JP2010050287A - 光伝導素子 - Google Patents

光伝導素子 Download PDF

Info

Publication number
JP2010050287A
JP2010050287A JP2008213393A JP2008213393A JP2010050287A JP 2010050287 A JP2010050287 A JP 2010050287A JP 2008213393 A JP2008213393 A JP 2008213393A JP 2008213393 A JP2008213393 A JP 2008213393A JP 2010050287 A JP2010050287 A JP 2010050287A
Authority
JP
Japan
Prior art keywords
excitation light
photoconductive
electrode portion
electrode
photoconductive element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008213393A
Other languages
English (en)
Inventor
Kosuke Kajiki
康介 加治木
Shintaro Kasai
信太郎 笠井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2008213393A priority Critical patent/JP2010050287A/ja
Publication of JP2010050287A publication Critical patent/JP2010050287A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

【課題】光伝導膜に印加される電界の方向を光伝導膜の膜厚方向に対して比較的容易に調整することができる光伝導素子を提供する。
【解決手段】光伝導素子は、光伝導性を持つ光伝導膜12と、光伝導膜12に電圧を印加するための第1電極部13と第2電極部14を備える。第1電極部13と第2電極部14は、光伝導膜12を膜厚方向に挟む様に配置される。光励起によりキャリアが発生する光伝導膜12のキャリア発生領域15において、光伝導膜12の膜厚方向から見て、第1電極部13と第2電極部14は、互いの縁が接するか或いは離隔している。
【選択図】図1

Description

本発明は、光伝導素子、それを用いた装置、その駆動方法に関する。特に、本発明は、ミリ波帯からテラヘルツ帯(30GHz乃至30THz)までの周波数領域の電磁波を発生する発生素子等として用い得る光伝導素子などに関する。
近年、ミリ波帯からテラヘルツ帯(30GHz乃至30THz)までの周波数領域のうち任意の帯域を有する電磁波(本明細書では、単にテラヘルツ波ともいう)を用いた非破壊なセンシング技術が開発されてきている。この周波数帯の電磁波の応用分野において、X線に替わる安全な透視検査装置としてイメージングを行う技術が開発されている。また、物質内部の吸収スペクトルや複素誘電率を求めて、結合状態などの物性を調べる分光技術、生体分子の解析技術、キャリア濃度や移動度を評価する技術などが開発されつつある。
この様な特徴を持つテラヘルツ波の発生素子として光伝導素子がある(特許文献1参照)。図11は、従来から使用されている光伝導素子を表した図である。GaAsの基板91上に低温でエピタキシャル成長されたGaAsの光伝導膜92が2μmの厚さで形成されている。光スイッチ部である光伝導膜92には更に第1電極部93と第2電極部94が、フォトリソグラフィ、真空蒸着、リフトオフプロセスによって形成されている。第1電極部93と第2電極部94は厚さ200nmのAuGe/Ni/Auからなり、両電極間の距離は5μmである。図11のキャリア発生領域95では、励起光96が照射されることで光励起キャリアが発生する。テラヘルツ波97は、第1電極部93と第2電極部94間に印加された電界によってこの光励起キャリアを加速することで放射される。しかし、この様な光伝導素子は、電極間のギャップの作製プロセスが容易ではなく、作製精度や歩留りが高いとは言えなかった。
一方、光伝導膜の膜面に対して垂直に電界をかけるタイプの光伝導素子が提案されている(非特許文献1参照)。図12に示す様に、この素子では、光伝導膜(i層)を挟む様にp層とn層がそれぞれ配置されている。具体的には、n−Si基板上に、3μm厚のSiからなる光伝導膜、200nm厚のp−Siからなるp層が順に形成されている。p層とn層にはそれぞれ電極が接続されており、それらによって光伝導膜に膜厚方向の電界を印加することができる。ここで、光伝導膜に、中心波長615nmパルス幅70fsの単パルスレーザを照射すると、レーザ励起によってキャリアが発生する。これら光励起キャリアは、膜厚方向に掛かる電界によって加速されることでテラヘルツ波を放射する。
ここで、単パルスレーザ(直径Φ4mm)を基板面に対して斜めから照射すると、テラヘルツ波が空間に放射される。こうする理由は、電界方向と垂直な方向にテラヘルツ波が強く発生するために、基板面に垂直に単パルスレーザを入射させるとテラヘルツ波を空間へ取り出すことができないからである。この光伝導素子は、電極間のギャップの距離を容易に制御することができ、そのため作製精度や歩留りを向上することができる。
特開2002-223017号公報 Appl. Phys. Lett. 59(26), 3357
しかしながら、上記非特許文献1に開示されている方法では、光伝導膜に印加されている電界の方向を調整することは容易ではなかった。そのため、電界方向に加速されるキャリアから発生するテラヘルツ波を空間へ取り出す効率が比較的低いレベルに留まっており、テラヘルツ波の放射効率が抑制される傾向にあった。
上記課題に鑑み、本発明の光伝導素子は、光伝導性を持つ光伝導膜と、前記光伝導膜に電圧を印加するための第1電極部と第2電極部と、を備える。前記第1電極部と前記第2電極部は、前記光伝導膜を膜厚方向に挟む様に配置される。更に、光励起によりキャリアが発生する前記光伝導膜のキャリア発生領域において、前記光伝導膜の膜厚方向から見て、前記第1電極部と前記第2電極部は、互いの縁が接するか或いは離隔している。
また、上記課題に鑑み、本発明の分析装置は、励起光を発生する励起光源と、前記光伝導素子と、電圧印加部と、検出部と、処理部を有する。前記光伝導素子は、前記励起光が照射されて、検体を照射するためのテラヘルツ波を発生する。前記電圧印加部は、前記光伝導素子に電圧を印加する。前記検出部は、検体からのテラヘルツ波を検出する。前記処理部は、前記検出部からの信号を処理して検体の情報を取得ないし分析する。
本発明によれば、上記の如き電極部の配置により、光伝導膜に印加される電界の方向を光伝導膜の膜厚方向に対して比較的容易に調整することができる。従って、膜厚方向に電界が印加される光伝導素子において、例えば、テラヘルツ波の放射効率を向上することができる。
以下、本発明の実施の形態について説明する。発生素子、検出素子等として用い得る本発明の光伝導素子において重要なことは、光励起でキャリアが発生する光伝導膜のキャリア発生領域において、光伝導膜の膜厚方向から見て、第1電極部と第2電極部は、互いの縁が接するか或いは離隔していることである。この考え方に基づき、本発明による光伝導素子の基本的な実施形態は、光スイッチ部である光伝導性を持つ光伝導膜と、光伝導膜に電圧を印加するための第1電極部と第2電極部と、を備える。そして、第1及び第2電極部は、光伝導膜を膜厚方向に挟む様に配置され、光励起によりキャリアが発生する光伝導膜のキャリア発生領域において、光伝導膜の膜厚方向から見て、第1及び第2電極部は、互いの縁が接するか或いは離隔している。こうした光伝導素子は、基板表面上に配置することができる。
前記光伝導素子の駆動は、第1電極部と第2電極部間に電界が印加された状態で、励起光を光伝導膜に対して垂直方向から、或いは光伝導膜の面に対して斜め方向から、キャリア発生領域に向かって入射させて行うことができる。後者の場合、励起光をブリュースター角で入射させることもできる。
光伝導素子を基板表面上に配置した場合、この基板において光伝導素子が配置されている側から励起光を入射させることができる。こうすれば、励起光の吸収ロスが少なくなる。また、前記基板において光伝導素子が配置されていない側から励起光を入射させることもできる。こうすれば、テラヘルツ波を取り出しやすい構成とできる。
前記光伝導素子は、励起光が照射されて検体を照射するためのテラヘルツ波を発生する発生素子として用いて、励起光源と電圧印加部と検出部と処理部と共に分析装置を構成することができる。前記電圧印加部は、前記光伝導素子の2つの電極部間に電圧を印加する。前記検出部は、検体からのテラヘルツ波を検出する。前記処理部は、検出部からの信号を処理して検体の情報を取得ないし分析する。前記検出部は、前記励起光の一部を時間遅延するための遅延部と、遅延部を通過した励起光と検体からのテラヘルツ波とが照射される検出側光伝導素子を含む構成とすることができる。この検出側光伝導素子は、前記光伝導素子で構成することができる。また、分析装置を、励起光を発生する励起光源と、検体を照射するためのテラヘルツ波を発生する発生部と、次の様な検出部と、この検出部からの信号を処理して前記検体の情報を取得するための処理部とで構成することもできる。この検出部は、前記励起光の一部を時間遅延するための遅延部に加えて、この遅延部を通過した前記励起光と検体からのテラヘルツ波とが照射される前記光伝導素子からなり、検体からのテラヘルツ波を検出する。
次に、図を参照しながら本発明の実施形態を説明する。なお、全ての図において、見易くするために、各部の寸法は実際の素子の各部の寸法を均等に拡大したものにはなっておらず、寸法の比率は必ずしも実際の素子の各部の比率と正確には対応していない。
図1は本発明による光伝導素子の一実施形態を示す。図1(a)とそのA-A’断面図の図1(b)に示す様に、基板11上の一部に光伝導膜12が配置されている。更に、キャリア発生領域15(光励起によりキャリアが発生する箇所であって、ここでは、テラヘルツ波17発生のための励起光16が照射される箇所)では、光伝導膜12を挟む様に第1電極部13と第2電極部14がそれぞれ配置されている。光伝導膜12は薄膜であり、光伝導膜12の結晶成長基板とは別の基板11上に移設されている。
また、キャリア発生領域15では、光伝導素子を上面から見たときに第1電極部13と第2電極部14が重ならない様になっている。すなわち、光伝導膜のキャリア発生領域15において、光伝導膜12の膜厚方向から見て、第1電極部13と第2電極部14は、互いの縁が接するか或いは離隔している。図1の実施形態では、図1(b)に一点鎖線で示す様に、互いの縁が離隔している。また、本実施形態では、第1電極部13と第2電極部14は、図1に示す様に伸びて形成され、それぞれの電極部13、14に電圧を印加するための電極パッドとなる部分が、光伝導膜12のある領域の外に配置されている。電極パッドの位置はこうした形態に限らず、例えば第1電極部13の電極パッドは光伝導膜12上に形成しても良い。ただし、第2電極部14は光伝導膜12と基板11の間にあるため、外部電源とコンタクトを取るための構造とする必要がある。例えば、電極パッド上の光伝導膜12を取り除いたり、第2電極部14の一部と接触する基板11の一部を導電性にしたりして、外部電源とコンタクトを取ることが可能である。
本実施形態における電極部のアンテナは、いわゆるボウタイアンテナ型と言われるものであり、電極部13、14の各部が比較的明確にアンテナ部、給電部、電極パッド部に分かれているものである。ここでは、上から見て、各アンテナ部は三角形状で、端点が向かい合っている配置になっているが、こうした形態に限られない。各アンテナ部が方形形状で、端が平行に向かい合っている配置なども可能である。電極部13、14は、フォトリソグラフィなどにより形成することができる。電極部の形態は種々異なるものが可能である。例えば、給電部それ自体がアンテナ部としての機能を兼ねているいわゆるストリップライン型と言われるものも可能である。また、台形型と呼ばれるタイプもあり、このタイプでは、電極パッド部それ自体が給電部、アンテナ部としての機能を兼ねている。
第1電極部13と第2電極部14間では電圧が印加されている。図1に示す本実施形態では、図2-1に示す様に、第1電極部13の端点から第2電極部14の端点を結ぶ様な方向を持つ電界を容易に得ることができる。これは、光伝導膜12の水平面に対して斜めに傾いた電界となっている。これに関連して、非特許文献1では基板全体を導電性としているため、電界を斜めに傾けることは容易ではなかった。
基板11にはSi、GaAs、ガラスなど種々の材料を用いることができる。なお、基板11は、電界を効率的に光伝導膜12に印加するために、抵抗率の高い材料を用いるのが望ましい。更には、光伝導膜12よりも高い抵抗率を有する材料がより望ましい。更に望ましくは、絶縁性の材料を用いるのが良い。一例として、Si基板を用いるときには、表面にSiO2絶縁膜を形成することが望ましい。すなわち、キャリア発生領域15において、光伝導膜12を挟んで第1電極部13と相対する領域は絶縁性若しくは高抵抗の部材から成るのが好ましい。こうすれば、電界をキャリア発生領域15に集中させ、テラヘルツ波17の放射効率をより向上することができる。
光伝導膜12には、低温成長GaAs、InGaAsなどを用いることができる。これは、励起光16の波長やテラヘルツ波17の放射効率、耐電圧等を考慮して選択すればよい。電極部13、14の材料としては、AuGe/Ni/AuやTi/Auなどの種々の金属や半導体を用いることができる。
また、図9に示す様に、p型GaAs膜116とn型GaAs膜117を光伝導膜112の両側に配置し、PIN構造としてもよい。この場合、ドーピングによってp型若しくはn型構造を作製することができる。なお、図9において、111は基板、113と114は電極部、115はキャリア発生領域である。
また、第1電極部13若しくは第2電極部14と光伝導膜12の接触はオーミック接合でもショットキー接合でもよい。図10の構成は、第1電極部123の接触をショットキー接合としたものであり、第1電極部123と光伝導膜122との間にショットキー障壁を高めるためのAlAs膜126が形成されている。なお、図10において、121は基板、124は電極部、125はキャリア発生領域である。
次に、テラヘルツ波17の発生原理について説明する。光伝導素子のキャリア発生領域15に励起光16が照射されると、光励起キャリアが発生する。励起光16は好ましくはフェムト秒レーザであり、光伝導膜12がGaAsの場合にはバンドギャップを考慮して800nm程度の中心波長が用いられる。発生したキャリアはそれぞれキャリア発生領域15に印加されている電界によって加速され、同時にテラヘルツ波17を放射する。この様にパルス光を用いる場合、光スイッチ部である光伝導膜12は、この励起光によって瞬間的に導通する。ただし、ここで重要なことは、光励起キャリアの寿命が短いことではなく、キャリアの生成が急峻であることである。励起光としては、2つの光源からの光の差周波の連続光(これ自体がテラヘルツ領域の周波数で変調している)などを用いることもできる。テラヘルツ波17は、キャリア加速に伴う放射角度分布を有し、キャリア加速方向と垂直な方向に最も強くテラヘルツ波17が放射される。一方で、キャリア加速方向と平行な方向にはテラヘルツ波17は放射されない。なお、テラヘルツ波17の放射方向は、図2-1などの図内では模式的に最も放射強度の大きい方向を矢印で示している。これは、他の実施形態や実施例においても同様である。
ここで、励起光16の入射方向と、第1電極部13と第2電極部14間で印加される電界方向がテラヘルツ波17の放射角度分布に与える効果について説明する(非特許文献J. Opt. Soc. Am., Vol. 67, No. 12, p 1607, 1977参照)。テラヘルツ波17の放射角度分布の角度依存性は、キャリア発生領域15つまり励起光16の照射領域の大きさによって変わってくる。
励起光16の照射領域がテラヘルツ波17の波長より十分小さいときは、単一のダイポールによる放射とみなすことができる。従って、テラヘルツ波17の放射角度分布は電界方向への依存性が大きく、励起光16の入射方向への依存性が小さい。一方で、励起光16の照射領域がテラヘルツ波17の波長より十分大きいときは、複数のダイポールアレイによる放射とみなすことができる。従って、テラヘルツ波17の放射角度分布は励起光16の入射方向への依存性が大きく、電界方向への依存性は相対的に小さくなる。
この際、励起光16の照射領域が大きくなるにつれて、テラヘルツ波17の放射方向は励起光16の反射方向または透過方向へと近づいていく。一般的には、両方の因子が或る割合でテラヘルツ波17の放射角度分布に影響を与えることが知られている。
本実施形態を含む本発明では、第1電極部13と第2電極部14間で印加される電界方向の制御性を増すことができるため、例えば、電界を基板11面に対して斜めに印加するとテラヘルツ波17の放射方向を基板11面に対して垂直な方向に近づけることができる。従って、テラヘルツ波17の放射効率を向上できる。この効果は、特に励起光16の照射領域が小さい場合に顕著である。
以下、本発明をより具体的な実施例で説明する。
(実施例1)
本発明による実施例1は、励起光16を光伝導膜12に対して垂直方向から入射させることを特徴とする光伝導素子である。構成の概略は、図1で説明した上記実施形態と同様である。図2-1は、本実施例による光伝導素子の断面を表した図である。ここでは、光伝導膜12内部における電界方向を模式的に表している。
本実施例では、光伝導膜12にGaAs、第1電極部13と第2電極部14にAuGe/Ni/Au、基板11にSiを使用する。典型的には、光伝導膜12の厚さは2μm、電極13、14の厚さは200nm、基板11の厚さは500μmである。第1電極部13と第2電極部14は、キャリア発生領域15において、基板11面方向で2μm離れている。また、励起光として中心波長800nmのフェムト秒レーザを用いる。これらは、ここで述べた本実施例の値に制限されるものではない。例えば、第1電極部13と第2電極部14の上記基板11面方向の距離は、数mmといった様に大口径とすることも可能である。
本実施例のこの様な構造により、図2-1のC点における電界方向を基板11面方向から約12度傾けることができる。ここで、キャリア発生領域15内部において、電界は電極13、14の端点付近で最大値を持つ。上述した様に、第1電極部13と第2電極部14の最も接近した箇所の距離が基板11面方向で2μmの場合、第1電極部13と第2電極部14間に典型的には1V〜100V程度の電圧を印加する。
図2-1の構成では、光伝導膜12のキャリア発生領域15において、光伝導膜12の膜厚方向から見て、第1電極部13と第2電極部14は、一点鎖線で示す様に互いの縁が離隔している。しかし、互いの縁が接する構成にすることもできる。図2-2は、第1電極部23と第2電極部24の縁が基板21面方向で接している例である。この場合、図2-1と比較して主要な電界方向が変化している。すなわち、図2-2に示す様に、キャリア発生領域25において電界方向は光伝導膜22の膜厚方向に多少近づいている。
次に、上記光伝導素子の作製プロセスの一例として、いわゆる転写技術(例えば、特開2005−311324号公報を参照)を応用した方法について図7を用いて説明する。
まず、図7-1(a)に示す様に、GaAsウエハ71の上にGaAsバッファ層(不図示)、AlAsエッチストップ層72、GaAs光伝導膜12を分子ビームエピタキシー法などで成長する。次に、フォトリソグラフィによってフォトレジストを整形後にAuGe/Ni/Auを真空蒸着し、リフトオフによって電極を形成する(図7-1(b))。これが、第2電極部14となる。形成後にはコンタクト抵抗を低減するために400℃で混晶化をしておく。
続いて、第2電極部14を形成したGaAsウエハ71を1平方mmサイズに切り出す。基板11に接着剤73を塗布し、その上からGaAsウエハ71を第2電極部14が接着剤73と接する様にして接着する(図7-1(c))。接着後、GaAsウエハ71をエッチングにて除去する。このときは、周囲をレジスト等でカバーしたあとに、アンモニア+過酸化水素の混合液でエッチングを行うとAlAsエッチストップ層72でストップするので選択的にGaAsウエハ71だけを除去することが可能である。GaAsウエハ71の除去後、AlAsエッチストップ層72を濃硫酸で除去する(図7-2(a)、(b))。
次に、第2電極部14の一部を表面に出して電極コンタクトを取れる様にするために、GaAs光伝導膜12の一部をエッチングにて除去する(図7-2(c))。このときは、エッチングする領域以外のGaAs光伝導膜12はレジストで保護しておく。次に、第2電極部14を延長して電極パッドを形成し、同時に第1電極部13も形成するために、更にフォトリソグラフィと真空蒸着を実施する(図7-3(a)、(b))。このとき、GaAs光伝導膜12の周縁に掛かる第1電極部13の領域は金属膜厚を厚くするなどして断線しにくい構造とすることが望ましい。上述した様に、第1電極部13と第2電極部14との相対位置は電界分布に影響するため、ここでは両者のアライメントを取りながらフォトリソグラフィを実施する。
作製方法は上記方法に限らず、第1電極部13と第2電極部14に相当する部分を上記の様に配置可能であればよい。例えば、基板11へのドーピングプロセスによって第2電極部14と見なせる領域を形成する方法などを採用することもできる。
本実施例の駆動も図2-1に示す様に行われる。励起光16はレンズ(不図示)により5μm程度に絞られてキャリア発生領域15に照射される。このサイズは発生するテラヘルツ波17の波長サイズより十分に小さい。そのため、テラヘルツ波17は電界方向に垂直な方向に強く放射される。電界方向が基板11面に対して12度傾いている場合は、テラヘルツ波17は基板11面の法線方向から12度傾いた方向に強く放射されることになる。図2-2の構成で、励起光26を光伝導膜22に対して垂直方向から入射させると、図2-1の構成の場合と比較して、図2-2に示す様にテラヘルツ波27(特に上方に放射されるもの)は多少基板21面の法線方向から傾いた方向に放射される。しかし、こうした構成でも、光伝導膜に印加される電界の方向を光伝導膜の膜厚方向に対して比較的容易に調整でき、テラヘルツ波の放射効率を向上することができる。
上記非特許文献1で開示される従来の光伝導素子では電界方向は膜厚方向を向いているため、基板に対して垂直方向から励起光を入射したときにテラヘルツ波を空間に放射することができなかった。一方、本実施例を含む本発明ではキャリア加速方向が膜厚方向から傾いているため、基板11に対して垂直方向から励起光16を入射したときにもテラヘルツ波17を効率良く空間に放射することが可能である。
本実施例では、基板11、21に垂直に励起光16、26を入射させているので、励起光16、26側の光学系を簡易にすることができる。更に、光軸調整も簡便になる。また、基板11、21垂直方向に放射するテラヘルツ波17、27を利用する構成であるので、テラヘルツ波17、27側の光学系も簡易な構成とできる。
(実施例2)
本発明による実施例2は、励起光36を斜めに入射させることを特徴とする光伝導素子である。図3をもとに、本実施例について具体的に説明する。
図3では、励起光36を基板法線から角度α傾けて基板31に入射させている。光伝導素子の構成は、実施例1と同様とする。本実施例では、励起光36としてはp偏光を用いることが望ましい。p偏光では、斜めに入射することで透過率(入射効率)が増大する入射角度範囲が存在する。励起光36は空気−基板31界面で屈折・反射し、角度βで基板31に入射する。基板31内を伝搬した励起光36はキャリア発生領域35に到達する。この様に励起光36をp偏光にして基板31に斜めに入射させることで、キャリア発生領域31に達する励起光36のパワーが向上する。従って、テラヘルツ波37の発生効率を向上できる。
励起光36の入射効率を更に向上するには、励起光36はブリュースター角で入射させることが望ましい。例えば、励起光36に対するGaAsの屈折率を3.3とすると、ブリュースター角は約73°となる。このとき、励起光36をブリュースター角で入射させると励起光36は反射されずにGaAs基板31内へ入射する。
また、テラヘルツ波37は発生後に基板31から出射する際に基板31−空気界面で屈折・反射される。この場合にも、p偏光を斜めに入射させることで透過率(出射効率)が増大する入射角度範囲が存在する。テラヘルツ波37をp偏光として基板31に対して斜めに発生させるために、第1電極部33と第2電極部34は図3に示す様に斜めに電界を印加できる様に配置する。これにより、テラヘルツ波37の出射効率を向上できる。
テラヘルツ波37の出射効率を更に向上するには、テラヘルツ波37はブリュースター角で出射させることが望ましい。例えば、テラヘルツ波37に対するGaAsの屈折率を3.6とすると、ブリュースター角は約16°となる。このとき、電界印加方向を基板31面から約16°傾ければ、テラヘルツ波37は前記ブリュースター角で基板31−空気界面に入射するため、テラヘルツ波37の出射効率を向上できる。
この様に本実施例においては、励起光36を基板31に対して斜めに入射させることで、励起光36の入射効率を向上させ、テラヘルツ波37の発生効率を向上することができる。また、テラヘルツ波37を基板31に対して斜めに発生させることでテラヘルツ波37の出射効率を向上できる。従って、テラヘルツ波37の放射効率をより向上できる。
(実施例3)
本発明による第3の実施例は、キャリア発生領域を複数有することを特徴とする光伝導素子を含むテラヘルツ波発生装置である。図4(a)とそのA-A’断面図の図4(b)をもとに、本実施例について具体的に説明する。
本実施例において、複数のキャリア発生領域45は、図4に示す様に電極を櫛形状に配置することで形成することができる。より詳しくは、キャリア発生領域45付近の第1電極部43と第2電極部44がそれぞれ櫛形状になる様に形成されている。ここで、両電極43、44は、素子上面から見た時に図4に示す様に重ならずに互い違いになる様に配置されている。すなわち、光伝導膜42のキャリア発生領域45において、光伝導膜42の膜厚方向から見て、第1電極部43と第2電極部44の櫛状部分は、互いの縁が離隔している。勿論、必要に応じて、互いの縁が接する様に形成してもよい。
本実施例では、第1電極部43と第2電極部44の櫛状部分の幅は5μm、櫛状部分の間隔は5μmとする。櫛の数は、例えば100本ずつとすればよい。電圧は第1電極部43−第2電極部44間へ印加されている。本実施例では櫛形状の電極を組み合わせているため、広い領域に渡って電界強度の強い領域を確保することが可能である。図4(a)のA-A’線にほぼ沿って、キャリア発生領域45の大きさは2cmとする。もちろん、数μm〜数cmとすることもできる。励起光46は、キャリア発生領域45に、基板41に対して斜めに照射される。本実施例では、キャリア発生領域45はテラヘルツ波47の波長(典型的には300μm)と比較して十分大きいため、テラヘルツ波47は励起光46と同軸に放射される。つまり、テラヘルツ波47は励起光46の透過波、反射波それぞれの方向へと放射される。
本実施例によれば、光励起キャリアの加速場所が広く分散されるためにキャリアのスクリーニング(光励起キャリアの空間的分布により電界の効果を打ち消す現象)に起因するテラヘルツ波47の放射効率の抑制を低減できる。そのため、光励起キャリアを効率的にテラヘルツ波47発生に利用でき、従って、テラヘルツ波47の放射効率を向上できる。なお、2つの電極部の一方を櫛形状の電極とし、例えば、他方を方形形状にして、複数の櫛状部分の先端から適当な間隔だけ離隔して方形形状電極部の縁が来るように配置することも可能である。この場合、この離隔した領域が光伝導膜の複数のキャリア発生領域となる。
この様に、第1電極部と第2電極部の両方若しくは片方を櫛形状としてキャリア発生領域を複数設けることで、キャリアのスクリーニングを防ぎ、テラヘルツ波の放射効率を向上することができる。
(実施例4)
本発明による実施例4は、第1電極部と第2電極部に加えて第3電極部58を配置したことを特徴とする光伝導素子を含むテラヘルツ波発生装置である。図5をもとに、本実施例について具体的に説明する。
本実施例で、第3電極部58は、キャリア発生領域55付近ではあるがキャリア発生領域55の外の領域において、第1電極部53と第2電極部54が形成されていない箇所に配置される。当然、第1電極部53と第2電極部54とは接しない様に配置される。本実施例では、基板51上の光伝導膜52に対して第1電極部53と同じ側に配置されているが、第2電極部54と同じ側に配置されてもよい。ここでは、第1電極部53と第3電極部58の距離は例えば3μmとできる。第3電極部58の形状も、場合に応じて決めればよい。
本実施例において、第1電極部53の電位を10V、第2電極部54の電位を0V、第3電極部58の電位を3Vとする。すると、電界方向の分布は典型的には図5に示す様になる。これにより、図2に示した2つの電極のみがある場合と比較して、電界分布をより柔軟に調整することができる。例えば、本実施例では斜めの電界を増大させることができる。こうして、励起光56により放射されるテラヘルツ波57の放射分布を狭くすると共に放射パワー密度を向上することができ、放射効率を向上できる。
ここで、第3電極部58の電位は第1電極部53の電位と第2電極部54の電位の間であるほうが、第3電極部58が付加される前に存在した電界分布を乱し過ぎないため望ましい。また、第1電極部53若しくは第2電極部54と第3電極部58間の距離は、キャリア発生領域55において電界分布を調整可能な程度の距離以下にすることが望ましい。
ここでは第3電極部58を1個追加した構成としたが、もちろん2個以上の電極を追加してもよい。その場合、第3電極部配置による電界方向の制御性を更に増すことができる。そのため、例えば、テラヘルツ波57の放射に適した方向の電界成分を増大することができる。こうして、テラヘルツ波57の放射効率を向上することができる。
また、第3電極部58に印加する電圧を変化できる様な構成にしてもよい。第3電極部58に印加する電圧を変化させることで、光伝導膜52内の電界方向を調整・制御することができる。これにより、最適な電界配置つまり最適なテラヘルツ波57の強度や放射分布となる様に、光伝導素子の作製後に電界を調節することが可能となる。例えば、励起光56の吸収量が大きく光励起キャリアの量が多い箇所(通常は、励起光56が入射してくる側の光伝導膜52の領域)に電界を集中させるといったことが可能となる。更に、第3電極部58に印加する電圧を変調することで、発生するテラヘルツ波57の強度や方向を変調することも可能である。
本実施例によれば、第3電極部58によってキャリア発生領域55における電界分布をより柔軟に調整することで、光励起キャリアを効率的にテラヘルツ波57発生に利用できる。そのため、テラヘルツ波57の放射効率を向上できる。
(実施例5)
本発明による第5の実施例は、基板61の表面側から励起光66を入射させることを特徴とする光伝導素子を含むテラヘルツ波発生装置である。図6をもとに、本実施例について具体的に説明する。
光伝導素子としては、実施例1と同様のものを用いることができる。本実施例では、励起光66は基板61の表面側、すなわち光伝導膜62側からキャリア発生領域65に照射される。これにより、励起光66は、基板61に吸収されたり反射されたりせずにキャリア発生領域65に到達できる。更に、第1電極部63に対して設けられた第2電極部64は、光伝導膜62と基板61の間にあり、励起光66が光伝導膜62に吸収されるのを妨げない。そのため、キャリア発生領域65で発生する光励起キャリアを増大することができる。発生したテラヘルツ波67は基板61の表面側(光伝導膜62側)から取り出される。
本実施例では基板61が励起光66に与える影響を考慮する必要がないため、基板61の材料選択の自由度を向上できる。特に、励起光66の帯域(可視、近赤外領域が多い)において吸収の大きい材料でも使用することが可能となる。
励起光66は基板61に対して垂直な方向から入射させてもよい。また、基板61裏面から出射するテラヘルツ波67を利用してもよい。この場合、基板61には、テラヘルツ波67に対して透過性の良い材料を使用することが望ましい。
本実施例によれば、基板61による励起光66の吸収や第2電極部62による励起光66の遮蔽を低減できるため、テラヘルツ波67の放射効率を向上できる。
(実施例6)
本発明による実施例6は、テラヘルツ波を用いて検体88の情報を取得ないし分析する分析装置に関する。図8をもとに、本実施例について具体的に説明する。
図8に示す分析装置において、励起光82は、励起光源81から発生する。励起光源81にはフェムト秒レーザが使用される。励起光82は、ビームスプリッターによって、テラヘルツ波87を発生するための光伝導素子83へ向かうものと、テラヘルツ波87を検出するための検出側光伝導素子84へ向かうものへと分割される。光伝導素子83には、実施例1〜5に記載してある様な光伝導素子を使用し、テラヘルツ波87の強度を向上させる。光伝導素子83の第1及び第2電極部間には電圧印加部86によって電圧が印加されている。この光伝導素子83のキャリア発生領域に励起光82を照射することで、テラヘルツ波87が発生する。ここで、励起光82の入射方法は上記実施例に記載してある方法のいずれかを使用することができる。発生したテラヘルツ波87は、放物面鏡やレンズなどの光学系を通過して検体88に照射される。
一方で、検出側光伝導素子84へ向かう励起光82は、遅延部85によって時間遅延を受ける。この時間遅延を受けた励起光82と、検体88を透過または反射したテラヘルツ波87とが、検出側光伝導素子84に照射される。検出側光伝導素子84では、励起光82と同じタイミングで検出側光伝導素子84に到達したテラヘルツ波87の強度に比例した電流が発生する。
処理部89はこの電流信号を用いて検体88の情報を分析する。例えば、遅延部85で励起光82に与える遅延時間を一定にして検体88を動かした時の電流信号の大きさを記録して、検体88の厚さの情報を取得することができる。或いは、検体88を固定して遅延時間を変化させ、一般的な時間領域分光法を用いてテラヘルツ波87の時間波形を取得してもよい。時間波形からフーリエ変換によってスペクトルを計算し、検体88の吸収帯をデータベースと比較して物質同定することもできる。処理結果は、表示部90に表示して、欠陥品のスクリーニングなどに使用する。
ここで、検出素子である検出側光伝導素子84にも、実施例1〜5で説明した光伝導素子を使用することが可能である。この場合、検出側光伝導素子84において第1及び第2電極部間に検出電流が多く流れる様にテラヘルツ波87を入射させると、テラヘルツ波87の検出感度を向上することができる。例えば、テラヘルツ波87の電界方向が、実施例1〜5で説明した様な光伝導素子における主要な電界方向に一致する様に、テラヘルツ波87を基板面に対して斜めから入射させるとよい。勿論、検出素子として電気光学結晶やボロメーターなどを用いて、テラヘルツ波を単に強度または振幅で検出する様なこともできる。
この様に、本実施例によれば、強度が向上したテラヘルツ波87を用いて検体88を分析することができる。これにより、欠陥検査の高精度化やセキュリティ画像取得の高速化を図ることができる。
本発明による光伝導素子の実施形態及び実施例1を示す図である。 図1の光伝導素子において励起光を垂直入射させた場合の様子を示す断面図である。 実施例1の変形例を示す断面図である。 励起光を斜めに入射させる本発明による光伝導素子の実施例2を示す断面図である。 複数のキャリア発生領域を有する本発明による光伝導素子の実施例3を示す図である。 第3電極部を有する本発明による光伝導素子の実施例4を示す断面図である。 励起光を基板の光伝導膜側から入射させる本発明による光伝導素子の実施例5を示す断面図である。 実施例1の光伝導素子の作製方法の一例を示す断面図である。 実施例1の光伝導素子の作製方法の一例を示す図である。 実施例1の光伝導素子の作製方法の一例を示す図である。 本発明による分析装置に係る実施例6を示す図である。 p層とn層を有する光伝導素子の一例を示す断面図である。 ショットキー接合を有する光伝導素子の一例を示す断面図である。 従来の光伝導素子(水平電界型)の一例を示す図である。 従来の光伝導素子(垂直電界型)の一例を示す断面図である。
符号の説明
11、21、31、41、51、61、101、111、121 基板
12、22、32、42、52、62、102、112、122 光伝導膜(光スイッチ部)
13、23、33、43、53、63、103、113、123 第1電極部
14、24、34、44、54、64、104、114、124 第2電極部
15、25、35、45、55、65、105、115、125 キャリア発生領域
16、26、36、46、56、66、82、106 励起光
17、27、37、47、57、67、87、107 テラヘルツ波
58 第3電極部
81 励起光源
83 光伝導素子
84 検出側光伝導素子
85 遅延部
86 電圧印加部
88 検体
89 処理部
90 表示部
116 p型GaAs膜
117 n型GaAs膜
126 AlAs膜

Claims (12)

  1. 光伝導性を持つ光伝導膜と、前記光伝導膜に電圧を印加するための第1電極部と第2電極部と、を備え、
    前記第1電極部と前記第2電極部は、前記光伝導膜を膜厚方向に挟む様に配置され、
    光励起によりキャリアが発生する前記光伝導膜のキャリア発生領域において、前記光伝導膜の膜厚方向から見て、前記第1電極部と前記第2電極部は、互いの縁が接するか或いは離隔していることを特徴とする光伝導素子。
  2. 前記キャリア発生領域において、前記光伝導膜を挟んで前記第1電極部と相対する領域は絶縁性若しくは高抵抗の部材から成ることを特徴とする請求項1に記載の光伝導素子。
  3. 前記キャリア発生領域を複数有することを特徴とする請求項1又は2に記載の光伝導素子。
  4. 前記第1電極部と前記第2電極部の両方若しくは片方が櫛状部分を有することを特徴とする請求項3に記載の光伝導素子。
  5. 前記キャリア発生領域の外の領域において、前記第1電極部と前記第2電極部が形成されていない箇所に第3電極部が配置されていることを特徴とする請求項1から4のいずれかに記載の光伝導素子。
  6. 請求項1から5のいずれかに記載の光伝導素子の駆動方法であって、
    前記第1電極部と前記第2電極部間に電界が印加された状態で、励起光を前記光伝導膜に対して垂直方向から入射させることを特徴とする駆動方法。
  7. 請求項1から5のいずれかに記載の光伝導素子の駆動方法であって、
    前記第1電極部と前記第2電極部間に電界が印加された状態で、励起光を前記光伝導膜の面に対して斜め方向から入射させることを特徴とする駆動方法。
  8. 前記励起光をブリュースター角で入射させることを特徴とする請求項7に記載の駆動方法。
  9. 励起光を発生する励起光源と、
    前記励起光が照射されて、検体を照射するためのテラヘルツ波を発生する請求項1から5のいずれかに記載の光伝導素子と、
    前記光伝導素子に電圧を印加するための電圧印加部と、
    前記検体からのテラヘルツ波を検出するための検出部と、
    前記検出部からの信号を処理して前記検体の情報を取得するための処理部と、
    を有することを特徴とする分析装置。
  10. 前記検出部は、前記励起光の一部を時間遅延するための遅延部と、前記遅延部を通過した前記励起光と前記検体からのテラヘルツ波とが照射される検出側光伝導素子と、を含むことを特徴とする請求項9に記載の分析装置。
  11. 前記検出側光伝導素子は、請求項1から5のいずれかに記載の光伝導素子であることを特徴とする請求項10に記載の分析装置。
  12. 励起光を発生する励起光源と、
    検体を照射するためのテラヘルツ波を発生する発生部と、
    前記励起光の一部を時間遅延するための遅延部に加えて、前記遅延部を通過した前記励起光と前記検体からのテラヘルツ波とが照射される請求項1から5のいずれかに記載の光伝導素子からなり、前記検体からのテラヘルツ波を検出するための検出部と、
    前記検出部からの信号を処理して前記検体の情報を取得するための処理部と、
    を有することを特徴とする分析装置。
JP2008213393A 2008-08-21 2008-08-21 光伝導素子 Pending JP2010050287A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008213393A JP2010050287A (ja) 2008-08-21 2008-08-21 光伝導素子

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008213393A JP2010050287A (ja) 2008-08-21 2008-08-21 光伝導素子

Publications (1)

Publication Number Publication Date
JP2010050287A true JP2010050287A (ja) 2010-03-04

Family

ID=42067136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008213393A Pending JP2010050287A (ja) 2008-08-21 2008-08-21 光伝導素子

Country Status (1)

Country Link
JP (1) JP2010050287A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010050399A (ja) * 2008-08-25 2010-03-04 Canon Inc テラヘルツ波光素子、及びそれを用いた装置
JP2012146758A (ja) * 2011-01-08 2012-08-02 Canon Inc テラヘルツ波素子
JP2013149714A (ja) * 2012-01-18 2013-08-01 Seiko Epson Corp 光伝導アンテナ、テラヘルツ波発生装置、カメラ、イメージング装置および計測装置
JP2013172133A (ja) * 2012-02-23 2013-09-02 Seiko Epson Corp アンテナ、テラヘルツ波発生装置、カメラ、イメージング装置、および計測装置
WO2013175528A1 (ja) * 2012-05-23 2013-11-28 パイオニア株式会社 光伝導基板および光伝導素子
EP2607945A3 (en) * 2011-12-19 2014-07-30 Dainippon Screen Mfg. Co., Ltd. Element, device and method for generating electromagnetic radiation in the terahertz domain

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010050399A (ja) * 2008-08-25 2010-03-04 Canon Inc テラヘルツ波光素子、及びそれを用いた装置
JP2012146758A (ja) * 2011-01-08 2012-08-02 Canon Inc テラヘルツ波素子
EP2607945A3 (en) * 2011-12-19 2014-07-30 Dainippon Screen Mfg. Co., Ltd. Element, device and method for generating electromagnetic radiation in the terahertz domain
JP2013149714A (ja) * 2012-01-18 2013-08-01 Seiko Epson Corp 光伝導アンテナ、テラヘルツ波発生装置、カメラ、イメージング装置および計測装置
US8878134B2 (en) 2012-01-18 2014-11-04 Seiko Epson Corporation Photoconductive antenna, terahertz wave generating device, camera, imaging device, and measuring device
US9130118B2 (en) 2012-01-18 2015-09-08 Seiko Epson Corporation Photoconductive antenna, terahertz wave generating device, camera, imaging device, and measuring device
US9349917B2 (en) 2012-01-18 2016-05-24 Seiko Epson Corporation Photoconductive antenna, terahertz wave generating device, camera, imaging device, and measuring device
CN103219631B (zh) * 2012-01-18 2017-09-22 精工爱普生株式会社 光导天线、太赫兹波产生装置、拍摄装置、成像装置
JP2013172133A (ja) * 2012-02-23 2013-09-02 Seiko Epson Corp アンテナ、テラヘルツ波発生装置、カメラ、イメージング装置、および計測装置
WO2013175528A1 (ja) * 2012-05-23 2013-11-28 パイオニア株式会社 光伝導基板および光伝導素子

Similar Documents

Publication Publication Date Title
Apostolopoulos et al. THz emitters based on the photo-Dember effect
JP4829669B2 (ja) 検体情報取得装置、及び検体情報取得方法
JP5196779B2 (ja) 光伝導素子及びセンサ装置
JP5656428B2 (ja) 光伝導素子
JP5654760B2 (ja) 光素子
JP4726212B2 (ja) センシング装置
JP5610793B2 (ja) 光伝導素子
JP2009175127A (ja) 波形情報取得装置及び波形情報取得方法
JP2010050287A (ja) 光伝導素子
JP2009150873A (ja) 電磁波を用いる検査装置、及び検査方法
US20140252379A1 (en) Photoconductive antennas, method for producing photoconductive antennas, and terahertz time domain spectroscopy system
JP3806742B2 (ja) 光伝導素子及びそれを用いた赤外放射素子並びにその検出素子
US8912497B2 (en) Measurement structure, method of manufacturing same, and measuring method using same
US20170062644A1 (en) Photoconductive device, measurement apparatus, and manufacturing method
JP2013080939A (ja) 光伝導基板およびこれを用いた電磁波発生検出装置
JP6942006B2 (ja) 電磁波計測装置
US20180011013A1 (en) Refractive index measuring device
JP6306363B2 (ja) 時間領域分光装置
JP2015179068A (ja) 情報取得装置
JP6705672B2 (ja) 電磁波計測装置
JP7062481B2 (ja) 電磁波計測装置
Beleckaitė et al. Determination of the terahertz pulse emitting dipole orientation by terahertz emission measurements
JP5737956B2 (ja) テラヘルツ波素子
JP6616160B2 (ja) 光伝導素子及び計測装置
JP2020036037A (ja) 光伝導素子及び計測装置