JP2004012533A - Reflection mirror for optical equipment and its manufacture method - Google Patents

Reflection mirror for optical equipment and its manufacture method Download PDF

Info

Publication number
JP2004012533A
JP2004012533A JP2002161904A JP2002161904A JP2004012533A JP 2004012533 A JP2004012533 A JP 2004012533A JP 2002161904 A JP2002161904 A JP 2002161904A JP 2002161904 A JP2002161904 A JP 2002161904A JP 2004012533 A JP2004012533 A JP 2004012533A
Authority
JP
Japan
Prior art keywords
base material
metal
thermal expansion
mirror
reflecting mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002161904A
Other languages
Japanese (ja)
Other versions
JP4024596B2 (en
Inventor
Hajime Takeya
竹谷 元
Steven Hahn
ハーン スティーブン
Takeshi Ozaki
尾崎 毅志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2002161904A priority Critical patent/JP4024596B2/en
Publication of JP2004012533A publication Critical patent/JP2004012533A/en
Application granted granted Critical
Publication of JP4024596B2 publication Critical patent/JP4024596B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Optical Elements Other Than Lenses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a reflection mirror for optical equipment made light and highly rigid, and hardly thermally deformed. <P>SOLUTION: The reflection mirror is constituted of base material 1 consisting of composite material whose thermal expansion coefficient is negative, and a metallic reflection film 2 which covers over the surface of the base material 1 to form a mirror surface and whose thermal expansion coefficient is positive, and is constituted so that the thermal deformation of the base material 1 is balanced with the thermal deformation of the film 2 and the absolute value of the thermal expansion coefficient of the entire reflection mirror is ≤1×10<SP>-7</SP>/°C. The manufacture method of the reflection mirror for the optical equipment includes a base material molding stage to form the base material 1 in desired mirror surface shape, a metallic film layer forming stage to form a metallic film layer 2a on the base material 1, and a metallic reflection film forming stage to form the film 2 by mirror finishing the layer 2a on the base material 1. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は、人工衛星に搭載する光学機器用反射鏡およびその製造方法に関するものである。
【0002】
【従来の技術】
近年、人工衛星に搭載する観測用光学機器に対する性能要求が厳しくなっており、特に温度変化に伴って光学部品に発生する熱変形を極力小さくすることが求められている。その要求に応える光学機器用反射鏡を実現しようとする場合、熱膨張率が1×10−7/℃以下の所謂ゼロ膨張ガラスで反射鏡を作成する方法がある。しかしながら、ガラスは比重が大きい上に強度や剛性が小さいため、そのガラスによって、特に大型の反射鏡を製作しようとする場合、軽量で且つ衛星の打ち上げに耐えられるものを設計することは非常に困難である。
【0003】
そこで、軽量で且つ衛星の打ち上げに耐えられる反射鏡を製作するには、多孔質のセラミックや繊維強化プラスチックなどの軽量で且つ強度・剛性の高い材料を用いることが考えられる。しかしながら、それらの材料で製作した反射鏡では、前記ゼロ膨張ガラスで製作した反射鏡よりも熱変形を小さくすることができない。
【0004】
図10は米国特許第5,208,704号明細書に記載された従来の光学機器用反射鏡を示す斜視図である。
図において、10はセラミック繊維の成型体からなって多くの空孔を有する基材、20はその基材10上に設けられて滑らか面を形成するシーリング層であり、このシーリング層20上にはガラス層30と反射膜層40と保護膜50が順次積層され、これによって光学機器用反射鏡が構成されている。
【0005】
【発明が解決しようとする課題】
従来の光学機器用反射鏡は以上のように構成されているので、軽量で高剛性のセラミック繊維成形体を基材としていることにより、反射鏡全体の軽量・高剛性化を図ることはできるが、しかし、熱変形の観点では、ゼロ膨張ガラスを基材とした反射鏡に比して熱変形が大きく、性能低下を余儀なくされるという課題があった。
【0006】
この発明は上記のような課題を解決するためになされたもので、軽量かつ高剛性で、しかも熱変形し難い光学機器用反射鏡を得ることを目的とする。
【0007】
また、この発明は、鏡面の温度上昇を抑制でき、湿度変化に伴う変形を防止することができる光学機器用反射鏡を得ることを目的とする。
【0008】
さらに、この発明は、金属反射膜を容易に形成できてコスト低減を図ることができる光学機器用反射鏡を得ることを目的とする。
【0009】
さらに、この発明は、軽量かつ高剛性で、熱変形し難く、しかも滑らかな鏡面の金属反射膜を形成することができる光学機器用反射鏡の製造方法を得ることを目的とする。
【0010】
さらに、この発明は、滑らかな鏡面の金属反射膜を容易かつ安価に形成することができる光学機器用反射鏡の製造方法を得ることを目的とする。
【0011】
さらに、この発明は、基材の複合材料や金属膜層が特性とするばらつきに左右されることなく、確実に熱膨張率の絶対値を1×10−7/℃以下で、熱変形が小さな反射鏡を得ることができる光学機器用反射鏡の製造方法を得ることを目的とする。
【0012】
【課題を解決するための手段】
この発明に係る光学機器用反射鏡は、熱膨張率が負の複合材料からなる基材と、この基材の表面を覆って鏡面を形成する熱膨張率が正の金属反射膜とからなり、基材の熱変形と金属反射膜の熱変形とが釣り合って反射鏡全体の熱膨張率の絶対値が1×10−7/℃以下となるように構成したものである。
【0013】
この発明に係る光学機器用反射鏡は、複合材料が炭素繊維強化炭素を含んでいるものである。
【0014】
この発明に係る光学機器用反射鏡は、金属反射膜がニッケルあるいはクロムからなっているものである。
【0015】
この発明に係る光学機器用反射鏡の製造方法は、熱膨張率が負の複合材料からなる基材を所望の鏡面形状に形成する基材成形工程と、基材上に金属膜層を形成する金属膜層形成工程と、基材上の金属膜層を鏡面仕上げして金属反射膜を形成する金属反射膜形成工程とを備えたものである。
【0016】
この発明に係る光学機器用反射鏡の製造方法は、金属膜層形成工程が、電解メッキと無電解メッキのいずれかの工程、または電解メッキと無電解メッキの組み合わせ工程からなるものである。
【0017】
この発明に係る光学機器用反射鏡の製造方法は、金属反射膜形成工程において、反射鏡全体の熱膨張率の絶対値が1×10−7/℃以下となるように金属膜層の厚さを調整するものである。
【0018】
【発明の実施の形態】
以下、この発明の実施の一形態を説明する。
実施の形態1.
図1はこの発明の実施の形態1による光学機器用反射鏡を示す斜視図、図2は図1の断面図である。
図において、1は熱膨張率が負の複合材料からなる基材、2はその基材1の表面(両面)に形成された金属反射膜であり、この金属反射膜2は、熱膨張率が正の金属膜からなって鏡面を形成するものである。
【0019】
前記基材1の複合材料としては、例えばピッチ系炭素繊維XN80(Nippon Graphite Fiber社製)を強化繊維とし、シアネートエステル樹脂EX1515(Bryte Technologies社製)を母材とした炭素繊維強化プラスチックを用いることができる。ここで、前記ピッチ系炭素繊維XN80は繊維長手方向の熱膨張率が−1.6×10−6/℃の負の値となるので、前記炭素繊維強化プラスチック中における繊維の堆積含有率を60%とすれば、前記炭素繊維強化プラスチックの熱膨張率は凡そ−1.0×10−6/℃となって負の値をとる。
【0020】
そこで、図1において、基材1の厚さ、弾性率、熱膨張率を、それぞれt、E、αとし、金属反射膜2の厚さ、弾性率、熱膨張率を、それぞれt、E、αとすれば、反射鏡全体の熱膨張率αは式(1)の式で求めることができる。

Figure 2004012533
ここで、式(1)の式中、基材1の熱膨張率α以外の変数は全て正であるので、式(1)の式においてtとEの値を適当にとれば、基材1の熱変形と金属反射膜2の熱変形を釣り合わせて、反射鏡全体の熱膨張率αをゼロに近い値とすることができる。例えば、前記金属反射膜2の材質をニッケルとすることにより、この場合、E=209GPa、α=1.0×10−6/℃、E=207GPa、α=15.0×10−6/℃となるので、例えばt=15mm、t=100μmとすることで、αをほぼゼロに近い値にすることができる。
【0021】
以上説明した実施の形態1によれば、熱膨張率が負の炭素繊維強化プラスチック(複合材料)を基材1とし、この基材1の表面に熱膨張率が正のニッケルからなる金属反射膜2を形成し、前記基材1の熱変形と前記金属反射膜2の熱変形を釣り合わせて反射鏡全体の熱膨張率の絶対値が1.0×10−7/℃以下となるように光学機器用反射鏡を構成することができる。このため、温度変化に伴う反射鏡の熱変形を極めて小さく抑えることができ、環境温度が変化しても、上記構成の反射鏡を有する光学機器の性能が劣化するようなことがないという効果がある。また、上述のように、熱膨張率が負の炭素繊維強化プラスチックで形成された基材1は、従来の反射鏡基材であるガラスや金属あるいはセラミックなどと比較して強度・剛性が高く且つ軽量であり、このため、反射鏡全体の軽量化が図れるという効果がある。
【0022】
なお、上記実施の形態1において、基材1の複合材料は炭素繊維強化プラスチックに特定されるものではなく、その他の例えばアラミド繊維強化プラスチックなど、要するに熱膨張率が負の複合材料であれば如何なるものでもよい。
【0023】
実施の形態2.
図3はこの発明の実施の形態2による光学機器用反射鏡を示す斜視図、図4は図3の断面図であり、図1および図2と同一部分には同一符号を付して重複説明を省略する。
この実施の形態2では、熱膨張率が負の炭素繊維強化炭素によって基材1を形成したものである。ここで、基材1の炭素繊維強化炭素の強化繊維として、例えばピッチ系炭素繊維XN80(Nippon Graphite Fiber社製)を用い、炭素繊維強化炭素における繊維の堆積含有率を30〜60%程度にすると、基材1の熱膨張率は負の値となるので、上記実施の形態1の場合と同様の方法によって、反射鏡全体の熱膨張率がゼロに近い値となるように調整することができる。
【0024】
以上のように実施の形態2では、熱膨張率が負の炭素繊維強化炭素によって反射鏡の基材1を形成するように構成したので、炭素繊維強化炭素の母材である炭素によって、樹脂よりも高い熱伝導率を得ることができ、上記実施の形態1のように炭素繊維強化プラスチックを基材1とする反射鏡に較べて、基材1の熱伝導率を高くすることができる。これに加え、強化繊維を、繊維方向の熱伝導率が600W/mKであるYS95A(Nippon Graphite Fiber社製)のような高熱伝導炭素繊維とすれば、基材1の熱伝導率がさらに高くなり、190W/mKの熱伝導率を有するアルミニウムのような金属材料と比較しても遜色のない熱伝導率値となる。このため、反射鏡が高強度の光に晒されるような場合であっても、入射光で発生する熱が反射鏡内部に速やかに拡散することによって、反射鏡方面の温度上昇を低く抑えることができ、このため、鏡面の焼き付きが起こり難いという効果を期待できる。また、炭素繊維強化炭素は、炭素繊維強化プラスチックと比較すると、空気中の水分を吸収して変形する割合が小さいので、湿度変化に伴って鏡面が変形することがないという効果がある。
【0025】
実施の形態3.
図5はこの発明の実施の形態3による光学機器用反射鏡を示す斜視図、図6は図5の断面図であり、図1から図4と同一部分には同一符号を付して重複説明を省略する。
この実施の形態3では、熱膨張率が負の複合材料で基材1を形成し、この基材1の表面にニッケルまたはクロムのメッキを施して金属反射膜2を形成することで光学機器用反射鏡を構成したものである。
【0026】
この実施の形態3による基材1の複合材料としては、上記実施の形態1の場合と同様に、例えば、ピッチ系炭素繊維XN80(Nippon Graphite Fiber社製)を強化繊維とし、シアネートエステル樹脂EX1515(Bryte Technologies社製)を母材とした炭素繊維強化プラスチックを用いることにより、基材1の熱膨張率が負の値となるので、上記実施の形態1と同様の方法により、反射鏡全体の熱膨張率がゼロに近い値となるように調整することができる。
【0027】
以上説明した実施の形態3では、熱膨張率が負の複合材料からなる基材1の表面にニッケルまたはクロムの金属反射膜2を形成するように構成したので、基材1上に金属反射膜2をメッキによって容易かつ安価に形成できると共に、その金属反射膜2を機械加工によって容易に鏡面仕上げすることができ、このため、所望形状の反射鏡面を容易かつ安価に形成できるという効果がある。
【0028】
実施の形態4.
図7はこの発明の実施の形態4による光学機器用反射鏡の製造方法を説明するための工程図であり、図1から図6と同一または相当部分には同一符号を付して光学機器用反射鏡の製造方法を説明する。
まず、図7(a)に示すように、熱膨張率が負の複合材料からなる基材1を所望の鏡面形状に形成する(基材成形工程)。この基材成形工程において、基材1は、炭素繊維強化プラスチックを適当な成形型で硬化成形することにより所望形状に製作したり、あるいは大きめに成形した炭素繊維強化炭素を機械加工などで製作してもよい。
【0029】
次いで、図7(b)に示すように、基材1の表裏両面に、メッキや溶射あるいは蒸着等によって金属膜層2aを形成する(金属膜形成工程)。この金属膜形成工程では、鏡面の熱膨張率がゼロに近い値となるような金属反射膜2(図7(c)参照)の厚さtを上記式(1)の式で求めておき、その厚さtよりも前記金属膜層2aを厚く形成する。その後、前記金属膜層2aを研磨などの機械加工で切削することにより、図7(c)に示すように層厚さtとなるように表面が滑らかな鏡面に仕上げられた金属反射膜2を形成する(反射膜形成工程)。
【0030】
ここで、一般に複合材料からなる基材1の表面には、強化繊維と母材との混じり合いによる凹凸のパターンが発生するため、前記複合材料の表面に薄い金属膜層を形成しても凹凸のパターンが残って、反射鏡面として使用することができない。また、前記複合材料の表面を機械加工によって滑らかな鏡面に仕上げようとしても、機械加工時に強化繊維が表面から脱落するなどして、滑らかな鏡面を得ることは困難である。
【0031】
その点、上記実施の形態4では、金属膜層形成工程において、基材1の表裏両面に、鏡面仕上げ後の金属反射膜2の厚さt(図7(c)参照)よりも層厚が厚い金属膜層2aを形成しておき、この金属膜層2aを次の反射膜形成工程で鏡面仕上げするプロセスとするように構成したので、金属膜層2a形成前の基材1の複合材料表面に凹凸のパターンが生じていても、滑らかな反射鏡面を容易に得ることができるという効果がある。
【0032】
実施の形態5.
図8はこの発明の実施の形態5による光学機器用反射鏡の製造方法を説明するための工程図であり、図7と同一または相当部分には同一符号を付して光学機器用反射鏡の製造方法を説明する。
まず、図8(a)に示すように、熱膨張率が負の複合材料からなる基材1を所望の鏡面形状に形成する(基材成形工程)。次いで、図8(b)に示すように、基材1の表裏両面にメッキを施して金属膜層2aを形成する(金属膜形成工程)。
【0033】
その金属膜形成工程において、基材1が繊維強化プラスチックのような電気伝導性に乏しい材料の場合には、無電解メッキによって所望の厚さの金属膜層2aを形成するか、または無電解メッキによって数μmのメッキ層を形成した後、電解メッキによって前記メッキ層を所望の厚さまで成長させる。また、基材1が炭素繊維強化炭素のような電気伝導性が高い材料の場合には、最初から電解メッキによって金属膜層2aを形成することが可能である。
【0034】
そして、前記金属膜層形成工程後に、上記実施の形態4の場合と同様に、前記金属膜層(メッキ層)2aを研磨などの機械加工で切削することにより、図8(c)に示すように層厚さtとなるように表面が滑らかな鏡面に仕上げられた金属反射膜2を形成する(反射膜形成工程)。
【0035】
以上説明した実施の形態5によれば、複合材料からなる基材1の表裏両面にメッキを施して金属膜層2aを形成するように構成したので、安価なメッキによって金属膜層2aを容易に形成することができ、その金属膜層2aを機械加工によって削るだけで表面が滑らかな鏡面を容易かつ安価に形成できるという効果がある。また、上述のようなメッキによる金属反射膜2は複合材料の基材1との密着強度が高くなるという効果がある。さらに、金属膜層2aを形成できる反射鏡の大きさは、メッキを行うためのメッキ槽の大きさで決まるので、大きなメッキ槽を用意することにより、大口径の反射鏡であっても比較的容易に製造することができるという効果がある。
【0036】
実施の形態6.
図9はこの発明の実施の形態6による光学機器用反射鏡の製造方法を説明するための工程図であり、図7および図8と同一または相当部分には同一符号を付して光学機器用反射鏡の製造方法を説明する。
まず、図9(a)に示すように、熱膨張率が負の複合材料からなる基材1を所望の鏡面形状に形成する(基材成形工程)。次いで、図9(b)に示すように、基材1の表裏両面に金属膜層2aを形成する(金属膜形成工程)。次いで、上記式(1)の式から求められる値tよりも若干薄くなるように金属膜層2aを機械加工で削り込むことで表面が滑らかな鏡面に仕上げられた金属反射膜2を形成する(金属膜層形成工程)。この後、鏡面の熱膨張率を実際に測定し、その測定結果の値が所望の値よりも大きければ、前記金属反射膜2を再度機械加工してtの調整と熱膨張率の測定を行う。この機械加工によるtの調整と熱膨張率の測定を行う過程を、鏡面の熱膨張率が1.0×10−7/℃の所望値となるまで繰り返す。
【0037】
以上説明した実施の形態6の製造方法によれば、反射鏡の熱膨張率を実際に測定しながら金属反射膜の厚さを調整できるので、基材1の複合材料や金属膜層2aの特性であるところのばらつきに左右されることなく、確実に熱膨張率の絶対値が1.0×10−7/℃以下で、熱変形が小さな反射鏡を製造することができるという効果がある。
【0038】
【発明の効果】
以上のように、この発明によれば、熱膨張率が負の複合材料からなる基材と、この基材の表面を覆って鏡面を形成する熱膨張率が正の金属反射膜とからなり、基材の熱変形と金属反射膜の熱変形とが釣り合って反射鏡全体の熱膨張率の絶対値が1×10−7/℃以下となるように構成したので、温度変化に伴う反射鏡の熱変形を極めて小さく抑えることができ、環境温度が変化しても、上記構成の反射鏡を有する光学機器の性能が劣化するようなことがないという効果がある。また、上述のように、熱膨張率が負の複合材料からなる基材は、従来の反射鏡基材であるガラスや金属あるいはセラミックなどと比較して強度・剛性が高く且つ軽量であり、このため、反射鏡全体の軽量化が図れるという効果がある。
【0039】
この発明によれば、基材が炭素繊維強化炭素を含む複合材料からなるように構成したので、複合材料の母材の熱伝導率が大きく、吸湿し難い炭素からなることによって、鏡面温度が上昇し難く、湿度変化に伴って変形することのない複合材料の鏡面を形成することができるという効果がある。
【0040】
この発明によれば、ニッケルあるいはクロムによって金属膜層を形成するように構成したので、安価なメッキによって金属反射膜を容易に形成することができるという効果がある。
【0041】
この発明によれば、熱膨張率が負の複合材料からなる基材を所望の鏡面形状に形成する基材成形工程と、基材上に金属膜層を形成する金属膜層形成工程と、基材上の金属膜層を鏡面仕上げして金属反射膜を形成する金属反射膜形成工程とを備えたプロセスとなるように構成したので、複合材料の基材上に厚めの金属膜層を形成した後、この金属膜層を機械加工によって所望の厚さに切削することで滑らかな鏡面の金属反射膜を形成することができ、このため、滑らか鏡面の光学機器用反射鏡を容易に製造することができるという効果がある。
【0042】
この発明によれば、金属膜層形成工程が、電解メッキと無電解メッキのいずれかの工程、または電解メッキと無電解メッキの組み合わせ工程からなるように構成したので、安価なメッキによって金属膜層を容易に形成することができ、その金属膜層を機械加工によって削るだけで表面が滑らかな鏡面を容易かつ安価に形成できるという効果がある。また、上述のようなメッキによる金属反射膜は複合材料の基材との密着強度が高くなるという効果がある。さらに、金属膜層を形成できる反射鏡の大きさは、メッキを行うためのメッキ槽の大きさで決まるので、大きなメッキ槽を用意することにより、大口径の反射鏡であっても比較的容易に製造することができるという効果がある。
【0043】
この発明によれば、金属反射膜形成工程において、反射鏡全体の熱膨張率の絶対値が1×10−7/℃以下となるように金属膜層の厚さを調整するように構成したので、基材の複合材料や金属膜層の特性であるばらつきに左右されることなく、確実に熱膨張率の絶対値が1.0×10−7/℃以下で、熱変形が小さな反射鏡を製造することができるという効果がある。
【図面の簡単な説明】
【図1】この発明の実施の形態1による光学機器用反射鏡を示す斜視図である。
【図2】図1の断面図である。
【図3】この発明の実施の形態2による光学機器用反射鏡を示す斜視図である。図3の断面図である。
【図4】図3の断面図である。
【図5】この発明の実施の形態3による光学機器用反射鏡を示す斜視図である。
【図6】図5の断面図である。
【図7】この発明の実施の形態4による光学機器用反射鏡の製造方法を説明するための工程図である。
【図8】この発明の実施の形態5による光学機器用反射鏡の製造方法を説明するための工程図である。
【図9】この発明の実施の形態6による光学機器用反射鏡の製造方法を説明するための工程図である。
【図10】従来の光学機器用反射鏡を示す斜視図である。
【符号の説明】
1 基材、2 金属反射膜、2a 金属膜層。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a reflector for optical equipment mounted on an artificial satellite and a method for manufacturing the same.
[0002]
[Prior art]
In recent years, performance requirements for observation optical instruments mounted on artificial satellites have become strict, and it is particularly required to minimize thermal deformation generated in optical components due to temperature changes. In order to realize a reflecting mirror for an optical device that meets the demand, there is a method in which a reflecting mirror is made of so-called zero expansion glass having a coefficient of thermal expansion of 1 × 10 −7 / ° C. or less. However, since glass has a large specific gravity and low strength and rigidity, it is very difficult to design a light-weight one that can withstand the launch of a satellite, especially when a large reflector is to be manufactured using the glass. It is.
[0003]
Therefore, in order to manufacture a reflector that is lightweight and can withstand launching of a satellite, it is conceivable to use a lightweight, high-strength and rigid material such as porous ceramics or fiber-reinforced plastic. However, a reflector made of such a material cannot reduce thermal deformation less than a reflector made of the zero expansion glass.
[0004]
FIG. 10 is a perspective view showing a conventional reflecting mirror for an optical device described in US Pat. No. 5,208,704.
In the drawing, reference numeral 10 denotes a base material having a large number of pores formed of a ceramic fiber molded body, and reference numeral 20 denotes a sealing layer provided on the base material 10 to form a smooth surface. The glass layer 30, the reflective film layer 40, and the protective film 50 are sequentially laminated, thereby forming a reflector for an optical device.
[0005]
[Problems to be solved by the invention]
Since the conventional reflector for optical equipment is configured as described above, the weight and rigidity of the entire reflector can be reduced by using a lightweight and highly rigid ceramic fiber molded body as a base material. However, from the viewpoint of thermal deformation, there has been a problem that thermal deformation is large as compared with a reflecting mirror using zero-expansion glass as a base material, and performance must be reduced.
[0006]
SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a reflecting mirror for an optical device which is lightweight, has high rigidity, and is hardly thermally deformed.
[0007]
Another object of the present invention is to provide a reflecting mirror for an optical device that can suppress a rise in temperature of a mirror surface and prevent deformation due to a change in humidity.
[0008]
Still another object of the present invention is to provide a reflecting mirror for an optical device in which a metal reflecting film can be easily formed and cost can be reduced.
[0009]
Another object of the present invention is to provide a method for manufacturing a reflector for an optical device that is lightweight, highly rigid, hardly undergoes thermal deformation, and can form a smooth metallic reflective film.
[0010]
Still another object of the present invention is to provide a method for manufacturing a reflecting mirror for an optical device which can easily and inexpensively form a smooth mirror-like metal reflecting film.
[0011]
Furthermore, the present invention ensures that the absolute value of the coefficient of thermal expansion is 1 × 10 −7 / ° C. or less and the thermal deformation is small, without being influenced by the variation in the characteristics of the composite material and the metal film layer of the base material. An object of the present invention is to provide a method of manufacturing a reflecting mirror for an optical device capable of obtaining a reflecting mirror.
[0012]
[Means for Solving the Problems]
The reflecting mirror for an optical device according to the present invention includes a base material made of a composite material having a negative coefficient of thermal expansion, and a metal reflective film having a positive coefficient of thermal expansion forming a mirror surface covering the surface of the base material, The thermal deformation of the base material and the thermal deformation of the metal reflection film are balanced so that the absolute value of the coefficient of thermal expansion of the entire reflecting mirror is 1 × 10 −7 / ° C. or less.
[0013]
In the reflector for optical equipment according to the present invention, the composite material contains carbon fiber reinforced carbon.
[0014]
In the reflecting mirror for an optical device according to the present invention, the metal reflecting film is made of nickel or chromium.
[0015]
The method for manufacturing a reflecting mirror for an optical device according to the present invention includes a base material forming step of forming a base material made of a composite material having a negative coefficient of thermal expansion into a desired mirror surface shape, and forming a metal film layer on the base material. The method includes a metal film layer forming step and a metal reflecting film forming step of forming a metal reflecting film by mirror finishing the metal film layer on the base material.
[0016]
In the method of manufacturing a reflecting mirror for an optical device according to the present invention, the step of forming a metal film layer includes one of electrolytic plating and electroless plating, or a combination of electrolytic plating and electroless plating.
[0017]
In the method for manufacturing a reflecting mirror for an optical device according to the present invention, in the metal reflecting film forming step, the thickness of the metal film layer is adjusted so that the absolute value of the thermal expansion coefficient of the entire reflecting mirror is 1 × 10 −7 / ° C. or less. Is to adjust.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of the present invention will be described.
Embodiment 1 FIG.
FIG. 1 is a perspective view showing a reflecting mirror for optical equipment according to Embodiment 1 of the present invention, and FIG. 2 is a sectional view of FIG.
In the figure, reference numeral 1 denotes a substrate made of a composite material having a negative coefficient of thermal expansion, 2 denotes a metal reflection film formed on the surface (both surfaces) of the substrate 1, and the metal reflection film 2 has a coefficient of thermal expansion of The mirror surface is formed of a positive metal film.
[0019]
As the composite material of the base material 1, for example, a carbon fiber reinforced plastic using pitch-based carbon fiber XN80 (manufactured by Nippon Graphite Fiber) as a reinforcing fiber and a cyanate ester resin EX1515 (manufactured by Bryte Technologies) as a base material is used. Can be. Here, since the pitch-based carbon fiber XN80 has a negative coefficient of thermal expansion of -1.6 × 10 −6 / ° C. in the longitudinal direction of the fiber, the deposition content of the fiber in the carbon fiber reinforced plastic is set to 60%. %, The coefficient of thermal expansion of the carbon fiber reinforced plastic is about -1.0 × 10 −6 / ° C., which is a negative value.
[0020]
Therefore, in FIG. 1, the thickness of the substrate 1, the elastic modulus, thermal expansion coefficient, respectively t s, E s, and alpha s, the thickness of the metal reflection film 2, the elastic modulus, thermal expansion coefficient, respectively t r, if E r, alpha r, the thermal expansion coefficient alpha T of the entire reflector can be obtained by the formula (1).
Figure 2004012533
Here, of formula (1), since all the thermal expansion coefficient alpha s other variables of the substrate 1 is a positive, taking the appropriate value of t r and E r in the formula (1), thereby balancing the thermal deformation and thermal deformation of the metal reflection film 2 of the substrate 1, the thermal expansion coefficient alpha T of the entire reflector may be a value close to zero. For example, when the material of the metal reflection film 2 is nickel, in this case, E s = 209 GPa, α s = 1.0 × 10 −6 / ° C., E r = 207 GPa, α r = 15.0 × 10 since the -6 / ° C., for example t s = 15 mm, by a t r = 100 [mu] m, can be the alpha T to near zero value.
[0021]
According to the first embodiment described above, a carbon fiber reinforced plastic (composite material) having a negative coefficient of thermal expansion is used as the base material 1, and a metal reflective film made of nickel having a positive coefficient of thermal expansion is formed on the surface of the base material 1. 2, and the thermal deformation of the base material 1 and the thermal deformation of the metal reflection film 2 are balanced so that the absolute value of the thermal expansion coefficient of the entire reflecting mirror is 1.0 × 10 −7 / ° C. or less. A reflecting mirror for an optical device can be configured. For this reason, the thermal deformation of the reflecting mirror due to the temperature change can be extremely small, and the effect that the performance of the optical device having the reflecting mirror of the above configuration does not deteriorate even when the environmental temperature changes can be obtained. is there. Further, as described above, the substrate 1 formed of carbon fiber reinforced plastic having a negative coefficient of thermal expansion has a higher strength and rigidity than a conventional reflecting mirror substrate such as glass, metal or ceramic. It is lightweight, and thus has the effect of reducing the weight of the entire reflecting mirror.
[0022]
In the first embodiment, the composite material of the base material 1 is not limited to carbon fiber reinforced plastic, but may be any other composite material having a negative coefficient of thermal expansion, such as aramid fiber reinforced plastic. It may be something.
[0023]
Embodiment 2 FIG.
FIG. 3 is a perspective view showing a reflecting mirror for an optical device according to a second embodiment of the present invention, and FIG. 4 is a sectional view of FIG. 3, in which the same parts as those in FIGS. Is omitted.
In the second embodiment, the substrate 1 is formed of carbon fiber reinforced carbon having a negative coefficient of thermal expansion. Here, for example, pitch-based carbon fiber XN80 (manufactured by Nippon Graphite Fiber Co., Ltd.) is used as the reinforcing fiber of the carbon fiber-reinforced carbon of the base material 1, and the deposition content of the fiber in the carbon fiber-reinforced carbon is about 30 to 60%. Since the coefficient of thermal expansion of the base material 1 is a negative value, the coefficient of thermal expansion of the entire reflecting mirror can be adjusted to a value close to zero by the same method as in the first embodiment. .
[0024]
As described above, in the second embodiment, since the base material 1 of the reflecting mirror is formed of carbon fiber reinforced carbon having a negative coefficient of thermal expansion, carbon is used as the base material of carbon fiber reinforced carbon to reduce the resin. The heat conductivity of the base material 1 can be higher than that of the reflector using the carbon fiber reinforced plastic as the base material 1 as in the first embodiment. In addition, if the reinforcing fiber is made of a high thermal conductive carbon fiber such as YS95A (manufactured by Nippon Graphite Fiber) having a thermal conductivity of 600 W / mK in the fiber direction, the thermal conductivity of the substrate 1 is further increased. , 190 W / mK, which is comparable to a metal material such as aluminum having a thermal conductivity of 190 W / mK. Therefore, even when the reflecting mirror is exposed to high-intensity light, the heat generated by the incident light is quickly diffused into the reflecting mirror, so that the temperature rise in the reflecting mirror area can be suppressed to a low level. Therefore, it is possible to expect an effect that the mirror surface is hardly burned. In addition, carbon fiber reinforced carbon absorbs moisture in the air and is less deformed than carbon fiber reinforced plastic, so that there is an effect that the mirror surface is not deformed due to a change in humidity.
[0025]
Embodiment 3 FIG.
FIG. 5 is a perspective view showing a reflecting mirror for optical equipment according to Embodiment 3 of the present invention, and FIG. 6 is a cross-sectional view of FIG. 5, in which the same parts as those in FIGS. Is omitted.
In the third embodiment, the base material 1 is formed of a composite material having a negative coefficient of thermal expansion, and the surface of the base material 1 is plated with nickel or chromium to form the metal reflection film 2 so that the metal reflection film 2 is formed. This is a configuration of a reflecting mirror.
[0026]
As a composite material of the substrate 1 according to the third embodiment, for example, pitch-based carbon fiber XN80 (manufactured by Nippon Graphite Fiber) is used as a reinforcing fiber, and a cyanate ester resin EX1515 (as in the first embodiment). By using a carbon fiber reinforced plastic whose base material is Bryte Technologies (manufactured by Bryte Technologies), the coefficient of thermal expansion of the base material 1 becomes a negative value. The expansion coefficient can be adjusted so as to be a value close to zero.
[0027]
In the third embodiment described above, the metal reflection film 2 made of nickel or chromium is formed on the surface of the base material 1 made of a composite material having a negative coefficient of thermal expansion. 2 can be easily and inexpensively formed by plating, and the metal reflection film 2 can be easily mirror-finished by machining, so that a reflection mirror surface having a desired shape can be easily and inexpensively formed.
[0028]
Embodiment 4 FIG.
FIG. 7 is a process diagram for explaining a method of manufacturing a reflecting mirror for an optical device according to a fourth embodiment of the present invention. The same or corresponding parts as those in FIGS. A method for manufacturing a reflecting mirror will be described.
First, as shown in FIG. 7A, the base material 1 made of a composite material having a negative coefficient of thermal expansion is formed into a desired mirror surface shape (base material forming step). In the base material forming step, the base material 1 is manufactured into a desired shape by hardening and molding a carbon fiber reinforced plastic with an appropriate mold, or a large-sized formed carbon fiber reinforced carbon is manufactured by machining or the like. You may.
[0029]
Next, as shown in FIG. 7B, a metal film layer 2a is formed on both front and back surfaces of the base material 1 by plating, thermal spraying, vapor deposition or the like (metal film forming step). In the metal film forming step, advance by Equation metal reflection film 2 such as the mirror surface of the thermal expansion coefficient is close to zero (see FIG. 7 (c)) of the thickness t r the formula (1) , thicker forming the metal film layer 2a than its thickness t r. Thereafter, the by cutting machining, such as polishing a metal film layer 2a, FIG surface so that the layer thickness t r as shown in (c) has been finished to a smooth, mirror metal reflection film 2 Is formed (reflection film forming step).
[0030]
Here, since a pattern of irregularities is generally generated on the surface of the base material 1 made of the composite material due to the mixture of the reinforcing fiber and the base material, even if a thin metal film layer is formed on the surface of the composite material, the irregularities are formed. Pattern cannot be used as a reflecting mirror surface. Further, even if it is attempted to finish the surface of the composite material with a smooth mirror surface by machining, it is difficult to obtain a smooth mirror surface because the reinforcing fibers fall off the surface during machining.
[0031]
In this regard, in the fourth embodiment, in the metal film layer forming step, the thickness of the metal reflection film 2 after mirror finishing on both the front and back surfaces of the base material 1 is larger than the thickness tr (see FIG. 7C). Is formed so that the metal film layer 2a is thick, and the metal film layer 2a is mirror-finished in the next reflection film forming step, so that the composite material of the base material 1 before the metal film layer 2a is formed. Even if an uneven pattern is formed on the surface, there is an effect that a smooth reflecting mirror surface can be easily obtained.
[0032]
Embodiment 5 FIG.
FIG. 8 is a process chart for explaining a method of manufacturing a reflecting mirror for optical equipment according to Embodiment 5 of the present invention. The same or corresponding parts as those in FIG. The manufacturing method will be described.
First, as shown in FIG. 8A, a substrate 1 made of a composite material having a negative coefficient of thermal expansion is formed into a desired mirror surface shape (substrate forming step). Next, as shown in FIG. 8B, plating is performed on the front and back surfaces of the base material 1 to form the metal film layer 2a (metal film forming step).
[0033]
In the metal film forming step, when the base material 1 is a material having poor electric conductivity such as fiber reinforced plastic, the metal film layer 2a having a desired thickness is formed by electroless plating, or the electroless plating is performed. After forming a plating layer having a thickness of several μm, the plating layer is grown to a desired thickness by electrolytic plating. When the substrate 1 is made of a material having high electrical conductivity such as carbon fiber reinforced carbon, the metal film layer 2a can be formed from the beginning by electrolytic plating.
[0034]
Then, after the metal film layer forming step, the metal film layer (plated layer) 2a is cut by mechanical processing such as polishing in the same manner as in Embodiment 4 as shown in FIG. surface so that the layer thickness t r to form a metal reflection film 2 which is finished to a smooth mirror surface (reflection film forming process).
[0035]
According to the fifth embodiment described above, since the metal film layer 2a is formed by plating the front and back surfaces of the base material 1 made of a composite material, the metal film layer 2a can be easily formed by inexpensive plating. It is possible to form a mirror surface with a smooth surface easily and inexpensively only by shaving the metal film layer 2a by machining. Further, the metal reflection film 2 formed by plating as described above has an effect of increasing the adhesion strength to the base material 1 of the composite material. Furthermore, since the size of the reflecting mirror on which the metal film layer 2a can be formed is determined by the size of the plating tank for performing plating, by preparing a large plating tank, even a large-diameter reflecting mirror can be used. There is an effect that it can be easily manufactured.
[0036]
Embodiment 6 FIG.
FIG. 9 is a process diagram for explaining a method of manufacturing a reflecting mirror for optical equipment according to Embodiment 6 of the present invention. The same or corresponding parts as in FIGS. A method for manufacturing a reflecting mirror will be described.
First, as shown in FIG. 9A, a substrate 1 made of a composite material having a negative coefficient of thermal expansion is formed in a desired mirror surface shape (substrate forming step). Next, as shown in FIG. 9B, metal film layers 2a are formed on both front and back surfaces of the base material 1 (metal film forming step). Then, a metal reflection film 2 which surface is finished to a smooth, mirror in a way to push cutting a metal film layer 2a to be slightly thinner than that value t r, which determined from the above equation (1) by machining (Metal film layer forming step). Thereafter, actually measuring the thermal expansion coefficient of the mirror, if the value of the measurement result is greater than the desired value, the measurement of adjustment and thermal expansion coefficient of t r and re-machining the metal reflection film 2 Do. The process of performing the machining measurements adjusting the thermal expansion rate of the t r by repeated until the mirror surface of the thermal expansion coefficient becomes a desired value of 1.0 × 10 -7 / ℃.
[0037]
According to the manufacturing method of the sixth embodiment described above, the thickness of the metal reflecting film can be adjusted while actually measuring the coefficient of thermal expansion of the reflecting mirror, so that the characteristics of the composite material of the base material 1 and the metal film layer 2a can be adjusted. The absolute value of the coefficient of thermal expansion is assuredly 1.0 × 10 −7 / ° C. or less without being affected by the above-mentioned variation, and there is an effect that a reflecting mirror with small thermal deformation can be manufactured.
[0038]
【The invention's effect】
As described above, according to the present invention, the base material made of a composite material having a negative coefficient of thermal expansion and the positive metal reflective film having a positive coefficient of thermal expansion that forms a mirror surface over the surface of the base material, Since the thermal deformation of the base material and the thermal deformation of the metal reflection film are balanced and the absolute value of the thermal expansion coefficient of the entire reflecting mirror is 1 × 10 −7 / ° C. or less, the reflecting mirror is not affected by a temperature change. Thermal deformation can be kept extremely small, and there is an effect that the performance of an optical device having the above-mentioned reflecting mirror does not deteriorate even if the environmental temperature changes. In addition, as described above, a substrate made of a composite material having a negative coefficient of thermal expansion has higher strength and rigidity and is lighter in weight than a conventional reflector substrate such as glass, metal or ceramic. Therefore, there is an effect that the weight of the entire reflecting mirror can be reduced.
[0039]
According to this invention, since the base material is configured to be made of a composite material containing carbon fiber reinforced carbon, the heat conductivity of the base material of the composite material is large and the mirror surface temperature is increased by being made of carbon that is difficult to absorb moisture. This is advantageous in that it is possible to form a mirror surface of a composite material that is difficult to deform and does not deform due to a change in humidity.
[0040]
According to the present invention, since the metal film layer is formed of nickel or chromium, there is an effect that the metal reflection film can be easily formed by inexpensive plating.
[0041]
According to the present invention, a base material forming step of forming a base material made of a composite material having a negative coefficient of thermal expansion into a desired mirror shape, a metal film layer forming step of forming a metal film layer on the base material, A metal reflection layer forming step of forming a metal reflection film by mirror finishing the metal film layer on the material, so that a thick metal film layer was formed on the base material of the composite material Thereafter, the metal film layer can be cut into a desired thickness by machining to form a smooth mirror-finished metal reflective film. Therefore, it is easy to manufacture a smooth mirror-surface reflective mirror for optical equipment. There is an effect that can be.
[0042]
According to the present invention, the metal film layer forming step is configured to include any one of electrolytic plating and electroless plating, or a combination of electrolytic plating and electroless plating. Can be easily formed, and there is an effect that a mirror surface having a smooth surface can be formed easily and inexpensively only by shaving the metal film layer by machining. Further, the metal reflective film formed by plating as described above has an effect of increasing the adhesion strength between the composite material and the base material. Furthermore, since the size of the reflecting mirror on which the metal film layer can be formed is determined by the size of the plating tank for plating, preparing a large plating tank makes it relatively easy to use even a large-diameter reflecting mirror. There is an effect that it can be manufactured.
[0043]
According to the present invention, in the metal reflecting film forming step, the thickness of the metal film layer is adjusted so that the absolute value of the thermal expansion coefficient of the entire reflecting mirror is 1 × 10 −7 / ° C. or less. The absolute value of the coefficient of thermal expansion is 1.0 × 10 −7 / ° C. or less and the reflecting mirror is small in thermal deformation without being influenced by the variation of the characteristics of the composite material and the metal film layer of the base material. There is an effect that it can be manufactured.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a reflecting mirror for an optical device according to a first embodiment of the present invention.
FIG. 2 is a sectional view of FIG.
FIG. 3 is a perspective view showing a reflecting mirror for an optical device according to a second embodiment of the present invention. It is sectional drawing of FIG.
FIG. 4 is a sectional view of FIG. 3;
FIG. 5 is a perspective view showing a reflecting mirror for an optical device according to a third embodiment of the present invention.
FIG. 6 is a sectional view of FIG. 5;
FIG. 7 is a process chart for illustrating a method of manufacturing a reflecting mirror for an optical device according to a fourth embodiment of the present invention.
FIG. 8 is a process chart for illustrating a method of manufacturing a reflecting mirror for an optical device according to a fifth embodiment of the present invention.
FIG. 9 is a process chart for describing a method of manufacturing a reflecting mirror for an optical device according to a sixth embodiment of the present invention.
FIG. 10 is a perspective view showing a conventional reflecting mirror for optical equipment.
[Explanation of symbols]
1 base material, 2 metal reflection film, 2a metal film layer.

Claims (6)

熱膨張率が負の複合材料からなる基材と、この基材の表面を覆って鏡面を形成する熱膨張率が正の金属反射膜とからなり、前記基材の熱変形と前記金属反射膜の熱変形とが釣り合って反射鏡全体の熱膨張率の絶対値が1×10−7/℃以下となるように構成した光学機器用反射鏡。A base material made of a composite material having a negative coefficient of thermal expansion, and a metal reflective film having a positive coefficient of thermal expansion that forms a mirror surface covering the surface of the base material, and the thermal deformation of the base material and the metal reflective film A reflecting mirror for an optical device, wherein the thermal deformation of the reflecting mirror is balanced so that the absolute value of the thermal expansion coefficient of the entire reflecting mirror is 1 × 10 −7 / ° C. or less. 基材は、炭素繊維強化炭素を含む複合材料からなっていることを特徴とする請求項1記載の光学機器用反射鏡。The reflector according to claim 1, wherein the substrate is made of a composite material containing carbon fiber reinforced carbon. 金属反射膜はニッケルあるいはクロムからなっていることを特徴とする請求項1記載の光学機器用反射鏡。2. The reflector according to claim 1, wherein the metal reflection film is made of nickel or chromium. 熱膨張率が負の複合材料からなる基材を所望の鏡面形状に形成する基材成形工程と、前記基材上に金属膜層を形成する金属膜層形成工程と、前記基材上の金属膜層を鏡面仕上げして金属反射膜を形成する金属反射膜形成工程とを備えた光学機器用反射鏡の製造方法。A base material forming step of forming a base material made of a composite material having a negative coefficient of thermal expansion into a desired mirror-like shape; a metal film layer forming step of forming a metal film layer on the base material; A method of manufacturing a reflecting mirror for optical equipment, comprising: forming a metal reflecting film by mirror-finishing a film layer to form a metal reflecting film. 金属膜層形成工程は、電解メッキと無電解メッキのいずれかの工程、または電解メッキと無電解メッキの組み合わせ工程からなることを特徴とする請求項4記載の光学機器用反射鏡の製造方法。5. The method according to claim 4, wherein the step of forming the metal film layer comprises one of an electrolytic plating and an electroless plating, or a combination of an electrolytic plating and an electroless plating. 金属反射膜形成工程において、反射鏡全体の熱膨張率の絶対値が1×10−7/℃以下となるように金属膜層の厚さを調整することを特徴とする請求項4または請求項5記載の光学機器用反射鏡の製造方法。The thickness of the metal film layer is adjusted so that the absolute value of the coefficient of thermal expansion of the entire reflecting mirror is 1 × 10 −7 / ° C. or less in the metal reflecting film forming step. 6. The method for manufacturing a reflecting mirror for an optical device according to claim 5.
JP2002161904A 2002-06-03 2002-06-03 Reflector for optical equipment and method for manufacturing the same Expired - Lifetime JP4024596B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002161904A JP4024596B2 (en) 2002-06-03 2002-06-03 Reflector for optical equipment and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002161904A JP4024596B2 (en) 2002-06-03 2002-06-03 Reflector for optical equipment and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JP2004012533A true JP2004012533A (en) 2004-01-15
JP4024596B2 JP4024596B2 (en) 2007-12-19

Family

ID=30430841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002161904A Expired - Lifetime JP4024596B2 (en) 2002-06-03 2002-06-03 Reflector for optical equipment and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP4024596B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010066291A (en) * 2008-09-08 2010-03-25 Mitsubishi Electric Corp Double-sided reflecting mirror and method for manufacturing the same
JP2012220532A (en) * 2011-04-04 2012-11-12 Shin Etsu Chem Co Ltd Pellicle frame, manufacturing method thereof, and pellicle
CN104487899A (en) * 2012-07-24 2015-04-01 卡尔蔡司Smt有限责任公司 Mirror arrangement for an euv projection exposure apparatus, method for operating the same, and euv projection exposure apparatus
JP2015122480A (en) * 2013-10-30 2015-07-02 カール・ツァイス・エスエムティー・ゲーエムベーハー Reflective optical element
JPWO2018096835A1 (en) * 2016-11-24 2019-03-28 株式会社村田製作所 Battery and electronic equipment
CN114815224A (en) * 2022-05-23 2022-07-29 中国科学院光电技术研究所 Piezoelectric ceramic driving type deformable reflector and manufacturing method thereof

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010066291A (en) * 2008-09-08 2010-03-25 Mitsubishi Electric Corp Double-sided reflecting mirror and method for manufacturing the same
JP2012220532A (en) * 2011-04-04 2012-11-12 Shin Etsu Chem Co Ltd Pellicle frame, manufacturing method thereof, and pellicle
CN104487899A (en) * 2012-07-24 2015-04-01 卡尔蔡司Smt有限责任公司 Mirror arrangement for an euv projection exposure apparatus, method for operating the same, and euv projection exposure apparatus
KR20150036276A (en) * 2012-07-24 2015-04-07 칼 짜이스 에스엠티 게엠베하 Mirror arrangement for an euv projection exposure apparatus, method for operating the same, and euv projection exposure apparatus
JP2015528134A (en) * 2012-07-24 2015-09-24 カール・ツァイス・エスエムティー・ゲーエムベーハー EUV projection exposure apparatus mirror mechanism, operation method thereof, and EUV projection exposure apparatus
US9709770B2 (en) 2012-07-24 2017-07-18 Carl Zeiss Smt Gmbh Mirror arrangement for an EUV projection exposure apparatus, method for operating the same, and EUV projection exposure apparatus
CN104487899B (en) * 2012-07-24 2017-08-29 卡尔蔡司Smt有限责任公司 The speculum arrangement and its operating method of EUV projection exposure apparatus, and EUV projection exposure apparatus
KR102185789B1 (en) * 2012-07-24 2020-12-03 칼 짜이스 에스엠티 게엠베하 Mirror arrangement for an euv projection exposure apparatus, method for operating the same, and euv projection exposure apparatus
JP2015122480A (en) * 2013-10-30 2015-07-02 カール・ツァイス・エスエムティー・ゲーエムベーハー Reflective optical element
JPWO2018096835A1 (en) * 2016-11-24 2019-03-28 株式会社村田製作所 Battery and electronic equipment
US11056741B2 (en) 2016-11-24 2021-07-06 Murata Manufacturing Co., Ltd. Battery and electronic device
CN114815224A (en) * 2022-05-23 2022-07-29 中国科学院光电技术研究所 Piezoelectric ceramic driving type deformable reflector and manufacturing method thereof

Also Published As

Publication number Publication date
JP4024596B2 (en) 2007-12-19

Similar Documents

Publication Publication Date Title
US4451119A (en) Composite mirror and method of construction
US20110221084A1 (en) Honeycomb composite silicon carbide mirrors and structures
US4875766A (en) Fiber reinforced plastic reflector
US8439511B2 (en) Mirror and a method of manufacturing thereof
US5428483A (en) Reflecting mirror
JP4068496B2 (en) Mirror surface base material, mirror body using the same, and optical device using the mirror body
JP2004012533A (en) Reflection mirror for optical equipment and its manufacture method
US5979826A (en) Hybrid composite article and missile components and their fabrication
Harnisch et al. Ultra-lightweight C/SiC mirrors and structures
JP2006343548A (en) Resin base material of resin reflecting mirror and its manufacturing method
JP5371335B2 (en) Double-sided reflector and manufacturing method thereof
CN112415644B (en) Ultra-light C/C-SiC space reflector and preparation method and application thereof
JP6889897B2 (en) Manufacturing method of FRP mirror structure
Xu et al. Ultra-thin carbon fiber mirrors: nickel plated, optical fabrication and thermal deformation test
CN109581556B (en) Preparation process of carbon fiber composite reflector
JP5471125B2 (en) OPTICAL ELEMENT MOLD HAVING NON-REFLECTION DUST PROOF STRUCTURE, AND METHOD FOR PRODUCING OPTICAL ELEMENT MOLD HAVING NON-REFLECTION DUST PROTECTION STRUCTURE
US9643367B2 (en) Method for producing a composite mirror and composite mirror obtained with same
JPS6193404A (en) Carbon fiber reinforced plastic mirror
JP2005037709A (en) Reflecting mirror and its manufacturing method
JP2003198245A (en) Artificial satellite mounting antenna reflector and manufacturing method therefor
JPS63131102A (en) Reflecting mirror of sandwich structure made of fiber reinforced plastic with glass layer
US11500191B2 (en) Space optics
Takeya et al. Development of ultra-light-weight mirror with carbon/carbon composites for optical-IR astronomy
Abusafieh Diamond-turned composite mirrors
JP2005031148A (en) Optical reflecting mirror

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070123

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071003

R150 Certificate of patent or registration of utility model

Ref document number: 4024596

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111012

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121012

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131012

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term