JP2010066291A - Double-sided reflecting mirror and method for manufacturing the same - Google Patents

Double-sided reflecting mirror and method for manufacturing the same Download PDF

Info

Publication number
JP2010066291A
JP2010066291A JP2008229734A JP2008229734A JP2010066291A JP 2010066291 A JP2010066291 A JP 2010066291A JP 2008229734 A JP2008229734 A JP 2008229734A JP 2008229734 A JP2008229734 A JP 2008229734A JP 2010066291 A JP2010066291 A JP 2010066291A
Authority
JP
Japan
Prior art keywords
reflecting mirror
double
sided
members
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008229734A
Other languages
Japanese (ja)
Other versions
JP5371335B2 (en
Inventor
Hajime Takeya
元 竹谷
Masasane Kume
将実 久米
Takeshi Ozaki
毅志 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2008229734A priority Critical patent/JP5371335B2/en
Publication of JP2010066291A publication Critical patent/JP2010066291A/en
Application granted granted Critical
Publication of JP5371335B2 publication Critical patent/JP5371335B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a double-sided reflecting mirror capable of being made light in weight while preventing the change of optical performance and the lowering of heat resistance, and a method for manufacturing the same. <P>SOLUTION: A first reflecting mirror member 11 having a first reflecting mirror surface 2 on the front surface and a first lightening work part 11a on the back surface and a second reflecting mirror member 12 having a second reflecting mirror surface 3 on the front surface and a second lightening work part 12a on the back surface are manufactured from two C/C molded bodies 10. Then, by combining back surfaces of the first and second reflecting mirror members 11 and 12, impregnating the first and second reflecting mirror members 11 and 12 with melted metal silicon in a vacuum, making them react and turning C/C to C/SiC, the first and second reflecting mirror members 11 and 12 are bonded and integrated. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、例えば宇宙望遠鏡や赤外線シーカー等に使用される反射光学系の両面反射鏡及びその製造方法に関するものである。   The present invention relates to a double-sided reflecting mirror of a reflecting optical system used for, for example, a space telescope and an infrared seeker, and a manufacturing method thereof.

宇宙望遠鏡や赤外線シーカーでは、複数枚の反射鏡を組み合わせた反射光学系が使用される。このような反射光学系では、複数の反射鏡の位置を正確に合わせ、かつロケットの打ち上げ時の振動等の環境条件に耐えられるように、反射鏡を固定部に強固に固定する必要がある。このため、構成される反射鏡の枚数が増えるに従って、位置合わせのための調整に必要な時間が長くなり、また固定用の部品の点数が増え、重量が増加するなどの問題がある。   In space telescopes and infrared seekers, reflective optical systems that combine multiple reflectors are used. In such a reflecting optical system, it is necessary to firmly fix the reflecting mirrors to the fixing portion so that the positions of the reflecting mirrors can be accurately aligned and can withstand environmental conditions such as vibration when the rocket is launched. For this reason, as the number of reflecting mirrors increases, the time required for the adjustment for alignment becomes longer, the number of fixing parts increases, and the weight increases.

これに対して、従来の宇宙用の反射光学系では、両面に反射鏡が形成された両面反射鏡を光学系の中に使用することにより、部品点数の削減が図られている(例えば、特許文献1参照)。また、このような両面反射鏡としては、母材に発泡石英を用いたものが知られている(例えば、特許文献2参照)。さらに、宇宙用の軽量な両面反射鏡の鏡面母料として、炭化珪素を分散粒子とする粒子分散シリコン材料が用いたものが知られている(例えば、特許文献3参照)。   On the other hand, in a conventional space reflecting optical system, the number of parts is reduced by using a double-sided reflecting mirror in which reflecting mirrors are formed on both sides in the optical system (for example, patents). Reference 1). Further, as such a double-sided reflecting mirror, one using foamed quartz as a base material is known (for example, see Patent Document 2). Further, as a mirror surface material for a lightweight double-sided reflector for space use, a material using a particle-dispersed silicon material containing silicon carbide as dispersed particles is known (for example, see Patent Document 3).

特開平10−213747号公報JP-A-10-2113747 特開平8−152507号公報JP-A-8-152507 特開2004−317647号公報JP 2004-317647 A

上記のような両面反射鏡を軽量化するためには、母材を中空化する方法が有効である。しかし、従来の発泡石英や粒子分散シリコン材料を母材に使用する両面反射鏡では、母材の両面に反射鏡が形成されるため、母材の内部をくり抜くのは困難である。このため、両面反射鏡の中空化のためには、片面ずつ作成した反射鏡を、最後に接着剤によって貼り付けたり、ねじ等によって機械的に結合したりして一体化する必要がある。   In order to reduce the weight of the double-sided reflector as described above, a method of hollowing the base material is effective. However, in the conventional double-sided reflector that uses foamed quartz or particle-dispersed silicon material as the base material, it is difficult to cut out the inside of the base material because the reflective mirrors are formed on both sides of the base material. For this reason, in order to make the double-sided reflecting mirror hollow, it is necessary to integrate the reflecting mirrors prepared for each side by finally attaching them with an adhesive or mechanically connecting them with screws or the like.

このような一体化の方法のうち、接着剤による方法では、接着強度を保つために十分な接着面積を確保する必要があるため、軽量化に限界があった。また、吸湿による変形が生じるため、光学性能が変化してしまう。さらに、接着剤の物性に応じて耐熱性に限界があった。一方、ねじ等によって機械的に結合する方法では、機械的結合部を形成する必要があるとともにねじ等が必要となり、軽量化に限界があった。   Among such integration methods, the method using an adhesive has a limitation in weight reduction because it is necessary to secure a sufficient adhesion area in order to maintain the adhesive strength. Moreover, since deformation due to moisture absorption occurs, the optical performance changes. Furthermore, the heat resistance has a limit depending on the physical properties of the adhesive. On the other hand, in the method of mechanically connecting with a screw or the like, it is necessary to form a mechanically connected portion, and a screw or the like is required, so that there is a limit to weight reduction.

