明基材と機能層との屈折率差が0.03以上で顕著となる干渉縞の発生を防止することも可能となる。これは、透明樹脂中の低屈折成分が透明基材に浸透して生じた浸透層が、透明基材と機能層の間に屈折率が連続的に変化する屈折率調整層としての機能を発現し、界面を解消する作用を有するためである。
(評価方法)
1.拡散反射強度の測定
各製造例にて作製された光学シートについて、明細書本文中に記載の方法により測定した。
2.ヘイズの測定
各製造例にて作製された光学シートについて、(株)村上色彩技術研究所製「ヘイズメーターHM−150」で測定した。なお、光学シートの観察者側の面に各製造例で用いた透明樹脂を塗布し平滑化して測定した値を内部ヘイズとした。
3.防眩性
各製造例にて作製された光学シートについて、平坦な黒アクリル板に光学シートを貼付することにより測定サンプルを作製し、900ルクスの光源を、15度の角度で写し込んで、正反射方向から見たぼやけ具合を目視にて評価した。評価1が最も防眩性が悪く、評価5が最も防眩性が良好である。
明室コントラストは下記式により表される。
CR(L)=LW(L)/LB(L)
(CR(L):明室コントラスト,LW(L):明室白輝度,LB(L):明室黒輝度)
一般に明室白輝度の変化率は小さく明室黒輝度の変化率は大きいので、明室コントラストは明室黒輝度に支配される。また、パネル本来の黒輝度は明室黒輝度に比べて小さく無視できるので、下記要領で黒さ(黒輝度)を評価して実質的に明室コントラストの評価とした。各製造例で作製された光学シートについて裏面(表面層を有さない面、観察者側と反対側の面)を、透明粘着剤を介して凹凸や反りのない平坦な黒アクリル板に貼付して評価用サンプルを作製する。なお、ここで用いる黒色のアクリル板は、上述のように裏面反射を防止するためのものであり、光学シートの裏面に空気層を有さないように、かつ可視光を吸収し得るものであれば、特に制限はない。このサンプルを水平面に設置し30Wの三波長蛍光下(光学シートの表面に45度方向から照射)で官能評価(サンプル面から50cm上方、垂直軸に対し蛍光灯と反対側の約45度の角度から目視観察)を行って、5段階で黒さを評価した。評価1が、最も黒さが悪く、コントラストが低いことを意味し、評価5が、最も黒さが良好であって、コントラストが高いことを意味する。
透明基材としてトリアセチルセルロース(富士フィルム(株)製、厚さ80μm)を用意した。透明樹脂としてペンタエリスリトールトリアクリレート(PETA)、ジペンタエリスリトールヘキサアクリレート(DPHA)、及びポリメタクリル酸メチル(PMMA)の混合物(質量比;PETA/DPHA/PMMA=86/5/9)を用い(屈折率1.51)、これに透光性粒子として、ポリスチレン粒子(屈折率1.60、平均粒径3.5μm、(d75−d25)/MVが0.05)及びスチレン−アクリル共重合粒子(屈折率1.56、平均粒径3.5μm、(d75−d25)/MVが0.04)を、透明樹脂100質量部に対して、各々18.5及び3.5質量部含有させた。これに溶剤としてトルエン(沸点110℃)とシクロヘキサノン(沸点156℃)の混合溶剤(質量比7:3)を、透明樹脂100質量部に対して、190質量部配合して得られた樹脂組成物を、前記透明基材に塗工し、0.2m/sの流速で70℃の乾燥空気を流通させ、1分間乾燥させた。その後、紫外線を照射して(窒素雰囲気下にて200mJ/cm2)透明樹脂を硬化させ、光学シート(防眩シート)を作製した。塗膜厚は3.5μmとした。この光学シートに関し、上記方法にて評価した結果を第2表に示す。
製造例1において、透明基材の種類、透明樹脂の種類、透光性粒子の種類及び含有量、溶剤の種類及び含有量、乾燥条件、及び塗膜厚を第1表に記載するように変化させて光学シート(防眩シート)を作製した。それぞれの光学シートに関し、製造例1と同様に評価した結果を第2表に示す。
透明基材としてトリアセチルセルロース(富士フィルム(株)製、厚さ80μm)を用意した。透明樹脂としてペンタエリスリトールトリアクリレート(PETA、屈折率1.51)を用い、これに透光性粒子として、スチレン−アクリル共重合粒子(屈折率1.51、平均粒径9.0μm、(d75−d25)/MVが0.04)及びポリスチレン粒子(屈折率1.60、平均粒径3.5μm、(d75−d25)/MVが0.05)を、それぞれ透明樹脂100質量部に対して、10.0質量部、及び16.5質量部含有させた。これに溶剤としてトルエン(沸点110℃)とシクロヘキサノン(沸点156℃)の混合溶剤(質量比7:3)を、透明樹脂100質量部に対して、190質量部配合して得られた樹脂組成物を、前記透明基材に塗工し、1m/sの流速で85℃の乾燥空気を流通させ、1分間乾燥させた。これに紫外線を照射して(空気雰囲気下にて100mJ/cm2)透明樹脂を硬化させた(防眩層の形成)。
該塗膜層(防眩層)の上に、透明樹脂としてPETA(ペンタエリスリトールトリアクリレート、屈折率1.51)、及び溶剤としてトルエン(沸点110℃)とシクロヘキサノン(沸点156℃)の混合溶剤(質量比7:3)を、透明樹脂100質量部に対して、190質量部配合して得られた樹脂組成物を塗工し、5m/sの流速で70℃の乾燥空気を流通させ、1分間乾燥させた(ハードコート層の形成)。これに紫外線を照射して(窒素雰囲気下にて200mJ/cm2)透明樹脂を硬化させ、光学シート(ハードコート層を有する防眩シート)を作製した。塗膜厚は全体で12.0μmとした。この光学シートに関し、製造例1と同様に評価した結果を第2表に示す。
製造例8において、透光性粒子であるポリスチレン粒子の含有量を、透明樹脂100質量部に対して、6.5質量部とし、塗膜厚を全体で13.0μmとしたこと以外は製造例8と同様にして、光学シート(ハードコート層を有する防眩シート)を作製した。製造例1と同様に評価した結果を第2表に示す。
B;スチレン−アクリル共重合粒子(屈折率1.56、平均粒径3.5μm、(d75−d25)/MVが0.04)
C;スチレン−アクリル共重合粒子(屈折率1.51、平均粒径9.0μm、(d75−d25)/MVが0.04)
D;不定形シリカ(屈折率1.45、平均粒径1.5μm、(d75−d25)/MVが0.6)
E;不定形シリカ(屈折率1.45、平均粒径2.5μm、(d75−d25)/MVが0.8)
F;メラミン粒子(屈折率1.66、平均粒径2.0μm、(d75−d25)/MVが0.2)
P;ペンタエリスリトールトリアクリレート(PETA)、ジペンタエリスリトールヘキサアクリレート(DPHA)、及びポリメタクリル酸メチル(PMMA)の混合物(質量比;PETA/DPHA/PMMA=86/5/9)(屈折率1.51)
Q;ペンタエリスリトールトリアクリレート(PETA)(屈折率1.51)
X;トルエン(沸点110℃)とメチルイソブチルケトン(沸点116℃)の混合物(質量比8:2)
Y;トルエン(沸点110℃)とシクロヘキサノン(沸点156℃)の混合物(質量比7:3)
製造例1〜19において、拡散反射強度の測定結果からR/Vを計算し、横軸にR/Vを、縦軸にコントラスト及び防眩性をプロットした結果をそれぞれ図5及び図6に示す。R/Vとコントラスト及び防眩性は相関を示すことが実証された。
製造例1〜19において、ヘイズ値の測定結果から、横軸にヘイズを、縦軸にコントラストをプロットした結果は図1に示すものとなる。また、横軸にヘイズを、縦軸に防眩性をプロットした結果は図7に示すものとなる。さらにまた、横軸に内部ヘイズと総ヘイズの比を、縦軸にコントラストをプロットした結果は図2に示すものとなり、横軸に内部ヘイズと総ヘイズの比を、横軸に防眩性をプロットした結果は図8に示すものとなる。ヘイズとコントラスト及び防眩性、内部ヘイズ/総ヘイズの比とコントラスト及び防眩性、では相関を示さない。
2.基材
3.表面層
4.光束の入射方向
5.拡散正反射方向
6.機能層(防眩層)
7.透光性粒子
8.可視光吸収材料(黒色のアクリル板)
Claims (19)
- 透明基材の少なくとも一方の面に機能層を有し、該機能層の最表面及び/又は内部に拡散要素を有する光学シートの製造方法であって、下記式(I)の関係を有するように製造条件を制御することを特徴とする表示素子表面に用いる光学シートの製造方法。
0.19<R/V (I)
R(拡散正反射強度);拡散正反射方向の強度
V;光学シートに可視光線を照射した際の拡散正反射方向に対して−θ度〜+θ度まで1度ごとに測定した拡散反射強度の総和 - さらに、下記式(II)の関係を有するように制御する請求項1に記載の光学シートの製造方法。
0.31<R/V (II) - さらに、下記式(III)の関係を有するように制御する請求項1に記載の光学シートの製造方法。
0.48<R/V (III) - 前記機能層が、透明樹脂に透光性無機粒子及び/又は透光性有機粒子を分散させてなる請求項1〜3のいずれかに記載の光学シートの製造方法。
- 前記機能層が透明樹脂からなり、該透明樹脂が相分離可能な複数の樹脂から構成される請求項1〜3のいずれかに記載の光学シートの製造方法。
- 前記透明樹脂と透光性無機粒子及び/又は透光性有機粒子との屈折率が異なる請求項4に記載の光学シートの製造方法。
- 前記透光性無機粒子及び/又は透光性有機粒子により機能層の表面に凹凸を設ける請求項4又は6に記載の光学シートの製造方法。
- 前記透明樹脂と透光性無機粒子及び/又は透光性有機粒子との屈折率差が0.01〜0.25である請求項6又は7に記載の光学シートの製造方法。
- 前記透光性無機粒子及び/又は透光性有機粒子の平均粒径が0.5〜20μmである請求項4及び6〜8のいずれかに記載の光学シートの製造方法。
- 前記透光性無機粒子及び/又は透光性有機粒子の重量平均による平均径をMV、累積25%径をd25、累積75%径をd75としたときに、(d75−d25)/MVが0.25以下である請求項4及び6〜9のいずれかに記載の光学シートの製造方法。
- 前記透光性無機粒子及び/又は透光性有機粒子が前記透明樹脂中に1〜30質量%含有される請求項4及び6〜10のいずれかに記載の光学シートの製造方法。
- 型の表面に設けられた凹凸を反転転写して、前記機能層の表面に凹凸を設ける請求項1〜11のいずれかに記載の光学シートの製造方法。
- 前記透明樹脂が電離放射線硬化性樹脂であり、前記機能層は該電離放射線硬化性樹脂を含有する電離放射線硬化性樹脂組成物を透明基材上に塗布し、架橋硬化して形成する請求項4〜12のいずれかに記載の光学シートの製造方法。
- 前記透明基材がセルロース系樹脂からなり、電離放射線硬化性樹脂組成物は、透明基材に含浸する溶剤及び/又は透明基材に含浸する電離放射線硬化性樹脂と、透明基材に含浸しない溶剤及び/又は透明基材に含浸しない電離放射線硬化性樹脂とを含み、透明基材への含浸量を調整することにより、前記式(I)〜式(III)のいずれかの関係を有するように制御する請求項13に記載の光学シートの製造方法。
- 前記透明基材がトリアセチルセルロースである請求項14に記載の光学シートの製造方法。
- 前記透明基材がポリエチレンテレフタレートである請求項1〜13のいずれかに記載の光学シートの製造方法。
- 前記機能層がハードコート層を含み、耐スチールウール擦り性が200g/cm2以上である請求項1〜16のいずれかに記載の光学シートの製造方法。
- 最表層に反射防止機能層を形成する請求項1〜17のいずれかに記載の光学シートの製造方法。
- 請求項1〜18のいずれかに記載の製造方法により得られる光学シート。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008233119A JP5531388B2 (ja) | 2008-09-11 | 2008-09-11 | 光学シートの製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008233119A JP5531388B2 (ja) | 2008-09-11 | 2008-09-11 | 光学シートの製造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010066548A true JP2010066548A (ja) | 2010-03-25 |
JP5531388B2 JP5531388B2 (ja) | 2014-06-25 |
Family
ID=42192183
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008233119A Active JP5531388B2 (ja) | 2008-09-11 | 2008-09-11 | 光学シートの製造方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5531388B2 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11624856B2 (en) * | 2017-05-29 | 2023-04-11 | Daicel Corporation | Method for manufacturing anti-glare film |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002214413A (ja) * | 1998-02-17 | 2002-07-31 | Dainippon Printing Co Ltd | 防眩フィルム、偏光素子及び表示装置 |
JP2003028755A (ja) * | 2001-07-11 | 2003-01-29 | Matsushita Electric Ind Co Ltd | 反射板検査装置および反射板検査方法 |
JP2007041533A (ja) * | 2005-06-28 | 2007-02-15 | Nitto Denko Corp | 防眩性ハードコートフィルム |
JP2007334064A (ja) * | 2006-06-15 | 2007-12-27 | Nitto Denko Corp | 防眩性ハードコートフィルム、それを用いた偏光板および画像表示装置 |
WO2008020587A1 (fr) * | 2006-08-14 | 2008-02-21 | Dai Nippon Printing Co., Ltd. | Stratifié optique antireflet |
JP2008046496A (ja) * | 2006-08-18 | 2008-02-28 | Dainippon Printing Co Ltd | 光学積層体、偏光板及び画像表示装置 |
-
2008
- 2008-09-11 JP JP2008233119A patent/JP5531388B2/ja active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002214413A (ja) * | 1998-02-17 | 2002-07-31 | Dainippon Printing Co Ltd | 防眩フィルム、偏光素子及び表示装置 |
JP2003028755A (ja) * | 2001-07-11 | 2003-01-29 | Matsushita Electric Ind Co Ltd | 反射板検査装置および反射板検査方法 |
JP2007041533A (ja) * | 2005-06-28 | 2007-02-15 | Nitto Denko Corp | 防眩性ハードコートフィルム |
JP2007334064A (ja) * | 2006-06-15 | 2007-12-27 | Nitto Denko Corp | 防眩性ハードコートフィルム、それを用いた偏光板および画像表示装置 |
WO2008020587A1 (fr) * | 2006-08-14 | 2008-02-21 | Dai Nippon Printing Co., Ltd. | Stratifié optique antireflet |
JP2008046496A (ja) * | 2006-08-18 | 2008-02-28 | Dainippon Printing Co Ltd | 光学積層体、偏光板及び画像表示装置 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11624856B2 (en) * | 2017-05-29 | 2023-04-11 | Daicel Corporation | Method for manufacturing anti-glare film |
Also Published As
Publication number | Publication date |
---|---|
JP5531388B2 (ja) | 2014-06-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5505309B2 (ja) | 光学シート | |
JP2010122560A (ja) | 光学シートの製造方法及び光学シート | |
WO2010047298A1 (ja) | 光学シート | |
JP4966395B2 (ja) | 動画像と静止画像との混用に適した液晶表示装置の黒彩感及び画像の切れの改善方法 | |
JP5725216B2 (ja) | 光学シート | |
JP5163259B2 (ja) | 光学シートの評価方法 | |
WO2010047300A1 (ja) | 光学シート | |
JP2014112257A (ja) | 光学シート | |
JP5405781B2 (ja) | 光学シートの製造方法 | |
JP5399024B2 (ja) | 光学シートの選別方法 | |
JP2010128255A (ja) | 光学シートの製造方法及び光学シート | |
JP2010128108A (ja) | 光学シートの製造方法及び光学シート | |
JP5488430B2 (ja) | 動画像と静止画像との混用に適した液晶表示装置の黒彩感及び画像の切れの改善方法 | |
JP5493317B2 (ja) | 光学シートの外光の反射によるコントラスト低下防止方法 | |
JP2010122559A (ja) | 光学シートの製造方法及び光学シート | |
JP2010128256A (ja) | 光学シートの製造方法及び光学シート | |
JP5439769B2 (ja) | 光学シートの製造方法 | |
JP5531388B2 (ja) | 光学シートの製造方法 | |
JP5460032B2 (ja) | 光学シートの選別方法 | |
JP2010128106A (ja) | 光学シートの製造方法及び光学シート | |
JP2010128180A (ja) | 光学シートの製造方法及び光学シート | |
JP2010122710A (ja) | 光学シート | |
JP2014059585A (ja) | 光学シート | |
JP2010122452A (ja) | 光学シートの製造方法及び光学シート | |
JP2010122709A (ja) | 光学シート |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110614 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120615 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120626 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120824 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121225 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130221 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130528 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130725 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20131112 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140210 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20140218 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140325 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140407 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5531388 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |