JP2010065802A - 管状のエネルギ吸収体 - Google Patents

管状のエネルギ吸収体 Download PDF

Info

Publication number
JP2010065802A
JP2010065802A JP2008234536A JP2008234536A JP2010065802A JP 2010065802 A JP2010065802 A JP 2010065802A JP 2008234536 A JP2008234536 A JP 2008234536A JP 2008234536 A JP2008234536 A JP 2008234536A JP 2010065802 A JP2010065802 A JP 2010065802A
Authority
JP
Japan
Prior art keywords
energy absorber
energy
tubular
wall surface
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008234536A
Other languages
English (en)
Inventor
Takuya Inoue
卓也 井上
Satoshi Sawada
聡 澤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2008234536A priority Critical patent/JP2010065802A/ja
Publication of JP2010065802A publication Critical patent/JP2010065802A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Vibration Dampers (AREA)

Abstract

【課題】車両のエアバッグが必要とされない低速衝突時にエアバッグの展開を抑制し、エアバッグが必要な高速衝突時には十分なエネルギ吸収量を確保することができる、自動車バンパ内の管状のエネルギ吸収体を提供する。
【解決手段】
管状の壁面部を有するとともに、該壁面部がエネルギ吸収体の一方の端面から他方の端面に到達するまでの間で折り返し部(X)、(Y)を軸方向にこの順序で有するエネルギ吸収体であって、前記壁面部に関し、前記一方の端面と前記折り返し部(X)との間を領域I、前記折り返し部(X)と前記折り返し部(Y)との間を領域II、前記折り返し部(Y)と前記他方の端面との間を領域IIIとするとき、前記領域Iの壁面部の傾きαと前記領域IIIの壁面部の傾きβとが異なることを特徴とする管状のエネルギ吸収体。
【選択図】図1

Description

本発明は、車両のエアバッグが必要とされない低速衝突時にエアバッグの展開を抑制し、エアバッグが必要な高速衝突時には十分なエネルギ吸収量を確保することができる、自動車バンパ内の管状のエネルギ吸収体に関する。
従来、船や電車、自動車外板部材など、耐衝撃性を必要とする部材には金属部材が用いられるケースがほとんどであったが、重量が重い、加工が困難などの点から樹脂材料への置き換えが検討されてきた。また、樹脂は使い方によって、鉄に比べて衝撃エネルギを、より効率的に吸収することも可能であるため、近年では自動車等の車両の外板部材や構造部材などへの採用が増加している。
自動車等の車両において、衝撃エネルギを吸収する樹脂部品の構造としては、筒状リブや格子状リブが知られており、たとえば特許文献1に、樹脂部材とその後方に設置された筒状リブによって衝撃吸収性能を向上させた自動車用バンパが記載されている。しかし、エアバッグシステムは衝突時の衝突荷重の大小によって作動しており、エアバッグの展開が必要ない低速衝突時には、筒状リブや格子状リブで衝突エネルギを吸収し、エアバッグセンサが搭載されている車体中央部に配置された部品(例:フードロックサポート)まで衝突荷重が伝わらないようにして、誤ってエアバッグが展開しないようにする必要がある。しかしながら、特許文献1に記載の衝撃エネルギ吸収構造を備えた自動車用バンパでは、低速衝突時ですら筒状リブや格子状リブで衝突エネルギを十分吸収しきれず、バンパ後方のエアバッグセンサに衝突荷重が伝わってしまいやすい。その結果、エアバッグが必要とされない自動車の低速衝突時にもエアバッグが展開してしまいやすいという点で課題が残る。
また、筒状のエネルギ吸収体に関しては、単純な筒ではなく、さらに衝撃エネルギを吸収させるための提案がされており、たとえば特許文献2に、大径部と小径部を連結部によって連結したエネルギ吸収管が記載されており、特許文献3には、一定断面を呈した第1の部分と、除々に拡開する断面を呈した第2の部分とから構成された構造が記載されている。しかし、特許文献2、3に記載された実施例では、荷重−吸収ストローク線図や荷重−時間線図において、初期の荷重ピークが大きい。このように、初期の荷重ピークが大きい構造では、低速衝突時に筒状のエネルギ吸収体で衝突エネルギを十分に吸収できず、バンパ後方のエアバッグセンサまで衝突荷重が伝わってしまい、エアバッグが必要とされない低速衝突時にもエアバッグが展開してしまう可能性がある。
特開平9−240393号公報 特許第3939792号公報 特開2003−306096号公報
本発明の目的は、車両のエアバッグが必要とされない低速衝突時にはエアバッグの展開を抑制し、エアバッグが必要な高速衝突時には十分なエネルギ吸収量を確保しつつ衝突荷重を伝達することができる、自動車バンパ内の管状のエネルギ吸収体を提供することにある。
上記目的を達成するための本発明は、以下のいずれかの構成を有する。
(1)管状の壁面部を有するとともに、該壁面部がエネルギ吸収体の一方の端面から他方の端面に到達するまでの間で折り返し部(X)、(Y)を軸方向にこの順序で有するエネルギ吸収体であって、前記壁面部に関し、前記一方の端面と前記折り返し部(X)との間を領域I、前記折り返し部(X)と前記折り返し部(Y)との間を領域II、前記折り返し部(Y)と前記他方の端面との間を領域IIIとするとき、前記領域Iの壁面部の傾きαと前記領域IIIの壁面部の傾きβとが異なることを特徴とする管状のエネルギ吸収体。
(2)前記管状のエネルギ吸収体を構成する材料は、熱可塑性樹脂(A)および反応性官能基を有する樹脂(B)を配合してなり、下記(i)および(ii)の関係を満足する熱可塑性樹脂組成物であることを特徴とする請求項1に記載の管状のエネルギ吸収体。
(i)引張試験において、引張速度V1、V2の時の引張弾性率をE(V1)、E(V2)とすると、V1<V2のとき、E(V1)>E(V2)
(ii)引張試験において、引張速度V1、V2のときの引張破断伸度をε(V1)、ε(V2)とすると、V1<V2のとき、ε(V1)<ε(V2)
なお、本発明において、傾きα、βとは、管状のエネルギ吸収体の端面に対する傾きをいう。
本発明によれば、以下に説明するとおり、車両のエアバッグが必要とされない低速衝突時にはエアバッグの展開を抑制し、エアバッグが必要な高速衝突時には、十分なエネルギ吸収量を確保しつつバンパ後方等のエアバッグセンサに衝突荷重を伝達することができる、自動車バンパ内等に好適に用いられる管状のエネルギ吸収体を得ることができる。
すなわち、本発明の管状のエネルギ吸収体は、たとえば自動車のバンパ内に設置されるものであって、管状の壁面部を有するとともに、該壁面部が一方の端面から他方の端面に到達するまでの間で折り返し部(X)、(Y)を軸方向にこの順序で有するエネルギ吸収体であって、前記一方の端部と前記折り返し部(X)との間を領域I、前記折り返し部(X)と前記折り返し部(Y)との間を領域II、前記折り返し部(Y)と前記他方の端部との間を領域IIIとするとき、前記領域Iの壁面部の傾きαと前記領域IIIの壁面部の傾きβとが異なることを特徴とする管状のエネルギ吸収体である。これにより、低速衝突時には、前記領域Iと前記領域IIIのうち、傾きα、βの小さい方の領域が曲げ変形することによって、衝突エネルギを吸収する。このとき、曲げ変形は、傾きα、βの大きい方の領域に近い方の折り返し部が、管状のエネルギ吸収体の端面に到達するまでの間で行われる。その結果、かかるエネルギ吸収体の後方等に配置されるエアバッグセンサ等には衝突荷重が伝達されない。したがって、エアバッグが必要とされない低速衝突時にエアバッグの展開を抑制することができる。一方、高速衝突時には、まず、傾きα、βの小さい方の領域が、曲げ変形(第1段階)することによって、傾きα、βの大きい方の領域に近い方の折り返し部が管状のエネルギ吸収体の端面に到達し、同時にエネルギ吸収体の後方等に配置されるエアバッグセンサ等に衝突荷重を伝達する。次に、傾きα、βの大きい方の領域が曲げ変形あるいは座屈変形し(第2段階)、高速衝突のエネルギを吸収する。さらに高速の場合は、全ての領域が変形(第3段階)することによって、3段階でエネルギ吸収することにより、高速衝突時にも、十分なエネルギ吸収量を確保することができる。
以下に、本発明の実施の形態について図を参照しながら説明する。
本発明の管状のエネルギ吸収体は、自動車のバンパ内等に設置されるものであって、管状の壁面部を有するとともに、該壁面部が一方の端面から他方の端面に到達するまでの間で折り返し部(X)、(Y)を軸方向にこの順序で有している。そして、壁面部は、管の両端間に設けられた少なくとも2つの折り返し部(X)、(Y)によって3つに分けられた領域を、一方の端面と折り返し部(X)との間を領域I、折り返し部(X)と折り返し部(Y)との間を領域II、折り返し部(Y)と他方の端部との間を領域IIIとするとき、領域Iの壁面部の傾きαと領域IIIの壁面部の傾きβとが異なっている。
具体的には、たとえば図1に示すような単一の成形品からなる管状のエネルギ吸収体を例示することができる。なお、図1(a)は管状のエネルギ吸収体を一方の側から見た概略斜視図であり、図1(b)が管状のエネルギ吸収体を領域別に分解した概略分解図、図1(c)が管状のエネルギ吸収体の概略縦断面図である。
図1において、エネルギ吸収体10は、管状の壁面部60を有し、かかる壁面部60は、当該エネルギ吸収体10の一方の端面11aから他方の端面11bに到達するまでの間で折り返し部12、13をこの順序で有している。壁面部60は、かかる折り返し部12、13によって領域I、II、IIIに分けられるが、領域Iの壁面部60aの傾きαと領域IIIの壁面部60cの傾きβとが異なっている。すなわち、壁面部60a、60bは、水平面に対して異なる角度で立設している。
本発明においては、このような構成にすることで、低速衝突時に、前記傾きα、βのうち、必ず傾きの小さいほうの領域IIIが曲げ変形によって、衝突エネルギを吸収する。このとき、曲げ変形は、折り返し部12が、管状のエネルギ吸収体の端面11bに到達するまでの間で行われるので、かかるエネルギ吸収体の後方等に配置されるエアバッグセンサ等には衝突荷重が伝達されない。したがって、エアバッグが必要とされない低速衝突時にエアバッグの展開を抑制することができる。一方、高速衝突時には、まず領域IIIが曲げ変形することによって、折り返し部12が、管状のエネルギ吸収体の端面11bに到達し、同時にエネルギ吸収体の後方等に配置されるエアバッグセンサ等に衝突荷重を伝達する。次に、前記傾きα、βのうち、傾きの大きいほうの領域Iが曲げ変形あるいは座屈変形し、高速衝突のエネルギを吸収する。さらに高速の場合は、領域I〜IIIの全ての領域が変形することによって、3段階でエネルギ吸収することにより、高速衝突時にも、十分なエネルギ吸収量を確保することができる。
ここで、壁面部60の具体的な形態としては、例えば図2に示すような形態を例示できる。図2(a)は、縦断面(エネルギ吸収体軸方向の断面)でみた場合に、領域IIIが曲率ゼロ部分のみで構成されている形態、図2(b)は、縦断面でみた場合に領域IIIが曲率ゼロ部分と曲率ゼロより大きい部分とで構成されている形態、図2(c)は、縦断面でみた場合に領域IIIが曲率ゼロより大きい部分で構成されている形態を示しており、本発明においてはいずれの場合でも構わない。また、領域Iや領域IIが、縦断面でみた場合に曲率ゼロ部分もしくは曲率ゼロより大きい部分で構成されている形態であったり、曲率ゼロ部分と曲率ゼロより大きい部分とで構成されている形態であってもよい。
なお、曲率ゼロ部分とは、壁面部がエネルギ吸収体軸方向の断面において直線であることを意味し、曲率ゼロより大きい部分とは、壁面部がエネルギ吸収体軸方向の断面において曲線であることを意味する。
また、壁面部の傾きα、βは定規や分度器を使って直接測定する方法や、画像撮影を実施し、画像から傾きを測定する方法などが用いられる。なお、各領域において壁面部が曲率ゼロより大きい部分を含む場合、かかる領域における壁面部の傾きは領域の両端を直線で繋いだ時の、直線の傾きのことを言う。
領域I、領域II、領域IIIのうちいずれかの壁面部は、例えば図3(a)に示すように、水平面に対して鉛直方向に立設していてもよい。図3(a)に示す管状のエネルギ吸収体では、領域Iの壁面部60aが水平面に対して鉛直方向に立設しており、その点以外は、基本的に図1のエネルギ吸収体と同様の構成をしている。
また、図3(b)に示すように、図1に示すエネルギ吸収体の領域Iと領域IIIの位置を、管の半径方向において逆にしてもよい。図3(b)に示す態様では、さらに、領域Iの壁面部60aが水平面に対して鉛直方向に立設しており、これらの点以外は、基本的に図1のエネルギ吸収体と同様の構成をしている。
このような本発明の衝撃エネルギ吸収体を構成する材料は、好ましくは樹脂組成物である。かかる樹脂組成物を構成する樹脂は特に限定されないが、好ましくは熱可塑性樹脂である。熱可塑性樹脂を使用することで、溶融成形が可能となり、生産性を向上させることができる。好ましい熱可塑性樹脂の例としては、ポリプロピレン、スチレン、ナイロン、ポリエステル、ポリカーボネイト、ポリアセタール、ポリウレタンなどが挙げられ、これらはポリマーアロイとして使用することもできる。
中でも、衝撃エネルギ吸収体を構成する樹脂として、熱可塑性樹脂(A)および反応性官能基を有する樹脂(B)を配合してなり、下記(i)および(ii)の特徴を有する熱可塑性樹脂組成物を用いることが好ましい。
(i)引張試験において、引張速度V1、V2の時の引張弾性率をE(V1)、E(V2)とすると、V1<V2のとき、E(V1)>E(V2)
(ii)引張試験において、引張速度V1、V2のときの引張破断伸度をε(V1)、ε(V2)とすると、V1<V2のとき、ε(V1)<ε(V2)
上記(i)、(ii)を満足する熱可塑性樹脂組成物を衝撃エネルギ吸収体の構成材料として用いれば、衝突時等の急激な変形の際には、引張破断伸度が大きくなるため、靭性に優れた材料となり、衝突時のエネルギ吸収量が大きくなる。また、衝突時等の急激な変形になるほど、弾性率が小さくなるため、同じ変形量であれば、発生する応力が小さくなる。
上記(i)および(ii)の特徴を有する熱可塑性樹脂組成物としては、特開2006−089701号公報に示された熱可塑性樹脂組成物が挙げられる。この熱可塑性樹脂組成物は、二軸押出機のスクリュー長さをL、スクリュー直径をDとすると、L/D>45の二軸押出機を使用して熱可塑性樹脂(A)と反応性官能基を有する樹脂(B)とを溶融混練することによって製造され、下記(a)および(b)のどちらかに示す構造が形成されていることが好ましい。
(a)熱可塑性樹脂(A)および反応性官能基を有する樹脂(B)の一方が連続相、もう一方が分散相を形成し、さらにこれらの連続相および分散相中に平均粒子径300nm以下の微粒子が存在し、断面に占める分散相と連続相との面積比が40/60〜60/40である構造
(b)熱可塑性樹脂(A)および反応性官能基を有する樹脂(B)がともに連続相を形成し、さらにこれらの両連続相中に平均粒子径300nm以下の微粒子が存在し、断面に占める両連続相の面積比が40/60〜60/40である構造
ここで、熱可塑性樹脂(A)はポリアミド樹脂、ポリエステル樹脂、ポリフェニレンスルフィド樹脂、ポリアセタール樹脂、スチレン系樹脂から選ばれる少なくとも1種である熱可塑性樹脂であり、反応性官能基を有する樹脂(B)は反応性官能基を有するゴム質重合体である熱可塑性樹脂である。また、反応性官能基は、エポキシ基、酸無水物基、オキサゾリン基から選ばれる少なくとも1種以上の官能基である。
かかる熱可塑性樹脂(A)と反応性官能基を有する樹脂(B)との配合比は、重量比で95/5〜5/95であることが好ましい。
なお、E(V1)、E(V2)およびε(V1)、ε(V2)は、ASTM D−638−96規格に明記された引張試験の方法に従って測定される。Eは応力―ひずみ曲線の初期直線部分の勾配を示し、εは、引張速度Vのときの引張破断伸度を示す。
以上のような本発明の管状のエネルギ吸収体は、例えば図4に示すように、車両に組み込まれる。図4(a)が衝撃エネルギ吸収体周辺部分の車体上下方向の該略断面図、図4(b)が衝撃エネルギ吸収体周辺部分の車体水平方向の該略断面図を示す。
そして、本発明の管状のエネルギ吸収体は、自動車等車両のバンパ内だけでなく、ドア内、フェンダ内など、耐衝撃性能が求められる場所であれば、いずれの場所でも使用できる。また、車両としては、自動二輪車、鉄道車両、船舶などを挙げることができる。なお、衝撃エネルギ吸収体の設計にあたっては、実際に試作、実験を行うことによって衝撃エネルギ吸収性能を確認し、その結果に基づいて最適な形状を決定することも可能であるが、コンピューターシミュレーションによる仮想的な試験結果に基づいて最適な形状を決定する方法が好ましく用いられる。
また、本発明の管状のエネルギ吸収体は、領域I、II、IIIの軸方向高さ・径・肉厚などを形状変更することで、低速衝突時の初期荷重(反力)やエネルギ吸収量を任意に設計することができる。
以下に実施例・比較例を示すが、本発明は、これに限定されるものではない。
実施例・比較例において、エネルギ吸収性能は図5に示すように評価した。すなわち、図5は衝突試験の模式図であり、20はインパクタ、21はベースである。この試験では、インパクタ20が衝撃エネルギ吸収体10に衝突する際に、インパクタ20の変位とインパクタ20と衝撃エネルギ吸収体10の間に発生する反力を測定する。この荷重(反力)−変位線図の履歴面積が衝撃エネルギ吸収体のエネルギ吸収量になる。
なお、インパクタ20は重さ100kgの板(200mm×200mm×5mm)とし、衝突のスピードが5m/secとなるよう、衝撃エネルギ吸収体10に衝突させた。試験はバラツキが生じるため、N数は5回とし、エネルギ吸収量は5回の算術平均で評価した。
(実施例1)
図1に示す管状のエネルギ吸収体10を作製し、図5に示すようにベース21の上に置き、対衝撃特性を評価した。
管状のエネルギ吸収体10は、東レ株式会社製ナイロン6樹脂“アミラン”UTN141を使用して、射出成形により成形した。管の一端は半径22mm、他端は半径40mmの円形状、高さは150mm、管の軸方向中央から下側に45mm分の領域IIを設けた。得られた管状のエネルギ吸収体10の重量は96.3gであった。
この管状のエネルギ吸収体10に対して、インパクタ20を衝突させ、インパクタ20が100mm変位したときのエネルギ吸収量を評価した。
本発明の評価結果を図6、図10(a)、表1に示す。評価の結果、図6に示すように、管状のエネルギ吸収体10は、傾きの小さな最初に領域IIIが曲げ変形し(第1段階、図6(a))、折り返し部12が接地した。そして、折り返し部12が接地したことにより、領域Iが座屈変形し(第2段階、図6(b))、領域Iのインパクタと接していた端部と、折り返し部13が同じ高さになった後に、領域I、II、IIIの3領域が圧縮され(第3段階、図6(c))、さらにエネルギ吸収した。このように3段階でエネルギ吸収することにより、インパクタ変位が100mmの時、管状のエネルギ吸収体10が吸収するエネルギ量は、1118.1Jとなり、単位重量当たりのエネルギ吸収量は11.6J/gとなった。
また、図10(a)、表1に示すように、荷重−変位線図においてインパクタ20が管状のエネルギ吸収体10に当たった直後(第1段階)の荷重は8426.9Nとなった。第1段階の時に、荷重が一時的に大きくならないため、実施例1の管状のエネルギ吸収体10をバンパ内に搭載すると、低速衝突時にエアバッグの展開を抑制することが確認できる。
そして、第1段階以降、折り返し部12が接地した直後(第2段階)の荷重は、12271.3J、領域Iのインパクタと接していた端部と、折り返し部13が同じ高さになった直後(第3段階)の荷重は、33117.2Jとなり、第2段階から第3段階にかけて荷重は上昇するものの、第1段階から第2段階で、急激な荷重の上昇は見られなかった。また、領域Iが座屈変形することにより、領域I、II、IIIの3領域が圧縮され、上述のように1118.1Jのエネルギを吸収することができ、高速衝突時には十分に衝突エネルギを吸収して、衝突荷重を伝達できることが確認できる。
(実施例2)
実施例2では、壁面部60cが図2(b)に示すように、曲率ゼロと曲率ゼロ以上の部分とを併せ持つように構成し、その他の条件に関しては、実施例1と同様にし、対衝撃特性を評価した。得られた管状のエネルギ吸収体10の重量は97.6gであった。
実施例2の評価結果を図10(b)、表1に示す。評価の結果、変形モードは実施例1とほぼ同様になり、インパクタ変位が100mmの時、管状のエネルギ吸収体10が吸収するエネルギ量は1163.0Jとなり、単位重量当たりのエネルギ吸収量は11.9J/gとなった。また、図10(b)、表1に示すように、第1段階の荷重は8393.3Nとなり、壁面部60cが曲率ゼロと曲率ゼロ以上の部分とを併せ持つことによって、実施例1に比べて33.6N小さくなるため、低速衝突時のエアバッグ展開をさらに抑制することができ、また、実施例1と同様、第2段階から第3段階にかけてエネルギ吸収量は増加するため、高速衝突時にも十分な衝撃エネルギを吸収できる。
(実施例3)
実施例3では、壁面部60cが図2(c)に示すように、曲率ゼロ以上の部分のみを持つように構成し、その他の条件に関しては、実施例1と同様にし、対衝撃特性を評価した。得られた管状のエネルギ吸収体10の重量は97.8gであった。
実施例3の評価結果を図10(c)、表1に示す。評価の結果、変形モードは実施例1とほぼ同様になり、インパクタ変位が100mmの時、管状のエネルギ吸収体10が吸収するエネルギ量は1139.9Jとなり、単位重量当たりのエネルギ吸収量は11.7J/gとなった。また、図10(c)、表1に示すように、第1段階の荷重は8398.1Nとなり、壁面部60cが曲率ゼロ以上の部分のみで構成されることによって、実施例1に比べて28.8N小さくなり、低速衝突時のエアバッグ展開をさらに抑制することができ、また、実施例1と同様、第2段階から第3段階にかけてエネルギ吸収量は増加するため、高速衝突時にも十分な衝撃エネルギを吸収できる。
(実施例4)
実施例4では、壁面部60aが曲率ゼロ以上の部分のみを持つように構成し、その他の条件に関しては、実施例1と同様にし、対衝撃特性を評価した。得られた管状のエネルギ吸収体10の重量は94.8gであった。
実施例4の評価結果を図10(d)、表1に示す。評価の結果、変形モードは実施例1とほぼ同様になり、インパクタ変位が100mmの時、管状のエネルギ吸収体10が吸収するエネルギ量は1151.6Jとなり、単位重量当たりのエネルギ吸収量は12.1J/gとなった。また、図10(d)、表1に示すように、第1段階の荷重は、8414.7Nとなり、第2段階から第3段階にかけてエネルギ吸収量が増加することにより、低速衝突時のエアバッグ展開は抑制し、高速衝突時には十分な衝撃エネルギを吸収できる。
(実施例5)
実施例5では、図3(a)に示すように、エネルギ吸収体の端面に対する壁面部60aの傾きを90°とした。得られた管状のエネルギ吸収体10の重量は97.8gであり、その他の条件に関しては、実施例1と同様にし、対衝撃特性を評価した。
実施例5の評価結果を図10(e)、表1に示す。評価の結果、変形モードは実施例1とほぼ同様になり、インパクタ変位が100mmの時、管状のエネルギ吸収体10が吸収するエネルギ量が1228.6Jとなり、単位重量当たりのエネルギ吸収量は12.6J/gとなった。また、図10(e)、表1に示すように、第1段階の荷重は、8373.6Nとなり、第2段階から第3段階にかけてエネルギ吸収量が増加するため、実施例1と同様、高速衝突時にも十分な衝撃エネルギを吸収できる。
(実施例6)
実施例6では、図3(b)に示すように、図1に示すエネルギ吸収体の領域Iと領域IIIの位置を、管の半径方向において逆にした。得られた管状のエネルギ吸収体10の重量は99.1gであり、その他の条件に関しては、実施例1と同様にし、対衝撃特性を評価した。
実施例6の評価結果を図10(f)、表1に示す。評価の結果、実施例1とは領域IとIIIの位置関係が異なるものの、実施例1と同様、領域IIIから変形開始した。インパクタ変位が100mmの時、管状のエネルギ吸収体10が吸収するエネルギ量が1172.9Jとなり、単位重量当たりのエネルギ吸収量は11.8J/gとなった。また、図10(e)、表1に示すように、第1段階の荷重は、8633.8Nとなり、第2段階から第3段階にかけてエネルギ吸収量は増加するため、実施例1と同様、高速衝突時にも十分な衝撃エネルギを吸収できる。
(実施例7)
実施例7では、請求項2に記載の下記材料を使用した。すなわち、熱可塑性樹脂(A)として、融点225℃、98%硫酸中0.01g/mlでの相対粘度2.75、水分率500ppmのナイロン6樹脂、そして反応性官能基を有する樹脂(B)として、エポキシ基を有する水分率200ppmのグリシジルメタクリレート変性ポリエチレン共重合体「ボンドファースト BF−7L」(住友化学社製)(B)を配合した、下記(i)および(ii)の関係を満足する熱可塑性樹脂組成物を用いた。
(i)引張試験において、引張速度V1、V2の時の引張弾性率をE(V1)、E(V2)とすると、V1<V2のとき、E(V1)>E(V2)
(ii)引張試験において、引張速度V1、V2のときの引張破断伸度をε(V1)、ε(V2)とすると、V1<V2のとき、ε(V1)<ε(V2)
実施例7の評価結果を図10(g)、表1に示す。評価の結果、変形モードは実施例1とほぼ同様になり、インパクタ変位が100mmの時、管状のエネルギ吸収体10が吸収するエネルギ量が845.8Jとなり、単位重量当たりのエネルギ吸収量は8.8J/gとなった。また、図10(g)、表1に示すように、第1段階の荷重は、5465.5Nとなり、実施例1に比べて小さくなった。第1段階の荷重が小さくなったことにより、実施例1よりもさらに低速衝突時のエアバッグの展開を抑制することができる。
(実施例8)
実施例8では、領域IIを、管の高さ150mmに対して領域III側の端面から10〜55mm部分に設けた。得られた管状のエネルギ吸収体10の重量は92.1gであり、その他の条件に関しては、実施例1と同様にし、対衝撃特性を評価した。
実施例8の評価結果を図10(h)、表1に示す。評価の結果、変形モードは実施例1とほぼ同様になり、インパクタ変位が100mmの時、管状のエネルギ吸収体10が吸収するエネルギ量が1025.3Jとなり、単位重量当たりのエネルギ吸収量は11.1J/gとなった。また、図10(h)、表1に示すように、第1段階の荷重は、8370.5Nとなり、第2段階から第3段階にかけてエネルギ吸収量は増加するため、高速衝突時にも十分な衝撃エネルギを吸収できる。また、領域IIを、管の高さ150mmに対して下から10〜55mm部分に設けたことによって、実施例1に比べて、早く第2段階へ移行できる。このように、領域IIの位置によって第1〜3段階の状態を任意に調整することが可能であるため、必要なエネルギ吸収量を満たすように設計変更することが可能である。
(比較例1)
比較例1では、図7に示すように、小径部31と大径部33を連結部32で連結したエネルギ吸収体30を、図5に示すようにベース21の上に置き、その他の条件に関しては、実施例1と同様にし、対衝撃特性を評価した。
小径部31は半径22mm、大径部33は半径28mmの円断面、高さは150mm、エネルギ吸収体30の軸方向上端から40mm〜70mmの範囲に連結部を設けた。この時、エネルギ吸収体の重量は、69.4gであった。
評価の結果を、図11(a)、表2に示す。評価の結果、エネルギ吸収体30は、連結部32が局所的に伸び、連結部32で破断した。さらにインパクタの変位量が大きくなると、インパクタが大径部33と接するため、大径部33も座屈変形する変形モードとなった。また、さらにインパクタの変位量が大きくなると、インパクタが破断した小径部31と再度接するため、小径部31と大径部33の双方が座屈する変形モードとなった。インパクタ変位が100mmの時、エネルギ吸収体30が吸収するエネルギ量は、844.6Jとなり、実施例1に比べて、273.5J小さくなった。単位重量当たりのエネルギ吸収量は12.2J/gとなり、実施例1に比べて、0.6J/g大きくなった。単位重量当たりのエネルギ吸収量に関しては、本発明より優れているものの、図11(a)、表2に示すように、荷重―変位線図において第1ピーク時の荷重は12957.6Nと、極端に大きくなった。比較例1では、インパクタの変位が小さい間に反力が極端に大きくなるときがあるため、比較例1のエネルギ吸収体30をバンパ内に搭載すると、低速衝突時にエアバッグが展開する可能性がある。
(比較例2)
比較例2では、図8に示すように、一定断面を呈した第1の部分41と、除々に拡開する断面を呈した第2の部分42が、連接部43によって連接されたエネルギ吸収体40を、図5に示すようにベース21の上に置き、その他の条件に関しては、実施例1と同様にし、対衝撃特性を評価した。
第1の部分41は一辺50mmの正方形断面であり、第2の部分42では、断面が拡開し、一辺の長さが最大64mmになるように構成した。この時、エネルギ吸収体40の重量は、95.1gであった。
評価の結果を、図11(b)、表2に示す。評価の結果、エネルギ吸収体40は、一定断面を呈した第1の部分41が、除々に拡開する断面を呈した第2の部分42に向けて潜り込むような変形モードとなった。インパクタ変位が100mmの時、エネルギ吸収体が吸収するエネルギ量は、922.3Jとなり、実施例1に比べて、195.8J小さくなった。単位重量当たりのエネルギ吸収量は9.7J/gとなり、実施例1に比べて、1.9J/g小さくなった。また、図11(b)、表2に示すように、荷重−変位線図において第1ピーク時の荷重は15054.5Nとなった。インパクタの変位が小さい間に反力が極端に大きくなるときがあるため、比較例2のエネルギ吸収体40をバンパ内に搭載すると、低速衝突時にエアバッグが展開する可能性がある。
(比較例3)
比較例3では、図9に示すように、一定断面の管状のエネルギ吸収体50を、図5に示すようにベース21の上に置き、その他の条件に関しては、実施例1と同様にし、対衝撃特性を評価した。
管状のエネルギ吸収体50は、半径22mmの円断面であり、この時、管状のエネルギ吸収体50の重量は、43.9gであった。
評価の結果を、図11(c)、表2に示す。評価の結果、管状のエネルギ吸収体50は、座屈変形した。インパクタ変位が100mmの時、管状のエネルギ吸収体50が吸収するエネルギ量は590.8Jとなり、実施例1に比べて、527.3J小さくなった。また、単位重量当たりのエネルギ吸収量は13.5J/gとなり、実施例1に比べて、1.9J/g大きくなった。単位重量当たりのエネルギ吸収量に関しては、本発明よりも優れているものの、図10(c)、表2に示すように、荷重−変位線図において第1ピーク時の荷重は15404.3Nとなった。インパクタの変位が小さい間に反力が極端に大きくなるときがあるため、比較例3のエネルギ吸収体50をバンパ内に搭載すると、低速衝突時にエアバッグが展開する可能性がある。
Figure 2010065802
Figure 2010065802
本発明の管状のエネルギ吸収体は、自動車のバンパ内に限らず、フェンダ内、ニーボルスター、ステアリング装置などにも応用でき、さらには、自動車に限らず、自動二輪車、鉄道車両、船舶などの衝突エネルギを吸収する必要がある箇所に用いることができるが、その応用範囲が、これらに限られるものではない。
本発明の一実施形態を示す管状のエネルギ吸収体の概略図である。 本発明において採用しうる管状のエネルギ吸収体の折り返し部周辺の概略断面図である。 本発明の別の実施形態を示す管状のエネルギ吸収体の概略断面図である。 本発明の一実施形態を示す管状のエネルギ吸収体を自動車に組み込んだ際の概略模式図である。 衝突試験の模式図である。 実施例1における衝突試験時のエネルギ吸収体の変形概要図である。 比較例1に係る管状のエネルギ吸収体の別の態様である。 比較例2に係る管状のエネルギ吸収体の別の態様である。 比較例3に係る管状のエネルギ吸収体の別の態様である。 実施例における衝突試験結果のグラフである。 実施例における衝突試験結果のグラフである。 実施例における衝突試験結果のグラフである。 実施例における衝突試験結果のグラフである。 実施例における衝突試験結果のグラフである。 実施例における衝突試験結果のグラフである。 実施例における衝突試験結果のグラフである。 実施例における衝突試験結果のグラフである。 比較例における衝突試験結果のグラフである。 比較例における衝突試験結果のグラフである。 比較例における衝突試験結果のグラフである。
符号の説明
10:エネルギ吸収体
11、11a、11b:端面
12:折り返し部
13:折り返し部
14:バンパビーム
20:インパクタ
21:ベース
30:エネルギ吸収体(比較例1)
31:小径部
32:連結部
33:大径部
40:エネルギ吸収体(比較例2)
41:一定断面を呈した第1の部分
42:除々に拡開する断面を呈した第2の部分
43:連接部
50:エネルギ吸収体(比較例3)
60、60a、60b、60c:壁面部

Claims (2)

  1. 管状の壁面部を有するとともに、該壁面部がエネルギ吸収体の一方の端面から他方の端面に到達するまでの間で折り返し部(X)、(Y)を軸方向にこの順序で有するエネルギ吸収体であって、前記壁面部に関し、前記一方の端面と前記折り返し部(X)との間を領域I、前記折り返し部(X)と前記折り返し部(Y)との間を領域II、前記折り返し部(Y)と前記他方の端面との間を領域IIIとするとき、前記領域Iの壁面部の傾きαと前記領域IIIの壁面部の傾きβとが異なることを特徴とする管状のエネルギ吸収体。
  2. 前記管状のエネルギ吸収体を構成する材料は、熱可塑性樹脂(A)および反応性官能基を有する樹脂(B)を配合してなり、下記(i)および(ii)の関係を満足する熱可塑性樹脂組成物であることを特徴とする請求項1に記載の管状のエネルギ吸収体。
    (i)引張試験において、引張速度V1、V2の時の引張弾性率をE(V1)、E(V2)とすると、V1<V2のとき、E(V1)>E(V2)
    (ii)引張試験において、引張速度V1、V2のときの引張破断伸度をε(V1)、ε(V2)とすると、V1<V2のとき、ε(V1)<ε(V2)
JP2008234536A 2008-09-12 2008-09-12 管状のエネルギ吸収体 Pending JP2010065802A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008234536A JP2010065802A (ja) 2008-09-12 2008-09-12 管状のエネルギ吸収体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008234536A JP2010065802A (ja) 2008-09-12 2008-09-12 管状のエネルギ吸収体

Publications (1)

Publication Number Publication Date
JP2010065802A true JP2010065802A (ja) 2010-03-25

Family

ID=42191545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008234536A Pending JP2010065802A (ja) 2008-09-12 2008-09-12 管状のエネルギ吸収体

Country Status (1)

Country Link
JP (1) JP2010065802A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011218344A (ja) * 2010-03-23 2011-11-04 Taiheiyo Cement Corp 廃棄物の処理方法
CN102381269A (zh) * 2011-08-18 2012-03-21 凌云工业股份有限公司 一种性能稳定的汽车保险杠吸能盒
JP2015036509A (ja) * 2013-08-16 2015-02-23 ヨゼフ フェゲーレ アーゲー 押圧装置を備える路面仕上げ機
JP2015055258A (ja) * 2013-09-10 2015-03-23 富士重工業株式会社 エネルギー吸収部材及び衝撃吸収装置
KR20170024382A (ko) * 2015-08-25 2017-03-07 주식회사 성우하이텍 차량용 범퍼빔 유닛

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011218344A (ja) * 2010-03-23 2011-11-04 Taiheiyo Cement Corp 廃棄物の処理方法
CN102381269A (zh) * 2011-08-18 2012-03-21 凌云工业股份有限公司 一种性能稳定的汽车保险杠吸能盒
CN102381269B (zh) * 2011-08-18 2014-08-13 凌云工业股份有限公司 一种性能稳定的汽车保险杠吸能盒
JP2015036509A (ja) * 2013-08-16 2015-02-23 ヨゼフ フェゲーレ アーゲー 押圧装置を備える路面仕上げ機
US9656525B2 (en) 2013-08-16 2017-05-23 Joseph Voegele Ag Road finishing machine with pushing device
US10029525B2 (en) 2013-08-16 2018-07-24 Joseph Voegele Ag Road finishing machine with pushing device
JP2015055258A (ja) * 2013-09-10 2015-03-23 富士重工業株式会社 エネルギー吸収部材及び衝撃吸収装置
KR20170024382A (ko) * 2015-08-25 2017-03-07 주식회사 성우하이텍 차량용 범퍼빔 유닛
KR101719538B1 (ko) 2015-08-25 2017-03-24 주식회사 성우하이텍 차량용 범퍼빔 유닛

Similar Documents

Publication Publication Date Title
JP4792036B2 (ja) 車両用衝撃吸収部材
US7192067B2 (en) Impact damper assembly for an automobile
JP2015150906A (ja) 歩行者衝突検知センサを備えた車両用バンパ構造
JP2010065802A (ja) 管状のエネルギ吸収体
JP4554515B2 (ja) 自動車の衝撃吸収体
KR20100094470A (ko) 트레이 에너지 완충기 및 범퍼 장치
JP2006506277A (ja) 一体形の単体バンパ・ビーム
US7677616B2 (en) Bumper absorber
JP5671934B2 (ja) 衝撃吸収構造体
JP2011519406A (ja) 歩行者安全のためのバンパエネルギー吸収体
JP2007204016A (ja) 車両用バンパ構造
JP5011516B2 (ja) 車両用衝撃吸収体
JP5136630B2 (ja) 車両用ニーボルスター
EP1365169A1 (en) Tubular honeycomb articles for use in energy absorption
JP2009073447A (ja) バンパ
JP4457302B2 (ja) 自動車用衝撃吸収部材
JP2004114864A (ja) 衝撃緩衝部材
JP5919976B2 (ja) 衝撃吸収体
JP5240556B2 (ja) 衝撃エネルギ吸収体
US9694773B2 (en) Rod stiffener for bumper of car
JP2011063082A (ja) 衝撃エネルギ吸収体
JP5919975B2 (ja) 衝撃吸収体の製造方法
US9758117B2 (en) Bumper apparatus for vehicle
EP0412846B1 (en) Energy absorbing structure
JP5919974B2 (ja) 衝撃吸収体