この発明は、上記のような課題を解決するためになされたものであり、光学性能の変化や耐熱性の低下を防止しつつ、軽量化を図ることができる両面反射鏡及びその製造方法を得ることを目的とする。   The present invention has been made to solve the above-described problems, and provides a double-sided reflector that can be reduced in weight while preventing a change in optical performance and a decrease in heat resistance, and a method for manufacturing the same. For the purpose.

この発明に係る両面反射鏡は、第1の反射鏡面と、第1の反射鏡面の背面側に位置する第2の反射鏡面と、第1及び第2の反射鏡面との間に位置する空洞部とが設けられている反射鏡本体を備え、反射鏡本体の母材として、炭素繊維強化炭化珪素複合材料が使用されている。   The double-sided reflecting mirror according to the present invention includes a first reflecting mirror surface, a second reflecting mirror surface located on the back side of the first reflecting mirror surface, and a cavity portion located between the first and second reflecting mirror surfaces. And a carbon fiber reinforced silicon carbide composite material is used as a base material of the reflecting mirror body.

この発明の両面反射鏡は、反射鏡本体の母材として炭素繊維強化炭化珪素複合材料が使用されているので、炭素繊維強化炭素複合材料を母材とする2つの反射鏡部材を、それらの炭素繊維強化炭素複合材料を炭素繊維強化炭化珪素複合材料化することで一体化することができ、従って、接着剤やねじ等を用いずに2つの反射鏡部材を一体化することができ、光学性能の変化や耐熱性の低下を防止しつつ、空洞部を設けて軽量化を図ることができる。   In the double-sided reflecting mirror of the present invention, since the carbon fiber reinforced silicon carbide composite material is used as the base material of the reflecting mirror body, the two reflecting mirror members having the carbon fiber reinforced carbon composite material as a base material are used as their carbon. The fiber reinforced carbon composite material can be integrated by converting it into a carbon fiber reinforced silicon carbide composite material. Therefore, the two reflecting mirror members can be integrated without using an adhesive or a screw, and the optical performance. It is possible to reduce the weight by providing a hollow portion while preventing a change in temperature and a decrease in heat resistance.

以下、この発明を実施するための最良の形態について、図面を参照して説明する。
実施の形態1.
図1はこの発明の実施の形態1による両面反射鏡を示す斜視図、図2は図1の両面反射鏡のA−A’線の位置(厚みdの中央部)でのXY平面における断面図、図3は図2の両面反射鏡のB−B’線に沿う断面図である。
The best mode for carrying out the present invention will be described below with reference to the drawings.
Embodiment 1 FIG.
1 is a perspective view showing a double-sided reflector according to Embodiment 1 of the present invention, and FIG. 2 is a cross-sectional view in the XY plane of the double-sided reflector of FIG. 1 taken along the line AA ′ (central portion of thickness d). 3 is a cross-sectional view taken along line BB ′ of the double-sided reflecting mirror of FIG.

図において、反射鏡本体1には、第1の反射鏡面2と、第1の反射鏡面2の背面側に位置する第2の反射鏡面3と、第1及び第2の反射鏡面2,3間に位置する複数の空洞部4とが設けられている。この例では、第1の反射鏡面2の曲率半径がR=1000mm、第2の反射鏡面3の曲率半径がR=2000mmである。空洞部4は、反射鏡本体1の周方向に並べて配置されている。また、反射鏡本体1の中央部には、光路を確保するための光路孔5が設けられている。   In the figure, the reflecting mirror body 1 includes a first reflecting mirror surface 2, a second reflecting mirror surface 3 located on the back side of the first reflecting mirror surface 2, and a space between the first and second reflecting mirror surfaces 2 and 3. Are provided with a plurality of cavities 4 located at the same position. In this example, the radius of curvature of the first reflecting mirror surface 2 is R = 1000 mm, and the radius of curvature of the second reflecting mirror surface 3 is R = 2000 mm. The cavity 4 is arranged side by side in the circumferential direction of the reflector body 1. Further, an optical path hole 5 for securing an optical path is provided in the central portion of the reflecting mirror body 1.

反射鏡本体1は、互いに対向する中空円板状の第1及び第2の円板部1a,1bと、内径側端部で第1及び第2の円板部1a,1b間に位置する円筒状の内周リブ1cと、外径側端部で第1及び第2の円板部1a,1b間に位置する外周リブ1dと、第1及び第2の円板部1a,1b間に放射状に配置された複数の放射状リブ1eとを有する一体構造である。   The reflecting mirror body 1 includes hollow disk-shaped first and second disk portions 1a and 1b facing each other, and a cylinder positioned between the first and second disk portions 1a and 1b at the inner diameter side end. The inner circumferential rib 1c, the outer circumferential rib 1d located between the first and second disk parts 1a, 1b at the outer diameter side end, and the radial between the first and second disk parts 1a, 1b And a plurality of radial ribs 1e.

第1の反射鏡面2は、第1の円板部1aに設けられている。第2の反射鏡面2は、第2の円板部1bに設けられている。空洞部4と光路孔5との間は、内周リブ1cにより仕切られている。隣接する空洞部4間は、放射状リブ1eにより仕切られている。外周リブ1dには、空洞部4を反射鏡本体1外と連通する複数の開口1fが設けられている。   The first reflecting mirror surface 2 is provided on the first disc portion 1a. The second reflecting mirror surface 2 is provided on the second disc portion 1b. The cavity 4 and the optical path hole 5 are partitioned by the inner peripheral rib 1c. The adjacent cavities 4 are partitioned by radial ribs 1e. The outer peripheral rib 1d is provided with a plurality of openings 1f that allow the cavity 4 to communicate with the outside of the reflector main body 1.

反射鏡本体1の母材としては、炭素繊維強化炭化珪素(C/SiC)複合材料が使用されている。この例では、反射鏡本体1は、C/SiC複合材料のみにより構成されている。   A carbon fiber reinforced silicon carbide (C / SiC) composite material is used as a base material of the reflector main body 1. In this example, the reflecting mirror body 1 is composed of only a C / SiC composite material.

次に、上記の両面反射鏡の製造方法について説明する。図4は図1の両面反射鏡の製造方法を斜視図とともに示す工程図である。図1の両面反射鏡を製造する場合、まず短繊維である炭素繊維をバインダー混濁水中で撹拌し、均等に分散させる(ステップS1)。なお、ここではバインダーとしてセルロースバインダーを使用した。   Next, a method for manufacturing the double-sided reflecting mirror will be described. FIG. 4 is a process diagram showing a manufacturing method of the double-sided reflecting mirror of FIG. 1 together with a perspective view. When manufacturing the double-sided reflecting mirror of FIG. 1, first, carbon fibers which are short fibers are stirred in binder-turbid water and uniformly dispersed (step S1). Here, a cellulose binder was used as the binder.

続いて、バインダー混濁水の水分を真空ポンプで減圧除去した後、堆積した繊維の塊を金型に移し、加圧して所定の形状(ここでは円板状)に成形する(ステップS2)。この後、成形された繊維の塊を金型から取り出し、乾燥炉内で90℃48時間以上の条件で加熱乾燥させる(ステップS3)。これにより、炭素繊維とバインダーとからなる炭素繊維成形体が作製される。   Subsequently, after the moisture of the binder turbid water is removed under reduced pressure by a vacuum pump, the accumulated fiber lump is transferred to a mold and pressurized to form a predetermined shape (here, a disk shape) (step S2). Thereafter, the formed fiber lump is taken out from the mold and dried by heating in a drying furnace at 90 ° C. for 48 hours or longer (step S3). Thereby, the carbon fiber molded object which consists of carbon fiber and a binder is produced.

次に、この炭素繊維成形体にピッチ(またはフェノール樹脂でもよい)を含浸させ(ステップS4)、真空中あるいはアルゴン、窒素などの不活性ガスによる不活性雰囲気中で約1000℃に加熱し、含浸剤成分を炭化させて炭素繊維強化炭素(以下、C/Cと称する)複合材料にする。この後、不活性雰囲気中2000℃で熱処理してC/C複合材料を黒鉛化させる(ステップS5)。これにより、黒鉛化した円板状のC/C成形体10が作製される。   Next, this carbon fiber molded body is impregnated with pitch (or may be a phenol resin) (step S4), and heated to about 1000 ° C. in vacuum or in an inert atmosphere with an inert gas such as argon or nitrogen. The agent component is carbonized to form a carbon fiber reinforced carbon (hereinafter referred to as C / C) composite material. Thereafter, the C / C composite material is graphitized by heat treatment at 2000 ° C. in an inert atmosphere (step S5). Thereby, the graphitized disk-shaped C / C molded object 10 is produced.

この後、C/C成形体10の前面及び背面に機械加工を施す(ステップS6)。具体的には、C/C成形体10の前面に、所望の曲率半径(ここではR=1000mm)を有する球面状(凹面)となるように研削加工を施す。また、C/C成形体10の背面には、リブ1c〜1eに対応する部分を残して軽量化(切削)加工を施す。さらに、C/C成形体10の中央部には、光路孔5となる円形の孔を設ける。これにより、前面に第1の反射鏡面2、背面に第1の軽量化加工部11aが設けられた第1の反射鏡部材11が作製される。   Thereafter, machining is performed on the front surface and the back surface of the C / C molded body 10 (step S6). Specifically, the front surface of the C / C molded body 10 is ground so as to have a spherical shape (concave surface) having a desired radius of curvature (here, R = 1000 mm). Further, the back surface of the C / C molded body 10 is subjected to weight reduction (cutting) processing while leaving portions corresponding to the ribs 1c to 1e. Further, a circular hole to be the optical path hole 5 is provided in the central portion of the C / C molded body 10. Thereby, the 1st reflective mirror surface 11 in which the 1st reflective mirror surface 2 was provided in the front surface, and the 1st weight reduction process part 11a was provided in the back surface is produced.

また、上記と同様の手順で別のC/C成形体10を作製し、そのC/C成形体10から第1の反射鏡部材11と同様の手順で第2の反射鏡部材12を作製する。このとき、第2の反射鏡部材12の前面には、曲率半径R=2000mmの第2の反射鏡面3を設ける。また、第2の反射鏡部材12の背面には、第1の軽量化加工部11aと同様の第2の軽量化加工部12aを設ける。   Further, another C / C molded body 10 is manufactured in the same procedure as described above, and the second reflecting mirror member 12 is manufactured from the C / C molded body 10 in the same procedure as the first reflecting mirror member 11. . At this time, the second reflecting mirror surface 3 having a radius of curvature R = 2000 mm is provided on the front surface of the second reflecting mirror member 12. Further, on the back surface of the second reflecting mirror member 12, a second lightening processing portion 12a similar to the first lightening processing portion 11a is provided.

そして、このようにして得られた第1及び第2の反射鏡部材11,12の背面同士を組み合わせる(ステップS7)。この後、真空中で第1及び第2の反射鏡部材11,12に熔融金属シリコンを含浸、反応させ、C/CをC/SiC化することにより、第1及び第2の反射鏡部材11,12を接合し一体化する(ステップS8)。このとき、第1及び第2の反射鏡部材11,12の界面では、含浸されたシリコンの一部が炭素と反応し炭化珪素に変化し、これにより第1及び第2の反射鏡部材11,12が強固に一体化される。   Then, the back surfaces of the first and second reflecting mirror members 11 and 12 thus obtained are combined (step S7). Thereafter, the first and second reflecting mirror members 11 and 12 are impregnated and reacted in a vacuum with molten metal silicon, and C / C is converted to C / SiC, thereby making the first and second reflecting mirror members 11. , 12 are joined and integrated (step S8). At this time, at the interface between the first and second reflecting mirror members 11 and 12, a part of the impregnated silicon reacts with carbon and changes to silicon carbide, whereby the first and second reflecting mirror members 11, 12 is firmly integrated.

最後に、第1及び第2の反射鏡面2,3に片面ずつ仕上げの研削加工及び鏡面研磨加工を施す(ステップS9、S10)。これにより、C/SiC成形体である図1の反射鏡本体1が作製される。   Finally, finishing grinding and mirror polishing are performed on the first and second reflecting mirror surfaces 2 and 3 one by one (steps S9 and S10). Thereby, the reflector main body 1 of FIG. 1 which is a C / SiC molded body is produced.

このような両面反射鏡では、反射鏡本体1の母材としてC/SiC複合材料が使用されているので、C/C複合材料を母材とする2つの反射鏡部材11,12を、それらのC/CをC/SiC化することで一体化することができ、従って、接着剤やねじ等を用いずに2つの反射鏡部材11,12を一体化することができ、光学性能の変化や耐熱性の低下を防止しつつ、空洞部4を設けて軽量化を図ることができる。   In such a double-sided reflector, since the C / SiC composite material is used as the base material of the reflector main body 1, the two reflector members 11 and 12 having the C / C composite material as a base material are connected to each other. C / C can be integrated by changing to C / SiC. Therefore, the two reflecting mirror members 11 and 12 can be integrated without using an adhesive or a screw, and the optical performance can be changed. It is possible to reduce the weight by providing the cavity 4 while preventing the heat resistance from decreasing.

また、一体化された反射鏡本体1の両面に反射鏡面2,3が形成されているので、宇宙望遠鏡や赤外線シーカー等に適用する場合に光学部品の数を減らすことができるとともに、2つの反射鏡を用いる場合に比べて、光学系を薄型化することもできる。
さらに、C/SiC複合材料は、衛星用の反射鏡材料として優れた特性を有している。
In addition, since the reflecting mirror surfaces 2 and 3 are formed on both surfaces of the integrated reflecting mirror body 1, the number of optical components can be reduced when applied to a space telescope, an infrared seeker, etc. The optical system can be made thinner than when a mirror is used.
Furthermore, the C / SiC composite material has excellent characteristics as a reflector material for satellites.

さらにまた、上記のような両面反射鏡の製造方法では、C/C複合材料が母材として使用されている第1及び第2の反射鏡部材11,12の背面同士を組み合わせ、溶融されたシリコンを第1及び第2の反射鏡部材11,12に含浸させ、C/CをC/SiC化することで第1及び第2の反射鏡部材11,12を一体化するので、接着剤やねじ等を用いずに2つの反射鏡部材11,12を一体化することができ、光学性能の変化や耐熱性の低下を防止しつつ、空洞部4を設けて軽量化を図ることができる。   Furthermore, in the method for manufacturing a double-sided reflector as described above, the back surfaces of the first and second reflector members 11 and 12 in which the C / C composite material is used as a base material are combined and fused silicon. The first and second reflecting mirror members 11 and 12 are impregnated, and C / C is converted into C / SiC so that the first and second reflecting mirror members 11 and 12 are integrated. It is possible to integrate the two reflecting mirror members 11 and 12 without using, etc., and to reduce the weight by providing the hollow portion 4 while preventing a change in optical performance and a decrease in heat resistance.

さらに、C/C複合材料は、機械加工性に優れ、機械的強度が高いので、軽量化のための機械加工時に、加工時間が短時間で済むとともに、円板部1a,1bやリブ1c〜1eの薄肉化を図ることができる。   Furthermore, since the C / C composite material is excellent in machinability and has high mechanical strength, the machining time can be shortened during machining for weight reduction, and the disk portions 1a, 1b and ribs 1c˜ 1e can be thinned.

実施の形態2.
次に、この発明の実施の形態2について説明する。実施の形態2による両面反射鏡の外観は図1と同様である。また、図5は実施の形態2による両面反射鏡の断面図であり、図2と同様の断面に相当する。さらに、図6は図5の両面反射鏡の一体化前の状態を示す断面図であり、図5のC−C'線、D−D’線に沿う断面に相当する。
Embodiment 2. FIG.
Next, a second embodiment of the present invention will be described. The appearance of the double-sided reflector according to Embodiment 2 is the same as that of FIG. FIG. 5 is a cross-sectional view of the double-sided reflector according to Embodiment 2, and corresponds to the same cross section as FIG. Further, FIG. 6 is a cross-sectional view showing a state before the double-sided reflecting mirror of FIG. 5 is integrated, and corresponds to a cross section taken along the line CC ′ and DD ′ of FIG.

この実施の形態2では、黒鉛化したC/C成形体10の前面及び背面に機械加工を施す際(図4のステップS6)、第1の反射鏡部材11の背面に位置決め部としての複数の凸部13を設ける。また、第2の反射鏡部材12の背面には、凸部13が嵌合される位置決め部としての複数の凹部14を設ける。これらの凸部13及び凹部14は、放射状リブ1eに設けられている。他の構成及び製造方法は、実施の形態1と同様である。   In the second embodiment, when machining is performed on the front surface and the back surface of the graphitized C / C molded body 10 (step S6 in FIG. 4), a plurality of positioning portions are provided on the back surface of the first reflecting mirror member 11. Protrusions 13 are provided. In addition, a plurality of concave portions 14 are provided on the back surface of the second reflecting mirror member 12 as positioning portions to which the convex portions 13 are fitted. These convex portions 13 and concave portions 14 are provided on the radial rib 1e. Other configurations and manufacturing methods are the same as those in the first embodiment.

このような両面反射鏡の製造方法では、第1及び第2の反射鏡部材11,12の背面に、第1及び第2の反射鏡部材11,12の背面同士を組み合わせる際に位置決めをするための凸部13及び凹部14を設けたので、第1及び第2の反射鏡部材11,12を組み合わせる際に、両者の位置合わせを短時間で精密に行うことができる。   In such a double-sided reflector manufacturing method, positioning is performed when the back surfaces of the first and second reflecting mirror members 11 and 12 are combined with the back surfaces of the first and second reflecting mirror members 11 and 12. Since the convex portion 13 and the concave portion 14 are provided, when the first and second reflecting mirror members 11 and 12 are combined, both can be precisely aligned in a short time.

実施の形態3.
次に、図7はこの発明の実施の形態3による両面反射鏡の一体化前の状態を示す断面図であり、図5のC−C'線、D−D’線に沿う断面に相当する。実施の形態2では、第1の反射鏡部材11に凸部13を設け、第2の反射鏡部材12に凹部14を設けたが、実施の形態3では、第1の反射鏡部材11に凸部13及び凹部14の両方を設け、第2の反射鏡部材12にも凸部13及び凹部14の両方を設けた。他の構成及び製造方法は、実施の形態2と同様である。
Embodiment 3 FIG.
Next, FIG. 7 is a cross-sectional view showing a state before integration of the double-sided reflector according to Embodiment 3 of the present invention, and corresponds to a cross section taken along the line CC ′ and DD ′ of FIG. . In the second embodiment, the first reflecting mirror member 11 is provided with the convex portion 13 and the second reflecting mirror member 12 is provided with the concave portion 14. In the third embodiment, the first reflecting mirror member 11 is convex. Both the part 13 and the recessed part 14 were provided, and both the convex part 13 and the recessed part 14 were provided also in the 2nd reflective mirror member 12. FIG. Other configurations and manufacturing methods are the same as those in the second embodiment.

このような製造方法によっても、第1及び第2の反射鏡部材11,12を組み合わせる際に、両者の位置合わせを短時間で精密に行うことができる。   Also by such a manufacturing method, when combining the 1st and 2nd reflective mirror members 11 and 12, both position alignment can be performed precisely in a short time.

実施の形態4.
次に、この発明の実施の形態4について説明する。実施の形態4による両面反射鏡の外観は図1と同様である。また、図8は実施の形態4による両面反射鏡の断面図であり、図2と同様の断面に相当する。さらに、図9は図8の両面反射鏡の一体化前の状態を示す断面図であり、図8のE−E'線、F−F’線に沿う断面に相当する。
Embodiment 4 FIG.
Next, a fourth embodiment of the present invention will be described. The appearance of the double-sided reflector according to Embodiment 4 is the same as that of FIG. FIG. 8 is a cross-sectional view of a double-sided reflecting mirror according to Embodiment 4, which corresponds to the same cross section as FIG. Further, FIG. 9 is a cross-sectional view showing a state before the double-sided reflecting mirror of FIG. 8 is integrated, and corresponds to a cross section taken along lines EE ′ and FF ′ of FIG.

この実施の形態4では、黒鉛化したC/C成形体10の前面及び背面に機械加工を施す際(図4のステップS6)、第1の反射鏡部材11の背面に位置決め部としての複数の凸部15を設ける。また、第2の反射鏡部材12の背面には、凸部15が嵌合される位置決め部としての複数の凹部16を設ける。これらの凸部15及び凹部16は、外周リブ1dに設けられている。他の構成及び製造方法は、実施の形態1と同様である。   In the fourth embodiment, when machining is performed on the front surface and the back surface of the graphitized C / C molded body 10 (step S6 in FIG. 4), a plurality of positioning portions are provided on the back surface of the first reflecting mirror member 11. Protrusions 15 are provided. A plurality of recesses 16 are provided on the back surface of the second reflecting mirror member 12 as positioning portions to which the protrusions 15 are fitted. These convex portions 15 and concave portions 16 are provided on the outer peripheral rib 1d. Other configurations and manufacturing methods are the same as those in the first embodiment.

このような両面反射鏡の製造方法では、第1及び第2の反射鏡部材11,12の背面に、第1及び第2の反射鏡部材11,12の背面同士を組み合わせる際に位置決めをするための凸部15及び凹部16を設けたので、第1及び第2の反射鏡部材11,12を組み合わせる際に、両者の位置合わせを短時間で精密に行うことができる。   In such a double-sided reflector manufacturing method, positioning is performed when the back surfaces of the first and second reflecting mirror members 11 and 12 are combined with the back surfaces of the first and second reflecting mirror members 11 and 12. Since the convex portion 15 and the concave portion 16 are provided, when the first and second reflecting mirror members 11 and 12 are combined, both can be precisely aligned in a short time.

なお、実施の形態4では、第1の反射鏡部材11に凸部15を設け、第2の反射鏡部材12に凹部16を設けたが、第1の反射鏡部材11に凸部15及び凹部16の両方を設け、第2の反射鏡部材12にも凸部15及び凹部16の両方を設けてもよい。
また、実施の形態4と実施の形態2,3とを組み合わせて実施してもよい。
In the fourth embodiment, the first reflecting mirror member 11 is provided with the convex portion 15, and the second reflecting mirror member 12 is provided with the concave portion 16. However, the first reflecting mirror member 11 has the convex portion 15 and the concave portion. 16 may be provided, and both the convex portion 15 and the concave portion 16 may be provided also in the second reflecting mirror member 12.
Moreover, you may implement combining Embodiment 4 and Embodiment 2,2.

実施の形態5.
次に、図10はこの発明の実施の形態5による両面反射鏡の一体化前の状態を示す断面図であり、図8のE−E'線、F−F’線に沿う断面に相当する。
Embodiment 5 FIG.
Next, FIG. 10 is a cross-sectional view showing a state before integration of the double-sided reflector according to Embodiment 5 of the present invention, and corresponds to a cross section taken along lines EE ′ and FF ′ of FIG. .

この実施の形態5では、黒鉛化したC/C成形体10の前面及び背面に機械加工を施す際(図4のステップS6)、第1の反射鏡部材11の背面に位置決め部としての複数の凸部17を設ける。また、第2の反射鏡部材12の背面には、凸部17が嵌合される位置決め部としての複数の凹部18を設ける。これらの凸部17及び凹部18は、周方向に互いに間隔をおいて内周リブ1cに設けられている。他の構成及び製造方法は、実施の形態1と同様である。   In the fifth embodiment, when machining the front and back surfaces of the graphitized C / C molded body 10 (step S6 in FIG. 4), a plurality of positioning portions are provided on the back surface of the first reflecting mirror member 11. Protrusions 17 are provided. In addition, a plurality of concave portions 18 as positioning portions into which the convex portions 17 are fitted are provided on the back surface of the second reflecting mirror member 12. The convex portion 17 and the concave portion 18 are provided on the inner peripheral rib 1c at intervals in the circumferential direction. Other configurations and manufacturing methods are the same as those in the first embodiment.

このような両面反射鏡の製造方法では、第1及び第2の反射鏡部材11,12の背面に、第1及び第2の反射鏡部材11,12の背面同士を組み合わせる際に位置決めをするための凸部17及び凹部18を設けたので、第1及び第2の反射鏡部材11,12を組み合わせる際に、両者の位置合わせを短時間で精密に行うことができる。   In such a double-sided reflector manufacturing method, positioning is performed when the back surfaces of the first and second reflecting mirror members 11 and 12 are combined with the back surfaces of the first and second reflecting mirror members 11 and 12. Since the convex portion 17 and the concave portion 18 are provided, when the first and second reflecting mirror members 11 and 12 are combined, both can be precisely aligned in a short time.

なお、実施の形態5では、第1の反射鏡部材11に凸部17を設け、第2の反射鏡部材12に凹部18を設けたが、第1の反射鏡部材11に凸部17及び凹部18の両方を設け、第2の反射鏡部材12にも凸部17及び凹部18の両方を設けてもよい。
また、実施の形態5と実施の形態2,3及び実施の形態4の少なくともいずれか一方とを組み合わせて実施してもよい。
In the fifth embodiment, the first reflecting mirror member 11 is provided with the convex portion 17 and the second reflecting mirror member 12 is provided with the concave portion 18. However, the first reflecting mirror member 11 has the convex portion 17 and the concave portion. 18 may be provided, and both the convex portion 17 and the concave portion 18 may be provided also in the second reflecting mirror member 12.
Moreover, you may implement combining Embodiment 5 and at least any one of Embodiment 2, 3, and Embodiment 4. FIG.

実施の形態6.
次に、図11はこの発明の実施の形態6による両面反射鏡を示す斜視図、図12は図11の両面反射鏡のG−G’線の位置(厚みdの中央部)でのXY平面における断面図、図13は図12の両面反射鏡のH−H’線に沿う断面図である。
Embodiment 6 FIG.
Next, FIG. 11 is a perspective view showing a double-sided reflector according to Embodiment 6 of the present invention, and FIG. 12 is an XY plane at the position of the line GG ′ of the double-sided reflector of FIG. FIG. 13 is a sectional view taken along line HH ′ of the double-sided reflecting mirror of FIG.

この実施の形態6は、光路孔5が設けられてない点で実施の形態1と異なっている。このため、第1の円板部1aの背面と第2の円板部1bの背面とは、それらの中央部で一体化されている。   The sixth embodiment is different from the first embodiment in that the optical path hole 5 is not provided. For this reason, the back surface of the 1st disc part 1a and the back surface of the 2nd disc part 1b are integrated in those center parts.

このような両面反射鏡を製造する場合、黒鉛化したC/C成形体10の前面及び背面に機械加工を施す際(図4のステップS6)、第1及び第2の反射鏡部材11,12の背面の中央部に、互いに接合される接合部が設けられる。他の構成及び製造方法は実施の形態1と同様である。   When manufacturing such a double-sided reflector, when the front and back surfaces of the graphitized C / C molded body 10 are machined (step S6 in FIG. 4), the first and second reflector members 11 and 12 are used. In the central part of the back surface of each other, a joint part joined to each other is provided. Other configurations and manufacturing methods are the same as those in the first embodiment.

このような両面反射鏡及びその製造方法によっても、光学性能の変化や耐熱性の低下を防止しつつ、空洞部4を設けて軽量化を図ることができる。   Also with such a double-sided reflecting mirror and its manufacturing method, it is possible to reduce the weight by providing the cavity 4 while preventing changes in optical performance and a decrease in heat resistance.

なお、実施の形態6に示したような両面反射鏡の製造方法において、実施の形態2〜5に示したような位置決め部を設けてもよい。
また、リブ1c〜1eの配置や反射鏡面2,3の曲率半径は、実施の形態1〜6に限定されるものではない。
さらに、凸部13,15,17や凹部14,16,18を設ける場合、それらの数や形状は特に限定されるものではない。
In the method for manufacturing a double-sided reflector as shown in the sixth embodiment, a positioning unit as shown in the second to fifth embodiments may be provided.
Further, the arrangement of the ribs 1c to 1e and the radius of curvature of the reflecting mirror surfaces 2 and 3 are not limited to those of the first to sixth embodiments.
Furthermore, when providing the convex parts 13, 15, and 17 and the recessed parts 14, 16, and 18, those numbers and shapes are not specifically limited.

この発明の実施の形態1による両面反射鏡を示す斜視図である。It is a perspective view which shows the double-sided reflective mirror by Embodiment 1 of this invention. 図1の両面反射鏡のA−A’線の位置でのXY平面における断面図である。It is sectional drawing in the XY plane in the position of the A-A 'line | wire of the double-sided reflective mirror of FIG. 図2の両面反射鏡のB−B’線に沿う断面図である。It is sectional drawing which follows the B-B 'line | wire of the double-sided reflective mirror of FIG. 図1の両面反射鏡の製造方法を斜視図とともに示す工程図である。It is process drawing which shows the manufacturing method of the double-sided reflective mirror of FIG. 1 with a perspective view. この発明の実施の形態2による両面反射鏡の断面図である。It is sectional drawing of the double-sided reflective mirror by Embodiment 2 of this invention. 図5の両面反射鏡の一体化前の状態を示す断面図である。It is sectional drawing which shows the state before integration of the double-sided reflective mirror of FIG. この発明の実施の形態3による両面反射鏡の一体化前の状態を示す断面図である。It is sectional drawing which shows the state before integration of the double-sided reflective mirror by Embodiment 3 of this invention. この発明の実施の形態4による両面反射鏡の断面図である。It is sectional drawing of the double-sided reflective mirror by Embodiment 4 of this invention. 図8の両面反射鏡の一体化前の状態を示す断面図である。It is sectional drawing which shows the state before integration of the double-sided reflective mirror of FIG. この発明の実施の形態5による両面反射鏡の一体化前の状態を示す断面図である。It is sectional drawing which shows the state before integration of the double-sided reflective mirror by Embodiment 5 of this invention. この発明の実施の形態6による両面反射鏡を示す斜視図である。It is a perspective view which shows the double-sided reflective mirror by Embodiment 6 of this invention. 図11の両面反射鏡のG−G’線の位置でのXY平面における断面図である。It is sectional drawing in the XY plane in the position of the G-G 'line | wire of the double-sided reflective mirror of FIG. 図12の両面反射鏡のH−H’線に沿う断面図である。It is sectional drawing which follows the H-H 'line | wire of the double-sided reflective mirror of FIG.

符号の説明Explanation of symbols

1 反射鏡本体、2 第1の反射鏡面、3 第2の反射鏡面、4 空洞部、11 第1の反射鏡部材、12 第2の反射鏡部材、13,15,17 凸部(位置決め部)、14,16,18 凹部(位置決め部)。   DESCRIPTION OF SYMBOLS 1 Reflector main body, 2 1st reflective mirror surface, 2nd reflective mirror surface, 4 cavity part, 11 1st reflective mirror member, 12 2nd reflective mirror member, 13, 15, 17 Convex part (positioning part) , 14, 16, 18 Recess (positioning part).

Claims (4)

第1の反射鏡面と、上記第1の反射鏡面の背面側に位置する第2の反射鏡面と、上記第1及び第2の反射鏡面との間に位置する空洞部とが設けられている反射鏡本体を備え、
上記反射鏡本体の母材として、炭素繊維強化炭化珪素複合材料が使用されていることを特徴とする両面反射鏡。
Reflection provided with a first reflecting mirror surface, a second reflecting mirror surface located on the back side of the first reflecting mirror surface, and a cavity portion located between the first and second reflecting mirror surfaces With mirror body,
A double-sided reflecting mirror characterized in that a carbon fiber reinforced silicon carbide composite material is used as a base material of the reflecting mirror body.
前面に反射鏡面が設けられ、背面に軽量化加工部が設けられており、炭素繊維強化炭素複合材料が母材として使用されている第1及び第2の反射鏡部材の背面同士を組み合わせる工程、及び
溶融されたシリコンを上記第1及び第2の反射鏡部材に含浸させ、炭素繊維強化炭素複合材料を炭素繊維強化炭化珪素複合材料とすることにより、上記第1及び第2の反射鏡部材を一体化する工程
を含むことを特徴とする両面反射鏡の製造方法。
A step of combining the back surfaces of the first and second reflecting mirror members in which a reflecting mirror surface is provided on the front surface, a weight reduction processing portion is provided on the back surface, and a carbon fiber reinforced carbon composite material is used as a base material; And the first and second reflecting mirror members are impregnated with molten silicon, and the carbon fiber reinforced carbon composite material is made into a carbon fiber reinforced silicon carbide composite material, whereby the first and second reflecting mirror members are The manufacturing method of the double-sided reflective mirror characterized by including the process of integrating.
上記第1及び第2の反射鏡部材の背面に、上記第1及び第2の反射鏡部材の背面同士を組み合わせる際に位置決めをするための位置決め部を設ける工程
をさらに含むことを特徴とする請求項2に記載の両面反射鏡の製造方法。
The method further comprises a step of providing a positioning portion for positioning the back surfaces of the first and second reflecting mirror members when the back surfaces of the first and second reflecting mirror members are combined with each other. Item 3. A method for producing a double-sided reflecting mirror according to Item 2.
上記位置決め部は、上記第1及び第2の反射鏡部材の一方に設けられた凹部と、他方に設けられ上記凹部に嵌合される凸部とを含むことを特徴とする請求項3記載の両面反射鏡の製造方法。   The said positioning part contains the recessed part provided in one of the said 1st and 2nd reflective mirror member, and the convex part which is provided in the other and is fitted to the said recessed part. Manufacturing method of a double-sided reflector.
JP2008229734A 2008-09-08 2008-09-08 Double-sided reflector and manufacturing method thereof Expired - Fee Related JP5371335B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008229734A JP5371335B2 (en) 2008-09-08 2008-09-08 Double-sided reflector and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008229734A JP5371335B2 (en) 2008-09-08 2008-09-08 Double-sided reflector and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2010066291A true JP2010066291A (en) 2010-03-25
JP5371335B2 JP5371335B2 (en) 2013-12-18

Family

ID=42191964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008229734A Expired - Fee Related JP5371335B2 (en) 2008-09-08 2008-09-08 Double-sided reflector and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5371335B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106041422A (en) * 2016-06-23 2016-10-26 中国科学院长春光学精密机械与物理研究所 Aluminum-based space reflector with high lightweight rate and processing method thereof
CN110494789A (en) * 2017-04-12 2019-11-22 三菱电机株式会社 Electrically controllable mirror, the electrical scanner for having used electrically controllable mirror, the laser machine for having used electrically controllable mirror and electrically controllable mirror manufacturing method
JP2020502582A (en) * 2016-12-21 2020-01-23 マックス−プランク−ゲゼルシャフト ツール フォーデルング デル ヴィッセンシャフテン エー.ヴェー. Mirror and manufacturing method thereof
CN112285875A (en) * 2020-11-18 2021-01-29 中国科学院上海技术物理研究所 Integral type double faced mirror

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6157904A (en) * 1984-08-29 1986-03-25 Fuji Xerox Co Ltd Honeycomb mirror
JPH052102U (en) * 1991-06-26 1993-01-14 日本石英硝子株式会社 Double-sided quartz glass lightweight mirror
JP2002182018A (en) * 2000-12-15 2002-06-26 Mitsubishi Electric Corp Lightweight mirror and method for inspecting the same
JP2003344620A (en) * 2002-05-22 2003-12-03 Mitsubishi Electric Corp Reflective mirror and its manufacturing method
JP2004012533A (en) * 2002-06-03 2004-01-15 Mitsubishi Electric Corp Reflection mirror for optical equipment and its manufacture method
JP2004109843A (en) * 2002-09-20 2004-04-08 Ricoh Co Ltd Wave front aberration correction device and optical pickup
JP2004317647A (en) * 2003-04-14 2004-11-11 Nec Toshiba Space Systems Ltd Mirror plane matrix, mirror member using the same, and optical apparatus using the mirror member
JP2006027973A (en) * 2004-07-20 2006-02-02 Mitsubishi Electric Corp Reflecting mirror and production method therefor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6157904A (en) * 1984-08-29 1986-03-25 Fuji Xerox Co Ltd Honeycomb mirror
JPH052102U (en) * 1991-06-26 1993-01-14 日本石英硝子株式会社 Double-sided quartz glass lightweight mirror
JP2002182018A (en) * 2000-12-15 2002-06-26 Mitsubishi Electric Corp Lightweight mirror and method for inspecting the same
JP2003344620A (en) * 2002-05-22 2003-12-03 Mitsubishi Electric Corp Reflective mirror and its manufacturing method
JP2004012533A (en) * 2002-06-03 2004-01-15 Mitsubishi Electric Corp Reflection mirror for optical equipment and its manufacture method
JP2004109843A (en) * 2002-09-20 2004-04-08 Ricoh Co Ltd Wave front aberration correction device and optical pickup
JP2004317647A (en) * 2003-04-14 2004-11-11 Nec Toshiba Space Systems Ltd Mirror plane matrix, mirror member using the same, and optical apparatus using the mirror member
JP2006027973A (en) * 2004-07-20 2006-02-02 Mitsubishi Electric Corp Reflecting mirror and production method therefor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106041422A (en) * 2016-06-23 2016-10-26 中国科学院长春光学精密机械与物理研究所 Aluminum-based space reflector with high lightweight rate and processing method thereof
JP2020502582A (en) * 2016-12-21 2020-01-23 マックス−プランク−ゲゼルシャフト ツール フォーデルング デル ヴィッセンシャフテン エー.ヴェー. Mirror and manufacturing method thereof
US11550082B2 (en) 2016-12-21 2023-01-10 Max-Planck-Gesellschaft Zur Förderung De Wissenschaften E.V. Mirror with increased form stability and longevity and a method of fabricating the same
CN110494789A (en) * 2017-04-12 2019-11-22 三菱电机株式会社 Electrically controllable mirror, the electrical scanner for having used electrically controllable mirror, the laser machine for having used electrically controllable mirror and electrically controllable mirror manufacturing method
CN112285875A (en) * 2020-11-18 2021-01-29 中国科学院上海技术物理研究所 Integral type double faced mirror

Also Published As

Publication number Publication date
JP5371335B2 (en) 2013-12-18

Similar Documents

Publication Publication Date Title
JP5371335B2 (en) Double-sided reflector and manufacturing method thereof
EP1454175B1 (en) Precisely aligned lens structure and a method for its fabrication
US4578303A (en) Fiber compound structural component and method for making such a component
US7990632B2 (en) Optical element and stress athermalized hard contact mount
US6176588B1 (en) Low cost light weight mirror blank
US20210308983A1 (en) Assembly of components having different coefficients of thermal expansion
CN109407188B (en) Preparation method of carbon fiber composite material reflector and related reflector
JP2006276429A (en) Lightweight reflecting mirror
US8444281B2 (en) Optical device
EP1529972B1 (en) Method of manufacturing a member forming at least a balll joint and member produced thereby
JP2009276378A (en) Lightweight mirror and method of manufacturing the same
JPH04166905A (en) Lens barrel
JP7299910B2 (en) Optical element and manufacturing method thereof
JP2010190958A (en) Reflecting telescope
JP6663022B2 (en) Optical connector
JP6427407B2 (en) Honeycomb structure
JP2005510752A (en) Mirrors, optical imaging systems, and their use
JP2009205108A (en) Lightweight mirror and manufacturing method therefor
RU2189672C1 (en) Missile antenna nose fairing
JP2010254484A (en) C/SiC HONEYCOMB COMPOSITE BODY AND METHOD FOR PRODUCING THE SAME
US20150378128A1 (en) Method for manufacturing a mirror
JP2003198245A (en) Artificial satellite mounting antenna reflector and manufacturing method therefor
ES2700143T3 (en) Abrasive grinding wheel
JP2004012533A (en) Reflection mirror for optical equipment and its manufacture method
US20220146809A1 (en) Process for manufacturing an athermal low cost telescope based on high precision replication technology, and such telescope

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101021

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130917

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees