JP2010040829A - Organic electroluminescent element, display device, and lighting system - Google Patents

Organic electroluminescent element, display device, and lighting system Download PDF

Info

Publication number
JP2010040829A
JP2010040829A JP2008202857A JP2008202857A JP2010040829A JP 2010040829 A JP2010040829 A JP 2010040829A JP 2008202857 A JP2008202857 A JP 2008202857A JP 2008202857 A JP2008202857 A JP 2008202857A JP 2010040829 A JP2010040829 A JP 2010040829A
Authority
JP
Japan
Prior art keywords
group
organic
substituent
layer
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008202857A
Other languages
Japanese (ja)
Other versions
JP5621187B2 (en
Inventor
Masahito Nishizeki
雅人 西関
Masaru Ikemizu
大 池水
Eisaku Kato
栄作 加藤
Tomohiro Oshiyama
智寛 押山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2008202857A priority Critical patent/JP5621187B2/en
Publication of JP2010040829A publication Critical patent/JP2010040829A/en
Application granted granted Critical
Publication of JP5621187B2 publication Critical patent/JP5621187B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers

Abstract

<P>PROBLEM TO BE SOLVED: To provide an organic electroluminescent element material that shows high luminous efficiency in blue to bluish green color, and has a long service life and a low drive voltage. <P>SOLUTION: In the organic electroluminescent element including at least one luminous layer sandwiched by positive and negative electrodes, the luminous layer has a ligand comprising six-membered ring or five-membered ring of aromatic groups replaced by an imidazole ring or a pyrazole ring, and includes at least one complex compound having group 8 to group 10 transition metals. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、有機エレクトロルミネッセンス素子、表示装置、照明装置に関する。   The present invention relates to an organic electroluminescence element, a display device, and a lighting device.

従来、発光型の電子ディスプレイデバイスとして、エレクトロルミネッセンスディスプレイ(以下、ELDという)がある。ELDの構成要素としては、無機エレクトロルミネッセンス素子や有機エレクトロルミネッセンス素子(以下、有機EL素子ともいう)が挙げられる。   Conventionally, as a light-emitting electronic display device, there is an electroluminescence display (hereinafter referred to as ELD). Examples of the constituent elements of ELD include inorganic electroluminescent elements and organic electroluminescent elements (hereinafter also referred to as organic EL elements).

無機エレクトロルミネッセンス素子は平面型光源として使用されてきたが、発光素子を駆動させるためには交流の高電圧が必要である。   Inorganic electroluminescent elements have been used as planar light sources, but an alternating high voltage is required to drive the light emitting elements.

一方、有機EL素子は発光する化合物を含有する発光層を陰極と陽極で挟んだ構成を有し、発光層に電子および正孔を注入して、再結合させることにより励起子(エキシトン)を生成させ、このエキシトンが失活する際の光の放出(蛍光・リン光)を利用して発光する素子であり、数V〜数十V程度の電圧で発光が可能であり、さらに自己発光型であるために視野角に富み、視認性が高く、薄膜型の完全固体素子であるために省スペース、携帯性等の観点から注目されている。   On the other hand, an organic EL device has a structure in which a light emitting layer containing a compound that emits light is sandwiched between a cathode and an anode, and excitons (excitons) are generated by injecting electrons and holes into the light emitting layer and recombining them. The device emits light by utilizing the emission of light (fluorescence / phosphorescence) when the exciton is deactivated, and can emit light at a voltage of several volts to several tens of volts. Therefore, it has a wide viewing angle, high visibility, and since it is a thin-film type completely solid element, it has attracted attention from the viewpoints of space saving and portability.

しかしながら、今後の実用化に向けた有機EL素子においては、さらに低消費電力で効率よく高輝度に発光する有機EL素子の開発が望まれている。   However, in organic EL elements for practical use in the future, development of organic EL elements that emit light efficiently and with high luminance with lower power consumption is desired.

特許第3093796号公報では、スチルベン誘導体、ジスチリルアリーレン誘導体またはトリススチリルアリーレン誘導体に微量の蛍光体をドープし、発光輝度の向上、素子の長寿命化を達成している。   In Japanese Patent No. 3093796, a small amount of a phosphor is doped into a stilbene derivative, a distyrylarylene derivative or a tristyrylarylene derivative to achieve an improvement in light emission luminance and a longer device lifetime.

また、8−ヒドロキシキノリンアルミニウム錯体をホスト化合物として、これに微量の蛍光体をドープした有機発光層を有する素子(例えば、特開昭63−264692号公報)、8−ヒドロキシキノリンアルミニウム錯体をホスト化合物として、これにキナクリドン系色素をドープした有機発光層を有する素子(例えば、特開平3−255190号公報)等が知られている。   Further, an element having an organic light-emitting layer in which an 8-hydroxyquinoline aluminum complex is used as a host compound and a small amount of phosphor is doped thereto (for example, JP-A 63-264692), and an 8-hydroxyquinoline aluminum complex is used as a host compound. For example, an element having an organic light emitting layer doped with a quinacridone dye (for example, JP-A-3-255190) is known.

以上のように、励起一重項からの発光を用いる場合、一重項励起子と三重項励起子の生成比が1:3であるため発光性励起種の生成確率が25%であり、光の取り出し効率が約20%であるため、外部取り出し量子効率(η)の限界は5%とされている。   As described above, when light emission from excited singlet is used, the generation ratio of singlet excitons and triplet excitons is 1: 3, and thus the generation probability of luminescent excited species is 25%. Since the efficiency is about 20%, the limit of the external extraction quantum efficiency (η) is set to 5%.

ところが、プリンストン大より励起三重項からのリン光発光を用いる有機EL素子の報告(M.A.Baldo et al.,Nature、395巻、151〜154頁(1998年))がされて以来、室温でリン光を示す材料の研究が活発になってきている。   However, since Princeton University reported on an organic EL device using phosphorescence emission from an excited triplet (MA Baldo et al., Nature, 395, 151-154 (1998)), Research on materials that exhibit phosphorescence has become active.

例えば、M.A.Baldo et al.,Nature、403巻、17号、750〜753頁(2000年)、また米国特許第6,097,147号明細書等にも開示されている。   For example, M.M. A. Baldo et al. , Nature, 403, 17, 750-753 (2000), US Pat. No. 6,097,147, and the like.

励起三重項を使用すると、内部量子効率の上限が100%となるため励起一重項の場合に比べて原理的に発光効率が4倍となり、冷陰極管とほぼ同等の性能が得られる可能性があることから照明用途としても注目されている。   When the excited triplet is used, the upper limit of the internal quantum efficiency is 100%. In principle, the luminous efficiency is four times that of the excited singlet, and there is a possibility that almost the same performance as a cold cathode tube can be obtained. Therefore, it is attracting attention as a lighting application.

例えば、S.Lamansky et al.,J.Am.Chem.Soc.,123巻、4304頁(2001年)等においては、多くの化合物がイリジウム錯体系等重金属錯体を中心に合成検討されている。   For example, S.M. Lamansky et al. , J .; Am. Chem. Soc. , 123, 4304 (2001), etc., many compounds are being studied for synthesis centering on heavy metal complexes such as iridium complexes.

また、前述のM.A.Baldo et al.,Nature、403巻、17号、750〜753頁(2000年)においては、ドーパントとしてトリス(2−フェニルピリジン)イリジウムを用いた検討がされている。   In addition, the aforementioned M.I. A. Baldo et al. , Nature, 403, 17, 750-753 (2000), studies have been made using tris (2-phenylpyridine) iridium as a dopant.

その他、M.E.Tompson等は、The 10th International Workshop on Inorganic and Organic Electroluminescence(EL’00、浜松)において、ドーパントとしてLIr(acac)、例えば、(ppy)Ir(acac)を、またMoon−Jae Youn.0g、Tetsuo Tsutsui等は、やはりThe 10th International Workshop on Inorganic and Organic Electroluminescence(EL’00、浜松)において、ドーパントとしてトリス(2−(p−トリル)ピリジン)イリジウム(Ir(ptpy)),トリス(ベンゾ[h]キノリン)イリジウム(Ir(bzq))等を用いた検討を行っている(なおこれらの金属錯体は一般にオルトメタル化イリジウム錯体と呼ばれている。)。 In addition, M.M. E. Thompson et al., In The 10th International Works on Inorganic and Organic Electroluminescence (EL'00, Hamamatsu), used L 2 Ir (acac), for example, (ppy) 2 Ir (acac), e 0 g, Tetsuo Tsutsui, etc., again The 10th International Workshop on Inorganic and Organic Electroluminescence (EL'00, Hamamatsu), the dopant as tris (2-(p-tolyl) pyridine) iridium (Ir (ptpy) 3), tris ( Studies using benzo [h] quinoline) iridium (Ir (bzq) 3 ) and the like are being conducted (note that these metal complexes are generally called orthometalated iridium complexes).

また、前記S.Lamansky et al.,J.Am.Chem.Soc.,123巻、4304頁(2001年)や特開2001−247859号公報等においても、各種イリジウム錯体を用いて素子化する試みがされている。   In addition, the S. Lamansky et al. , J .; Am. Chem. Soc. , 123, 4304 (2001) and Japanese Patent Application Laid-Open No. 2001-247859, etc., attempts have been made to form devices using various iridium complexes.

また、高い発光効率を得るためにThe 10th International Workshop on Inorganic and Organic Electroluminescence(EL’00、浜松)では、Ikai等はホール輸送性の化合物をリン光性化合物のホストとして用いている。また、M.E.Tompson等は各種電子輸送性材料をリン光性化合物のホストとして、これらに新規なイリジウム錯体をドープして用いている。   In order to obtain high luminous efficiency, in the 10th International Workshop on Inorganic and Organic Electroluminescence (EL'00, Hamamatsu), Ikai et al. Uses a hole transporting compound as a host of a phosphorescent compound. In addition, M.M. E. Thompson et al. Use various electron transporting materials as a host of phosphorescent compounds, doped with a novel iridium complex.

中心金属をイリジウムの代わりに白金としたオルトメタル化錯体も注目されている。この種の錯体に関しては、配位子に特徴を持たせた例が多数知られている。   Orthometalated complexes in which the central metal is platinum instead of iridium are also attracting attention. With respect to this type of complex, many examples are known in which ligands are characterized.

いずれの場合も発光素子とした場合の発光輝度や発光効率は、その発光する光がリン光に由来することから従来の素子に比べ大幅に改良されるものであるが、素子の発光寿命については従来の素子よりも低いという問題点があった。   In either case, the light emission brightness and light emission efficiency of the light emitting device are greatly improved compared to conventional devices because the emitted light is derived from phosphorescence. There was a problem that it was lower than the conventional element.

このように、リン光性の高効率の発光材料は、発光波長の短波化と素子の発光寿命の改善が難しく、実用に耐えうる性能を十分に達成できていないのが現状である。   As described above, it is difficult for phosphorescent highly efficient light-emitting materials to shorten the light emission wavelength and improve the light emission lifetime of the device, and the performance that can withstand practical use cannot be sufficiently achieved.

また、波長の短波化に関してはこれまでフェニルピリジンにフッ素原子、トリフルオロメチル基、シアノ基等の電子吸引基を置換基として導入すること、配位子としてピコリン酸やピラザボール系の配位子を導入することが知られている。   In addition, regarding wavelength shortening, introduction of an electron withdrawing group such as a fluorine atom, a trifluoromethyl group, a cyano group or the like into phenylpyridine as a substituent, and picolinic acid or a pyrazabole-based ligand as a ligand. It is known to introduce.

しかしながら、これらの配位子では発光材料の発光波長が短波化して青色を達成し、高効率の素子を達成できる一方、素子の発光寿命は大幅に劣化するため、そのトレードオフの改善が求められていた。   However, with these ligands, the emission wavelength of the light-emitting material is shortened to achieve blue, and a high-efficiency device can be achieved. On the other hand, the light-emitting lifetime of the device is greatly deteriorated, so an improvement in the trade-off is required. It was.

配位子としてフェニルピラゾールを有する金属錯体は発光波長が短波な発光材料であることが開示されている(例えば、特許文献1、2参照。)。さらに、フェニルピラゾールの5員環に6員環が縮合した部分構造を有する配位子から形成される金属錯体が開示されている(例えば、特許文献3、4参照。)。フェナンスリジン骨格を有する金属錯体についての開示がある。(例えば、特許文献5、6参照。)。   It is disclosed that a metal complex having phenylpyrazole as a ligand is a light-emitting material having a short emission wavelength (see, for example, Patent Documents 1 and 2). Furthermore, a metal complex formed from a ligand having a partial structure in which a 6-membered ring is condensed to a 5-membered ring of phenylpyrazole is disclosed (for example, see Patent Documents 3 and 4). There is disclosure of metal complexes having a phenanthridine skeleton. (For example, refer to Patent Documents 5 and 6.)

しかしながら、上記公知文献に記載の金属錯体では、外部取出し量子効率が改良されず、且つ、発光寿命にも実用的に十分な改善効果が得られていないのが現状であり、改良が求められている。   However, with the metal complexes described in the above-mentioned known documents, the external extraction quantum efficiency is not improved, and a practically sufficient improvement effect is not obtained for the light emission lifetime, and there is a need for improvement. Yes.

従来から、カルバゾール環を分子内に複数有する化合物は良好なホスト化合物として知られている。上記フェナンスリジン骨格を有する化合物においてもm−CBPとの併用例が開示されている(例えば、特許文献5、6参照)。   Conventionally, a compound having a plurality of carbazole rings in the molecule is known as a good host compound. Also in the compound having the phenanthridine skeleton, a combination example with m-CBP is disclosed (for example, see Patent Documents 5 and 6).

しかしながら、前出の特許文献においても明らかなように、種々のフェナンスリジン化合物との併用においては、寿命、効率においてもまだ不十分であるのが現状であり、更なる改善が必要である。
国際公開第2004/085450号パンフレット 特開2005−53912号公報 特開2006−28101号公報 米国特許第7147937号明細書 米国特許20070190359号明細書 国際公開第2007/095118号パンフレット
However, as is clear from the above-mentioned patent documents, the combined use with various phenanthridine compounds is still insufficient in terms of life and efficiency, and further improvement is necessary.
International Publication No. 2004/085450 Pamphlet JP 2005-53912 A JP 2006-28101 A US Pat. No. 7,147,937 US Patent No. 20070190359 International Publication No. 2007/095118 Pamphlet

本発明は係る課題に鑑みてなされたものであり、本発明の目的は、特異的に短波な発光が見られ、高い発光効率を示し、且つ発光寿命の長い有機EL素子材料、それを用いた有機EL素子、照明装置および表示装置を提供することである。   The present invention has been made in view of such problems, and an object of the present invention is to use an organic EL device material that exhibits specific short-wave light emission, exhibits high light emission efficiency, and has a long light emission lifetime. An organic EL element, an illumination device, and a display device are provided.

特に、青色〜青緑色の短波な発光で、高い発光効率を示し、且つ駆動電圧が低く、発光寿命の長い有機EL素子材料を提供することである。   In particular, it is to provide an organic EL element material that exhibits high light emission efficiency with short-wave light emission of blue to blue-green, has a low driving voltage, and has a long light emission lifetime.

本発明の上記目的は、下記の構成により達成された。   The above object of the present invention has been achieved by the following constitution.

1.陽極と陰極により挟まれた少なくとも1層の発光層を含有する有機エレクトロルミネッセンス素子において、該発光層が、下記一般式(1)、(2)、(3)、または(4)で表される部分構造を含む化合物を少なくとも1つ含有し、かつ下記一般式(5)または(6)で表される部分構造を含む化合物を少なくとも1つ含有する有機層を有することを特徴とする有機エレクトロルミネッセンス素子。   1. In an organic electroluminescence device including at least one light emitting layer sandwiched between an anode and a cathode, the light emitting layer is represented by the following general formula (1), (2), (3), or (4) Organic electroluminescence comprising an organic layer containing at least one compound containing a partial structure and containing at least one compound containing a partial structure represented by the following general formula (5) or (6) element.

Figure 2010040829
Figure 2010040829

〔式中、E1a〜E1qは炭素原子、窒素原子、酸素原子または硫黄原子を表し、E1a〜E1qで構成される骨格は合計で18π電子を有する。E1aとE1pは各々異なり、炭素原子または窒素原子を表す。R1a〜R1iは、各々水素原子または置換基を表す。Mは元素周期表における8族〜10族の遷移金属元素を表す。〕 [In formula, E1a-E1q represents a carbon atom, a nitrogen atom, an oxygen atom, or a sulfur atom, and the frame | skeleton comprised by E1a-E1q has a total of 18 (pi) electrons. E1a and E1p are different from each other and represent a carbon atom or a nitrogen atom. R1a to R1i each represents a hydrogen atom or a substituent. M represents a group 8-10 transition metal element in the periodic table. ]

Figure 2010040829
Figure 2010040829

〔式中、AおよびAはそれぞれ独立して単結合または置換基を有していてもよいアリーレン基または置換基を有していてもよい2価の複素環基を示す。
〜R20はそれぞれ独立して水素原子、ハロゲン原子、炭素原子数1〜20の直鎖状または分岐状のアルキル基(該アルキル基の1つもしくは隣接しない2つ以上のメチレン基は−O−、−S−、−CO−、−CO−O−、−O−CO−、−CH=CH−、−C≡C−で置き換えられていてもよく、また、1つもしくは2つ以上のメチレン基は置換基を有していてもよいアリーレン基または置換基を有していてもよい2価の複素環基で置き換えられていてもよく、該アルキル基中の水素原子はフッ素原子に置換されていてもよい。)、炭素原子数3〜20のシクロアルキル基(該シクロアルキル基の1つもしくは隣接しない2つ以上のメチレン基は−O−、−S−、−CO−、−CO−O−、−O−CO−、−CH=CH−、で置き換えられていてもよく、また、1つもしくは2つ以上のメチレン基は置換基を有していてもよいアリーレン基または置換基を有していてもよい2価の複素環基で置き換えられていてもよく、該シクロアルキル基中の水素原子はフッ素原子に置換されていてもよい。)、置換基を有していてもよいアリール基または置換基を有していてもよい複素環基から選ばれ、隣接するものは結合して環構造を形成してもよい。〕
2.前記一般式(5)または(6)で表される部分構造を含む化合物が一般式(7)〜(12)のいずれかで表されることを特徴とする前記1に記載の有機エレクトロルミネッセンス素子。
[Wherein, A 1 and A 2 each independently represent a single bond or an arylene group which may have a substituent or a divalent heterocyclic group which may have a substituent.
R 1 to R 20 each independently represent a hydrogen atom, a halogen atom, a linear or branched alkyl group having 1 to 20 carbon atoms (one or two or more methylene groups not adjacent to the alkyl group are- O—, —S—, —CO—, —CO—O—, —O—CO—, —CH═CH—, —C≡C— may be substituted, and one or more The methylene group may be substituted with an arylene group which may have a substituent or a divalent heterocyclic group which may have a substituent, and the hydrogen atom in the alkyl group is a fluorine atom. A cycloalkyl group having 3 to 20 carbon atoms (one or two or more methylene groups not adjacent to the cycloalkyl group may be -O-, -S-, -CO-,- Replaced by CO-O-, -O-CO-, -CH = CH- And one or two or more methylene groups may be substituted with an optionally substituted arylene group or an optionally substituted divalent heterocyclic group. Or a hydrogen atom in the cycloalkyl group may be substituted with a fluorine atom.), An aryl group which may have a substituent or a heterocyclic group which may have a substituent. Adjacent ones may be bonded to form a ring structure. ]
2. 2. The organic electroluminescence device according to 1 above, wherein the compound containing the partial structure represented by the general formula (5) or (6) is represented by any one of the general formulas (7) to (12) .

Figure 2010040829
Figure 2010040829

Figure 2010040829
Figure 2010040829

Figure 2010040829
Figure 2010040829

〔式中、m1、m2、n1およびn2はそれぞれ0〜6の整数である。
ただし、m1+n1≦6であり、m2+n2≦6である。
m3、m4、m5、m6、n3、n4、n5およびn6はそれぞれ1〜6の整数である。ただし、m3+n3≦6であり、m4+n4≦6であり、m4+n4≦6であり、m5+n5≦6であり、m6+n6≦6である。
[Wherein, m1, m2, n1, and n2 are each an integer of 0-6.
However, m1 + n1 ≦ 6 and m2 + n2 ≦ 6.
m3, m4, m5, m6, n3, n4, n5 and n6 are each an integer of 1-6. However, m3 + n3 ≦ 6, m4 + n4 ≦ 6, m4 + n4 ≦ 6, m5 + n5 ≦ 6, and m6 + n6 ≦ 6.

、X、X、X、XおよびXはそれぞれ、単結合、置換基を有していてもよいアリール基、置換基を有していてもよい複素環基、または、置換基を有していてもよいアミノ基から選ばれるmx+nx価の基を表す。ここで、xは1〜6のいずれかを表す。 X 1 , X 2 , X 3 , X 4 , X 5 and X 6 are each a single bond, an aryl group which may have a substituent, a heterocyclic group which may have a substituent, or It represents an mx + nx valent group selected from an amino group which may have a substituent. Here, x represents any one of 1-6.

およびAはそれぞれ独立して単結合または置換基を有していてもよいアリーレン基または置換基を有していてもよい2価の複素環基を示す。 A 1 and A 2 each independently represent a single bond or an arylene group which may have a substituent or a divalent heterocyclic group which may have a substituent.

およびAはそれぞれ独立して単結合または置換基を有していてもよいアリール基または置換基を有していてもよい複素環基を示す。 A 3 and A 4 each independently represent a single bond or an aryl group which may have a substituent or a heterocyclic group which may have a substituent.

〜R20はそれぞれ独立して水素原子、ハロゲン原子、炭素原子数1〜20の直鎖状または分岐状のアルキル基(該アルキル基の1つもしくは隣接しない2つ以上のメチレン基は−O−、−S−、−CO−、−CO−O−、−O−CO−、−CH=CH−、−C≡C−で置き換えられていてもよく、また、1つもしくは2つ以上のメチレン基は置換基を有していてもよいアリーレン基または置換基を有していてもよい2価の複素環基で置き換えられていてもよく、該アルキル基中の水素原子はフッ素原子に置換されていてもよい。)、炭素原子数3〜20のシクロアルキル基(該シクロアルキル基の1つもしくは隣接しない2つ以上のメチレン基は−O−、−S−、−CO−、−CO−O−、−O−CO−、−CH=CH−、で置き換えられていてもよく、また、1つもしくは2つ以上のメチレン基は置換基を有していてもよいアリーレン基または置換基を有していてもよい2価の複素環基で置き換えられていてもよく、該シクロアルキル基中の水素原子はフッ素原子に置換されていてもよい。)、置換基を有していてもよいアリール基または置換基を有していてもよい複素環基から選ばれ、隣接するものは結合して環構造を形成してもよい。〕
3.前記一般式(7)〜(12)におけるX〜Xで表される連結基が芳香族環基、あるいは芳香族複素環基であることを特徴とする前記2に記載の有機エレクトロルミネッセンス素子。
R 1 to R 20 each independently represent a hydrogen atom, a halogen atom, a linear or branched alkyl group having 1 to 20 carbon atoms (one or two or more methylene groups not adjacent to the alkyl group are- O—, —S—, —CO—, —CO—O—, —O—CO—, —CH═CH—, —C≡C— may be substituted, and one or more The methylene group may be substituted with an arylene group which may have a substituent or a divalent heterocyclic group which may have a substituent, and the hydrogen atom in the alkyl group is a fluorine atom. A cycloalkyl group having 3 to 20 carbon atoms (one or two or more methylene groups not adjacent to the cycloalkyl group may be -O-, -S-, -CO-,- Replaced by CO-O-, -O-CO-, -CH = CH- And one or two or more methylene groups may be substituted with an optionally substituted arylene group or an optionally substituted divalent heterocyclic group. Or a hydrogen atom in the cycloalkyl group may be substituted with a fluorine atom.), An aryl group which may have a substituent or a heterocyclic group which may have a substituent. Adjacent ones may be bonded to form a ring structure. ]
3. 3. The organic electroluminescent device according to 2 above, wherein the linking group represented by X 1 to X 6 in the general formulas (7) to (12) is an aromatic ring group or an aromatic heterocyclic group. .

4.前記一般式(7)〜(12)におけるX〜Xで表される連結基がフェニル基、ビフェニル基、カルバゾリル基、ジベンゾフラニル基、ジベンゾチオフェニル基、フルオレニル基、ピレニル基、アントラセニル基からさらに水素原子を1つ除いてできる2価の基、およびそれらの組み合わせからなる基であるであることを特徴とする前記2または3に記載の有機エレクトロルミネッセンス素子。 4). The linking group represented by X 1 to X 6 in the general formulas (7) to (12) is a phenyl group, a biphenyl group, a carbazolyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a fluorenyl group, a pyrenyl group, or an anthracenyl group. 4. The organic electroluminescence device as described in 2 or 3 above, which is a divalent group formed by removing one hydrogen atom from the above, and a group comprising a combination thereof.

5.前記一般式(7)〜(12)で表される化合物におけるガラス転移点温度が100℃以上であることを特徴とする前記2〜4のいずれか1項に記載の有機エレクトロルミネッセンス素子。   5. 5. The organic electroluminescence device according to any one of 2 to 4, wherein a glass transition temperature in the compounds represented by the general formulas (7) to (12) is 100 ° C. or higher.

6.前記一般式(7)〜(12)で表される化合物おけるR〜R10またはR〜R20で表される置換基のうち、各々少なくとも一つは重合性の置換基であることを特徴とする前記2〜5のいずれか1項に記載の有機エレクトロルミネッセンス素子。 6). That at least one of the substituents represented by R 1 to R 10 or R 1 to R 20 in the compounds represented by the general formulas (7) to (12) is a polymerizable substituent. The organic electroluminescence device according to any one of 2 to 5, which is characterized in that

7.前記E1a〜E1eで構成される環が、イミダゾール環またはピラゾール環であることを特徴とする前記1〜6のいずれか1項に記載の有機エレクトロルミネッセンス素子。   7). 7. The organic electroluminescence device according to any one of 1 to 6, wherein the ring composed of E1a to E1e is an imidazole ring or a pyrazole ring.

8.構成層として、前記一般式(1)〜(4)のいずれかで表される部分構造を含む化合物を少なくとも1種含有する有機層を有し、該有機層がウェットプロセスを用いて形成されたことを特徴とする前記1〜7のいずれか1項に記載の有機エレクトロルミネッセンス素子。   8). As a constituent layer, it has an organic layer containing at least one compound containing a partial structure represented by any one of the general formulas (1) to (4), and the organic layer was formed using a wet process 8. The organic electroluminescence device as described in any one of 1 to 7 above.

9.構成層として、前記一般式(7)〜(12)のいずれかで表される化合物を少なくとも1種含有する有機層を有し、該有機層がウェットプロセスを用いて形成されたことを特徴とする前記2〜8のいずれか1項に記載の有機エレクトロルミネッセンス素子。   9. It has an organic layer containing at least one compound represented by any one of the general formulas (7) to (12) as a constituent layer, and the organic layer is formed using a wet process. The organic electroluminescence device according to any one of 2 to 8 above.

10.構成層として、前記一般式(7)〜(12)のいずれかで表される化合物を少なくとも1種含有する有機層が発光層であることを特徴とする、前記2〜9のいずれか1項に記載の有機エレクトロルミネッセンス素子。   10. The organic layer containing at least one compound represented by any one of the general formulas (7) to (12) as a constituent layer is a light emitting layer, any one of the above 2 to 9, The organic electroluminescent element of description.

11.前記一般式(7)〜(12)のいずれかで表される化合物を部分構造とする重合体を少なくとも1種含有する有機層を有することを特徴とする前記2〜10のいずれか1項に記載の有機エレクトロルミネッセンス素子。   11. Any one of 2 to 10 above, wherein the organic layer contains at least one polymer having a partial structure of the compound represented by any one of the general formulas (7) to (12). The organic electroluminescent element of description.

12.前記一般式(1)〜(4)のいずれかで表される部分構造を含む化合物を部分構造とする重合体を少なくとも1種を含有することを特徴とする前記1〜11のいずれか1項に記載の有機エレクトロルミネッセンス素子。   12 Any one of said 1-11 characterized by containing the polymer which makes a partial structure the compound containing the partial structure represented by either of the said General formula (1)-(4). The organic electroluminescent element of description.

13.前記Mが白金またはイリジウムであることを特徴とする前記1〜12のいずれか1項に記載の有機エレクトロルミネッセンス素子。   13. Said M is platinum or iridium, The organic electroluminescent element of any one of said 1-12 characterized by the above-mentioned.

14.前記1〜13のいずれか1項に記載の有機エレクトロルミネッセンス素子を備えたことを特徴とする表示装置。   14 14. A display device comprising the organic electroluminescence element according to any one of 1 to 13 above.

15.前記1〜13のいずれか1項に記載の有機エレクトロルミネッセンス素子を備えたことを特徴とする照明装置。   15. 14. An illumination device comprising the organic electroluminescence element according to any one of 1 to 13 above.

本発明により、特異的に短波な発光が見られ、高い発光効率を示し、且つ駆動電圧が低く、発光寿命の長い有機EL素子を提供することができた。   According to the present invention, it has been possible to provide an organic EL device that exhibits specific short-wave light emission, exhibits high light emission efficiency, has a low driving voltage, and has a long light emission lifetime.

また、当該発明者らの検討の結果、本発明により、素子駆動開始時の初期劣化を大幅に低減することができた。さらには素子駆動中の発光素子のダークスポット発生も大幅に低減させることに成功し、有用な有機EL素子を提供することができた。   Further, as a result of investigations by the inventors, the present invention has been able to significantly reduce initial deterioration at the start of element driving. Furthermore, the generation of dark spots in the light-emitting element during element driving was successfully reduced, and a useful organic EL element could be provided.

また、該素子を用いた照明装置、表示装置を提供することができた。さらに、有機EL素子用に有用な有機EL素子材料を得ることができた。   In addition, an illumination device and a display device using the element could be provided. Furthermore, the organic EL element material useful for organic EL elements was able to be obtained.

本発明の有機エレクトロルミネッセンス素子においては、請求項1〜19のいずれか1項に規定される構成により、高い発光効率を示し、且つ、発光寿命の長い有機エレクトロルミネッセンス素子、該素子を用いた照明装置および表示装置を提供することができた。   In the organic electroluminescent element of this invention, the structure prescribed | regulated in any one of Claims 1-19 WHEREIN: The organic electroluminescent element which shows high luminous efficiency and has a long light emission lifetime, and illumination using this element Device and display device could be provided.

また、本発明者等は、本発明の有機エレクトロルミネッセンス素子用に有用な有機EL素子材料を分子設計することに成功した。本発明の有機エレクトロルミネッセンス素子材料は、特異的に短波な発光が観測され、本発明の有機エレクトロルミネッセンス素子の寿命を著しく向上させる事ができた。   In addition, the present inventors succeeded in molecular design of an organic EL element material useful for the organic electroluminescence element of the present invention. The organic electroluminescence element material of the present invention was observed to emit light with a specific short wave, and the lifetime of the organic electroluminescence element of the present invention could be remarkably improved.

以下、本発明に係る各構成要素の詳細について、順次説明する。   Hereinafter, details of each component according to the present invention will be sequentially described.

《金属錯体(金属錯体化合物ともいう)》
本発明に係る金属錯体(金属錯体化合物ともいう)について説明する。
《Metal complex (also called metal complex compound)》
The metal complex (also referred to as a metal complex compound) according to the present invention will be described.

本発明者等は、有機EL素子の発光層に用いる有機EL素子材料に着目、特に発光ドーパントとして用いる金属錯体化合物について種々検討した。   The present inventors paid attention to the organic EL element material used for the light emitting layer of the organic EL element, and examined various metal complex compounds used as a light emitting dopant.

本発明者らは、金属錯体の基本骨格に置換基を導入することで、波長のコントロールや寿命の改善を図るという、従来公知のアプローチではなく、縮合環のπ共役面を広げることが化合物の安定性を上げるという着目点の下に種々の錯体を検討した。   The present inventors have introduced a substituent into the basic skeleton of a metal complex, and thus it is not a conventionally known approach to control the wavelength or improve the lifetime, but to expand the π-conjugated surface of the condensed ring. Various complexes were studied under the focus of increasing stability.

その結果、幾つかの縮合環構造で寿命の改善傾向が見出された。しかしながら、これまで知られているような縮合環を導入した場合には、発光波長のレッドシフトが著しく、緑、赤色発光となってしまっていた。   As a result, the improvement tendency of lifetime was found in several condensed ring structures. However, when a fused ring as known so far is introduced, the red shift of the emission wavelength is remarkable, resulting in green and red emission.

本発明者等はさらに検討を進め、本発明に係る一般式(1)〜(4)のいずれかで表される部分構造に示されているような縮合環を導入した化合物(金属錯体、金属錯体化合物ともいう)を発光材料に適用した場合には、発光波長シフトが小さく、且つ、所望の発光波長で、長寿命化を実現した発光ドーパントを開発することに成功した。   The present inventors have further studied, and compounds (metal complexes, metals) in which a condensed ring as shown in the partial structure represented by any one of the general formulas (1) to (4) according to the present invention is introduced. In the case where a complex compound) is applied to a light emitting material, the present inventors have succeeded in developing a light emitting dopant having a small emission wavelength shift and a long lifetime at a desired emission wavelength.

この新しい基本骨格について、さらに検討を進めるとπ共役平面が大きくなっていることにより、平面性が高くなるため金属錯体どうしの会合が問題となり、素子の寿命が著しく低下するという欠点を有することが分かった。   Further examination of this new basic skeleton has the disadvantage that the π-conjugated plane becomes larger and the flatness becomes higher, so that the association between metal complexes becomes a problem and the lifetime of the device is remarkably reduced. I understood.

波形についても、長波側に副発光がみられ色純度の低下が問題になってきた。我々は種々検討した結果、配位子部分に少なくとも一つの置換基を導入することにより、分子間の会合が防止され、長波側の副発光が抑制でき、金属錯体(金属錯体化合物)の安定性も向上することが分かった。   As for the waveform, sub-luminescence is seen on the long wave side, and a decrease in color purity has become a problem. As a result of various investigations, by introducing at least one substituent into the ligand moiety, association between molecules can be prevented, side-light emission on the long wave side can be suppressed, and the stability of the metal complex (metal complex compound). Was also found to improve.

また、これらの金属錯体は、酸素と光により酸化劣化が著しいという特徴があり、取り扱い中経時での劣化が懸念されていた。我々は種々検討した結果、配位子部分に少なくとも一つの置換基、特に本発明に係る一般式(1)〜(4)のいずれかで表される部分構造を含む遷移金属錯体化合物中のR1aに置換基を導入することにより、酸化劣化が大幅に低減され、化合物の安定性が大幅に向上することがわかった。   In addition, these metal complexes are characterized by significant oxidative degradation due to oxygen and light, and there has been concern over degradation over time during handling. As a result of various investigations, R1a in the transition metal complex compound containing at least one substituent in the ligand portion, particularly a partial structure represented by any one of the general formulas (1) to (4) according to the present invention. It has been found that the introduction of a substituent into the group significantly reduces oxidative degradation and greatly improves the stability of the compound.

本発明に係る一般式(1)〜(4)のいずれかで表される部分構造を含む遷移金属錯体化合物は、各々Mで表される遷移金属元素の価数により、複数の配位子を有することができるが、前記配位子は全て同一でもよく、また、各々異なる構造を有する配位子を有していてもよい。   The transition metal complex compound containing the partial structure represented by any one of the general formulas (1) to (4) according to the present invention has a plurality of ligands depending on the valence of the transition metal element represented by M. The ligands may all be the same, or may have ligands each having a different structure.

ここで、配位子とは、一般式(1)〜(4)のいずれかで表される部分構造から遷移金属元素Mを除いた部分が、各々配位子である。   Here, the ligand is a portion obtained by removing the transition metal element M from the partial structure represented by any one of the general formulas (1) to (4).

(従来公知の配位子)
また、所謂配位子としては、当該業者が周知の配位子(配位化合物ともいう)を必要に応じて配位子として併用することができる。
(Conventionally known ligand)
Moreover, as what is called a ligand, the said trader can use together a well-known ligand (it is also called a coordination compound) as a ligand as needed.

本発明に記載の効果を好ましく得る観点からは、錯体中の配位子の種類は、好ましくは1〜2種類から構成されることが好ましく、さらに好ましくは1種類である。   From the viewpoint of preferably obtaining the effects described in the present invention, the type of the ligand in the complex is preferably composed of 1 to 2 types, more preferably 1 type.

従来公知の金属錯体に用いられる配位子としては、種々の公知の配位子があるが、例えば、「Photochemistry and Photophysics of Coordination Compounds」Springer−Verlag社 H.Yersin著 1987年発行、「有機金属化学−基礎と応用−」 裳華房社 山本明夫著 1982年発行 等に記載の配位子(例えば、ハロゲン配位子(好ましくは塩素配位子)、含窒素ヘテロ環配位子(例えば、ビピリジル、フェナントロリンなど)、ジケトン配位子なと)が挙げられる。   As a ligand used for a conventionally known metal complex, there are various known ligands. For example, “Photochemistry and Photophysics of Coordination Compounds” Springer-Verlag H. Published by Yersin in 1987, “Organometallic Chemistry-Fundamentals and Applications-” Liu Huabo Company, Akio Yamamoto, published in 1982, etc. (for example, halogen ligands (preferably chlorine ligands), Nitrogen heterocyclic ligands (for example, bipyridyl, phenanthroline, etc.) and diketone ligands).

(元素周期表の8〜10族の遷移金属元素)
本発明に係る、一般式(1)、(2)、(3)または(4)のいずれかで表される部分構造を含む化合物(遷移金属錯体、金属錯体、金属錯体化合物ともいう)の形成に用いられる金属としては、元素周期表の8〜10族の遷移金属元素(単に遷移金属ともいう)が用いられるが、中でも、イリジウム、白金が好ましい遷移金属元素として挙げられる。
(Transition metal element of group 8-10 of the periodic table)
Formation of a compound (also referred to as a transition metal complex, metal complex, or metal complex compound) containing a partial structure represented by any of the general formulas (1), (2), (3), or (4) according to the present invention As the metal used in the above, a transition metal element of group 8 to 10 of the periodic table (also simply referred to as a transition metal) is used, and among them, iridium and platinum are preferable transition metal elements.

(本発明に係る遷移金属錯体の含有層)
本発明に係る一般式(1)〜(4)のいずれかで表される部分構造を含む遷移金属錯体化合物の含有層としては、電荷を輸送する層(電荷輸送層)であれば特に制限はないが、正孔輸送層または発光層、発光層または電子阻止層が好ましく、より好ましくは発光層または電子阻止層であり、特に好ましくは発光層である。
(Contained layer of transition metal complex according to the present invention)
The transition metal complex compound-containing layer containing the partial structure represented by any one of the general formulas (1) to (4) according to the present invention is not particularly limited as long as it is a layer that transports charges (charge transport layer). However, a hole transport layer or a light emitting layer, a light emitting layer or an electron blocking layer is preferable, a light emitting layer or an electron blocking layer is more preferable, and a light emitting layer is particularly preferable.

また、発光層に含有する場合は、発光層中の発光ドーパントとして用いることにより、本発明の有機EL素子の外部取り出し量子効率の効率アップ(高輝度化)や発光寿命の長寿命化を達成することができる。尚、本発明の有機EL素子の構成層については、後に詳細に説明する。   Moreover, when it contains in a light emitting layer, by using as a light emission dopant in a light emitting layer, the efficiency improvement (high brightness) of the external extraction quantum efficiency of the organic EL element of this invention and the lifetime improvement of a light emission lifetime are achieved. be able to. The constituent layers of the organic EL element of the present invention will be described in detail later.

まず、本発明に係る一般式(1)〜(4)のいずれかで表される部分構造について説明する。   First, the partial structure represented by any of the general formulas (1) to (4) according to the present invention will be described.

《一般式(1)〜(4)のいずれかで表される部分構造》
本発明に係る一般式(1)〜(4)のいずれかで表される部分構造について説明する。
<< Partial structure represented by any one of general formulas (1) to (4) >>
The partial structure represented by any one of the general formulas (1) to (4) according to the present invention will be described.

一般式(1)〜(4)のいずれかで表される部分構造において、E1a〜E1eにより形成される環は、5員の芳香族複素環を表し、例えば、オキサゾール環、チアゾール環、オキサジアゾール環、オキサトリアゾール環、イソオキサゾール環、テトラゾール環、チアジアゾール環、チアトリアゾール環、イソチアゾール環、チオフェン環、フラン環、ピロール環、イミダゾール環、ピラゾール環、トリアゾール環等があげられる。   In the partial structure represented by any one of the general formulas (1) to (4), the ring formed by E1a to E1e represents a 5-membered aromatic heterocycle, such as an oxazole ring, thiazole ring, or oxadi Examples include azole ring, oxatriazole ring, isoxazole ring, tetrazole ring, thiadiazole ring, thiatriazole ring, isothiazole ring, thiophene ring, furan ring, pyrrole ring, imidazole ring, pyrazole ring, triazole ring and the like.

上記の中でも、ピラゾール環、イミダゾール環、オキサゾール環、チアゾール環が好ましく、特に好ましいのは、ピラゾール環、イミダゾール環である。   Among these, a pyrazole ring, an imidazole ring, an oxazole ring, and a thiazole ring are preferable, and a pyrazole ring and an imidazole ring are particularly preferable.

なお、これらの各環は、各々さらに後述する置換基を有していても良い。   Each of these rings may further have a substituent described later.

一般式(1)〜(4)のいずれかで表される部分構造において、E1f〜E1kにより形成される環は、6員の芳香族炭化水素環もしくは5員または6員の芳香族複素環を表す。   In the partial structure represented by any one of the general formulas (1) to (4), the ring formed by E1f to E1k is a 6-membered aromatic hydrocarbon ring or a 5-membered or 6-membered aromatic heterocycle. To express.

E1f〜E1kにより形成される6員の芳香族炭化水素環としては、ベンゼン環があげられる。さらに、後述する置換基を有していてもよい。   Examples of the 6-membered aromatic hydrocarbon ring formed by E1f to E1k include a benzene ring. Furthermore, you may have the substituent mentioned later.

E1f〜E1kにより形成される5員または6員の芳香族複素環としては、例えば、フラン環、チオフェン環、オキサゾール環、ピロール環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、トリアジン環等があげられる。   Examples of the 5- or 6-membered aromatic heterocycle formed by E1f to E1k include a furan ring, a thiophene ring, an oxazole ring, a pyrrole ring, a pyridine ring, a pyridazine ring, a pyrimidine ring, a pyrazine ring, and a triazine ring. can give.

これらの各環は各々さらに、後述する置換基を有していても良い。   Each of these rings may further have a substituent described later.

一般式(1)〜(4)のいずれかで表される部分構造において、E1l〜E1pにより形成される環は、6員の芳香族炭化水素環もしくは5員または6員の芳香族複素環を表すが、これらの環は、各々、E1f〜E1kにより形成される6員の芳香族炭化水素環もしくは5員または6員の芳香族複素環と同義である。   In the partial structure represented by any one of the general formulas (1) to (4), the ring formed by E1l to E1p is a 6-membered aromatic hydrocarbon ring or a 5-membered or 6-membered aromatic heterocycle. These rings are each synonymous with a 6-membered aromatic hydrocarbon ring or 5-membered or 6-membered aromatic heterocycle formed by E1f to E1k.

一般式(1)〜(4)のいずれかで表される部分構造において、R1a〜R1iで各々表される置換基としては、アルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、tert−ブチル基、ペンチル基、ヘキシル基、オクチル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基等)、シクロアルキル基(例えば、シクロペンチル基、シクロヘキシル基等)、アルケニル基(例えば、ビニル基、アリル基等)、アルキニル基(例えば、エチニル基、プロパルギル基等)、芳香族炭化水素環基(芳香族炭素環基、アリール基等ともいい、例えば、フェニル基、p−クロロフェニル基、メシチル基、トリル基、キシリル基、ナフチル基、アントリル基、アズレニル基、アセナフテニル基、フルオレニル基、フェナントリル基、インデニル基、ピレニル基、ビフェニリル基等)、芳香族複素環基(例えば、ピリジル基、ピリミジニル基、フリル基、ピロリル基、イミダゾリル基、ベンゾイミダゾリル基、ピラゾリル基、ピラジニル基、トリアゾリル基(例えば、1,2,4−トリアゾール−1−イル基、1,2,3−トリアゾール−1−イル基等)、オキサゾリル基、ベンゾオキサゾリル基、チアゾリル基、イソオキサゾリル基、イソチアゾリル基、フラザニル基、チエニル基、キノリル基、ベンゾフリル基、ジベンゾフリル基、ベンゾチエニル基、ジベンゾチエニル基、インドリル基、カルバゾリル基、カルボリニル基、ジアザカルバゾリル基(前記カルボリニル基のカルボリン環を構成する炭素原子の一つが窒素原子で置き換わったものを示す)、キノキサリニル基、ピリダジニル基、トリアジニル基、キナゾリニル基、フタラジニル基等)、複素環基(例えば、ピロリジル基、イミダゾリジル基、モルホリル基、オキサゾリジル基等)、アルコキシ基(例えば、メトキシ基、エトキシ基、プロピルオキシ基、ペンチルオキシ基、ヘキシルオキシ基、オクチルオキシ基、ドデシルオキシ基等)、シクロアルコキシ基(例えば、シクロペンチルオキシ基、シクロヘキシルオキシ基等)、アリールオキシ基(例えば、フェノキシ基、ナフチルオキシ基等)、アルキルチオ基(例えば、メチルチオ基、エチルチオ基、プロピルチオ基、ペンチルチオ基、ヘキシルチオ基、オクチルチオ基、ドデシルチオ基等)、シクロアルキルチオ基(例えば、シクロペンチルチオ基、シクロヘキシルチオ基等)、アリールチオ基(例えば、フェニルチオ基、ナフチルチオ基等)、アルコキシカルボニル基(例えば、メチルオキシカルボニル基、エチルオキシカルボニル基、ブチルオキシカルボニル基、オクチルオキシカルボニル基、ドデシルオキシカルボニル基等)、アリールオキシカルボニル基(例えば、フェニルオキシカルボニル基、ナフチルオキシカルボニル基等)、スルファモイル基(例えば、アミノスルホニル基、メチルアミノスルホニル基、ジメチルアミノスルホニル基、ブチルアミノスルホニル基、ヘキシルアミノスルホニル基、シクロヘキシルアミノスルホニル基、オクチルアミノスルホニル基、ドデシルアミノスルホニル基、フェニルアミノスルホニル基、ナフチルアミノスルホニル基、2−ピリジルアミノスルホニル基等)、アシル基(例えば、アセチル基、エチルカルボニル基、プロピルカルボニル基、ペンチルカルボニル基、シクロヘキシルカルボニル基、オクチルカルボニル基、2−エチルヘキシルカルボニル基、ドデシルカルボニル基、フェニルカルボニル基、ナフチルカルボニル基、ピリジルカルボニル基等)、アシルオキシ基(例えば、アセチルオキシ基、エチルカルボニルオキシ基、ブチルカルボニルオキシ基、オクチルカルボニルオキシ基、ドデシルカルボニルオキシ基、フェニルカルボニルオキシ基等)、アミド基(例えば、メチルカルボニルアミノ基、エチルカルボニルアミノ基、ジメチルカルボニルアミノ基、プロピルカルボニルアミノ基、ペンチルカルボニルアミノ基、シクロヘキシルカルボニルアミノ基、2−エチルヘキシルカルボニルアミノ基、オクチルカルボニルアミノ基、ドデシルカルボニルアミノ基、フェニルカルボニルアミノ基、ナフチルカルボニルアミノ基等)、カルバモイル基(例えば、アミノカルボニル基、メチルアミノカルボニル基、ジメチルアミノカルボニル基、プロピルアミノカルボニル基、ペンチルアミノカルボニル基、シクロヘキシルアミノカルボニル基、オクチルアミノカルボニル基、2−エチルヘキシルアミノカルボニル基、ドデシルアミノカルボニル基、フェニルアミノカルボニル基、ナフチルアミノカルボニル基、2−ピリジルアミノカルボニル基等)、ウレイド基(例えば、メチルウレイド基、エチルウレイド基、ペンチルウレイド基、シクロヘキシルウレイド基、オクチルウレイド基、ドデシルウレイド基、フェニルウレイド基ナフチルウレイド基、2−ピリジルアミノウレイド基等)、スルフィニル基(例えば、メチルスルフィニル基、エチルスルフィニル基、ブチルスルフィニル基、シクロヘキシルスルフィニル基、2−エチルヘキシルスルフィニル基、ドデシルスルフィニル基、フェニルスルフィニル基、ナフチルスルフィニル基、2−ピリジルスルフィニル基等)、アルキルスルホニル基(例えば、メチルスルホニル基、エチルスルホニル基、ブチルスルホニル基、シクロヘキシルスルホニル基、2−エチルヘキシルスルホニル基、ドデシルスルホニル基等)、アリールスルホニル基またはヘテロアリールスルホニル基(例えば、フェニルスルホニル基、ナフチルスルホニル基、2−ピリジルスルホニル基等)、アミノ基(例えば、アミノ基、エチルアミノ基、ジメチルアミノ基、ブチルアミノ基、シクロペンチルアミノ基、2−エチルヘキシルアミノ基、ドデシルアミノ基、アニリノ基、ナフチルアミノ基、2−ピリジルアミノ基等)、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子等)、フッ化炭化水素基(例えば、フルオロメチル基、トリフルオロメチル基、ペンタフルオロエチル基、ペンタフルオロフェニル基等)、シアノ基、ニトロ基、ヒドロキシ基、メルカプト基、シリル基(例えば、トリメチルシリル基、トリイソプロピルシリル基、トリフェニルシリル基、フェニルジエチルシリル基等)、ホスホノ基等があげられる。これらの置換基は上記の置換基によってさらに置換されていてもよい。   In the partial structure represented by any one of the general formulas (1) to (4), each of the substituents represented by R1a to R1i includes an alkyl group (for example, a methyl group, an ethyl group, a propyl group, an isopropyl group, tert-butyl group, pentyl group, hexyl group, octyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, etc.), cycloalkyl group (for example, cyclopentyl group, cyclohexyl group, etc.), alkenyl group (for example, vinyl group, Allyl group), alkynyl group (for example, ethynyl group, propargyl group, etc.), aromatic hydrocarbon ring group (aromatic carbocyclic group, aryl group, etc.), for example, phenyl group, p-chlorophenyl group, mesityl group, Tolyl, xylyl, naphthyl, anthryl, azulenyl, acenaphthenyl, fluorenyl, phenyl For example, pyridyl group, pyrimidinyl group, furyl group, pyrrolyl group, imidazolyl group, benzimidazolyl group, pyrazolyl group, pyrazinyl group, triazolyl group (for example, , 1,2,4-triazol-1-yl group, 1,2,3-triazol-1-yl group, etc.), oxazolyl group, benzoxazolyl group, thiazolyl group, isoxazolyl group, isothiazolyl group, furazanyl group, Thienyl group, quinolyl group, benzofuryl group, dibenzofuryl group, benzothienyl group, dibenzothienyl group, indolyl group, carbazolyl group, carbolinyl group, diazacarbazolyl group (one of the carbon atoms constituting the carboline ring of the carbolinyl group) One is replaced by a nitrogen atom) Noxalinyl group, pyridazinyl group, triazinyl group, quinazolinyl group, phthalazinyl group, etc.), heterocyclic group (eg, pyrrolidyl group, imidazolidyl group, morpholyl group, oxazolidyl group, etc.), alkoxy group (eg, methoxy group, ethoxy group, propyloxy) Group, pentyloxy group, hexyloxy group, octyloxy group, dodecyloxy group, etc.), cycloalkoxy group (eg, cyclopentyloxy group, cyclohexyloxy group, etc.), aryloxy group (eg, phenoxy group, naphthyloxy group, etc.) Alkylthio groups (for example, methylthio group, ethylthio group, propylthio group, pentylthio group, hexylthio group, octylthio group, dodecylthio group, etc.), cycloalkylthio groups (for example, cyclopentylthio group, cyclohexylthio group, etc.), Arylthio group (eg, phenylthio group, naphthylthio group, etc.), alkoxycarbonyl group (eg, methyloxycarbonyl group, ethyloxycarbonyl group, butyloxycarbonyl group, octyloxycarbonyl group, dodecyloxycarbonyl group, etc.), aryloxycarbonyl group (Eg, phenyloxycarbonyl group, naphthyloxycarbonyl group, etc.), sulfamoyl group (eg, aminosulfonyl group, methylaminosulfonyl group, dimethylaminosulfonyl group, butylaminosulfonyl group, hexylaminosulfonyl group, cyclohexylaminosulfonyl group, octyl) Aminosulfonyl group, dodecylaminosulfonyl group, phenylaminosulfonyl group, naphthylaminosulfonyl group, 2-pyridylaminosulfonyl group, etc.), Group (for example, acetyl group, ethylcarbonyl group, propylcarbonyl group, pentylcarbonyl group, cyclohexylcarbonyl group, octylcarbonyl group, 2-ethylhexylcarbonyl group, dodecylcarbonyl group, phenylcarbonyl group, naphthylcarbonyl group, pyridylcarbonyl group, etc.) An acyloxy group (eg, acetyloxy group, ethylcarbonyloxy group, butylcarbonyloxy group, octylcarbonyloxy group, dodecylcarbonyloxy group, phenylcarbonyloxy group, etc.), amide group (eg, methylcarbonylamino group, ethylcarbonylamino group) Group, dimethylcarbonylamino group, propylcarbonylamino group, pentylcarbonylamino group, cyclohexylcarbonylamino group, 2-ethylhexylcarbonylamino group Group, octylcarbonylamino group, dodecylcarbonylamino group, phenylcarbonylamino group, naphthylcarbonylamino group, etc.), carbamoyl group (for example, aminocarbonyl group, methylaminocarbonyl group, dimethylaminocarbonyl group, propylaminocarbonyl group, pentylamino) Carbonyl group, cyclohexylaminocarbonyl group, octylaminocarbonyl group, 2-ethylhexylaminocarbonyl group, dodecylaminocarbonyl group, phenylaminocarbonyl group, naphthylaminocarbonyl group, 2-pyridylaminocarbonyl group, etc.), ureido group (for example, methylureido) Group, ethylureido group, pentylureido group, cyclohexylureido group, octylureido group, dodecylureido group, phenylureido group naphthyluree Id group, 2-pyridylaminoureido group, etc.), sulfinyl group (for example, methylsulfinyl group, ethylsulfinyl group, butylsulfinyl group, cyclohexylsulfinyl group, 2-ethylhexylsulfinyl group, dodecylsulfinyl group, phenylsulfinyl group, naphthylsulfinyl group, 2-pyridylsulfinyl group etc.), alkylsulfonyl group (eg methylsulfonyl group, ethylsulfonyl group, butylsulfonyl group, cyclohexylsulfonyl group, 2-ethylhexylsulfonyl group, dodecylsulfonyl group etc.), arylsulfonyl group or heteroarylsulfonyl group (Eg, phenylsulfonyl group, naphthylsulfonyl group, 2-pyridylsulfonyl group, etc.), amino group (eg, amino group, ethylamino group, dimethyla Group, butylamino group, cyclopentylamino group, 2-ethylhexylamino group, dodecylamino group, anilino group, naphthylamino group, 2-pyridylamino group, etc.), halogen atom (for example, fluorine atom, chlorine atom, bromine atom, etc.) , Fluorinated hydrocarbon group (for example, fluoromethyl group, trifluoromethyl group, pentafluoroethyl group, pentafluorophenyl group, etc.), cyano group, nitro group, hydroxy group, mercapto group, silyl group (for example, trimethylsilyl group, Triisopropylsilyl group, triphenylsilyl group, phenyldiethylsilyl group, etc.), phosphono group and the like. These substituents may be further substituted with the above substituents.

これらの置換基は複数が互いに結合して環を形成していてもよく、また、複数の置換基が存在する場合、各々の置換基は同一でも異なっていてもよく、お互いに連結して環を形成しても良い。   A plurality of these substituents may be bonded to each other to form a ring, and when a plurality of substituents are present, each substituent may be the same or different, and linked to each other to form a ring. May be formed.

一般式(1)〜(4)のいずれかで表される部分構造において、R1a〜R1iで各々表される置換基は、前述のアルケニル基以外にもスチリル基、エポキシ基、オキセタニル基、アクリル基、メタクリル基等の重合性基を有していてもよい。   In the partial structure represented by any one of the general formulas (1) to (4), the substituents represented by R1a to R1i are each a styryl group, an epoxy group, an oxetanyl group, an acrylic group in addition to the alkenyl group described above. And may have a polymerizable group such as a methacryl group.

さらに、一般式(1)〜(4)のいずれかで表される部分構造を含む化合物は前記重合性基同士、もしくは他の重合性モノマーと反応して重合体を形成することができる。   Furthermore, the compound containing the partial structure represented by any one of the general formulas (1) to (4) can react with the polymerizable groups or other polymerizable monomers to form a polymer.

複数の部分構造が重合体中に存在する場合、各々の一般式(1)〜(4)のいずれかで表される部分構造は同一でも異なっていてもよい。   When a plurality of partial structures are present in the polymer, the partial structures represented by any one of the general formulas (1) to (4) may be the same or different.

〈一般式(1)〜(4)のいずれかで表される部分構造の重合方法〉
一般式(1)〜(4)のいずれかで表される部分構造を含む重合体(ポリマー)は「改訂高分子合成の化学」化学同人「高分子合成の実験法」化学同人「第4版実験化学講座28「高分子合成」丸善等に記載の方法を用いて合成することができる。
<Method for Polymerizing Partial Structure Represented by any of General Formulas (1) to (4)>
The polymer (polymer) containing a partial structure represented by any one of the general formulas (1) to (4) is “Revised Polymer Synthesis Chemistry” Chemistry “Polymer Synthesis Experimental Method” Chemistry Dojin “Fourth Edition” It can be synthesized using the method described in Experimental Chemistry Course 28 “Polymer Synthesis” Maruzen et al.

好ましい重合方法としては1)重縮合、2)ラジカル重合、3)イオン重合、4)重付加、付加縮合等が挙げられ、重合性基の種類によって使い分けることが可能である。   Preferable polymerization methods include 1) polycondensation, 2) radical polymerization, 3) ionic polymerization, 4) polyaddition, addition condensation, and the like, which can be used depending on the type of polymerizable group.

一般式(1)〜(4)のいずれかで表される部分構造を含む重合体は上記方法を用い、ホモポリマーとすることも可能であり、複数のモノマーと組み合わせたコポリマーとすることも可能である。   The polymer containing the partial structure represented by any one of the general formulas (1) to (4) can be made into a homopolymer using the above method, or can be made into a copolymer combined with a plurality of monomers. It is.

以下、本発明に係る前記一般式(1)〜(4)のいずれかで表される部分構造を含む化合物(金属錯体、金属錯体化合物ともいう)の具体例を示すが、本発明はこれらに限定されない。   Hereinafter, specific examples of the compound (also referred to as a metal complex or a metal complex compound) including a partial structure represented by any one of the general formulas (1) to (4) according to the present invention will be shown. It is not limited.

Figure 2010040829
Figure 2010040829

Figure 2010040829
Figure 2010040829

Figure 2010040829
Figure 2010040829

Figure 2010040829
Figure 2010040829

Figure 2010040829
Figure 2010040829

Figure 2010040829
Figure 2010040829

Figure 2010040829
Figure 2010040829

Figure 2010040829
Figure 2010040829

Figure 2010040829
Figure 2010040829

Figure 2010040829
Figure 2010040829

Figure 2010040829
Figure 2010040829

Figure 2010040829
Figure 2010040829

Figure 2010040829
Figure 2010040829

Figure 2010040829
Figure 2010040829

Figure 2010040829
Figure 2010040829

Figure 2010040829
Figure 2010040829

Figure 2010040829
Figure 2010040829

Figure 2010040829
Figure 2010040829

Figure 2010040829
Figure 2010040829

Figure 2010040829
Figure 2010040829

Figure 2010040829
Figure 2010040829

Figure 2010040829
Figure 2010040829

Figure 2010040829
Figure 2010040829

Figure 2010040829
Figure 2010040829

Figure 2010040829
Figure 2010040829

Figure 2010040829
Figure 2010040829

Figure 2010040829
Figure 2010040829

Figure 2010040829
Figure 2010040829

Figure 2010040829
Figure 2010040829

Figure 2010040829
Figure 2010040829

Figure 2010040829
Figure 2010040829

Figure 2010040829
Figure 2010040829

Figure 2010040829
Figure 2010040829

Figure 2010040829
Figure 2010040829

Figure 2010040829
Figure 2010040829

Figure 2010040829
Figure 2010040829

Figure 2010040829
Figure 2010040829

Figure 2010040829
Figure 2010040829

Figure 2010040829
Figure 2010040829

Figure 2010040829
Figure 2010040829

Figure 2010040829
Figure 2010040829

Figure 2010040829
Figure 2010040829

Figure 2010040829
Figure 2010040829

Figure 2010040829
Figure 2010040829

Figure 2010040829
Figure 2010040829

Figure 2010040829
Figure 2010040829

Figure 2010040829
Figure 2010040829

Figure 2010040829
Figure 2010040829

Figure 2010040829
Figure 2010040829

Figure 2010040829
Figure 2010040829

Figure 2010040829
Figure 2010040829

Figure 2010040829
Figure 2010040829

Figure 2010040829
Figure 2010040829

Figure 2010040829
Figure 2010040829

Figure 2010040829
Figure 2010040829

Figure 2010040829
Figure 2010040829

Figure 2010040829
Figure 2010040829

Figure 2010040829
Figure 2010040829

Figure 2010040829
Figure 2010040829

Figure 2010040829
Figure 2010040829

Figure 2010040829
Figure 2010040829

Figure 2010040829
Figure 2010040829

Figure 2010040829
Figure 2010040829

Figure 2010040829
Figure 2010040829

Figure 2010040829
Figure 2010040829

Figure 2010040829
Figure 2010040829

Figure 2010040829
Figure 2010040829

Figure 2010040829
Figure 2010040829

Figure 2010040829
Figure 2010040829

Figure 2010040829
Figure 2010040829

Figure 2010040829
Figure 2010040829

これらの金属錯体は、例えば、Organic Letter誌、vol3、No.16、2579〜2581頁(2001)、Inorganic Chemistry,第30巻、第8号、1685〜1687頁(1991年)、J.Am.Chem.Soc.,123巻、4304頁(2001年)、Inorganic Chemistry,第40巻、第7号、1704〜1711頁(2001年)、Inorganic Chemistry,第41巻、第12号、3055〜3066頁(2002年)、New Journal of Chemistry.,第26巻、1171頁(2002年)、Organic Letter誌、vol8、No.3、415〜418頁(2006)、さらにこれらの文献中に記載の参考文献等の方法を適用することにより合成できる。   These metal complexes are described in, for example, Organic Letter, vol. 16, 2579-2581 (2001), Inorganic Chemistry, Vol. 30, No. 8, 1685-1687 (1991), J. Am. Am. Chem. Soc. , 123, 4304 (2001), Inorganic Chemistry, Vol. 40, No. 7, 1704-1711 (2001), Inorganic Chemistry, Vol. 41, No. 12, 3055-3066 (2002) , New Journal of Chemistry. 26, 1171 (2002), Organic Letter, vol. 3, pages 415 to 418 (2006), and further by applying a method such as a reference described in these documents.

以下に、本発明に係る金属錯体の合成例を示すが、本発明はこれらに限定されない。   Although the synthesis example of the metal complex based on this invention is shown below, this invention is not limited to these.

《合成例:例示化合物A−97の合成》   << Synthesis Example: Synthesis of Exemplary Compound A-97 >>

Figure 2010040829
Figure 2010040829

工程1:錯体Cの合成
100ml四つ口フラスコに2−メチルイミダゾ[1,2−f]フェナンスリジン1.5g、2−エトキシエタノール13ml、水3mlを入れ、窒素吹き込み管、温度計、コンデンサーをつけて油浴スターラー上にセットした。
Step 1: Synthesis of complex C A 100 ml four-necked flask was charged with 1.5 g of 2-methylimidazo [1,2-f] phenanthridine, 13 ml of 2-ethoxyethanol, and 3 ml of water, a nitrogen blowing tube, a thermometer, a condenser And set on an oil bath stirrer.

これに、0.55gのIrCl・3HO、および0.16g(0.001560モル)のトリエチルアミンを添加し、内温100℃付近で6時間煮沸還流して反応終了とした。 To this, 0.55 g of IrCl 3 .3H 2 O and 0.16 g (0.001560 mol) of triethylamine were added, and the mixture was boiled and refluxed at an internal temperature of about 100 ° C. for 6 hours to complete the reaction.

反応終了後室温まで冷却したのちメタノールを加え、析出した固体を濾取した。得られた個体をメタノールで良く洗浄して乾燥し、錯体Cを1.37g(77.0%)得た。   After completion of the reaction, the reaction mixture was cooled to room temperature, methanol was added, and the precipitated solid was collected by filtration. The obtained solid was thoroughly washed with methanol and dried to obtain 1.37 g (77.0%) of Complex C.

工程2:錯体Dの合成
50ml四つ口フラスコに、1.0g(0.0007244モル)の錯体C、0.29gのアセチルアセトン、1.0gの炭酸ナトリウム、2−エトキシエタノール24mlを入れ、窒素吹き込み管、温度計、コンデンサーをつけて油浴スターラー上にセットした。
Step 2: Synthesis of Complex D In a 50 ml four-necked flask, 1.0 g (0.0007244 mol) of Complex C, 0.29 g of acetylacetone, 1.0 g of sodium carbonate, and 24 ml of 2-ethoxyethanol were introduced, and nitrogen was blown into the flask. A tube, a thermometer and a condenser were attached and set on an oil bath stirrer.

窒素気流化内温80℃付近で1.5時間加熱攪拌した。   The mixture was heated and stirred for 1.5 hours at a nitrogen gas stream inner temperature of around 80 ° C.

反応終了後室温まで冷却し、反応液にメタノールを加え、析出した結晶を濾過した。この結晶を水30ml、MeOH 10mlで洗浄して乾燥し、0.42gの錯体D(38.5%)を得た。   After completion of the reaction, the reaction solution was cooled to room temperature, methanol was added to the reaction solution, and the precipitated crystals were filtered. The crystals were washed with 30 ml of water and 10 ml of MeOH and dried to obtain 0.42 g of complex D (38.5%).

工程3:例示化合物A−97の合成
50ml四つ口フラスコに、0.386g(0.0005120モル)の錯体D、0.357gの2−メチルイミダゾ[1,2−f]フェナンスリジン、グリセリン20mlを入れ、窒素吹き込み管、温度計、空冷管をつけて油浴スターラー上にセットした。窒素気流化内温150℃付近で4.5時間加熱攪拌して反応終了とした。
Step 3: Synthesis of Exemplified Compound A-97 In a 50 ml four-necked flask, 0.386 g (0.0005120 mol) of Complex D, 0.357 g of 2-methylimidazo [1,2-f] phenanthridine, glycerin 20 ml was added, and a nitrogen blowing tube, a thermometer, and an air cooling tube were attached and set on an oil bath stirrer. The reaction was completed by heating and stirring for 4.5 hours at an internal temperature of 150 ° C. under nitrogen flow.

反応終了後、室温まで冷却し、メタノールを加え分散後結晶を濾取し、0.38gの粗結晶が得られた。   After completion of the reaction, the mixture was cooled to room temperature, methanol was added and dispersed, and the crystals were collected by filtration to obtain 0.38 g of crude crystals.

結晶をカラムクロマトグラフィー(展開溶媒トルエン/酢酸エチル)で精製後、得られた結晶をテトラヒドロフランおよび酢酸エチルの混合溶媒で加熱懸濁精製し、例示化合物A−97を0.3g(66.6%)得た。   The crystals were purified by column chromatography (developing solvent: toluene / ethyl acetate), and the obtained crystals were purified by suspension in a mixed solvent of tetrahydrofuran and ethyl acetate, and 0.3 g (66.6%) of Exemplified Compound A-97 was obtained. )Obtained.

得られた例示化合物A−97の構造は1H−NMR(核磁気共鳴スペクトル)を用い構造を確認した。なお、測定条件および得られたスペクトルの各ピークのケミカルシフト、プロトン数等を以下に示す。   The structure of the obtained exemplary compound A-97 was confirmed using 1H-NMR (nuclear magnetic resonance spectrum). Measurement conditions, chemical shift of each peak of the obtained spectrum, proton number, etc. are shown below.

H−NMR(400MHz,テトラヒドロフラン−d8)
測定装置:JEOL JNM−AL400(400MHz):日本電子製
スペクトルの帰属(ケミカルシフトδ、プロトン数、ピーク形状)
8.48(1H,d),7.93(1H,d),7.75(1H,s),7.64(1H,d), 7.54(1H,t),7.46(1H,t),6.95(1H,t),6.83(1H,d),1.85(3H,s)なお、例示化合物A−97の溶液における発光波長は455nmであった(発光波長は、2−メチルテトラヒドロフラン中で測定したものである。)。
1 H-NMR (400 MHz, tetrahydrofuran-d8)
Measuring apparatus: JEOL JNM-AL400 (400 MHz): manufactured by JEOL Ltd. Spectrum attribution (chemical shift δ, proton number, peak shape)
8.48 (1H, d), 7.93 (1H, d), 7.75 (1H, s), 7.64 (1H, d), 7.54 (1H, t), 7.46 (1H) , T), 6.95 (1H, t), 6.83 (1H, d), 1.85 (3H, s) The emission wavelength in the solution of Exemplified Compound A-97 was 455 nm (emission wavelength) Is measured in 2-methyltetrahydrofuran).

本発明では、例示化合物の発光波長を以下のように測定した。まず、例示化合物の吸収スペクトルを測定し、300nm−350nmの範囲の吸収最大波長を励起光として設定する。   In the present invention, the emission wavelength of the exemplified compound was measured as follows. First, an absorption spectrum of the exemplary compound is measured, and an absorption maximum wavelength in the range of 300 nm to 350 nm is set as excitation light.

設定した励起光を用いて、窒素バブリングを行いながら蛍光光度計F−4500(日立製作所製)にて発光波長を測定する。   Using the set excitation light, the emission wavelength is measured with a fluorometer F-4500 (manufactured by Hitachi, Ltd.) while performing nitrogen bubbling.

尚、使用できる溶媒に制限はないが、化合物の溶解性の観点から2−メチルテトラヒドロフラン、ジクロロメタン等が好ましく用いられる。   In addition, although there is no restriction | limiting in the solvent which can be used, 2-methyltetrahydrofuran, a dichloromethane, etc. are used preferably from a soluble viewpoint of a compound.

測定時の濃度は充分希釈していることが好ましく、具体的には10−6mol/l〜10−4mol/lの範囲で測定することが好ましい。 Concentration at the time of measurement is preferably are diluted enough, in particular is preferably measured in the range of 10 -6 mol / l~10 -4 mol / l.

また、測定時の温度としては、特に制限はないが、一般的には室温〜77Kの範囲の温度設定が行われることが好ましい。   Moreover, there is no restriction | limiting in particular as temperature at the time of measurement, However, Generally, it is preferable that temperature setting of the range of room temperature-77K is performed.

《一般式(5)または(6)で表される部分構造を含む有機化合物》
一般式(5)または(6)で表される部分構造を含む有機化合物について説明する。
<< Organic Compound Containing Partial Structure Represented by General Formula (5) or (6) >>
The organic compound containing the partial structure represented by the general formula (5) or (6) will be described.

本発明の一般式(5)または(6)で表される部分構造を含む有機化合物は、分子内に1つ以上のインデノインドール基を有する。インデノインドール基はカルバゾール基に比べて電子移動性が高いので、置換基などがほぼ同じ場合、分子内に1つ以上のカルバゾリル基を有する化合物と比べると全体としての電子移動性が若干高くなる。だだし、電子輸送材料のように極度に電子移動性が高められているわけではいない。   The organic compound containing the partial structure represented by the general formula (5) or (6) of the present invention has one or more indenoindole groups in the molecule. Since the indenoindole group has higher electron mobility than the carbazole group, when the substituents are almost the same, the overall electron mobility is slightly higher than the compound having one or more carbazolyl groups in the molecule. . However, the electron mobility is not extremely improved like an electron transport material.

一方、本発明の一般式(1)、(2)、(3)または(4)で表される部分構造を含む遷移金属錯体化合物は、従来の遷移金属錯体に比べて正孔輸送性が向上しているために、従来の複数のカルバゾリル基からなるホスト化合物との併用では正孔移動と電子移動のバランスを完全に合わせることができず、充分な性能を発揮できていなかった。   On the other hand, the transition metal complex compound including the partial structure represented by the general formula (1), (2), (3) or (4) of the present invention has improved hole transportability compared to the conventional transition metal complex. For this reason, the combined use of a conventional host compound composed of a plurality of carbazolyl groups cannot achieve a perfect balance between hole transfer and electron transfer, so that sufficient performance cannot be exhibited.

本発明の一般式(1)、(2)、(3)または(4)で表される部分構造を含む遷移金属錯体化合物と併用するのに最適なホスト化合物の検討を行った結果、本発明の一般式(5)または(6)で表される部分構造を含む有機化合物をホスト化合物とすることで正孔移動と電子移動のバランスを完全に合わせることができ、それによって、特異的に短波な発光が見られ、高い発光効率を示し、且つ発光寿命の長い有機EL素子を提供することができた。さらに、予想外の効果として素子駆動開始時の初期劣化を大幅に低減することができたうえ、さらには発光素子のダークスポットも大幅に低減させることに成功し、有用な有機EL素子を提供することができた。   As a result of investigation of an optimal host compound to be used in combination with a transition metal complex compound containing a partial structure represented by the general formula (1), (2), (3) or (4) of the present invention, By using an organic compound containing a partial structure represented by the general formula (5) or (6) as a host compound, the balance between hole transfer and electron transfer can be perfectly matched, and thereby a specific short wave Light emission was seen, an organic EL device having a high light emission efficiency and a long light emission lifetime could be provided. Furthermore, as an unexpected effect, the initial deterioration at the start of device driving can be greatly reduced, and the dark spot of the light emitting device has also been greatly reduced, thereby providing a useful organic EL device. I was able to.

さらに、一般式(5)または(6)で表される部分構造を含む有機化合物の好ましい実施態様について説明する。   Furthermore, the preferable embodiment of the organic compound containing the partial structure represented by General formula (5) or (6) is demonstrated.

本発明の一般式(1)、(2)、(3)、または(4)で表される部分構造を含む遷移金属錯体化合物と併用するのに最適なホスト化合物は、前記一般式(5)または(6)で表される部分構造を含む有機化合物である。   The optimum host compound for use in combination with the transition metal complex compound containing the partial structure represented by the general formula (1), (2), (3), or (4) of the present invention is the above general formula (5). Or it is an organic compound containing the partial structure represented by (6).

Figure 2010040829
Figure 2010040829

式中、AおよびAはそれぞれ独立して単結合または置換基を有していてもよいアリーレン基または置換基を有していてもよい2価の複素環基を示す。 In the formula, A 1 and A 2 each independently represent a single bond or an arylene group which may have a substituent or a divalent heterocyclic group which may have a substituent.

アリーレン基としては任意のアリール基の任意の水素原子を除くことで得られる2価の基を用いることができる、アリール基の例としては、フェニル基、p−クロロフェニル基、メシチル基、トリル基、キシリル基、ナフチル基、アントリル基、アズレニル基、アセナフテニル基、フルオレニル基、フェナントリル基、インデニル基、ピレニル基、ビフェニリル基等が挙げられる。   As the arylene group, a divalent group obtained by removing any hydrogen atom of any aryl group can be used. Examples of the aryl group include a phenyl group, a p-chlorophenyl group, a mesityl group, a tolyl group, Examples include xylyl group, naphthyl group, anthryl group, azulenyl group, acenaphthenyl group, fluorenyl group, phenanthryl group, indenyl group, pyrenyl group, and biphenylyl group.

2価の複素環基としては、任意の複素環基の任意の水素原子を除くことで得られる2価の基が挙げられる。複素環基としては芳香族でもよいし非芳香族でもよい。   As a bivalent heterocyclic group, the bivalent group obtained by remove | excluding the arbitrary hydrogen atoms of arbitrary heterocyclic groups is mentioned. The heterocyclic group may be aromatic or non-aromatic.

芳香意族の複素環基の例としては、ピリジル基、ピリミジニル基、フリル基、ピロリル基、イミダゾリル基、ベンゾイミダゾリル基、ピラゾリル基、ピラジニル基、トリアゾリル基(例えば、1,2,4−トリアゾール−1−イル基、1,2,3−トリアゾール−1−イル基等)、オキサゾリル基、ベンゾオキサゾリル基、チアゾリル基、イソオキサゾリル基、イソチアゾリル基、フラザニル基、チエニル基、キノリル基、ベンゾフリル基、ジベンゾフリル基、ベンゾチエニル基、ジベンゾチエニル基、インドリル基、カルバゾリル基、カルボリニル基、ジアザカルバゾリル基(前記カルボリニル基のカルボリン環を構成する炭素原子の一つが窒素原子で置き換わったものを示す)、キノキサリニル基、ピリダジニル基、トリアジニル基、キナゾリニル基、フタラジニル基、等が挙げられる。   Examples of aromatic heterocyclic groups include pyridyl group, pyrimidinyl group, furyl group, pyrrolyl group, imidazolyl group, benzimidazolyl group, pyrazolyl group, pyrazinyl group, triazolyl group (for example, 1,2,4-triazole-1). -Yl group, 1,2,3-triazol-1-yl group, etc.), oxazolyl group, benzoxazolyl group, thiazolyl group, isoxazolyl group, isothiazolyl group, furazanyl group, thienyl group, quinolyl group, benzofuryl group, dibenzo Furyl group, benzothienyl group, dibenzothienyl group, indolyl group, carbazolyl group, carbolinyl group, diazacarbazolyl group (indicating that one of the carbon atoms constituting the carboline ring of the carbolinyl group is replaced by a nitrogen atom) Quinoxalinyl group, pyridazinyl group, triazinyl group, Zoriniru group, phthalazinyl group, and the like.

非芳香族の複素環基の例としては、ピロリジル基、イミダゾリジニル基、モルホリニル基、オキサゾリジニル基、テトラヒドロフラニル基、テトラヒドロチエニル基、等が挙げられる。   Examples of the non-aromatic heterocyclic group include a pyrrolidyl group, an imidazolidinyl group, a morpholinyl group, an oxazolidinyl group, a tetrahydrofuranyl group, a tetrahydrothienyl group, and the like.

置換基としては、アルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、tert−ブチル基、ペンチル基、ヘキシル基、オクチル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基等)、シクロアルキル基(例えば、シクロペンチル基、シクロヘキシル基等)、アルケニル基(例えば、ビニル基、アリル基等)、アルキニル基(例えば、エチニル基、プロパルギル基等)、芳香族炭化水素環基(芳香族炭素環基、アリール基等ともいい、例えば、フェニル基、p−クロロフェニル基、メシチル基、トリル基、キシリル基、ナフチル基、アントリル基、アズレニル基、アセナフテニル基、フルオレニル基、フェナントリル基、インデニル基、ピレニル基、ビフェニリル基等)、芳香族複素環基(例えば、ピリジル基、ピリミジニル基、フリル基、ピロリル基、イミダゾリル基、ベンゾイミダゾリル基、ピラゾリル基、ピラジニル基、トリアゾリル基(例えば、1,2,4−トリアゾール−1−イル基、1,2,3−トリアゾール−1−イル基等)、オキサゾリル基、ベンゾオキサゾリル基、チアゾリル基、イソオキサゾリル基、イソチアゾリル基、フラザニル基、チエニル基、キノリル基、ベンゾフリル基、ジベンゾフリル基、ベンゾチエニル基、ジベンゾチエニル基、インドリル基、カルバゾリル基、カルボリニル基、ジアザカルバゾリル基(前記カルボリニル基のカルボリン環を構成する炭素原子の一つが窒素原子で置き換わったものを示す)、キノキサリニル基、ピリダジニル基、トリアジニル基、キナゾリニル基、フタラジニル基等)、複素環基(例えば、ピロリジル基、イミダゾリジル基、モルホリル基、オキサゾリジル基等)、アルコキシ基(例えば、メトキシ基、エトキシ基、プロピルオキシ基、ペンチルオキシ基、ヘキシルオキシ基、オクチルオキシ基、ドデシルオキシ基等)、シクロアルコキシ基(例えば、シクロペンチルオキシ基、シクロヘキシルオキシ基等)、アリールオキシ基(例えば、フェノキシ基、ナフチルオキシ基等)、アルキルチオ基(例えば、メチルチオ基、エチルチオ基、プロピルチオ基、ペンチルチオ基、ヘキシルチオ基、オクチルチオ基、ドデシルチオ基等)、シクロアルキルチオ基(例えば、シクロペンチルチオ基、シクロヘキシルチオ基等)、アリールチオ基(例えば、フェニルチオ基、ナフチルチオ基等)、アルコキシカルボニル基(例えば、メチルオキシカルボニル基、エチルオキシカルボニル基、ブチルオキシカルボニル基、オクチルオキシカルボニル基、ドデシルオキシカルボニル基等)、アリールオキシカルボニル基(例えば、フェニルオキシカルボニル基、ナフチルオキシカルボニル基等)、スルファモイル基(例えば、アミノスルホニル基、メチルアミノスルホニル基、ジメチルアミノスルホニル基、ブチルアミノスルホニル基、ヘキシルアミノスルホニル基、シクロヘキシルアミノスルホニル基、オクチルアミノスルホニル基、ドデシルアミノスルホニル基、フェニルアミノスルホニル基、ナフチルアミノスルホニル基、2−ピリジルアミノスルホニル基等)、アシル基(例えば、アセチル基、エチルカルボニル基、プロピルカルボニル基、ペンチルカルボニル基、シクロヘキシルカルボニル基、オクチルカルボニル基、2−エチルヘキシルカルボニル基、ドデシルカルボニル基、フェニルカルボニル基、ナフチルカルボニル基、ピリジルカルボニル基等)、アシルオキシ基(例えば、アセチルオキシ基、エチルカルボニルオキシ基、ブチルカルボニルオキシ基、オクチルカルボニルオキシ基、ドデシルカルボニルオキシ基、フェニルカルボニルオキシ基等)、アミド基(例えば、メチルカルボニルアミノ基、エチルカルボニルアミノ基、ジメチルカルボニルアミノ基、プロピルカルボニルアミノ基、ペンチルカルボニルアミノ基、シクロヘキシルカルボニルアミノ基、2−エチルヘキシルカルボニルアミノ基、オクチルカルボニルアミノ基、ドデシルカルボニルアミノ基、フェニルカルボニルアミノ基、ナフチルカルボニルアミノ基等)、カルバモイル基(例えば、アミノカルボニル基、メチルアミノカルボニル基、ジメチルアミノカルボニル基、プロピルアミノカルボニル基、ペンチルアミノカルボニル基、シクロヘキシルアミノカルボニル基、オクチルアミノカルボニル基、2−エチルヘキシルアミノカルボニル基、ドデシルアミノカルボニル基、フェニルアミノカルボニル基、ナフチルアミノカルボニル基、2−ピリジルアミノカルボニル基等)、ウレイド基(例えば、メチルウレイド基、エチルウレイド基、ペンチルウレイド基、シクロヘキシルウレイド基、オクチルウレイド基、ドデシルウレイド基、フェニルウレイド基ナフチルウレイド基、2−ピリジルアミノウレイド基等)、スルフィニル基(例えば、メチルスルフィニル基、エチルスルフィニル基、ブチルスルフィニル基、シクロヘキシルスルフィニル基、2−エチルヘキシルスルフィニル基、ドデシルスルフィニル基、フェニルスルフィニル基、ナフチルスルフィニル基、2−ピリジルスルフィニル基等)、アルキルスルホニル基(例えば、メチルスルホニル基、エチルスルホニル基、ブチルスルホニル基、シクロヘキシルスルホニル基、2−エチルヘキシルスルホニル基、ドデシルスルホニル基等)、アリールスルホニル基またはヘテロアリールスルホニル基(例えば、フェニルスルホニル基、ナフチルスルホニル基、2−ピリジルスルホニル基等)、アミノ基(例えば、アミノ基、エチルアミノ基、ジメチルアミノ基、ブチルアミノ基、シクロペンチルアミノ基、2−エチルヘキシルアミノ基、ドデシルアミノ基、アニリノ基、ナフチルアミノ基、2−ピリジルアミノ基、ジフェニルアミノ基、フェニルナフチルアミノ基等)、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子等)、フッ化炭化水素基(例えば、フルオロメチル基、トリフルオロメチル基、ペンタフルオロエチル基、ペンタフルオロフェニル基等)、シアノ基、ニトロ基、ヒドロキシ基、メルカプト基、シリル基(例えば、トリメチルシリル基、トリイソプロピルシリル基、トリフェニルシリル基、フェニルジエチルシリル基等)、ホスホノ基等が挙げられる。これらの置換基は上記の置換基によってさらに置換されていてもよい。   Examples of the substituent include an alkyl group (for example, methyl group, ethyl group, propyl group, isopropyl group, tert-butyl group, pentyl group, hexyl group, octyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, etc.), A cycloalkyl group (eg, cyclopentyl group, cyclohexyl group, etc.), an alkenyl group (eg, vinyl group, allyl group, etc.), an alkynyl group (eg, ethynyl group, propargyl group, etc.), an aromatic hydrocarbon ring group (aromatic carbon) Also referred to as ring group, aryl group, etc., for example, phenyl group, p-chlorophenyl group, mesityl group, tolyl group, xylyl group, naphthyl group, anthryl group, azulenyl group, acenaphthenyl group, fluorenyl group, phenanthryl group, indenyl group, pyrenyl Group, biphenylyl group, etc.), aromatic heterocyclic group (for example, Zyl group, pyrimidinyl group, furyl group, pyrrolyl group, imidazolyl group, benzimidazolyl group, pyrazolyl group, pyrazinyl group, triazolyl group (for example, 1,2,4-triazol-1-yl group, 1,2,3-triazole- 1-yl group, etc.), oxazolyl group, benzoxazolyl group, thiazolyl group, isoxazolyl group, isothiazolyl group, furazanyl group, thienyl group, quinolyl group, benzofuryl group, dibenzofuryl group, benzothienyl group, dibenzothienyl group, indolyl Group, carbazolyl group, carbolinyl group, diazacarbazolyl group (in which one of the carbon atoms constituting the carboline ring of the carbolinyl group is replaced by a nitrogen atom), quinoxalinyl group, pyridazinyl group, triazinyl group, quinazolinyl group , Phthalazinyl group, etc.) Heterocyclic group (for example, pyrrolidyl group, imidazolidyl group, morpholyl group, oxazolidyl group, etc.), alkoxy group (for example, methoxy group, ethoxy group, propyloxy group, pentyloxy group, hexyloxy group, octyloxy group, dodecyloxy group) Etc.), cycloalkoxy groups (eg cyclopentyloxy group, cyclohexyloxy group etc.), aryloxy groups (eg phenoxy group, naphthyloxy group etc.), alkylthio groups (eg methylthio group, ethylthio group, propylthio group, pentylthio group) Hexylthio group, octylthio group, dodecylthio group, etc.), cycloalkylthio group (eg, cyclopentylthio group, cyclohexylthio group, etc.), arylthio group (eg, phenylthio group, naphthylthio group, etc.), alkoxycarbonyl group (example) For example, methyloxycarbonyl group, ethyloxycarbonyl group, butyloxycarbonyl group, octyloxycarbonyl group, dodecyloxycarbonyl group, etc.), aryloxycarbonyl group (eg, phenyloxycarbonyl group, naphthyloxycarbonyl group, etc.), sulfamoyl group (For example, aminosulfonyl group, methylaminosulfonyl group, dimethylaminosulfonyl group, butylaminosulfonyl group, hexylaminosulfonyl group, cyclohexylaminosulfonyl group, octylaminosulfonyl group, dodecylaminosulfonyl group, phenylaminosulfonyl group, naphthylaminosulfonyl Group, 2-pyridylaminosulfonyl group, etc.), acyl group (for example, acetyl group, ethylcarbonyl group, propylcarbonyl group, pentylcarbonyl) Cyclohexylcarbonyl group, octylcarbonyl group, 2-ethylhexylcarbonyl group, dodecylcarbonyl group, phenylcarbonyl group, naphthylcarbonyl group, pyridylcarbonyl group, etc.), acyloxy group (for example, acetyloxy group, ethylcarbonyloxy group, butylcarbonyloxy) Group, octylcarbonyloxy group, dodecylcarbonyloxy group, phenylcarbonyloxy group, etc.), amide group (for example, methylcarbonylamino group, ethylcarbonylamino group, dimethylcarbonylamino group, propylcarbonylamino group, pentylcarbonylamino group, cyclohexyl group) Carbonylamino group, 2-ethylhexylcarbonylamino group, octylcarbonylamino group, dodecylcarbonylamino group, phenylcarbonylamino , Naphthylcarbonylamino group, etc.), carbamoyl group (for example, aminocarbonyl group, methylaminocarbonyl group, dimethylaminocarbonyl group, propylaminocarbonyl group, pentylaminocarbonyl group, cyclohexylaminocarbonyl group, octylaminocarbonyl group, 2-ethylhexyl) Aminocarbonyl group, dodecylaminocarbonyl group, phenylaminocarbonyl group, naphthylaminocarbonyl group, 2-pyridylaminocarbonyl group, etc.), ureido group (for example, methylureido group, ethylureido group, pentylureido group, cyclohexylureido group, octylureido) Group, dodecylureido group, phenylureido group naphthylureido group, 2-pyridylaminoureido group, etc.), sulfinyl group (for example, methylsulfinyl group) , Ethylsulfinyl group, butylsulfinyl group, cyclohexylsulfinyl group, 2-ethylhexylsulfinyl group, dodecylsulfinyl group, phenylsulfinyl group, naphthylsulfinyl group, 2-pyridylsulfinyl group, etc.), alkylsulfonyl group (for example, methylsulfonyl group, ethyl Sulfonyl group, butylsulfonyl group, cyclohexylsulfonyl group, 2-ethylhexylsulfonyl group, dodecylsulfonyl group, etc.), arylsulfonyl group or heteroarylsulfonyl group (for example, phenylsulfonyl group, naphthylsulfonyl group, 2-pyridylsulfonyl group, etc.), Amino group (for example, amino group, ethylamino group, dimethylamino group, butylamino group, cyclopentylamino group, 2-ethylhexylamino group, dodecylamino group) Group, anilino group, naphthylamino group, 2-pyridylamino group, diphenylamino group, phenylnaphthylamino group, etc.), halogen atom (for example, fluorine atom, chlorine atom, bromine atom etc.), fluorinated hydrocarbon group (for example, Fluoromethyl group, trifluoromethyl group, pentafluoroethyl group, pentafluorophenyl group, etc.), cyano group, nitro group, hydroxy group, mercapto group, silyl group (for example, trimethylsilyl group, triisopropylsilyl group, triphenylsilyl group) , Phenyldiethylsilyl group, etc.), phosphono group and the like. These substituents may be further substituted with the above substituents.

これらの置換基は複数が互いに結合して環を形成していてもよく、また、複数の置換基が存在する場合、各々の置換基は同一でも異なっていてもよく、お互いに連結して環を形成してもよい。   A plurality of these substituents may be bonded to each other to form a ring, and when a plurality of substituents are present, each substituent may be the same or different, and linked to each other to form a ring. May be formed.

〜R20はそれぞれ独立して水素原子、ハロゲン原子、炭素原子数1〜20の直鎖状または分岐状のアルキル基(該アルキル基の1つもしくは隣接しない2つ以上のメチレン基は−O−、−S−、−CO−、−CO−O−、−O−CO−、−CH=CH−、−C≡C−で置き換えられていてもよく、また、1つもしくは2つ以上のメチレン基は置換基を有していてもよいアリーレン基または置換基を有していてもよい2価の複素環基で置き換えられていてもよく、該アルキル基中の水素原子はフッ素原子に置換されていてもよい。)、炭素原子数3〜20のシクロアルキル基(該シクロアルキル基の1つもしくは隣接しない2つ以上のメチレン基は−O−、−S−、−CO−、−CO−O−、−O−CO−、−CH=CH−、で置き換えられていてもよく、また、1つもしくは2つ以上のメチレン基は置換基を有していてもよいアリーレン基または置換基を有していてもよい2価の複素環基で置き換えられていてもよく、該シクロアルキル基中の水素原子はフッ素原子に置換されていてもよい。)、置換基を有していてもよいアリール基または置換基を有していてもよい複素環基から選ばれ、隣接するものは結合して環構造を形成してもよい。 R 1 to R 20 each independently represent a hydrogen atom, a halogen atom, a linear or branched alkyl group having 1 to 20 carbon atoms (one or two or more methylene groups not adjacent to the alkyl group are- O—, —S—, —CO—, —CO—O—, —O—CO—, —CH═CH—, —C≡C— may be substituted, and one or more The methylene group may be substituted with an arylene group which may have a substituent or a divalent heterocyclic group which may have a substituent, and the hydrogen atom in the alkyl group is a fluorine atom. A cycloalkyl group having 3 to 20 carbon atoms (one or two or more methylene groups not adjacent to the cycloalkyl group may be -O-, -S-, -CO-,- Replaced by CO-O-, -O-CO-, -CH = CH- And one or two or more methylene groups may be substituted with an optionally substituted arylene group or an optionally substituted divalent heterocyclic group. Or a hydrogen atom in the cycloalkyl group may be substituted with a fluorine atom.), An aryl group which may have a substituent or a heterocyclic group which may have a substituent. Adjacent ones may be bonded to form a ring structure.

アルキル基の例としてはメチル基、エチル基、プロピル基、イソプロピル基、tert−ブチル基、ペンチル基、ヘキシル基、オクチル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、等、および前記アルキル基の1つもしくは隣接しない2つ以上のメチレン基が−O−、−S−、−CO−、−CO−O−、−O−CO−、−CH=CH−で置き換えられた基、または前記アルキル基の1つもしくは2つ以上のメチレン基が置換基を有していてもよいアリーレン基または置換基を有していてもよい2価の複素環基で置き換えられた基が挙げられる。該アルキル基中の任意の水素原子はフッ素原子に置換されていてもよい。   Examples of alkyl groups include methyl, ethyl, propyl, isopropyl, tert-butyl, pentyl, hexyl, octyl, dodecyl, tridecyl, tetradecyl, pentadecyl, etc., and the alkyl group A group in which one or more methylene groups are replaced by —O—, —S—, —CO—, —CO—O—, —O—CO—, —CH═CH—, or Examples thereof include a group in which one or more methylene groups of an alkyl group are substituted with an arylene group which may have a substituent or a divalent heterocyclic group which may have a substituent. Any hydrogen atom in the alkyl group may be substituted with a fluorine atom.

シクロアルキル基の例としてはシクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基等および前期シクロアルキル基の1つもしくは隣接しない2つ以上のメチレン基が−O−、−S−、−CO−、−CO−O−、−O−CO−、−CH=CH−で置き換えられた基、または前期シクロアルキル基の1つもしくは2つ以上のメチレン基が置換基を有していてもよいアリーレン基または置換基を有していてもよい2価の複素環基で置き換えられた基が挙げられる。該シクロアルキル基中の任意の水素原子はフッ素原子に置換されていてもよい。   Examples of the cycloalkyl group include cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group and the like, and one or two or more methylene groups not adjacent to the preceding cycloalkyl group are -O-, -S-, A group substituted by -CO-, -CO-O-, -O-CO-, -CH = CH-, or one or more methylene groups of the preceding cycloalkyl group have a substituent; And a group substituted with a divalent heterocyclic group which may have an arylene group or a substituent. Any hydrogen atom in the cycloalkyl group may be substituted with a fluorine atom.

アリール基の例としては、フェニル基、p−クロロフェニル基、メシチル基、トリル基、キシリル基、ナフチル基、アントリル基、アズレニル基、アセナフテニル基、フルオレニル基、フェナントリル基、インデニル基、ピレニル基、ビフェニリル基等が挙げられる。   Examples of aryl groups include phenyl, p-chlorophenyl, mesityl, tolyl, xylyl, naphthyl, anthryl, azulenyl, acenaphthenyl, fluorenyl, phenanthryl, indenyl, pyrenyl, biphenylyl Etc.

複素環基としては芳香族でもよいし非芳香族でも良い。   The heterocyclic group may be aromatic or non-aromatic.

芳香意族の複素環基の例としては、ピリジル基、ピリミジニル基、フリル基、ピロリル基、イミダゾリル基、ベンゾイミダゾリル基、ピラゾリル基、ピラジニル基、トリアゾリル基(例えば、1,2,4−トリアゾール−1−イル基、1,2,3−トリアゾール−1−イル基等)、オキサゾリル基、ベンゾオキサゾリル基、チアゾリル基、イソオキサゾリル基、イソチアゾリル基、フラザニル基、チエニル基、キノリル基、ベンゾフリル基、ジベンゾフリル基、ベンゾチエニル基、ジベンゾチエニル基、インドリル基、カルバゾリル基、カルボリニル基、ジアザカルバゾリル基(前記カルボリニル基のカルボリン環を構成する炭素原子の一つが窒素原子で置き換わったものを示す)、キノキサリニル基、ピリダジニル基、トリアジニル基、キナゾリニル基、フタラジニル基、等が挙げられる。   Examples of aromatic heterocyclic groups include pyridyl group, pyrimidinyl group, furyl group, pyrrolyl group, imidazolyl group, benzimidazolyl group, pyrazolyl group, pyrazinyl group, triazolyl group (for example, 1,2,4-triazole-1). -Yl group, 1,2,3-triazol-1-yl group, etc.), oxazolyl group, benzoxazolyl group, thiazolyl group, isoxazolyl group, isothiazolyl group, furazanyl group, thienyl group, quinolyl group, benzofuryl group, dibenzo Furyl group, benzothienyl group, dibenzothienyl group, indolyl group, carbazolyl group, carbolinyl group, diazacarbazolyl group (indicating that one of the carbon atoms constituting the carboline ring of the carbolinyl group is replaced by a nitrogen atom) Quinoxalinyl group, pyridazinyl group, triazinyl group, Zoriniru group, phthalazinyl group, and the like.

非芳香族の複素環基の例としては、ピロリジル基、イミダゾリジニル基、モルホリニル基、オキサゾリジニル基、テトラヒドロフラニル基、テトラヒドロチエニル基、等が挙げられる。   Examples of the non-aromatic heterocyclic group include a pyrrolidyl group, an imidazolidinyl group, a morpholinyl group, an oxazolidinyl group, a tetrahydrofuranyl group, a tetrahydrothienyl group, and the like.

本発明の一般式(5)または(6)で表される部分構造を含む有機化合物の好ましい実施態様は、化合物が、下記一般式(7)〜(12)のいずれかで表される場合である。   The preferable embodiment of the organic compound containing the partial structure represented by the general formula (5) or (6) of the present invention is a case where the compound is represented by any one of the following general formulas (7) to (12). is there.

Figure 2010040829
Figure 2010040829

Figure 2010040829
Figure 2010040829

Figure 2010040829
Figure 2010040829

式中、m1、m2、n1およびn2はそれぞれ0〜6の整数である。   In the formula, m1, m2, n1 and n2 are each an integer of 0 to 6.

ただし、m1+n1≦6であり、m2+n2≦6である。   However, m1 + n1 ≦ 6 and m2 + n2 ≦ 6.

m3、m4、m5、m6、n3、n4、n5およびn6はそれぞれ1〜6の整数である。ただし、m3+n3≦6であり、m4+n4≦6であり、m4+n4≦6であり、m5+n5≦6であり、m6+n6≦6である。   m3, m4, m5, m6, n3, n4, n5 and n6 are each an integer of 1-6. However, m3 + n3 ≦ 6, m4 + n4 ≦ 6, m4 + n4 ≦ 6, m5 + n5 ≦ 6, and m6 + n6 ≦ 6.

、X、X、X、XおよびXはそれぞれ、単結合、置換基を有していてもよいアリール基、置換基を有していてもよい複素環基、または、置換基を有していてもよいアミノ基から選ばれるmx+nx価の基を表す。ここで、xは1〜6のいずれかを表す。 X 1 , X 2 , X 3 , X 4 , X 5 and X 6 are each a single bond, an aryl group which may have a substituent, a heterocyclic group which may have a substituent, or It represents an mx + nx valent group selected from an amino group which may have a substituent. Here, x represents any one of 1-6.

アリール基の例としては、フェニル基、p−クロロフェニル基、メシチル基、トリル基、キシリル基、ナフチル基、アントリル基、アズレニル基、アセナフテニル基、フルオレニル基、フェナントリル基、インデニル基、ピレニル基、ビフェニリル基等が挙げられる。   Examples of aryl groups include phenyl, p-chlorophenyl, mesityl, tolyl, xylyl, naphthyl, anthryl, azulenyl, acenaphthenyl, fluorenyl, phenanthryl, indenyl, pyrenyl, biphenylyl Etc.

複素環基としては芳香族でもよいし非芳香族でもよい。   The heterocyclic group may be aromatic or non-aromatic.

芳香意族の複素環基の例としては、ピリジル基、ピリミジニル基、フリル基、ピロリル基、イミダゾリル基、ベンゾイミダゾリル基、ピラゾリル基、ピラジニル基、トリアゾリル基(例えば、1,2,4−トリアゾール−1−イル基、1,2,3−トリアゾール−1−イル基等)、オキサゾリル基、ベンゾオキサゾリル基、チアゾリル基、イソオキサゾリル基、イソチアゾリル基、フラザニル基、チエニル基、キノリル基、ベンゾフリル基、ジベンゾフリル基、ベンゾチエニル基、ジベンゾチエニル基、インドリル基、カルバゾリル基、カルボリニル基、ジアザカルバゾリル基(前記カルボリニル基のカルボリン環を構成する炭素原子の一つが窒素原子で置き換わったものを示す)、キノキサリニル基、ピリダジニル基、トリアジニル基、キナゾリニル基、フタラジニル基、等が挙げられる。   Examples of aromatic heterocyclic groups include pyridyl group, pyrimidinyl group, furyl group, pyrrolyl group, imidazolyl group, benzimidazolyl group, pyrazolyl group, pyrazinyl group, triazolyl group (for example, 1,2,4-triazole-1). -Yl group, 1,2,3-triazol-1-yl group, etc.), oxazolyl group, benzoxazolyl group, thiazolyl group, isoxazolyl group, isothiazolyl group, furazanyl group, thienyl group, quinolyl group, benzofuryl group, dibenzo Furyl group, benzothienyl group, dibenzothienyl group, indolyl group, carbazolyl group, carbolinyl group, diazacarbazolyl group (indicating that one of the carbon atoms constituting the carboline ring of the carbolinyl group is replaced by a nitrogen atom) Quinoxalinyl group, pyridazinyl group, triazinyl group, Zoriniru group, phthalazinyl group, and the like.

非芳香族の複素環基の例としては、ピロリジニル基、イミダゾリジニル基、モルホリル基、オキサゾリジニル基、テトラヒドロフラニル基、テトラヒドロチエニル基等が挙げられる。   Examples of the non-aromatic heterocyclic group include pyrrolidinyl group, imidazolidinyl group, morpholyl group, oxazolidinyl group, tetrahydrofuranyl group, tetrahydrothienyl group and the like.

置換基の例としては、前記一般式(5)または(6)の説明で挙げたものと同じものが挙げられる。   As an example of a substituent, the same thing as what was mentioned by description of the said General formula (5) or (6) is mentioned.

およびAはそれぞれ独立して単結合または置換基を有していてもよいアリーレン基または置換基を有していてもよい2価の複素環基を示す。アリーレン基および2価の複素環基の例としては上に一般式(5)または(6)の説明で挙げたものと同じものが挙げられる。 A 1 and A 2 each independently represent a single bond or an arylene group which may have a substituent or a divalent heterocyclic group which may have a substituent. Examples of the arylene group and the divalent heterocyclic group are the same as those described above in the description of the general formula (5) or (6).

およびAはそれぞれ独立して置換基を有していてもよいアリール基または置換基を有していてもよい複素環基を示す。アリール基または置換基の例としては上にX〜Xの説明で挙げたものと同じものが挙げられる。 A 3 and A 4 each independently represent an aryl group which may have a substituent or a heterocyclic group which may have a substituent. Examples of the aryl group or the substituent include the same groups as those described above for X 1 to X 6 .

〜R20はそれぞれ独立して水素原子、ハロゲン原子、炭素原子数1から20の直鎖状または分岐状のアルキル基(該アルキル基の1つもしくは隣接しない2つ以上のメチレン基は−O−、−S−、−CO−、−CO−O−、−O−CO−、−CH=CH−、−C≡C−で置き換えられていてもよく、また、1つもしくは2つ以上のメチレン基は置換基を有していてもよいアリーレン基または置換基を有していてもよい2価の複素環基で置き換えられていてもよく、該アルキル基中の水素原子はフッ素原子に置換されていてもよい。)、炭素原子数3から20のシクロアルキル基(該シクロアルキル基の1つもしくは隣接しない2つ以上のメチレン基は−O−、−S−、−CO−、−CO−O−、−O−CO−、−CH=CH−、で置き換えられていてもよく、また、1つもしくは2つ以上のメチレン基は置換基を有していてもよいアリーレン基または置換基を有していてもよい2価の複素環基で置き換えられていてもよく、該シクロアルキル基中の水素原子はフッ素原子に置換されていてもよい。)、置換基を有していてもよいアリール基または置換基を有していてもよい複素環基から選ばれ、隣接するものは結合して環構造を形成してもよい。 R 1 to R 20 are each independently a hydrogen atom, a halogen atom, a linear or branched alkyl group having 1 to 20 carbon atoms (one or two or more methylene groups not adjacent to the alkyl group are- O—, —S—, —CO—, —CO—O—, —O—CO—, —CH═CH—, —C≡C— may be substituted, and one or more The methylene group may be substituted with an arylene group which may have a substituent or a divalent heterocyclic group which may have a substituent, and the hydrogen atom in the alkyl group is a fluorine atom. Which may be substituted.), A cycloalkyl group having 3 to 20 carbon atoms (one or two or more methylene groups not adjacent to the cycloalkyl group are -O-, -S-, -CO-,- CO—O—, —O—CO—, —CH═CH—, One or two or more methylene groups may be substituted with an arylene group which may have a substituent or a divalent heterocyclic group which may have a substituent. And a hydrogen atom in the cycloalkyl group may be substituted with a fluorine atom.), An aryl group which may have a substituent or a heterocyclic group which may have a substituent. The adjacent ones may be bonded to form a ring structure.

アルキル基、シクロアルキル基、アリール基、複素環基の例としては上に一般式(5)または(6)の説明で挙げたものと同じものが挙げられる。   Examples of the alkyl group, cycloalkyl group, aryl group, and heterocyclic group are the same as those described above in the description of the general formula (5) or (6).

《分子量》
本発明の一般式(5)または(6)で表される部分構造を含む有機化合物の分子量は、通常4000以下、好ましくは3000以下、より好ましくは2000以下であり、また通常200以上、好ましくは300以上、より好ましくは400以上である。
《Molecular weight》
The molecular weight of the organic compound containing the partial structure represented by the general formula (5) or (6) of the present invention is usually 4000 or less, preferably 3000 or less, more preferably 2000 or less, and usually 200 or more, preferably 300 or more, more preferably 400 or more.

本発明の一般式(5)または(6)で表される部分構造を含む有機化合物の分子量がこの上限値を超えると、昇華性が著しく低下して電界発光素子を制作する際に蒸着法を用いる場合において支障をきたしたり、不純物の高分子量化によって精製が困難となる場合があり、またこの下限値を下回ると、ガラス転移温度および融点、気化温度などが低下するため、耐熱性が著しく損なわれるおそれがある。   When the molecular weight of the organic compound containing the partial structure represented by the general formula (5) or (6) of the present invention exceeds this upper limit, the sublimation property is remarkably lowered, and an evaporation method is used when producing an electroluminescent device. If it is used, it may interfere with the purification or it may be difficult to purify due to the high molecular weight of impurities. If the lower limit is not reached, the glass transition temperature, melting point, vaporization temperature, etc. will decrease, so the heat resistance will be significantly impaired. There is a risk of being.

《物性》
本発明の一般式(5)または(6)で表される部分構造を含む有機化合物は、通常50℃以上のガラス転移温度を有するが、有機電界発光素子に使用する際には、その耐熱性の観点から、ガラス転移温度は90℃以上であることが好ましく、110℃以上であることがさらに好ましい。ガラス転移温度の上限は通常400℃程度である。
<Physical properties>
The organic compound containing a partial structure represented by the general formula (5) or (6) of the present invention usually has a glass transition temperature of 50 ° C. or higher, but when used in an organic electroluminescent device, its heat resistance From this viewpoint, the glass transition temperature is preferably 90 ° C. or higher, and more preferably 110 ° C. or higher. The upper limit of the glass transition temperature is usually about 400 ° C.

本発明の一般式(5)または(6)で表される部分構造を含む有機化合物は、常圧下で通常800℃以下の気化温度を有するが、有機電界発光素子に使用する際には、その蒸着製膜工程の安定性の観点から、気化温度は700℃以下であることが好ましく、600℃以下であることがさらに好ましい。気化温度の下限は通常300℃程度である。   The organic compound containing the partial structure represented by the general formula (5) or (6) of the present invention usually has a vaporization temperature of 800 ° C. or lower under normal pressure, but when used in an organic electroluminescent device, From the viewpoint of the stability of the vapor deposition film forming step, the vaporization temperature is preferably 700 ° C. or lower, and more preferably 600 ° C. or lower. The lower limit of the vaporization temperature is usually about 300 ° C.

本発明の一般式(5)または(6)で表される部分構造を含む有機化合物は、通常100℃以上の融点を有するが、有機電界発光素子に使用する際には、その耐熱性の観点から、融点は150℃以上であることが好ましく、200℃以上であることがさらに好ましい。融点の上限は通常500℃程度である。   The organic compound containing the partial structure represented by the general formula (5) or (6) of the present invention usually has a melting point of 100 ° C. or higher, but when used in an organic electroluminescent device, its heat resistance viewpoint. Therefore, the melting point is preferably 150 ° C. or higher, and more preferably 200 ° C. or higher. The upper limit of the melting point is usually about 500 ° C.

以下、本発明に係る一般式(5)または(6)で表される部分構造を含む有機化合物の具体例を示すが、本発明はこれらに限定されない。   Hereinafter, although the specific example of the organic compound containing the partial structure represented by General formula (5) or (6) based on this invention is shown, this invention is not limited to these.

Figure 2010040829
Figure 2010040829

Figure 2010040829
Figure 2010040829

Figure 2010040829
Figure 2010040829

Figure 2010040829
Figure 2010040829

Figure 2010040829
Figure 2010040829

Figure 2010040829
Figure 2010040829

Figure 2010040829
Figure 2010040829

Figure 2010040829
Figure 2010040829

Figure 2010040829
Figure 2010040829

Figure 2010040829
Figure 2010040829

Figure 2010040829
Figure 2010040829

Figure 2010040829
Figure 2010040829

Figure 2010040829
Figure 2010040829

Figure 2010040829
Figure 2010040829

Figure 2010040829
Figure 2010040829

Figure 2010040829
Figure 2010040829

Figure 2010040829
Figure 2010040829

Figure 2010040829
Figure 2010040829

Figure 2010040829
Figure 2010040829

Figure 2010040829
Figure 2010040829

Figure 2010040829
Figure 2010040829

本発明のインデノインドール化合物は、Tetrahedron、47(1991) 4383を参考にして合成することができる。   The indenoindole compound of the present invention can be synthesized with reference to Tetrahedron, 47 (1991) 4383.

合成例(例示化合物No.IH−5の合成)   Synthesis Example (Synthesis of Exemplified Compound No. IH-5)

Figure 2010040829
Figure 2010040829

3−フェニルインダン−1−オン4.17g(20.0mmol)、フェニルヒドラジン2.17g(20.0mmol)、酢酸100ml、濃塩酸6.0mlを300mlの3口フラスコに入れ、窒素気流下10時間室温で攪拌を行った。反応溶液を冷水150mlに注ぎ、濾過を行い、得られた結晶をメタノールで洗浄した。結晶をトルエンに溶解し、シリカゲルカラムクロマト(溶離液:トルエン/酢酸エチル:20/1)で精製し、トルエンで再結晶して10−フェニル−5,10−ジヒドロ−インデノ[1,2−b]インドールの結晶1.93g(収率34.3%)を得た。   3. Phenylhydran-1-one 4.17 g (20.0 mmol), phenylhydrazine 2.17 g (20.0 mmol), acetic acid 100 ml, concentrated hydrochloric acid 6.0 ml were placed in a 300 ml three-necked flask, and a nitrogen stream for 10 hours. Stir at room temperature. The reaction solution was poured into 150 ml of cold water, filtered, and the obtained crystals were washed with methanol. The crystals were dissolved in toluene, purified by silica gel column chromatography (eluent: toluene / ethyl acetate: 20/1), recrystallized from toluene, and 10-phenyl-5,10-dihydro-indeno [1,2-b ] 1.93 g (34.3% yield) of indole crystals were obtained.

Figure 2010040829
Figure 2010040829

窒素気流下、10−フェニル−5,10−ジヒドロ−インデノ[1,2−b]インドール0.42g(1.5mmole)、m−ジヨードベンゼン0.23g(0.70mmole)、t−ブトキシカリウム0.19g(1.65mmole)、o−キシレン20mlを100mlの3口フラスコに入れ、窒素気流下に10分間攪拌し可溶成分を均一に溶解した。その中に、酢酸パラジウム20mgとt−ブチルホスフィン45mgをキシレン10mlに溶解した溶液をゆっくり滴下した後、加熱還流下、5時間攪拌した。反応終了後、反応液に水を加ええ、酢酸エチルで2回抽出した。有機層を水洗し、硫酸マグネシウムで乾燥後に減圧乾固し、シリカゲルカラムクロマト(溶離液:トルエン)で精製後、アセトンで再結晶して例示化合物No.IH−5の結晶0.29g(収率65.1%)を得た。   Under nitrogen stream, 10-phenyl-5,10-dihydro-indeno [1,2-b] indole 0.42 g (1.5 mmole), m-diiodobenzene 0.23 g (0.70 mmole), t-butoxypotassium 0.19 g (1.65 mmole) and 20 ml of o-xylene were placed in a 100 ml three-necked flask and stirred for 10 minutes under a nitrogen stream to uniformly dissolve soluble components. A solution prepared by dissolving 20 mg of palladium acetate and 45 mg of t-butylphosphine in 10 ml of xylene was slowly dropped therein, and the mixture was stirred for 5 hours while heating under reflux. After completion of the reaction, water was added to the reaction solution and extracted twice with ethyl acetate. The organic layer was washed with water, dried over magnesium sulfate and then dried under reduced pressure, purified by silica gel column chromatography (eluent: toluene), recrystallized from acetone and exemplified Compound No. 0.29 g (yield 65.1%) of crystals of IH-5 were obtained.

MASS分析により、この化合物のMである636.8を確認した。 MASS analysis confirmed 636.8, which is M + of this compound.

また、NMR測定によりこの化合物の構造を確認した。
HNMR(CDCl,400MHz)
σ(ppm)
7.90(t,1H,J=8.1Hz),7.81(dd,2H,J=8.1,1.7Hz),7.80(d,1H、J=1.7Hz),7.50(d,2H,J=8.2Hz),7.40(d,2H,J=8.2Hz),7.33(d,2H,J=8.2Hz),7.12−7.32(m,20H),5.10(s,2H)。
Moreover, the structure of this compound was confirmed by NMR measurement.
1 HNMR (CDCl 3 , 400 MHz)
σ (ppm)
7.90 (t, 1H, J = 8.1 Hz), 7.81 (dd, 2H, J = 8.1, 1.7 Hz), 7.80 (d, 1H, J = 1.7 Hz), 7 .50 (d, 2H, J = 8.2 Hz), 7.40 (d, 2H, J = 8.2 Hz), 7.33 (d, 2H, J = 8.2 Hz), 7.12-7. 32 (m, 20H), 5.10 (s, 2H).

本発明の他の化合物も同様に合成することができる。   Other compounds of the present invention can be synthesized similarly.

次に、本発明の発光素子、照明装置および画像表示装置について説明する。   Next, the light emitting element, illumination device, and image display device of the present invention will be described.

《有機EL素子の構成層》
本発明の有機EL素子の構成層について説明する。本発明において、有機EL素子の層構成の好ましい具体例を以下に示すが、本発明はこれらに限定されない。
<< Constituent layers of organic EL elements >>
The constituent layers of the organic EL element of the present invention will be described. In this invention, although the preferable specific example of the layer structure of an organic EL element is shown below, this invention is not limited to these.

(i)陽極/発光層/電子輸送層/陰極
(ii)陽極/正孔輸送層/発光層/電子輸送層/陰極
(iii)陽極/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極
(iv)陽極/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極バッファー層/陰極
(v)陽極/陽極バッファー層/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極バッファー層/陰極
本発明の有機EL素子においては、青色発光層の発光極大波長は430nm〜480nmにあるものが好ましく、緑色発光層は発光極大波長が510nm〜550nm、赤色発光層は発光極大波長が600nm〜640nmの範囲にある単色発光層であることが好ましく、これらを用いた表示装置であることが好ましい。また、これらの少なくとも3層の発光層を積層して白色発光層としたものであってもよい。さらに、発光層間には非発光性の中間層を有していてもよい。本発明の有機EL素子としては白色発光層であることが好ましく、これらを用いた照明装置であることが好ましい。
(I) Anode / light emitting layer / electron transport layer / cathode (ii) Anode / hole transport layer / light emitting layer / electron transport layer / cathode (iii) Anode / hole transport layer / light emitting layer / hole blocking layer / electron Transport layer / cathode (iv) Anode / hole transport layer / light emitting layer / hole blocking layer / electron transport layer / cathode buffer layer / cathode (v) Anode / anode buffer layer / hole transport layer / light emitting layer / hole Blocking layer / electron transport layer / cathode buffer layer / cathode In the organic EL device of the present invention, the blue light emitting layer preferably has a light emission maximum wavelength of 430 nm to 480 nm, and the green light emitting layer has a light emission maximum wavelength of 510 nm to 550 nm, The red light emitting layer is preferably a monochromatic light emitting layer having a light emission maximum wavelength in the range of 600 nm to 640 nm, and is preferably a display device using these. Also, a white light emitting layer may be formed by laminating at least three of these light emitting layers. Further, a non-light emitting intermediate layer may be provided between the light emitting layers. The organic EL element of the present invention is preferably a white light emitting layer, and is preferably a lighting device using these.

本発明の有機EL素子を構成する各層について説明する。   Each layer which comprises the organic EL element of this invention is demonstrated.

《発光層》
本発明に係る発光層は、電極または電子輸送層、正孔輸送層から注入されてくる電子および正孔が再結合して発光する層であり、発光する部分は発光層の層内であっても発光層と隣接層との界面であってもよい。
<Light emitting layer>
The light emitting layer according to the present invention is a layer that emits light by recombination of electrons and holes injected from the electrode, the electron transport layer, or the hole transport layer, and the light emitting portion is in the layer of the light emitting layer. May be the interface between the light emitting layer and the adjacent layer.

発光層の膜厚の総和は特に制限はないが、膜の均質性や、発光時に不必要な高電圧を印加するのを防止し、かつ、駆動電流に対する発光色の安定性向上の観点から、2nm〜5μmの範囲に調整することが好ましく、さらに好ましくは2nm〜200nmの範囲に調整され、特に好ましくは、10nm〜20nmの範囲である。   The total film thickness of the light emitting layer is not particularly limited, but from the viewpoint of improving the uniformity of the film, preventing unnecessary application of high voltage during light emission, and improving the stability of the emission color with respect to the drive current. It is preferable to adjust in the range of 2 nm to 5 μm, more preferably in the range of 2 nm to 200 nm, and particularly preferably in the range of 10 nm to 20 nm.

発光層の作製には、後述する発光ドーパントやホスト化合物を、例えば、真空蒸着法、スピンコート法、キャスト法、LB法、インクジェット法等の公知の薄膜化法により成膜して形成することができる。   For the production of the light-emitting layer, a light-emitting dopant or a host compound, which will be described later, is formed by a known thinning method such as a vacuum deposition method, a spin coating method, a casting method, an LB method, or an ink-jet method. it can.

本発明の有機EL素子の発光層には、発光ホスト化合物と、発光ドーパント(リン光ドーパント(リン光発光性ドーパントともいう)や蛍光ドーパント等)の少なくとも1種類とを含有することが好ましい。   The light emitting layer of the organic EL device of the present invention preferably contains a light emitting host compound and at least one kind of light emitting dopant (such as a phosphorescent dopant (also referred to as a phosphorescent dopant) or a fluorescent dopant).

(ホスト化合物(発光ホスト等ともいう))
本発明に用いられるホスト化合物について説明する。
(Host compound (also called luminescent host))
The host compound used in the present invention will be described.

ここで、本発明においてホスト化合物とは、発光層に含有される化合物の内でその層中での質量比が20%以上であり、且つ室温(25℃)においてリン光発光のリン光量子収率が、0.1未満の化合物と定義される。好ましくはリン光量子収率が0.01未満である。また、発光層に含有される化合物の中で、その層中での質量比が20%以上であることが好ましい。   Here, in the present invention, the host compound means a phosphorescent quantum yield of phosphorescence emission at a room temperature (25 ° C.) having a mass ratio of 20% or more in the compound contained in the light emitting layer. Is defined as a compound of less than 0.1. The phosphorescence quantum yield is preferably less than 0.01. Moreover, it is preferable that the mass ratio in the layer is 20% or more among the compounds contained in a light emitting layer.

本発明のホスト化合物としては、一般式(5)または(6) で表される部分構造を含む有機化合物が好ましく、さらに公知のホスト化合物を併用して用いてもよく、または複数種併用して用いてもよい。ホスト化合物を複数種用いることで、電荷の移動を調整することが可能であり、有機EL素子を高効率化することができる。また、後述する発光ドーパントを複数種用いることで、異なる発光を混ぜることが可能となり、これにより任意の発光色を得ることができる。   As the host compound of the present invention, an organic compound containing a partial structure represented by the general formula (5) or (6) is preferable, and a known host compound may be used in combination, or a plurality of types may be used in combination. It may be used. By using a plurality of types of host compounds, it is possible to adjust the movement of charges, and the organic EL element can be made highly efficient. Moreover, it becomes possible to mix different light emission by using multiple types of light emission dopants mentioned later, and, thereby, arbitrary luminescent colors can be obtained.

また、本発明に用いられる発光ホストとしては、従来公知の低分子化合物でも、繰り返し単位をもつ高分子化合物でもよく、ビニル基やエポキシ基のような重合性基を有する低分子化合物(蒸着重合性発光ホスト)でもよく、前記材料Cのような化合物を1種または複数種用いても良い。   The light emitting host used in the present invention may be a conventionally known low molecular compound or a high molecular compound having a repeating unit, and a low molecular compound having a polymerizable group such as a vinyl group or an epoxy group (deposition polymerization property). A light emitting host), or one or more compounds such as the material C may be used.

以下に、本発明に好ましく用いられるホスト化合物の具体例を示すが、本発明はこれらに限定されない。   Although the specific example of the host compound preferably used for this invention below is shown, this invention is not limited to these.

Figure 2010040829
Figure 2010040829

併用してもよい公知のホスト化合物としては、正孔輸送能、電子輸送能を有しつつ、且つ発光の長波長化を防ぎ、なお且つ高Tg(ガラス転移温度)である化合物が好ましい。   As a known host compound that may be used in combination, a compound that has a hole transporting ability and an electron transporting ability, prevents the emission of light from being increased in wavelength, and has a high Tg (glass transition temperature) is preferable.

公知のホスト化合物の具体例としては、以下の文献に記載されている化合物が挙げられる。   Specific examples of known host compounds include compounds described in the following documents.

特開2001−257076号公報、同2002−308855号公報、同2001−313179号公報、同2002−319491号公報、同2001−357977号公報、同2002−334786号公報、同2002−8860号公報、同2002−334787号公報、同2002−15871号公報、同2002−334788号公報、同2002−43056号公報、同2002−334789号公報、同2002−75645号公報、同2002−338579号公報、同2002−105445号公報、同2002−343568号公報、同2002−141173号公報、同2002−352957号公報、同2002−203683号公報、同2002−363227号公報、同2002−231453号公報、同2003−3165号公報、同2002−234888号公報、同2003−27048号公報、同2002−255934号公報、同2002−260861号公報、同2002−280183号公報、同2002−299060号公報、同2002−302516号公報、同2002−305083号公報、同2002−305084号公報、同2002−308837号公報等。   JP-A-2001-257076, 2002-308855, 2001-313179, 2002-319491, 2001-357777, 2002-334786, 2002-8860, 2002-334787, 2002-15871, 2002-334788, 2002-43056, 2002-334789, 2002-75645, 2002-338579, 2002-105445 gazette, 2002-343568 gazette, 2002-141173 gazette, 2002-352957 gazette, 2002-203683 gazette, 2002-363227 gazette, 2002-231453 gazette, No. 003-3165, No. 2002-234888, No. 2003-27048, No. 2002-255934, No. 2002-286061, No. 2002-280183, No. 2002-299060, No. 2002. -302516, 2002-305083, 2002-305084, 2002-308837, and the like.

(発光ドーパント)
本発明に係る発光ドーパントについて説明する。
(Luminescent dopant)
The light emitting dopant according to the present invention will be described.

本発明に係る発光ドーパントとしては、蛍光ドーパント(蛍光性化合物ともいう)、リン光ドーパント(リン光発光体、リン光性化合物、リン光発光性化合物等ともいう)を用いることができるが、より発光効率の高い有機EL素子を得る観点からは、本発明の有機EL素子の発光層や発光ユニットに使用される発光ドーパント(単に、発光材料ということもある)としては、上記のホスト化合物を含有すると同時に、リン光ドーパントを含有することが好ましい。   As the light-emitting dopant according to the present invention, a fluorescent dopant (also referred to as a fluorescent compound) or a phosphorescent dopant (also referred to as a phosphorescent emitter, a phosphorescent compound, a phosphorescent compound, or the like) can be used. From the viewpoint of obtaining an organic EL device with high luminous efficiency, the light emitting dopant used in the light emitting layer or the light emitting unit of the organic EL device of the present invention (sometimes simply referred to as a light emitting material) contains the above host compound. At the same time, it is preferable to contain a phosphorescent dopant.

(リン光ドーパント)
本発明に係るリン光ドーパントについて説明する。
(Phosphorescent dopant)
The phosphorescent dopant according to the present invention will be described.

本発明に係るリン光ドーパントは、励起三重項からの発光が観測される化合物であり、具体的には、室温(25℃)にてリン光発光する化合物であり、リン光量子収率が、25℃において0.01以上の化合物であると定義されるが、好ましいリン光量子収率は0.1以上である。   The phosphorescent dopant according to the present invention is a compound in which light emission from an excited triplet is observed. Specifically, the phosphorescent dopant is a compound that emits phosphorescence at room temperature (25 ° C.) and has a phosphorescence quantum yield of 25. Although it is defined as a compound of 0.01 or more at ° C., a preferable phosphorescence quantum yield is 0.1 or more.

上記リン光量子収率は、第4版実験化学講座7の分光IIの398頁(1992年版、丸善)に記載の方法により測定できる。溶液中でのリン光量子収率は種々の溶媒を用いて測定できるが、本発明に係るリン光ドーパントは、任意の溶媒のいずれかにおいて上記リン光量子収率(0.01以上)が達成されればよい。   The phosphorescence quantum yield can be measured by the method described in Spectroscopic II, page 398 (1992 edition, Maruzen) of Experimental Chemistry Course 4 of the 4th edition. Although the phosphorescence quantum yield in a solution can be measured using various solvents, the phosphorescence dopant according to the present invention achieves the phosphorescence quantum yield (0.01 or more) in any solvent. That's fine.

リン光ドーパントの発光は原理としては2種挙げられ、一つはキャリアが輸送されるホスト化合物上でキャリアの再結合が起こってホスト化合物の励起状態が生成し、このエネルギーをリン光ドーパントに移動させることでリン光ドーパントからの発光を得るというエネルギー移動型、もう一つはリン光ドーパントがキャリアトラップとなり、リン光ドーパント上でキャリアの再結合が起こりリン光ドーパントからの発光が得られるというキャリアトラップ型であるが、いずれの場合においても、リン光ドーパントの励起状態のエネルギーはホスト化合物の励起状態のエネルギーよりも低いことが条件である。   There are two types of light emission of phosphorescent dopants in principle. One is the recombination of carriers on the host compound to which carriers are transported to generate an excited state of the host compound, and this energy is transferred to the phosphorescent dopant. The energy transfer type that obtains light emission from the phosphorescent dopant, and the other is that the phosphorescent dopant becomes a carrier trap, carrier recombination occurs on the phosphorescent dopant, and light emission from the phosphorescent dopant is obtained. Although it is a trap type, in any case, the excited state energy of the phosphorescent dopant is required to be lower than the excited state energy of the host compound.

リン光ドーパントは、有機EL素子の発光層に使用される公知のものの中から適宜選択して用いることができる。   The phosphorescent dopant can be appropriately selected from known materials used for the light emitting layer of the organic EL device.

本発明に係るリン光ドーパントは、好ましくは元素の周期表で8〜10族の金属を含有する錯体系化合物であり、さらに好ましくはイリジウム化合物、オスミウム化合物、または白金化合物(白金錯体系化合物)、希土類錯体であり、中でも最も好ましいのはイリジウム化合物である。   The phosphorescent dopant according to the present invention is preferably a complex compound containing a group 8-10 metal in the periodic table of elements, more preferably an iridium compound, an osmium compound, or a platinum compound (platinum complex compound), Rare earth complexes, most preferably iridium compounds.

本発明に係るリン光ドーパントとして用いられる化合物としては、上記の本発明に係る一般式(1)〜(4)のいずれかで表される部分構造を含む遷移金属錯体化合物が好ましい。   The compound used as the phosphorescent dopant according to the present invention is preferably a transition metal complex compound including a partial structure represented by any one of the general formulas (1) to (4) according to the present invention.

また、以下に示すような従来公知の発光ドーパントを併用してもよい。   Moreover, you may use together a conventionally well-known light emission dopant as shown below.

Figure 2010040829
Figure 2010040829

Figure 2010040829
Figure 2010040829

Figure 2010040829
Figure 2010040829

(蛍光ドーパント(蛍光性化合物ともいう))
蛍光ドーパント(蛍光性化合物)としては、クマリン系色素、ピラン系色素、シアニン系色素、クロコニウム系色素、スクアリウム系色素、オキソベンツアントラセン系色素、フルオレセイン系色素、ローダミン系色素、ピリリウム系色素、ペリレン系色素、スチルベン系色素、ポリチオフェン系色素、または希土類錯体系蛍光体等が挙げられる。
(Fluorescent dopant (also called fluorescent compound))
Fluorescent dopants (fluorescent compounds) include coumarin dyes, pyran dyes, cyanine dyes, croconium dyes, squalium dyes, oxobenzanthracene dyes, fluorescein dyes, rhodamine dyes, pyrylium dyes, perylene dyes Examples thereof include dyes, stilbene dyes, polythiophene dyes, and rare earth complex phosphors.

次に、本発明の有機EL素子の構成層として用いられる、注入層、阻止層、電子輸送層等について説明する。   Next, an injection layer, a blocking layer, an electron transport layer, and the like used as a constituent layer of the organic EL element of the present invention will be described.

《注入層:電子注入層、正孔注入層》
注入層は必要に応じて設け、電子注入層と正孔注入層があり、上記の如く陽極と発光層または正孔輸送層の間、および陰極と発光層または電子輸送層との間に存在させてもよい。
<< Injection layer: electron injection layer, hole injection layer >>
The injection layer is provided as necessary, and there are an electron injection layer and a hole injection layer, and as described above, it exists between the anode and the light emitting layer or the hole transport layer, and between the cathode and the light emitting layer or the electron transport layer. May be.

注入層とは、駆動電圧低下や発光輝度向上のために電極と有機層間に設けられる層のことで、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123〜166頁)に詳細に記載されており、正孔注入層(陽極バッファー層)と電子注入層(陰極バッファー層)とがある。   An injection layer is a layer provided between an electrode and an organic layer in order to reduce drive voltage and improve light emission luminance. “Organic EL element and its forefront of industrialization (issued by NTT Corporation on November 30, 1998) 2), Chapter 2, “Electrode Materials” (pages 123 to 166) in detail, and includes a hole injection layer (anode buffer layer) and an electron injection layer (cathode buffer layer).

陽極バッファー層(正孔注入層)は、特開平9−45479号公報、同9−260062号公報、同8−288069号公報等にもその詳細が記載されており、具体例として、銅フタロシアニンに代表されるフタロシアニンバッファー層、酸化バナジウムに代表される酸化物バッファー層、アモルファスカーボンバッファー層、ポリアニリン(エメラルディン)やポリチオフェン等の導電性高分子を用いた高分子バッファー層等が挙げられる。   The details of the anode buffer layer (hole injection layer) are described in JP-A-9-45479, JP-A-9-260062, JP-A-8-288069 and the like. As a specific example, copper phthalocyanine is used. Examples thereof include a phthalocyanine buffer layer represented by an oxide, an oxide buffer layer represented by vanadium oxide, an amorphous carbon buffer layer, and a polymer buffer layer using a conductive polymer such as polyaniline (emeraldine) or polythiophene.

陰極バッファー層(電子注入層)は、特開平6−325871号公報、同9−17574号公報、同10−74586号公報等にもその詳細が記載されており、具体的にはストロンチウムやアルミニウム等に代表される金属バッファー層、フッ化リチウムに代表されるアルカリ金属化合物バッファー層、フッ化マグネシウムに代表されるアルカリ土類金属化合物バッファー層、酸化アルミニウムに代表される酸化物バッファー層等が挙げられる。上記バッファー層(注入層)はごく薄い膜であることが望ましく、素材にもよるがその膜厚は0.1nm〜5μmの範囲が好ましい。   The details of the cathode buffer layer (electron injection layer) are described in JP-A-6-325871, JP-A-9-17574, JP-A-10-74586, and the like. Specifically, strontium, aluminum, etc. Metal buffer layer typified by lithium, alkali metal compound buffer layer typified by lithium fluoride, alkaline earth metal compound buffer layer typified by magnesium fluoride, oxide buffer layer typified by aluminum oxide, etc. . The buffer layer (injection layer) is preferably a very thin film, and the film thickness is preferably in the range of 0.1 nm to 5 μm although it depends on the material.

《阻止層:正孔阻止層、電子阻止層》
阻止層は、上記の如く有機化合物薄膜の基本構成層の他に必要に応じて設けられるものである。例えば、特開平11−204258号公報、同11−204359号公報、および「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の237頁等に記載されている正孔阻止(ホールブロック)層がある。
<Blocking layer: hole blocking layer, electron blocking layer>
The blocking layer is provided as necessary in addition to the basic constituent layer of the organic compound thin film as described above. For example, they are described in JP-A Nos. 11-204258 and 11-204359, and “Organic EL elements and their forefront of industrialization” (issued on November 30, 1998 by NTS Corporation). There is a hole blocking (hole blocking) layer.

正孔阻止層とは広い意味では電子輸送層の機能を有し、電子を輸送する機能を有しつつ正孔を輸送する能力が著しく小さい正孔阻止材料からなり、電子を輸送しつつ正孔を阻止することで電子と正孔の再結合確率を向上させることができる。   The hole blocking layer has a function of an electron transport layer in a broad sense, and is made of a hole blocking material that has a function of transporting electrons and has a remarkably small ability to transport holes. The probability of recombination of electrons and holes can be improved by blocking.

また、後述する電子輸送層の構成を必要に応じて、本発明に係わる正孔阻止層として用いることができる。   Moreover, the structure of the electron carrying layer mentioned later can be used as a hole-blocking layer concerning this invention as needed.

本発明の有機EL素子の正孔阻止層は、発光層に隣接して設けられていることが好ましい。   The hole blocking layer of the organic EL device of the present invention is preferably provided adjacent to the light emitting layer.

正孔阻止層には、前述のホスト化合物として挙げたカルバゾール誘導体、カルボリン誘導体、ジアザカルバゾール誘導体(カルボリン誘導体のカルボリン環を構成する炭素原子のいずれか一つが窒素原子で置き換わったものを示す)を含有することが好ましい。   In the hole blocking layer, the carbazole derivative, carboline derivative, diazacarbazole derivative (shown by replacing one of the carbon atoms constituting the carboline ring of the carboline derivative with a nitrogen atom) as the host compound described above. It is preferable to contain.

また、本発明においては、複数の発光色の異なる複数の発光層を有する場合、その発光極大波長が最も短波にある発光層が、全発光層中、最も陽極に近いことが好ましいが、このような場合、該最短波層と該層の次に陽極に近い発光層との間に正孔阻止層を追加して設けることが好ましい。さらには、該位置に設けられる正孔阻止層に含有される化合物の50質量%以上が、前記最短波発光層のホスト化合物に対しそのイオン化ポテンシャルが0.3eV以上大きいことが好ましい。   In the present invention, when a plurality of light emitting layers having different light emission colors are provided, the light emitting layer having the shortest wavelength of light emission is preferably closest to the anode among all the light emitting layers. In this case, it is preferable to additionally provide a hole blocking layer between the shortest wave layer and the light emitting layer next to the anode next to the anode. Furthermore, it is preferable that 50% by mass or more of the compound contained in the hole blocking layer provided at the position has an ionization potential of 0.3 eV or more larger than the host compound of the shortest wave emitting layer.

イオン化ポテンシャルは化合物のHOMO(最高被占分子軌道)レベルにある電子を真空準位に放出するのに必要なエネルギーで定義され、例えば下記に示すような方法により求めることができる。   The ionization potential is defined by the energy required to emit an electron at the HOMO (highest occupied molecular orbital) level of the compound to the vacuum level, and can be obtained by the following method, for example.

(1)米国Gaussian社製の分子軌道計算用ソフトウェアであるGaussian98(Gaussian98、Revision A.11.4,M.J.Frisch,et al,Gaussian,Inc.,Pittsburgh PA,2002.)を用い、キーワードとしてB3LYP/6−31G*を用いて構造最適化を行うことにより算出した値(eV単位換算値)の小数点第2位を四捨五入した値としてイオン化ポテンシャルを求めることができる。この計算値が有効な背景には、この手法で求めた計算値と実験値の相関が高いためである。   (1) Using Gaussian 98 (Gaussian 98, Revision A.11.4, MJ Frisch, et al, Gaussian, Inc., Pittsburgh PA, 2002.), a molecular orbital calculation software manufactured by Gaussian, USA The ionization potential can be obtained as a value obtained by rounding off the second decimal place of the value (eV unit converted value) calculated by performing structural optimization using B3LYP / 6-31G *. This calculation value is effective because the correlation between the calculation value obtained by this method and the experimental value is high.

(2)イオン化ポテンシャルは光電子分光法で直接測定する方法により求めることもできる。例えば、理研計器社製の低エネルギー電子分光装置「Model AC−1」を用いて、あるいは紫外光電子分光として知られている方法を好適に用いることができる。   (2) The ionization potential can also be obtained by a method of directly measuring by photoelectron spectroscopy. For example, a method known as ultraviolet photoelectron spectroscopy can be suitably used by using a low energy electron spectrometer “Model AC-1” manufactured by Riken Keiki Co., Ltd.

一方、電子阻止層とは広い意味では正孔輸送層の機能を有し、正孔を輸送する機能を有しつつ電子を輸送する能力が著しく小さい材料からなり、正孔を輸送しつつ電子を阻止することで電子と正孔の再結合確率を向上させることができる。   On the other hand, the electron blocking layer has a function of a hole transport layer in a broad sense, and is made of a material that has a function of transporting holes and has an extremely small ability to transport electrons, and transports electrons while transporting holes. By blocking, the recombination probability of electrons and holes can be improved.

また、後述する正孔輸送層の構成を必要に応じて電子阻止層として用いることができる。本発明に係る正孔阻止層、電子輸送層の膜厚としては、好ましくは3nm〜100nmであり、さらに好ましくは5nm〜30nmである。   Moreover, the structure of the positive hole transport layer mentioned later can be used as an electron blocking layer as needed. The film thickness of the hole blocking layer and the electron transport layer according to the present invention is preferably 3 nm to 100 nm, and more preferably 5 nm to 30 nm.

《正孔輸送層》
正孔輸送層とは正孔を輸送する機能を有する正孔輸送材料からなり、広い意味で正孔注入層、電子阻止層も正孔輸送層に含まれる。正孔輸送層は単層または複数層設けることができる。
《Hole transport layer》
The hole transport layer is made of a hole transport material having a function of transporting holes, and in a broad sense, a hole injection layer and an electron blocking layer are also included in the hole transport layer. The hole transport layer can be provided as a single layer or a plurality of layers.

正孔輸送材料としては、正孔の注入または輸送、電子の障壁性のいずれかを有するものであり、有機物、無機物のいずれであってもよい。例えば、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体およびピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、また導電性高分子オリゴマー、特にチオフェンオリゴマー等が挙げられる。   The hole transport material has any one of hole injection or transport and electron barrier properties, and may be either organic or inorganic. For example, triazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, Examples thereof include stilbene derivatives, silazane derivatives, aniline copolymers, and conductive polymer oligomers, particularly thiophene oligomers.

正孔輸送材料としては上記のものを使用することができるが、ポルフィリン化合物、芳香族第3級アミン化合物およびスチリルアミン化合物、特に芳香族第3級アミン化合物を用いることが好ましい。   The above-mentioned materials can be used as the hole transport material, but it is preferable to use a porphyrin compound, an aromatic tertiary amine compound and a styrylamine compound, particularly an aromatic tertiary amine compound.

芳香族第3級アミン化合物およびスチリルアミン化合物の代表例としては、N,N,N′,N′−テトラフェニル−4,4′−ジアミノフェニル;N,N′−ジフェニル−N,N′−ビス(3−メチルフェニル)−〔1,1′−ビフェニル〕−4,4′−ジアミン(TPD);2,2−ビス(4−ジ−p−トリルアミノフェニル)プロパン;1,1−ビス(4−ジ−p−トリルアミノフェニル)シクロヘキサン;N,N,N′,N′−テトラ−p−トリル−4,4′−ジアミノビフェニル;1,1−ビス(4−ジ−p−トリルアミノフェニル)−4−フェニルシクロヘキサン;ビス(4−ジメチルアミノ−2−メチルフェニル)フェニルメタン;ビス(4−ジ−p−トリルアミノフェニル)フェニルメタン;N,N′−ジフェニル−N,N′−ジ(4−メトキシフェニル)−4,4′−ジアミノビフェニル;N,N,N′,N′−テトラフェニル−4,4′−ジアミノジフェニルエーテル;4,4′−ビス(ジフェニルアミノ)クオードリフェニル;N,N,N−トリ(p−トリル)アミン;4−(ジ−p−トリルアミノ)−4′−〔4−(ジ−p−トリルアミノ)スチリル〕スチルベン;4−N,N−ジフェニルアミノ−(2−ジフェニルビニル)ベンゼン;3−メトキシ−4′−N,N−ジフェニルアミノスチルベンゼン;N−フェニルカルバゾール、さらには米国特許第5,061,569号明細書に記載されている2個の縮合芳香族環を分子内に有するもの、例えば、4,4′−ビス〔N−(1−ナフチル)−N−フェニルアミノ〕ビフェニル(NPD)、特開平4−308688号公報に記載されているトリフェニルアミンユニットが3つスターバースト型に連結された4,4′,4″−トリス〔N−(3−メチルフェニル)−N−フェニルアミノ〕トリフェニルアミン(MTDATA)等が挙げられる。   Representative examples of aromatic tertiary amine compounds and styrylamine compounds include N, N, N ′, N′-tetraphenyl-4,4′-diaminophenyl; N, N′-diphenyl-N, N′— Bis (3-methylphenyl)-[1,1′-biphenyl] -4,4′-diamine (TPD); 2,2-bis (4-di-p-tolylaminophenyl) propane; 1,1-bis (4-di-p-tolylaminophenyl) cyclohexane; N, N, N ′, N′-tetra-p-tolyl-4,4′-diaminobiphenyl; 1,1-bis (4-di-p-tolyl) Aminophenyl) -4-phenylcyclohexane; bis (4-dimethylamino-2-methylphenyl) phenylmethane; bis (4-di-p-tolylaminophenyl) phenylmethane; N, N'-diphenyl-N, N ' Di (4-methoxyphenyl) -4,4'-diaminobiphenyl; N, N, N ', N'-tetraphenyl-4,4'-diaminodiphenyl ether; 4,4'-bis (diphenylamino) quadriphenyl N, N, N-tri (p-tolyl) amine; 4- (di-p-tolylamino) -4 '-[4- (di-p-tolylamino) styryl] stilbene; 4-N, N-diphenylamino -(2-diphenylvinyl) benzene; 3-methoxy-4'-N, N-diphenylaminostilbenzene; N-phenylcarbazole, and also two described in US Pat. No. 5,061,569 Having a condensed aromatic ring of, for example, 4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl (NPD), JP-A-4-30 4,4 ', 4 "-tris [N- (3-methylphenyl) -N-phenylamino] triphenylamine in which three triphenylamine units described in Japanese Patent No. 688 are linked in a starburst type ( MTDATA) and the like.

さらにこれらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。また、p型−Si、p型−SiC等の無機化合物も正孔注入材料、正孔輸送材料として使用することができる。   Furthermore, a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used. In addition, inorganic compounds such as p-type-Si and p-type-SiC can also be used as the hole injection material and the hole transport material.

また、特開平11−251067号公報、J.Huang et.al.著文献(Applied Physics Letters 80(2002),p.139)に記載されているような、所謂p型正孔輸送材料を用いることもできる。本発明においては、より高効率の発光素子が得られることからこれらの材料を用いることが好ましい。   JP-A-11-251067, J. Org. Huang et. al. A so-called p-type hole transport material as described in a book (Applied Physics Letters 80 (2002), p. 139) can also be used. In the present invention, these materials are preferably used because a light-emitting element with higher efficiency can be obtained.

正孔輸送層は上記正孔輸送材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法、LB法等の公知の方法により、薄膜化することにより形成することができる。正孔輸送層の膜厚については特に制限はないが、通常は5nm〜5μm程度、好ましくは5nm〜200nmである。この正孔輸送層は上記材料の1種または2種以上からなる一層構造であってもよい。   The hole transport layer can be formed by thinning the hole transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method. it can. Although there is no restriction | limiting in particular about the film thickness of a positive hole transport layer, Usually, 5 nm-about 5 micrometers, Preferably it is 5 nm-200 nm. The hole transport layer may have a single layer structure composed of one or more of the above materials.

また、不純物をドープしたp性の高い正孔輸送層を用いることもできる。その例としては、特開平4−297076号公報、特開2000−196140号公報、同2001−102175号公報の各公報、J.Appl.Phys.,95,5773(2004)等に記載されたものが挙げられる。   Alternatively, a hole transport layer having a high p property doped with impurities can be used. Examples thereof include JP-A-4-297076, JP-A-2000-196140, 2001-102175, J. Pat. Appl. Phys. 95, 5773 (2004), and the like.

本発明においては、このようなp性の高い正孔輸送層を用いることが、より低消費電力の素子を作製することができるため好ましい。   In the present invention, it is preferable to use a hole transport layer having such a high p property because a device with lower power consumption can be produced.

《電子輸送層》
電子輸送層とは電子を輸送する機能を有する材料からなり、広い意味で電子注入層、正孔阻止層も電子輸送層に含まれる。電子輸送層は単層または複数層設けることができる。
《Electron transport layer》
The electron transport layer is made of a material having a function of transporting electrons, and in a broad sense, an electron injection layer and a hole blocking layer are also included in the electron transport layer. The electron transport layer can be provided as a single layer or a plurality of layers.

従来、単層の電子輸送層、および複数層とする場合は発光層に対して陰極側に隣接する電子輸送層に用いられる電子輸送材料(正孔阻止材料を兼ねる)としては、陰極より注入された電子を発光層に伝達する機能を有していればよく、その材料としては従来公知の化合物の中から任意のものを選択して用いることができ、例えば、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタンおよびアントロン誘導体、オキサジアゾール誘導体等が挙げられる。   Conventionally, in the case of a single electron transport layer and a plurality of layers, an electron transport material (also serving as a hole blocking material) used for an electron transport layer adjacent to the cathode side with respect to the light emitting layer is injected from the cathode. As long as it has a function of transferring electrons to the light-emitting layer, any material can be selected and used from among conventionally known compounds. For example, nitro-substituted fluorene derivatives, diphenylquinone derivatives Thiopyrandioxide derivatives, carbodiimides, fluorenylidenemethane derivatives, anthraquinodimethane and anthrone derivatives, oxadiazole derivatives and the like.

さらに、上記オキサジアゾール誘導体において、オキサジアゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引基として知られているキノキサリン環を有するキノキサリン誘導体も、電子輸送材料として用いることができる。さらにこれらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。   Furthermore, in the above oxadiazole derivative, a thiadiazole derivative in which the oxygen atom of the oxadiazole ring is substituted with a sulfur atom, or a quinoxaline derivative having a quinoxaline ring known as an electron withdrawing group can also be used as an electron transport material. Furthermore, a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.

また8−キノリノール誘導体の金属錯体、例えば、トリス(8−キノリノール)アルミニウム(Alq)、トリス(5,7−ジクロロ−8−キノリノール)アルミニウム、トリス(5,7−ジブロモ−8−キノリノール)アルミニウム、トリス(2−メチル−8−キノリノール)アルミニウム、トリス(5−メチル−8−キノリノール)アルミニウム、ビス(8−キノリノール)亜鉛(Znq)等、およびこれらの金属錯体の中心金属がIn、Mg、Cu、Ca、Sn、GaまたはPbに置き替わった金属錯体も、電子輸送材料として用いることができる。   Also, metal complexes of 8-quinolinol derivatives such as tris (8-quinolinol) aluminum (Alq), tris (5,7-dichloro-8-quinolinol) aluminum, tris (5,7-dibromo-8-quinolinol) aluminum, Tris (2-methyl-8-quinolinol) aluminum, tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (Znq), etc., and the central metals of these metal complexes are In, Mg, Cu , Ca, Sn, Ga, or Pb can also be used as an electron transport material.

その他、メタルフリーもしくはメタルフタロシアニン、またはそれらの末端がアルキル基やスルホン酸基等で置換されているものも、電子輸送材料として好ましく用いることができる。また、発光層の材料として例示したジスチリルピラジン誘導体も、電子輸送材料として用いることができるし、正孔注入層、正孔輸送層と同様にn型−Si、n型−SiC等の無機半導体も電子輸送材料として用いることができる。   In addition, metal-free or metal phthalocyanine, or those having terminal ends substituted with an alkyl group or a sulfonic acid group can be preferably used as the electron transporting material. In addition, the distyrylpyrazine derivative exemplified as the material of the light emitting layer can also be used as an electron transport material, and an inorganic semiconductor such as n-type-Si, n-type-SiC, etc. as in the case of the hole injection layer and the hole transport layer Can also be used as an electron transporting material.

電子輸送層は上記電子輸送材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法、LB法等の公知の方法により、薄膜化することにより形成することができる。電子輸送層の膜厚については特に制限はないが、通常は5nm〜5μm程度、好ましくは5nm〜200nmである。電子輸送層は上記材料の1種または2種以上からなる一層構造であってもよい。   The electron transport layer can be formed by thinning the electron transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method. Although there is no restriction | limiting in particular about the film thickness of an electron carrying layer, Usually, 5 nm-about 5 micrometers, Preferably it is 5 nm-200 nm. The electron transport layer may have a single layer structure composed of one or more of the above materials.

また、不純物をドープしたn性の高い電子輸送層を用いることもできる。その例としては、特開平4−297076号公報、同10−270172号公報、特開2000−196140号公報、同2001−102175号公報、J.Appl.Phys.,95,5773(2004)等に記載されたものが挙げられる。   Further, an electron transport layer having a high n property doped with impurities can also be used. Examples thereof include JP-A-4-297076, JP-A-10-270172, JP-A-2000-196140, 2001-102175, J.A. Appl. Phys. 95, 5773 (2004), and the like.

本発明においては、このようなn性の高い電子輸送層を用いることがより低消費電力の素子を作製することができるため好ましい。   In the present invention, it is preferable to use an electron transport layer having such a high n property because an element with lower power consumption can be manufactured.

《陽極》
有機EL素子における陽極としては、仕事関数の大きい(4eV以上)金属、合金、電気伝導性化合物およびこれらの混合物を電極物質とするものが好ましく用いられる。このような電極物質の具体例としては、Au等の金属、CuI、インジウムチンオキシド(ITO)、SnO、ZnO等の導電性透明材料が挙げられる。
"anode"
As the anode in the organic EL element, an electrode material made of a metal, an alloy, an electrically conductive compound and a mixture thereof having a high work function (4 eV or more) is preferably used. Specific examples of such electrode materials include metals such as Au, and conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 , and ZnO.

また、IDIXO(In−ZnO)等非晶質で透明導電膜を作製可能な材料を用いてもよい。陽極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させ、フォトリソグラフィー法で所望の形状のパターンを形成してもよく、あるいはパターン精度をあまり必要としない場合は(100μm以上程度)、上記電極物質の蒸着やスパッタリング時に所望の形状のマスクを介してパターンを形成してもよい。 Alternatively, an amorphous material such as IDIXO (In 2 O 3 —ZnO) capable of forming a transparent conductive film may be used. For the anode, these electrode materials may be formed into a thin film by a method such as vapor deposition or sputtering, and a pattern having a desired shape may be formed by a photolithography method, or when pattern accuracy is not so high (about 100 μm or more) A pattern may be formed through a mask having a desired shape at the time of vapor deposition or sputtering of the electrode material.

あるいは、有機導電性化合物のように塗布可能な物質を用いる場合には、印刷方式、コーティング方式等湿式成膜法を用いることもできる。この陽極より発光を取り出す場合には、透過率を10%より大きくすることが望ましく、また陽極としてのシート抵抗は数百Ω/□以下が好ましい。さらに膜厚は材料にもよるが、通常10nm〜1000nm、好ましくは10nm〜200nmの範囲で選ばれる。   Or when using the substance which can be apply | coated like an organic electroconductivity compound, wet film-forming methods, such as a printing system and a coating system, can also be used. When light emission is extracted from the anode, it is desirable that the transmittance be greater than 10%, and the sheet resistance as the anode is preferably several hundred Ω / □ or less. Further, although the film thickness depends on the material, it is usually selected in the range of 10 nm to 1000 nm, preferably 10 nm to 200 nm.

《陰極》
一方、陰極としては仕事関数の小さい(4eV以下)金属(電子注入性金属と称する)、合金、電気伝導性化合物およびこれらの混合物を電極物質とするものが用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム−カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属等が挙げられる。これらの中で、電子注入性および酸化等に対する耐久性の点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、リチウム/アルミニウム混合物、アルミニウム等が好適である。
"cathode"
On the other hand, as the cathode, a material having a low work function (4 eV or less) metal (referred to as an electron injecting metal), an alloy, an electrically conductive compound, and a mixture thereof as an electrode material is used. Specific examples of such electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3) mixture, indium, a lithium / aluminum mixture, and rare earth metals. Among these, from the point of durability against electron injection and oxidation, a mixture of an electron injecting metal and a second metal which is a stable metal having a larger work function value than this, for example, a magnesium / silver mixture, Magnesium / aluminum mixtures, magnesium / indium mixtures, aluminum / aluminum oxide (Al 2 O 3 ) mixtures, lithium / aluminum mixtures, aluminum and the like are preferred.

陰極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させることにより、作製することができる。また、陰極としてのシート抵抗は数百Ω/□以下が好ましく、膜厚は通常10nm〜5μm、好ましくは50nm〜200nmの範囲で選ばれる。尚、発光した光を透過させるため、有機EL素子の陽極または陰極のいずれか一方が透明または半透明であれば発光輝度が向上し好都合である。   The cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering. The sheet resistance as a cathode is preferably several hundred Ω / □ or less, and the film thickness is usually selected in the range of 10 nm to 5 μm, preferably 50 nm to 200 nm. In order to transmit the emitted light, if either one of the anode or the cathode of the organic EL element is transparent or translucent, the light emission luminance is improved, which is convenient.

また、陰極に上記金属を1nm〜20nmの膜厚で作製した後に、陽極の説明で挙げた導電性透明材料をその上に作製することで、透明または半透明の陰極を作製することができ、これを応用することで陽極と陰極の両方が透過性を有する素子を作製することができる。   Moreover, after producing the said metal by the film thickness of 1 nm-20 nm to a cathode, the transparent or semi-transparent cathode can be produced by producing the electroconductive transparent material quoted by description of the anode on it, By applying this, an element in which both the anode and the cathode are transmissive can be manufactured.

《支持基板》
本発明の有機EL素子に用いることのできる支持基板(以下、基体、基板、基材、支持体等とも言う)としては、ガラス、プラスチック等の種類には特に限定はなく、また透明であっても不透明であってもよい。支持基板側から光を取り出す場合には、支持基板は透明であることが好ましい。好ましく用いられる透明な支持基板としては、ガラス、石英、透明樹脂フィルムを挙げることができる。特に好ましい支持基板は、有機EL素子にフレキシブル性を与えることが可能な樹脂フィルムである。
《Support substrate》
As a support substrate (hereinafter also referred to as a substrate, substrate, substrate, support, etc.) that can be used in the organic EL device of the present invention, there is no particular limitation on the type of glass, plastic, etc., and it is transparent. May be opaque. When extracting light from the support substrate side, the support substrate is preferably transparent. Examples of the transparent support substrate preferably used include glass, quartz, and a transparent resin film. A particularly preferable support substrate is a resin film capable of giving flexibility to the organic EL element.

樹脂フィルムとしては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル、ポリエチレン、ポリプロピレン、セロファン、セルロースジアセテート、セルローストリアセテート、セルロースアセテートブチレート、セルロースアセテートプロピオネート(CAP)、セルロースアセテートフタレート(TAC)、セルロースナイトレート等のセルロースエステル類またはそれらの誘導体、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエチレンビニルアルコール、シンジオタクティックポリスチレン、ポリカーボネート、ノルボルネン樹脂、ポリメチルペンテン、ポリエーテルケトン、ポリイミド、ポリエーテルスルホン(PES)、ポリフェニレンスルフィド、ポリスルホン類、ポリエーテルイミド、ポリエーテルケトンイミド、ポリアミド、フッ素樹脂、ナイロン、ポリメチルメタクリレート、アクリルあるいはポリアリレート類、アートン(商品名JSR社製)あるいはアペル(商品名三井化学社製)といったシクロオレフィン系樹脂等を挙げられる。   Examples of the resin film include polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate, cellulose acetate butyrate, cellulose acetate propionate (CAP), Cellulose esters such as cellulose acetate phthalate (TAC) and cellulose nitrate or derivatives thereof, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene resin, polymethylpentene, polyether ketone, polyimide , Polyethersulfone (PES), polyphenylene sulfide, polysulfones Cycloolefin resins such as polyetherimide, polyetherketoneimide, polyamide, fluororesin, nylon, polymethylmethacrylate, acrylic or polyarylate, Arton (trade name, manufactured by JSR) or Appel (trade name, manufactured by Mitsui Chemicals) Can be mentioned.

樹脂フィルムの表面には、無機物、有機物の被膜またはその両者のハイブリッド被膜が形成されていてもよく、JIS K 7129−1992に準拠した方法で測定された、水蒸気透過度(25±0.5℃、相対湿度(90±2)%RH)が0.01g/(m・24h)以下のバリア性フィルムであることが好ましく、さらには、JIS K 7126−1987に準拠した方法で測定された酸素透過度が、10−3ml/(m・24h・atm)以下、水蒸気透過度が、10−5g/(m・24h)以下の高バリア性フィルムであることが好ましい。 On the surface of the resin film, an inorganic film, an organic film, or a hybrid film of both may be formed. Water vapor permeability (25 ± 0.5 ° C.) measured by a method according to JIS K 7129-1992. , Relative humidity (90 ± 2)% RH) is preferably 0.01 g / (m 2 · 24 h) or less, and further, oxygen measured by a method according to JIS K 7126-1987. A high barrier film having a permeability of 10 −3 ml / (m 2 · 24 h · atm) or less and a water vapor permeability of 10 −5 g / (m 2 · 24 h) or less is preferable.

バリア膜を形成する材料としては、水分や酸素等素子の劣化をもたらすものの浸入を抑制する機能を有する材料であればよく、例えば、酸化珪素、二酸化珪素、窒化珪素等を用いることができる。さらに該膜の脆弱性を改良するために、これら無機層と有機材料からなる層の積層構造を持たせることがより好ましい。無機層と有機層の積層順については特に制限はないが、両者を交互に複数回積層させることが好ましい。   As a material for forming the barrier film, any material may be used as long as it has a function of suppressing entry of elements that cause deterioration of elements such as moisture and oxygen. For example, silicon oxide, silicon dioxide, silicon nitride, or the like can be used. In order to further improve the brittleness of the film, it is more preferable to have a laminated structure of these inorganic layers and layers made of organic materials. Although there is no restriction | limiting in particular about the lamination | stacking order of an inorganic layer and an organic layer, It is preferable to laminate | stack both alternately several times.

バリア膜の形成方法については特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスタ−イオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等を用いることができるが、特開2004−68143号公報に記載されているような大気圧プラズマ重合法によるものが特に好ましい。   The method for forming the barrier film is not particularly limited. For example, the vacuum deposition method, sputtering method, reactive sputtering method, molecular beam epitaxy method, cluster ion beam method, ion plating method, plasma polymerization method, atmospheric pressure plasma weight A combination method, a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, and the like can be used, but an atmospheric pressure plasma polymerization method as described in JP-A-2004-68143 is particularly preferable.

不透明な支持基板としては、例えば、アルミ、ステンレス等の金属板、フィルムや不透明樹脂基板、セラミック製の基板等が挙げられる。   Examples of the opaque support substrate include metal plates such as aluminum and stainless steel, films, opaque resin substrates, and ceramic substrates.

本発明の有機EL素子の発光の室温における外部取り出し効率は、1%以上であることが好ましく、より好ましくは5%以上である。   The external extraction efficiency at room temperature of light emission of the organic EL device of the present invention is preferably 1% or more, more preferably 5% or more.

ここに、外部取り出し量子効率(%)=有機EL素子外部に発光した光子数/有機EL素子に流した電子数×100である。   Here, the external extraction quantum efficiency (%) = the number of photons emitted to the outside of the organic EL element / the number of electrons sent to the organic EL element × 100.

また、カラーフィルター等の色相改良フィルター等を併用しても、有機EL素子からの発光色を蛍光体を用いて多色へ変換する色変換フィルターを併用してもよい。色変換フィルターを用いる場合においては、有機EL素子の発光のλmaxは480nm以下が好ましい。   In addition, a hue improvement filter such as a color filter may be used in combination, or a color conversion filter that converts the emission color from the organic EL element into multiple colors using a phosphor. In the case of using a color conversion filter, the λmax of light emission of the organic EL element is preferably 480 nm or less.

《封止》
本発明に用いられる封止手段としては、例えば、封止部材と電極、支持基板とを接着剤で接着する方法を挙げることができる。
<Sealing>
As a sealing means used for this invention, the method of adhere | attaching a sealing member, an electrode, and a support substrate with an adhesive agent can be mentioned, for example.

封止部材としては、有機EL素子の表示領域を覆うように配置されておればよく、凹板状でも平板状でもよい。また透明性、電気絶縁性は特に問わない。   As a sealing member, it should just be arrange | positioned so that the display area | region of an organic EL element may be covered, and concave plate shape or flat plate shape may be sufficient. Further, transparency and electrical insulation are not particularly limited.

具体的には、ガラス板、ポリマー板・フィルム、金属板・フィルム等が挙げられる。ガラス板としては、特にソーダ石灰ガラス、バリウム・ストロンチウム含有ガラス、鉛ガラス、アルミノケイ酸ガラス、ホウケイ酸ガラス、バリウムホウケイ酸ガラス、石英等を挙げることができる。また、ポリマー板としては、ポリカーボネート、アクリル、ポリエチレンテレフタレート、ポリエーテルサルファイド、ポリサルフォン等を挙げることができる。金属板としては、ステンレス、鉄、銅、アルミニウム、マグネシウム、ニッケル、亜鉛、クロム、チタン、モリブテン、シリコン、ゲルマニウムおよびタンタルからなる群から選ばれる一種以上の金属または合金からなるものが挙げられる。   Specific examples include a glass plate, a polymer plate / film, and a metal plate / film. Examples of the glass plate include soda-lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz. Examples of the polymer plate include polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, and polysulfone. Examples of the metal plate include those made of one or more metals or alloys selected from the group consisting of stainless steel, iron, copper, aluminum, magnesium, nickel, zinc, chromium, titanium, molybdenum, silicon, germanium, and tantalum.

本発明においては、素子を薄膜化できるということからポリマーフィルム、金属フィルムを好ましく使用することができる。   In the present invention, a polymer film and a metal film can be preferably used because the element can be thinned.

さらには、ポリマーフィルムは、JIS K 7126−1987に準拠した方法で測定された酸素透過度が1×10−3ml/(m・24h・atm)以下、JISK7129−1992に準拠した方法で測定された、水蒸気透過度(25±0.5℃、相対湿度(90±2)%RH)が、1×10−3g/(m・24h)以下のものであることが好ましい。 Furthermore, the polymer film has an oxygen permeability measured by a method according to JIS K 7126-1987 of 1 × 10 −3 ml / (m 2 · 24 h · atm) or less, and is measured by a method according to JIS K 7129-1992. The water vapor transmission rate (25 ± 0.5 ° C., relative humidity (90 ± 2)% RH) is preferably 1 × 10 −3 g / (m 2 · 24 h) or less.

封止部材を凹状に加工するのは、サンドブラスト加工、化学エッチング加工等が使われる。   For processing the sealing member into a concave shape, sandblasting, chemical etching, or the like is used.

接着剤として具体的には、アクリル酸系オリゴマー、メタクリル酸系オリゴマーの反応性ビニル基を有する光硬化および熱硬化型接着剤、2−シアノアクリル酸エステル等の湿気硬化型等の接着剤を挙げることができる。また、エポキシ系等の熱および化学硬化型(二液混合)を挙げることができる。また、ホットメルト型のポリアミド、ポリエステル、ポリオレフィンを挙げることができる。また、カチオン硬化タイプの紫外線硬化型エポキシ樹脂接着剤を挙げることができる。   Specific examples of the adhesive include photocuring and thermosetting adhesives having reactive vinyl groups such as acrylic acid oligomers and methacrylic acid oligomers, and moisture curing adhesives such as 2-cyanoacrylates. be able to. Moreover, heat | fever and chemical curing types (two liquid mixing), such as an epoxy type, can be mentioned. Moreover, hot-melt type polyamide, polyester, and polyolefin can be mentioned. Moreover, a cationic curing type ultraviolet curing epoxy resin adhesive can be mentioned.

なお、有機EL素子が熱処理により劣化する場合があるので、室温から80℃までに接着硬化できるものが好ましい。また、前記接着剤中に乾燥剤を分散させておいてもよい。   In addition, since an organic EL element may deteriorate by heat processing, what can be adhesive-hardened from room temperature to 80 degreeC is preferable. A desiccant may be dispersed in the adhesive.

封止部分への接着剤の塗布は市販のディスペンサーを使ってもよいし、スクリーン印刷のように印刷してもよい。   Application | coating of the adhesive agent to a sealing part may use commercially available dispenser, and may print like screen printing.

また、有機層を挟み支持基板と対向する側の電極の外側に該電極と有機層を被覆し、支持基板と接する形で無機物、有機物の層を形成し封止膜とすることも好適にできる。この場合、該膜を形成する材料としては、水分や酸素等素子の劣化をもたらすものの浸入を抑制する機能を有する材料であればよく、例えば、酸化珪素、二酸化珪素、窒化珪素等を用いることができる。さらに該膜の脆弱性を改良するために、これら無機層と有機材料からなる層の積層構造を持たせることが好ましい。これらの膜の形成方法については、特に限定はなく、例えば真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスタ−イオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等を用いることができる。   In addition, it is also preferable that the electrode and the organic layer are coated on the outside of the electrode facing the support substrate with the organic layer interposed therebetween, and an inorganic or organic layer is formed in contact with the support substrate to form a sealing film. . In this case, the material for forming the film may be any material that has a function of suppressing intrusion of elements that cause deterioration of elements such as moisture and oxygen. For example, silicon oxide, silicon dioxide, silicon nitride, or the like may be used. it can. Further, in order to improve the brittleness of the film, it is preferable to have a laminated structure of these inorganic layers and layers made of organic materials. The method for forming these films is not particularly limited. For example, vacuum deposition, sputtering, reactive sputtering, molecular beam epitaxy, cluster-ion beam method, ion plating method, plasma polymerization method, atmospheric pressure plasma A polymerization method, a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, or the like can be used.

封止部材と有機EL素子の表示領域との間隙には、気相および液相では、窒素、アルゴン等の不活性気体やフッ化炭化水素、シリコンオイルのような不活性液体を注入することが好ましい。また真空とすることも可能である。また、内部に吸湿性化合物を封入することもできる。   In the gap between the sealing member and the display area of the organic EL element, an inert gas such as nitrogen or argon, or an inert liquid such as fluorinated hydrocarbon or silicon oil can be injected in the gas phase and liquid phase. preferable. A vacuum is also possible. Moreover, a hygroscopic compound can also be enclosed inside.

吸湿性化合物としては、例えば、金属酸化物(例えば、酸化ナトリウム、酸化カリウム、酸化カルシウム、酸化バリウム、酸化マグネシウム、酸化アルミニウム等)、硫酸塩(例えば、硫酸ナトリウム、硫酸カルシウム、硫酸マグネシウム、硫酸コバルト等)、金属ハロゲン化物(例えば、塩化カルシウム、塩化マグネシウム、フッ化セシウム、フッ化タンタル、臭化セリウム、臭化マグネシウム、沃化バリウム、沃化マグネシウム等)、過塩素酸類(例えば、過塩素酸バリウム、過塩素酸マグネシウム等)等が挙げられ、硫酸塩、金属ハロゲン化物および過塩素酸類においては無水塩が好適に用いられる。   Examples of the hygroscopic compound include metal oxides (for example, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, aluminum oxide) and sulfates (for example, sodium sulfate, calcium sulfate, magnesium sulfate, cobalt sulfate). Etc.), metal halides (eg calcium chloride, magnesium chloride, cesium fluoride, tantalum fluoride, cerium bromide, magnesium bromide, barium iodide, magnesium iodide etc.), perchloric acids (eg perchloric acid) Barium, magnesium perchlorate, etc.), and anhydrous salts are preferably used in sulfates, metal halides and perchloric acids.

《保護膜、保護板》
有機層を挟み支持基板と対向する側の前記封止膜、あるいは前記封止用フィルムの外側に、素子の機械的強度を高めるために保護膜、あるいは保護板を設けてもよい。特に封止が前記封止膜により行われている場合には、その機械的強度は必ずしも高くないため、このような保護膜、保護板を設けることが好ましい。これに使用することができる材料としては、前記封止に用いたのと同様なガラス板、ポリマー板・フィルム、金属板・フィルム等を用いることができるが、軽量且つ薄膜化ということからポリマーフィルムを用いることが好ましい。
《Protective film, protective plate》
In order to increase the mechanical strength of the element, a protective film or a protective plate may be provided on the outer side of the sealing film on the side facing the support substrate with the organic layer interposed therebetween or on the sealing film. In particular, when the sealing is performed by the sealing film, the mechanical strength is not necessarily high, and thus it is preferable to provide such a protective film and a protective plate. As a material that can be used for this, the same glass plate, polymer plate / film, metal plate / film, and the like used for the sealing can be used, but the polymer film is light and thin. Is preferably used.

《光取り出し》
有機EL素子は空気よりも屈折率の高い(屈折率が1.7〜2.1程度)層の内部で発光し、発光層で発生した光のうち15%から20%程度の光しか取り出せないことが一般的に言われている。これは、臨界角以上の角度θで界面(透明基板と空気との界面)に入射する光は、全反射を起こし素子外部に取り出すことができないことや、透明電極ないし発光層と透明基板との間で光が全反射を起こし、光が透明電極ないし発光層を導波し、結果として光が素子側面方向に逃げるためである。
《Light extraction》
The organic EL element emits light inside a layer having a refractive index higher than that of air (refractive index is about 1.7 to 2.1) and can extract only about 15% to 20% of the light generated in the light emitting layer. It is generally said. This is because light incident on the interface (interface between the transparent substrate and air) at an angle θ greater than the critical angle causes total reflection and cannot be taken out of the device, or between the transparent electrode or light emitting layer and the transparent substrate. This is because the light is totally reflected between the light and the light is guided through the transparent electrode or the light emitting layer, and as a result, the light escapes in the direction of the element side surface.

この光の取り出しの効率を向上させる手法としては、例えば、透明基板表面に凹凸を形成し、透明基板と空気界面での全反射を防ぐ方法(米国特許第4,774,435号明細書)、基板に集光性を持たせることにより効率を向上させる方法(特開昭63−314795号公報)、素子の側面等に反射面を形成する方法(特開平1−220394号公報)、基板と発光体の間に中間の屈折率を持つ平坦層を導入し、反射防止膜を形成する方法(特開昭62−172691号公報)、基板と発光体の間に基板よりも低屈折率を持つ平坦層を導入する方法(特開2001−202827号公報)、基板、透明電極層や発光層のいずれかの層間(含む、基板と外界間)に回折格子を形成する方法(特開平11−283751号公報)等がある。   As a method of improving the light extraction efficiency, for example, a method of forming irregularities on the surface of the transparent substrate and preventing total reflection at the transparent substrate and the air interface (US Pat. No. 4,774,435), A method of improving efficiency by providing a light collecting property to a substrate (Japanese Patent Laid-Open No. 63-314795), a method of forming a reflective surface on a side surface of an element (Japanese Patent Laid-Open No. 1-220394), and light emission from a substrate A method of forming an antireflection film by introducing a flat layer having an intermediate refractive index between the bodies (Japanese Patent Laid-Open No. 62-172691), a flat having a lower refractive index between the substrate and the light emitter than the substrate A method of introducing a layer (Japanese Patent Laid-Open No. 2001-202827), a method of forming a diffraction grating between any one of a substrate, a transparent electrode layer and a light emitting layer (including between the substrate and the outside) (Japanese Patent Laid-Open No. 11-283951) Gazette).

本発明においては、これらの方法を本発明の有機EL素子と組み合わせて用いることができるが、基板と発光体の間に基板よりも低屈折率を持つ平坦層を導入する方法、あるいは基板、透明電極層や発光層のいずれかの層間(含む、基板と外界間)に回折格子を形成する方法を好適に用いることができる。   In the present invention, these methods can be used in combination with the organic EL device of the present invention. However, a method of introducing a flat layer having a lower refractive index than the substrate between the substrate and the light emitter, or a substrate, transparent A method of forming a diffraction grating between any layers of the electrode layer and the light emitting layer (including between the substrate and the outside) can be suitably used.

本発明はこれらの手段を組み合わせることにより、さらに高輝度あるいは耐久性に優れた素子を得ることができる。   In the present invention, by combining these means, it is possible to obtain an element having higher luminance or durability.

透明電極と透明基板の間に低屈折率の媒質を光の波長よりも長い厚みで形成すると、透明電極から出てきた光は、媒質の屈折率が低いほど外部への取り出し効率が高くなる。   When a medium having a low refractive index is formed between the transparent electrode and the transparent substrate with a thickness longer than the wavelength of light, the light extracted from the transparent electrode has a higher extraction efficiency to the outside as the refractive index of the medium is lower.

低屈折率層としては、例えば、エアロゲル、多孔質シリカ、フッ化マグネシウム、フッ素系ポリマー等が挙げられる。透明基板の屈折率は一般に1.5〜1.7程度であるので、低屈折率層は屈折率がおよそ1.5以下であることが好ましい。また、さらに1.35以下であることが好ましい。   Examples of the low refractive index layer include aerogel, porous silica, magnesium fluoride, and a fluorine-based polymer. Since the refractive index of the transparent substrate is generally about 1.5 to 1.7, the low refractive index layer preferably has a refractive index of about 1.5 or less. Further, it is preferably 1.35 or less.

また、低屈折率媒質の厚みは媒質中の波長の2倍以上となるのが望ましい。これは低屈折率媒質の厚みが、光の波長程度になってエバネッセントで染み出した電磁波が基板内に入り込む膜厚になると、低屈折率層の効果が薄れるからである。   The thickness of the low refractive index medium is preferably at least twice the wavelength in the medium. This is because the effect of the low refractive index layer is diminished when the thickness of the low refractive index medium is about the wavelength of light and the electromagnetic wave that has exuded by evanescent enters the substrate.

全反射を起こす界面もしくはいずれかの媒質中に回折格子を導入する方法は、光取り出し効率の向上効果が高いという特徴がある。この方法は回折格子が1次の回折や2次の回折といった所謂ブラッグ回折により、光の向きを屈折とは異なる特定の向きに変えることができる性質を利用して、発光層から発生した光のうち層間での全反射等により外に出ることができない光を、いずれかの層間もしくは、媒質中(透明基板内や透明電極内)に回折格子を導入することで光を回折させ、光を外に取り出そうとするものである。   The method of introducing a diffraction grating into an interface or any medium that causes total reflection is characterized by a high effect of improving light extraction efficiency. This method uses the property that the diffraction grating can change the direction of light to a specific direction different from refraction by so-called Bragg diffraction such as first-order diffraction and second-order diffraction. Light that cannot be emitted due to total internal reflection between layers is diffracted by introducing a diffraction grating in any layer or medium (in a transparent substrate or transparent electrode), and the light is removed. I want to take it out.

導入する回折格子は、二次元的な周期屈折率をもっていることが望ましい。これは発光層で発光する光はあらゆる方向にランダムに発生するので、ある方向にのみ周期的な屈折率分布を持っている一般的な1次元回折格子では、特定の方向に進む光しか回折されず、光の取り出し効率がさほど上がらない。   It is desirable that the diffraction grating to be introduced has a two-dimensional periodic refractive index. This is because light emitted from the light-emitting layer is randomly generated in all directions, so in a general one-dimensional diffraction grating having a periodic refractive index distribution only in a certain direction, only light traveling in a specific direction is diffracted. Therefore, the light extraction efficiency does not increase so much.

しかしながら、屈折率分布を二次元的な分布にすることにより、あらゆる方向に進む光が回折され、光の取り出し効率が上がる。   However, by making the refractive index distribution a two-dimensional distribution, light traveling in all directions is diffracted, and light extraction efficiency is increased.

回折格子を導入する位置としては前述の通り、いずれかの層間もしくは媒質中(透明基板内や透明電極内)でもよいが、光が発生する場所である有機発光層の近傍が望ましい。   As described above, the position where the diffraction grating is introduced may be in any of the layers or in the medium (in the transparent substrate or in the transparent electrode), but is preferably in the vicinity of the organic light emitting layer where light is generated.

このとき、回折格子の周期は媒質中の光の波長の約1/2〜3倍程度が好ましい。   At this time, the period of the diffraction grating is preferably about 1/2 to 3 times the wavelength of light in the medium.

回折格子の配列は正方形のラチス状、三角形のラチス状、ハニカムラチス状等、2次元的に配列が繰り返されることが好ましい。   The arrangement of the diffraction grating is preferably two-dimensionally repeated, such as a square lattice, a triangular lattice, or a honeycomb lattice.

《集光シート》
本発明の有機EL素子は基板の光取り出し側に、例えば、マイクロレンズアレイ状の構造を設けるように加工したり、あるいは所謂集光シートと組み合わせることにより、特定方向、例えば、素子発光面に対し正面方向に集光することにより、特定方向上の輝度を高めることができる。
<Condenser sheet>
The organic EL device of the present invention is processed on the light extraction side of the substrate so as to provide, for example, a microlens array structure, or combined with a so-called condensing sheet, for example, with respect to a specific direction, for example, the light emitting surface By condensing in the front direction, the luminance in a specific direction can be increased.

マイクロレンズアレイの例としては、基板の光取り出し側に一辺が30μmでその頂角が90度となるような四角錐を二次元に配列する。一辺は10μm〜100μmが好ましい。これより小さくなると回折の効果が発生して色付く、大きすぎると厚みが厚くなり好ましくない。   As an example of the microlens array, quadrangular pyramids having a side of 30 μm and an apex angle of 90 degrees are arranged two-dimensionally on the light extraction side of the substrate. One side is preferably 10 μm to 100 μm. If it becomes smaller than this, the effect of diffraction will generate | occur | produce and color, and if too large, thickness will become thick and is not preferable.

集光シートとしては、例えば、液晶表示装置のLEDバックライトで実用化されているものを用いることが可能である。このようなシートとして、例えば、住友スリーエム社製輝度上昇フィルム(BEF)等を用いることができる。プリズムシートの形状としては、例えば、基材に頂角90度、ピッチ50μmの△状のストライプが形成されたものであってもよいし、頂角が丸みを帯びた形状、ピッチをランダムに変化させた形状、その他の形状であってもよい。   As the condensing sheet, for example, a sheet that is put into practical use in an LED backlight of a liquid crystal display device can be used. As such a sheet, for example, a brightness enhancement film (BEF) manufactured by Sumitomo 3M Limited can be used. As the shape of the prism sheet, for example, the base material may be formed by forming a △ -shaped stripe having a vertex angle of 90 degrees and a pitch of 50 μm, or the vertex angle is rounded and the pitch is changed randomly. Other shapes may be used.

また、発光素子からの光放射角を制御するために、光拡散板・フィルムを集光シートと併用してもよい。例えば、(株)きもと製拡散フィルム(ライトアップ)等を用いることができる。   Moreover, in order to control the light emission angle from a light emitting element, you may use together a light diffusing plate and a film with a condensing sheet. For example, a diffusion film (light-up) manufactured by Kimoto Co., Ltd. can be used.

《有機EL素子の作製方法》
本発明の有機EL素子の作製方法の一例として、陽極/正孔注入層/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極からなる有機EL素子の作製法を説明する。
<< Method for producing organic EL element >>
As an example of the method for producing the organic EL device of the present invention, a method for producing an organic EL device comprising an anode / hole injection layer / hole transport layer / light emitting layer / hole blocking layer / electron transport layer / cathode will be described.

まず適当な基体上に所望の電極物質、例えば、陽極用物質からなる薄膜を1μm以下、好ましくは10nm〜200nmの膜厚になるように、蒸着やスパッタリング等の方法により形成させ陽極を作製する。   First, a desired electrode material, for example, a thin film made of an anode material is formed on a suitable substrate so as to have a film thickness of 1 μm or less, preferably 10 nm to 200 nm, to form an anode.

次に、この上に有機EL素子材料である正孔注入層、正孔輸送層、発光層、正孔阻止層、電子輸送層等の有機化合物薄膜を形成させる。   Next, organic compound thin films such as a hole injection layer, a hole transport layer, a light emitting layer, a hole blocking layer, and an electron transport layer, which are organic EL element materials, are formed thereon.

これら各層の形成方法としては、前記の如く蒸着法、ウェットプロセス(スピンコート法、キャスト法、インクジェット法、印刷法)等があるが、均質な膜が得られやすく、且つピンホールが生成しにくい等の点から、本発明においてはスピンコート法、インクジェット法、印刷法等の塗布法による成膜が好ましい。   As a method for forming each of these layers, there are a vapor deposition method, a wet process (spin coating method, casting method, ink jet method, printing method) and the like as described above, but it is easy to obtain a homogeneous film and it is difficult to generate pinholes. In view of the above, film formation by a coating method such as a spin coating method, an ink jet method, or a printing method is preferable in the present invention.

本発明に係る有機EL材料を溶解または分散する液媒体としては、例えば、メチルエチルケトン、シクロヘキサノン等のケトン類、酢酸エチル等の脂肪酸エステル類、ジクロロベンゼン等のハロゲン化炭化水素類、トルエン、キシレン、メシチレン、シクロヘキシルベンゼン等の芳香族炭化水素類、シクロヘキサン、デカリン、ドデカン等の脂肪族炭化水素類、DMF、DMSO等の有機溶媒を用いることができる。また分散方法としては、超音波、高剪断力分散やメディア分散等の分散方法により分散することができる。   Examples of the liquid medium for dissolving or dispersing the organic EL material according to the present invention include ketones such as methyl ethyl ketone and cyclohexanone, fatty acid esters such as ethyl acetate, halogenated hydrocarbons such as dichlorobenzene, toluene, xylene, and mesitylene. Aromatic hydrocarbons such as cyclohexylbenzene, aliphatic hydrocarbons such as cyclohexane, decalin, and dodecane, and organic solvents such as DMF and DMSO can be used. Moreover, as a dispersion method, it can disperse | distribute by dispersion methods, such as an ultrasonic wave, high shear force dispersion | distribution, and media dispersion | distribution.

これらの層を形成後、その上に陰極用物質からなる薄膜を1μm以下、好ましくは、50nm〜200nmの範囲の膜厚になるように、例えば、蒸着やスパッタリング等の方法により形成させ、陰極を設けることにより所望の有機EL素子が得られる。   After these layers are formed, a thin film made of a cathode material is formed thereon by 1 μm or less, preferably by a method such as vapor deposition or sputtering so that the film thickness is in the range of 50 nm to 200 nm. By providing, a desired organic EL element can be obtained.

また作製順序を逆にして、陰極、電子輸送層、正孔阻止層、発光層、正孔輸送層、正孔注入層、陽極の順に作製することも可能である。このようにして得られた多色の表示装置に、直流電圧を印加する場合には陽極を+、陰極を−の極性として電圧2〜40V程度を印加すると発光が観測できる。また交流電圧を印加してもよい。なお、印加する交流の波形は任意でよい。   Further, it is also possible to reverse the production order and produce the cathode, the electron transport layer, the hole blocking layer, the light emitting layer, the hole transport layer, the hole injection layer, and the anode in this order. When a DC voltage is applied to the multicolor display device thus obtained, light emission can be observed by applying a voltage of about 2 to 40 V with the positive polarity of the anode and the negative polarity of the cathode. An alternating voltage may be applied. The alternating current waveform to be applied may be arbitrary.

《用途》
本発明の有機EL素子は、表示デバイス、ディスプレイ、各種発光光源として用いることができる。発光光源として、例えば、照明装置(家庭用照明、車内照明)、時計や液晶用バックライト、看板広告、信号機、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるがこれに限定するものではないが、特に液晶表示装置のバックライト、照明用光源としての用途に有効に用いることができる。
<Application>
The organic EL element of the present invention can be used as a display device, a display, and various light emission sources. For example, lighting devices (home lighting, interior lighting), clock and liquid crystal backlights, billboard advertisements, traffic lights, light sources of optical storage media, light sources of electrophotographic copying machines, light sources of optical communication processors, light Although the light source of a sensor etc. are mentioned, It is not limited to this, It can use effectively for the use as a backlight of a liquid crystal display device, and an illumination light source especially.

本発明の有機EL素子においては、必要に応じ成膜時にメタルマスクやインクジェットプリンティング法等でパターニングを施してもよい。パターニングする場合は、電極のみをパターニングしてもよいし、電極と発光層をパターニングしてもよいし、素子全層をパターニングしてもよく、素子の作製においては、従来公知の方法を用いることができる。   In the organic EL element of the present invention, patterning may be performed by a metal mask, an ink jet printing method, or the like as needed during film formation. In the case of patterning, only the electrode may be patterned, the electrode and the light emitting layer may be patterned, or the entire layer of the element may be patterned. In the fabrication of the element, a conventionally known method is used. Can do.

本発明の有機EL素子や本発明に係る化合物の発光する色は、「新編色彩科学ハンドブック」(日本色彩学会編、東京大学出版会、1985)の108頁の図4.16において、分光放射輝度計CS−1000(コニカミノルタセンシング社製)で測定した結果をCIE色度座標に当てはめたときの色で決定される。   The light emission color of the organic EL device of the present invention and the compound according to the present invention is shown in FIG. 4.16 on page 108 of “New Color Science Handbook” (edited by the Japan Color Society, University of Tokyo Press, 1985). It is determined by the color when the result measured with the total CS-1000 (manufactured by Konica Minolta Sensing) is applied to the CIE chromaticity coordinates.

また、本発明の有機EL素子が白色素子の場合には、白色とは、2度視野角正面輝度を上記方法により測定した際に、1000cd/mでのCIE1931表色系における色度がX=0.33±0.07、Y=0.33±0.1の領域内にあることをいう。 When the organic EL element of the present invention is a white element, white means that the chromaticity in the CIE1931 color system at 1000 cd / m 2 is X when the 2 ° viewing angle front luminance is measured by the above method. = 0.33 ± 0.07 and Y = 0.33 ± 0.1.

以下、実施例により本発明を詳細に説明するが、本発明はこれらに限定されない。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited to these.

実施例において用いられる化合物の構造を下記に示す。   The structures of the compounds used in the examples are shown below.

Figure 2010040829
Figure 2010040829

Figure 2010040829
Figure 2010040829

Figure 2010040829
Figure 2010040829

実施例1
《有機EL素子1−1の作製》
陽極として100mm×100mm×1.1mmのガラス基板上にITO(インジウムチンオキシド)を100nm成膜した基板(NHテクノグラス社製NA45)にパターニングを行った後、このITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。
Example 1
<< Production of Organic EL Element 1-1 >>
A transparent support provided with this ITO transparent electrode after patterning on a substrate (NH45 manufactured by NH Techno Glass Co., Ltd.) formed by depositing 100 nm of ITO (indium tin oxide) on a glass substrate of 100 mm × 100 mm × 1.1 mm as an anode The substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes.

この透明支持基板を市販の真空蒸着装置の基板ホルダーに固定し、一方、モリブデン製抵抗加熱ボートにα−NPDを200mg入れ、別のモリブデン製抵抗加熱ボートにホスト化合物としてH−1を200mg入れ、別のモリブデン製抵抗加熱ボートにBAlqを200mg入れ、別のモリブデン製抵抗加熱ボートにFIrpic(IR−12)を100mg入れ、さらに別のモリブデン製抵抗加熱ボートにAlqを200mg入れ、真空蒸着装置に取り付けた。 This transparent support substrate was fixed to a substrate holder of a commercially available vacuum deposition apparatus, while 200 mg of α-NPD was put in a molybdenum resistance heating boat, and 200 mg of H-1 as a host compound was put in another molybdenum resistance heating boat, 200 mg of BAlq is put in another molybdenum resistance heating boat, 100 mg of FIrpic (IR-12) is put in another resistance heating boat made of molybdenum, and 200 mg of Alq 3 is put in another resistance heating boat made of molybdenum. Attached.

次いで、真空槽を4×10−4Paまで減圧した後、α−NPDの入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/秒で透明支持基板に蒸着し、膜厚40nmの正孔輸送層を設けた。 Next, after reducing the vacuum chamber to 4 × 10 −4 Pa, the heating boat containing α-NPD was heated by heating, and deposited on the transparent support substrate at a deposition rate of 0.1 nm / sec. The hole transport layer was provided.

さらに、H−1とFIrpic(IR−12)の入った前記加熱ボートに通電して加熱し、それぞれ蒸着速度0.2nm/秒、0.012nm/秒で前記正孔輸送層上に共蒸着して、膜厚40nmの発光層を設けた。なお、蒸着時の基板温度は室温であった。   Furthermore, the heating boat containing H-1 and FIrpic (IR-12) was energized and heated, and co-deposited on the hole transport layer at a deposition rate of 0.2 nm / second and 0.012 nm / second, respectively. Thus, a light emitting layer having a thickness of 40 nm was provided. In addition, the substrate temperature at the time of vapor deposition was room temperature.

さらに、BAlqの入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/秒で前記発光層の上に蒸着して膜厚10nmの正孔阻止層を設けた。   Furthermore, the heating boat containing BAlq was energized and heated, and was deposited on the light emitting layer at a deposition rate of 0.1 nm / second to provide a 10 nm thick hole blocking layer.

その上に、さらに、Alqの入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/秒で前記正孔阻止層の上に蒸着してさらに膜厚40nmの電子輸送層を設けた。なお、蒸着時の基板温度は室温であった。 Further, the heating boat containing Alq 3 is energized and heated, and is deposited on the hole blocking layer at a deposition rate of 0.1 nm / second to further provide an electron transport layer having a thickness of 40 nm. It was. In addition, the substrate temperature at the time of vapor deposition was room temperature.

引き続きフッ化リチウム0.5nmおよびアルミニウム110nmを蒸着して陰極を形成し、有機EL素子1−1を作製した。   Subsequently, 0.5 nm of lithium fluoride and 110 nm of aluminum were deposited to form a cathode, and an organic EL element 1-1 was produced.

《有機EL素子1−2〜1−21の作製》
有機EL素子1−1の作製において、発光層のホスト化合物であるH−1、ドーパント化合物であるFIrpic(IR−12)を表1に示す化合物に置き換えた以外は同様にして、有機EL素子1−2〜1−21を作製した。
<< Production of Organic EL Elements 1-2 to 1-21 >>
In the production of the organic EL element 1-1, the organic EL element 1 was similarly prepared except that H-1 as the host compound of the light emitting layer and FIrpic (IR-12) as the dopant compound were replaced with the compounds shown in Table 1. -2 to 1-21 were produced.

《有機EL素子の評価》
得られた有機EL素子1−2〜1−21を評価するに際しては、作製後の各有機EL素子の非発光面をガラスケースで覆い、厚み300μmのガラス基板を封止用基板として用いて、周囲にシール材としてエポキシ系光硬化型接着剤(東亞合成社製ラックストラックLC0629B)を適用し、これを上記陰極上に重ねて前記透明支持基板と密着させ、ガラス基板側からUV光を照射して、硬化させて、封止して、図3、図4に示すような照明装置を形成して評価した。
<< Evaluation of organic EL elements >>
When evaluating the obtained organic EL elements 1-2 to 1-21, the non-light-emitting surface of each organic EL element after production was covered with a glass case, and a glass substrate having a thickness of 300 μm was used as a sealing substrate. An epoxy photo-curing adhesive (Lux Track LC0629B manufactured by Toagosei Co., Ltd.) is applied as a sealant around the periphery, and this is placed on the cathode so as to be in close contact with the transparent support substrate and irradiated with UV light from the glass substrate side. Then, it was cured and sealed, and an illumination device as shown in FIGS. 3 and 4 was formed and evaluated.

図3は照明装置の概略図を示し、有機EL素子101はガラスカバー102で覆われている(なお、ガラスカバーでの封止作業は、有機EL素子101を大気に接触させることなく窒素雰囲気下のグローブボックス(純度99.999%以上の高純度窒素ガスの雰囲気下)で行った)。   FIG. 3 is a schematic diagram of the lighting device, and the organic EL element 101 is covered with a glass cover 102 (in addition, the sealing operation with the glass cover is performed in a nitrogen atmosphere without bringing the organic EL element 101 into contact with the atmosphere. (In a high purity nitrogen gas atmosphere with a purity of 99.999% or more).

図4は照明装置の断面図を示し、図4において、105は陰極、106は有機EL層、107は透明電極付きガラス基板を示す。なお、ガラスカバー102内には窒素ガス108が充填され、捕水剤109が設けられている。   4 shows a cross-sectional view of the lighting device. In FIG. 4, reference numeral 105 denotes a cathode, 106 denotes an organic EL layer, and 107 denotes a glass substrate with a transparent electrode. The glass cover 102 is filled with nitrogen gas 108 and a water catching agent 109 is provided.

(外部取り出し量子効率(発光効率))
有機EL素子を室温(約23〜25℃)、2.5mA/cmの定電流条件下による点灯を行い、点灯開始直後の発光輝度(L)[cd/m]を測定することにより、外部取り出し量子効率(η)を算出した。ここで、発光輝度の測定はCS−1000(コニカミノルタセンシング製)を用いた。
(External extraction quantum efficiency (luminescence efficiency))
By lighting the organic EL element under a constant current condition of room temperature (about 23 to 25 ° C.) and 2.5 mA / cm 2 , and measuring the light emission luminance (L) [cd / m 2 ] immediately after the start of lighting, The external extraction quantum efficiency (η) was calculated. Here, CS-1000 (manufactured by Konica Minolta Sensing) was used for measurement of light emission luminance.

外部取り出し量子効率は有機EL素子1−1を100とする相対値で表した。   The external extraction quantum efficiency was expressed as a relative value with the organic EL element 1-1 as 100.

(半減寿命)
下記に示す測定法に従って、半減寿命の評価を行った。
(Half life)
The half-life was evaluated according to the measurement method shown below.

各有機EL素子を初期輝度1000cd/mを与える電流で定電流駆動して、初期輝度の1/2(500cd/m)になる時間を求め、これを半減寿命の尺度とした。 Each organic EL device driven with a constant current at a current giving an initial luminance 1000 cd / m 2, obtains the time to be 1/2 (500cd / m 2) of the initial luminance, which was used as a measure of the half-life.

なお、半減寿命は比較の有機EL素子1−1を100とした時の相対値で表示した。   The half life was expressed as a relative value when the comparative organic EL element 1-1 was set to 100.

(初期劣化)
下記に示す測定法に従って、初期劣化の評価を行った。
(Initial deterioration)
The initial deterioration was evaluated according to the measurement method shown below.

前記半減寿命の測定時に、輝度が90%に到達する時間を測定し、これを初期劣化の尺度とした。なお、初期劣化は比較の有機EL素子1−1を100とした。   When the half-life was measured, the time required for the luminance to reach 90% was measured and used as a measure of initial deterioration. The initial deterioration was 100 for the comparative organic EL element 1-1.

初期劣化は以下の計算式を基に計算した。
初期劣化=(有機EL素子1−1の輝度90%到達時間)/(各素子の輝度90%到達時間)×100
すなわち、初期劣化の値は、小さいほど初期の劣化が小さいことを示す。
The initial deterioration was calculated based on the following formula.
Initial deterioration = (luminance 90% arrival time of organic EL element 1-1) / (luminance 90% arrival time of each element) × 100
That is, the smaller the initial deterioration value is, the smaller the initial deterioration is.

(ダークスポット)
各有機EL素子を室温下、2.5mA/cmの定電流条件下による連続点灯を行った際の発光面を目視で評価した。無作為に抽出した10人による目視評価で連続点灯時間10時間経過後の各素子において、
ダークスポットを確認した人数が5人以上の場合 ×
ダークスポットを確認した人数が1−4人の場合 △
ダークスポットを確認した人数が0人の場合 ○
とした。
(Dark spot)
The light emitting surface when each organic EL element was continuously lit under a constant current condition of 2.5 mA / cm 2 at room temperature was visually evaluated. In each element after 10 hours of continuous lighting by visual evaluation by 10 randomly extracted people,
When the number of people who confirmed dark spots is 5 or more ×
When the number of confirmed dark spots is 1-4
When the number of people who confirmed dark spots is 0 ○
It was.

以上の評価結果を表1に示す。   The above evaluation results are shown in Table 1.

Figure 2010040829
Figure 2010040829

表1から、比較の素子に比べて、本発明の有機EL素子は、外部取り出し量子効率が高く、且つ、初期の輝度劣化が少なく、それに伴って長寿命であることがわかる。   From Table 1, it can be seen that the organic EL device of the present invention has a higher external extraction quantum efficiency, less initial luminance degradation, and a longer lifetime as compared with the comparative device.

さらに、ダークスポットの生成も抑えられていることもわかる。   It can also be seen that the generation of dark spots is suppressed.

実施例2
《フルカラー表示装置の作製》
(青色発光素子の作製)
実施例1の有機EL素子1−6を青色発光素子として用いた。
Example 2
<Production of full-color display device>
(Production of blue light emitting element)
The organic EL element 1-6 of Example 1 was used as a blue light emitting element.

(緑色発光素子の作製)
実施例1の有機EL素子1−1において、FIrpicをIr−1に変更した以外は同様にして、緑色発光素子を作製し、これを緑色発光素子として用いた。
(Production of green light emitting element)
A green light emitting device was produced in the same manner as in the organic EL device 1-1 of Example 1 except that FIrpic was changed to Ir-1, and this was used as a green light emitting device.

(赤色発光素子の作製)
実施例1の有機EL素子1−1において、FIrpicをIr−9に変更した以外は同様にして、赤色発光素子を作製し、これを赤色発光素子として用いた。
(Production of red light emitting element)
A red light emitting device was produced in the same manner as in the organic EL device 1-1 of Example 1 except that FIrpic was changed to Ir-9, and this was used as a red light emitting device.

上記で作製した赤色、緑色、青色発光有機EL素子を同一基板上に並置し、図1に記載のような形態を有するアクティブマトリクス方式フルカラー表示装置を作製した。図2には、作製した前記表示装置の表示部Aの模式図のみを示した。   The red, green, and blue light-emitting organic EL elements produced above were juxtaposed on the same substrate to produce an active matrix type full-color display device having a configuration as shown in FIG. In FIG. 2, only the schematic diagram of the display part A of the produced display device is shown.

即ち、同一基板上に複数の走査線5およびデータ線6を含む配線部と並置した複数の画素3(発光の色が赤領域の画素、緑領域の画素、青領域の画素等)とを有し、配線部の走査線5および複数のデータ線6はそれぞれ導電材料からなり、走査線5とデータ線6は格子状に直交して、直交する位置で画素3に接続している(詳細は図示せず)。   That is, it has a plurality of pixels 3 (light emission color is a red region pixel, a green region pixel, a blue region pixel, etc.) juxtaposed with a wiring portion including a plurality of scanning lines 5 and data lines 6 on the same substrate. The scanning lines 5 and the plurality of data lines 6 in the wiring portion are each made of a conductive material, and the scanning lines 5 and the data lines 6 are orthogonal to each other in a lattice shape and are connected to the pixels 3 at the orthogonal positions (for details, see Not shown).

前記複数画素3は、それぞれの発光色に対応した有機EL素子、アクティブ素子であるスイッチングトランジスタと駆動トランジスタそれぞれが設けられたアクティブマトリクス方式で駆動されており、走査線5から走査信号が印加されるとデータ線6から画像データ信号を受け取り、受け取った画像データに応じて発光する。このように赤、緑、青の画素を適宜、並置することによって、フルカラー表示装置を作製した。   The plurality of pixels 3 are driven by an active matrix system provided with an organic EL element corresponding to each emission color, a switching transistor as an active element, and a driving transistor, and a scanning signal is applied from a scanning line 5. The image data signal is received from the data line 6 and light is emitted according to the received image data. In this way, a full color display device was produced by appropriately juxtaposing red, green, and blue pixels.

このフルカラー表示装置は駆動することにより、輝度が高く、高耐久性を有し、且つ鮮明なフルカラー動画表示が得られることがわかった。   It has been found that when this full-color display device is driven, a high-brightness, high durability, and clear full-color moving image display can be obtained.

実施例3および白色照明装置の作製−1》
実施例1の透明電極基板の電極を50mm×50mmにパターニングし、その上に実施例1と同様に正孔注入/輸送層としてα−NPDを25nmの厚さで成膜し、さらに、IH−3の入った前記加熱ボートと例示化合物A−97の入ったボートおよびIr−9の入ったボートをそれぞれ独立に通電して、発光ホストであるIH−3と発光ドーパントとして例示化合物A−97、およびIr−9の蒸着速度が100:5:0.6になるように調節し、膜厚30nmの厚さになるように蒸着し、発光層を設けた。
Example 3 and Production of White Lighting Device-1 >>
The electrode of the transparent electrode substrate of Example 1 was patterned to 50 mm × 50 mm, and α-NPD was deposited thereon with a thickness of 25 nm as a hole injection / transport layer in the same manner as in Example 1; The heating boat containing 3 and the boat containing Exemplified Compound A-97 and the boat containing Ir-9 were energized independently, and Illuminating Host IH-3 and Illustrative Compound A-97 as the luminescent dopant, And the vapor deposition rate of Ir-9 was adjusted to 100: 5: 0.6, vapor deposition was performed so as to have a thickness of 30 nm, and a light emitting layer was provided.

次いで、BAlqを10nm成膜して正孔阻止層を設けた。さらに、Alqを40nmで成膜し電子輸送層を設けた。 Next, 10 nm of BAlq was deposited to provide a hole blocking layer. Further, Alq 3 was formed at 40 nm to provide an electron transport layer.

次に、実施例1と同様に電子輸送層の上にステンレス鋼製の透明電極とほぼ同じ形状の正方形穴あきマスクを設置し、陰極バッファー層としてフッ化リチウム0.5nmおよび陰極としてアルミニウム150nmを蒸着、成膜した。   Next, as in Example 1, a square perforated mask having the same shape as the transparent electrode made of stainless steel was placed on the electron transport layer, and lithium fluoride 0.5 nm as the cathode buffer layer and aluminum 150 nm as the cathode. Vapor deposition and film formation were performed.

この素子を実施例1と同様な方法および同様な構造の封止缶を具備させ、図3、図4に示すような平面ランプを作製した。この平面ランプに通電したところほぼ白色の光が得られ、照明装置として使用できることがわかった。   This element was provided with a sealing can having the same method and the same structure as in Example 1, and a flat lamp as shown in FIGS. 3 and 4 was produced. When this flat lamp was energized, almost white light was obtained, and it was found that it could be used as a lighting device.

実施例4
《白色発光素子および白色照明装置の作製−2》
陽極として100mm×100mm×1.1mmのガラス基板上にITO(インジウムチンオキシド)を100nm製膜した基板(NHテクノグラス社製NA−45)にパターニングを行った後、このITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。
Example 4
<< Production of White Light Emitting Element and White Lighting Device-2 >>
After patterning on a substrate (NA-45 manufactured by NH Techno Glass Co., Ltd.) formed by depositing 100 nm of ITO (indium tin oxide) on a 100 mm × 100 mm × 1.1 mm glass substrate as an anode, this ITO transparent electrode was provided. The transparent support substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes.

この透明支持基板上に、ポリ(3,4−エチレンジオキシチオフェン)−ポリスチレンスルホネート(PEDOT/PSS、Bayer社製、Baytron P Al 4083)を純水で70%に希釈した溶液を3000rpm、30秒でスピンコート法により製膜した後、200℃にて1時間乾燥し、膜厚30nmの第1正孔輸送層を設けた。   On this transparent support substrate, a solution obtained by diluting poly (3,4-ethylenedioxythiophene) -polystyrene sulfonate (PEDOT / PSS, Bayer, Baytron P Al 4083) to 70% with pure water at 3000 rpm for 30 seconds. After the film formation by spin coating, the film was dried at 200 ° C. for 1 hour to provide a first hole transport layer having a thickness of 30 nm.

この基板を窒素雰囲気下に移し、第1正孔輸送層上に、50mgの化合物Aを10mlのトルエンに溶解した溶液を1000rpm、30秒の条件下、スピンコート法により製膜した。180秒間紫外光を照射し、光重合・架橋を行った後、60℃で1時間真空乾燥し第2正孔輸送層とした。   This substrate was transferred to a nitrogen atmosphere, and a solution of 50 mg of compound A dissolved in 10 ml of toluene was formed on the first hole transport layer by spin coating at 1000 rpm for 30 seconds. After irradiating with ultraviolet light for 180 seconds to carry out photopolymerization / crosslinking, vacuum drying was performed at 60 ° C. for 1 hour to form a second hole transport layer.

次に、IH−88(60mg)、F−9(3.0mg)、Ir−14(3.0mg)をトルエン6mlに溶解した溶液を用い、1000rpm、30秒の条件下、スピンコート法により製膜した。15秒間紫外光を照射し、光重合・架橋を行わせ、さらに真空中150℃で1時間加熱を行い、発光層とした。   Next, using a solution prepared by dissolving IH-88 (60 mg), F-9 (3.0 mg), and Ir-14 (3.0 mg) in 6 ml of toluene, the solution was prepared by spin coating at 1000 rpm for 30 seconds. Filmed. Irradiated with ultraviolet light for 15 seconds to cause photopolymerization and crosslinking, and further heated in vacuum at 150 ° C. for 1 hour to obtain a light emitting layer.

さらに、化合物F(20mg)をトルエン6mlに溶解した溶液を用い、1000rpm、30秒の条件下、スピンコート法により製膜した。15秒間紫外光を照射し、光重合・架橋を行わせ、さらに真空中80℃で1時間加熱を行い、正孔阻止層とした。   Furthermore, a film in which compound F (20 mg) was dissolved in 6 ml of toluene was used to form a film by spin coating under conditions of 1000 rpm and 30 seconds. Ultraviolet light was irradiated for 15 seconds, photopolymerization / crosslinking was performed, and further heating was performed in vacuum at 80 ° C. for 1 hour to form a hole blocking layer.

続いて、この基板を真空蒸着装置の基板ホルダーに固定し、モリブデン製抵抗加熱ボートにAlqを200mg入れ、真空蒸着装置に取り付けた。真空槽を4×10−4Paまで減圧した後、Alqの入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/秒で前記正孔阻止層の上に蒸着して、さらに膜厚40nmの電子輸送層を設けた。 Subsequently, this substrate was fixed to a substrate holder of a vacuum vapor deposition apparatus, 200 mg of Alq 3 was placed in a molybdenum resistance heating boat, and attached to the vacuum vapor deposition apparatus. After depressurizing the vacuum chamber to 4 × 10 −4 Pa, energizing and heating the heating boat containing Alq 3 , depositing on the hole blocking layer at a deposition rate of 0.1 nm / second, An electron transport layer having a thickness of 40 nm was provided.

なお、蒸着時の基板温度は室温であった。   In addition, the substrate temperature at the time of vapor deposition was room temperature.

引き続き、フッ化リチウム0.5nmおよびアルミニウム110nmを蒸着して陰極を形成し、白色発光有機EL素子を作製した。   Then, 0.5 nm of lithium fluoride and 110 nm of aluminum were vapor-deposited, the cathode was formed, and the white light emitting organic EL element was produced.

この素子を実施例1と同様な方法および同様な構造の封止缶を具備させ、図3、図4に示すような平面ランプを作製した。   This element was provided with a sealing can having the same method and the same structure as in Example 1, and a flat lamp as shown in FIGS. 3 and 4 was produced.

この平面ランプに通電したところほぼ白色の光が得られ、照明装置として使用できることがわかった。   When this flat lamp was energized, almost white light was obtained, and it was found that it could be used as a lighting device.

実施例5
《有機EL素子5−1の作製》
陽極として100mm×100mm×1.1mmのガラス基板上にITO(インジウムチンオキシド)を100nm製膜した基板(NHテクノグラス社製NA−45)にパターニングを行った後、このITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。
Example 5
<< Production of Organic EL Element 5-1 >>
After patterning on a substrate (NA-45 manufactured by NH Techno Glass Co., Ltd.) formed by depositing 100 nm of ITO (indium tin oxide) on a 100 mm × 100 mm × 1.1 mm glass substrate as an anode, this ITO transparent electrode was provided. The transparent support substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes.

この透明支持基板上に、ポリ(3,4−エチレンジオキシチオフェン)−ポリスチレンスルホネート(PEDOT/PSS、Bayer社製、Baytron P Al 4083)を純水で70%に希釈した溶液を3000rpm、30秒でスピンコート法により製膜した後、200℃にて1時間乾燥し、膜厚30nmの第1正孔輸送層を設けた。   On this transparent support substrate, a solution obtained by diluting poly (3,4-ethylenedioxythiophene) -polystyrene sulfonate (PEDOT / PSS, Bayer, Baytron P Al 4083) to 70% with pure water at 3000 rpm for 30 seconds. After the film formation by spin coating, the film was dried at 200 ° C. for 1 hour to provide a first hole transport layer having a thickness of 30 nm.

この基板を窒素雰囲気下に移し、第1正孔輸送層上に、50mgの化合物Aを10mlのトルエンに溶解した溶液を1000rpm、30秒の条件下、スピンコート法により製膜した。   This substrate was transferred to a nitrogen atmosphere, and a solution of 50 mg of compound A dissolved in 10 ml of toluene was formed on the first hole transport layer by spin coating at 1000 rpm for 30 seconds.

180秒間紫外光を照射し、光重合・架橋を行った後、60℃で1時間真空乾燥し第2正孔輸送層とした。   After irradiating with ultraviolet light for 180 seconds to carry out photopolymerization / crosslinking, vacuum drying was performed at 60 ° C. for 1 hour to form a second hole transport layer.

次に、化合物E(60mg)、FIrpic(3.0mg)をトルエン6mlに溶解した溶液を用い、1000rpm、30秒の条件下、スピンコート法により製膜し、発光層を形成した。   Next, using a solution obtained by dissolving Compound E (60 mg) and FIrpic (3.0 mg) in 6 ml of toluene, a film was formed by a spin coating method at 1000 rpm for 30 seconds to form a light emitting layer.

続いて、この基板を真空蒸着装置の基板ホルダーに固定し、モリブデン製抵抗加熱ボートにBAlqを200mg入れ、真空蒸着装置に取り付けた。   Subsequently, this substrate was fixed to a substrate holder of a vacuum deposition apparatus, 200 mg of BAlq was put into a molybdenum resistance heating boat, and attached to the vacuum deposition apparatus.

真空槽を4×10−4Paまで減圧した後、BAlqの入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/秒で前記発光層の上に蒸着して、さらに膜厚40nmの電子輸送層を設けた。 After pressure in the vacuum tank was reduced to 4 × 10 -4 Pa, and heated by supplying an electric current to the boat containing BAlq, it is deposited on the light emitting layer at a deposition rate of 0.1 nm / sec, further thickness 40nm The electron transport layer was provided.

なお、蒸着時の基板温度は室温であった。引き続き、フッ化リチウム0.5nmおよびアルミニウム110nmを蒸着して陰極を形成し、白色発光有機EL素子を作製した。   In addition, the substrate temperature at the time of vapor deposition was room temperature. Then, 0.5 nm of lithium fluoride and 110 nm of aluminum were vapor-deposited, the cathode was formed, and the white light emitting organic EL element was produced.

《有機EL素子5−2〜5−10の作製》
有機EL素子5−1の作製において、発光層のホスト化合物である化合物E、ドーパント化合物であるFIrpicを表2に示す化合物に置き換えた以外は同様にして、有機EL素子5−2〜10を作製した。
<< Production of Organic EL Elements 5-2 to 5-10 >>
In the production of the organic EL element 5-1, the organic EL elements 5-2 to 10 were produced in the same manner except that the compound E as the host compound of the light emitting layer and FIrpic as the dopant compound were replaced with the compounds shown in Table 2. did.

《有機EL素子の評価》
得られた有機EL素子5−1〜5−10を評価するに際しては、作製後の各有機EL素子の非発光面をガラスケースで覆い、厚み300μmのガラス基板を封止用基板として用いて、周囲にシール材としてエポキシ系光硬化型接着剤(東亞合成社製ラックストラックLC0629B)を適用し、これを上記陰極上に重ねて前記透明支持基板と密着させ、ガラス基板側からUV光を照射して、硬化させて、封止して、図3、図4に示すような照明装置を形成して評価した。
<< Evaluation of organic EL elements >>
When evaluating the obtained organic EL elements 5-1 to 5-10, the non-light-emitting surface of each organic EL element after production was covered with a glass case, and a glass substrate having a thickness of 300 μm was used as a sealing substrate. An epoxy photo-curing adhesive (Lux Track LC0629B manufactured by Toagosei Co., Ltd.) is applied as a sealant around the periphery, and this is placed on the cathode so as to be in close contact with the transparent support substrate and irradiated with UV light from the glass substrate side. Then, it was cured and sealed, and an illumination device as shown in FIGS. 3 and 4 was formed and evaluated.

図3は照明装置の概略図を示し、有機EL素子101はガラスカバー102で覆われている(なお、ガラスカバーでの封止作業は、有機EL素子101を大気に接触させることなく窒素雰囲気下のグローブボックス(純度99.999%以上の高純度窒素ガスの雰囲気下)で行った)。   FIG. 3 is a schematic diagram of the lighting device, and the organic EL element 101 is covered with a glass cover 102 (in addition, the sealing operation with the glass cover is performed in a nitrogen atmosphere without bringing the organic EL element 101 into contact with the atmosphere. (In a high purity nitrogen gas atmosphere with a purity of 99.999% or more).

図4は照明装置の断面図を示し、図4において、105は陰極、106は有機EL層、107は透明電極付きガラス基板を示す。なお、ガラスカバー102内には窒素ガス108が充填され、捕水剤109が設けられている。   4 shows a cross-sectional view of the lighting device. In FIG. 4, reference numeral 105 denotes a cathode, 106 denotes an organic EL layer, and 107 denotes a glass substrate with a transparent electrode. The glass cover 102 is filled with nitrogen gas 108 and a water catching agent 109 is provided.

(外部取り出し量子効率)
有機EL素子を室温(約23〜25℃)、2.5mA/cmの定電流条件下による点灯を行い、点灯開始直後の発光輝度(L)[cd/m]を測定することにより、外部取り出し量子効率(η)を算出した。
(External quantum efficiency)
By lighting the organic EL element under a constant current condition of room temperature (about 23 to 25 ° C.) and 2.5 mA / cm 2 , and measuring the light emission luminance (L) [cd / m 2 ] immediately after the start of lighting, The external extraction quantum efficiency (η) was calculated.

ここで、発光輝度の測定はCS−1000(コニカミノルタセンシング製)を用いた。   Here, CS-1000 (manufactured by Konica Minolta Sensing) was used for measurement of light emission luminance.

外部取り出し量子効率は有機EL素子5−1を100とする相対値で表した。   The external extraction quantum efficiency was expressed as a relative value with the organic EL element 5-1 as 100.

(半減寿命)
下記に示す測定法に従って、半減寿命の評価を行った。
(Half life)
The half-life was evaluated according to the measurement method shown below.

各有機EL素子を初期輝度1000cd/mを与える電流で定電
流駆動して、初期輝度の1/2(500cd/m)になる時間を求め、これを半減寿命の尺度とした。なお、半減寿命は実施例1の比較有機EL素子1−1を100とする相対値で表した。
Each organic EL device driven with a constant current at a current giving an initial luminance 1000 cd / m 2, obtains the time to be 1/2 (500cd / m 2) of the initial luminance, which was used as a measure of the half-life. The half life was expressed as a relative value with the comparative organic EL element 1-1 of Example 1 as 100.

(初期劣化)
下記に示す測定法に従って、初期劣化の評価を行った。
(Initial deterioration)
The initial deterioration was evaluated according to the measurement method shown below.

前記半減寿命の測定時に、初期輝度の90%になる時間を求め、これを初期劣化の尺度とした。なお、初期劣化は実施例1の比較有機EL素子1−1を100とする相対値で表した。初期劣化の値は、小さいほど初期の劣化が小さいことを示す。   At the time of measuring the half-life, a time for 90% of the initial luminance was obtained and used as a measure of initial deterioration. In addition, initial stage deterioration was represented by the relative value which sets the comparison organic EL element 1-1 of Example 1 to 100. The smaller the initial deterioration value, the smaller the initial deterioration.

(ダークスポット)
有機EL素子を室温下、2.5mA/cmの定電流条件下による連続点灯を行った際の発光面を目視で評価した。無作為に抽出した10人による目視評価で、
ダークスポットを確認した人数が5人以上の場合 ×
ダークスポットを確認した人数が1−4人の場合 △
ダークスポットを確認した人数が0人の場合 ○
とした。
(Dark spot)
The light emitting surface when the organic EL element was continuously lit under a constant current condition of 2.5 mA / cm 2 at room temperature was visually evaluated. By visual evaluation by 10 randomly selected people,
When the number of people who confirmed dark spots is 5 or more ×
When the number of confirmed dark spots is 1-4
When the number of people who confirmed dark spots is 0 ○
It was.

以上の評価結果を表2に示す。   The above evaluation results are shown in Table 2.

Figure 2010040829
Figure 2010040829

表2から、比較の素子に比べて、本発明の有機EL素子は、外部取り出し量子効率が高く、且つ、初期の輝度劣化が少なく、それに伴って長寿命であることがわかる。さらに、ダークスポットの生成も抑えられていることもわかる。   From Table 2, it can be seen that the organic EL device of the present invention has a higher external extraction quantum efficiency, less initial luminance degradation, and a longer lifetime as compared with the comparative device. It can also be seen that the generation of dark spots is suppressed.

有機EL素子から構成される表示装置の一例を示した模式図である。It is the schematic diagram which showed an example of the display apparatus comprised from an organic EL element. 表示部の模式図である。It is a schematic diagram of a display part. 照明装置の概略図である。It is the schematic of an illuminating device. 照明装置の断面図である。It is sectional drawing of an illuminating device.

符号の説明Explanation of symbols

1 ディスプレイ
3 画素
5 走査線
6 データ線
A 表示部
B 制御部
101 有機EL素子
107 透明電極付きガラス基板
106 有機EL層
105 陰極
102 ガラスカバー
108 窒素ガス
109 捕水剤
DESCRIPTION OF SYMBOLS 1 Display 3 Pixel 5 Scan line 6 Data line A Display part B Control part 101 Organic EL element 107 Glass substrate with a transparent electrode 106 Organic EL layer 105 Cathode 102 Glass cover 108 Nitrogen gas 109 Water catching agent

Claims (15)

陽極と陰極により挟まれた少なくとも1層の発光層を含有する有機エレクトロルミネッセンス素子において、該発光層が、下記一般式(1)、(2)、(3)、または(4)で表される部分構造を含む化合物を少なくとも1つ含有し、かつ下記一般式(5)または(6)で表される部分構造を含む化合物を少なくとも1つ含有する有機層を有することを特徴とする有機エレクトロルミネッセンス素子。
Figure 2010040829
〔式中、E1a〜E1qは炭素原子、窒素原子、酸素原子または硫黄原子を表し、E1a〜E1qで構成される骨格は合計で18π電子を有する。E1aとE1pは各々異なり、炭素原子または窒素原子を表す。R1a〜R1iは、各々水素原子または置換基を表す。Mは元素周期表における8族〜10族の遷移金属元素を表す。〕
Figure 2010040829
〔式中、AおよびAはそれぞれ独立して単結合または置換基を有していてもよいアリーレン基または置換基を有していてもよい2価の複素環基を示す。
〜R20はそれぞれ独立して水素原子、ハロゲン原子、炭素原子数1〜20の直鎖状または分岐状のアルキル基(該アルキル基の1つもしくは隣接しない2つ以上のメチレン基は−O−、−S−、−CO−、−CO−O−、−O−CO−、−CH=CH−、−C≡C−で置き換えられていてもよく、また、1つもしくは2つ以上のメチレン基は置換基を有していてもよいアリーレン基または置換基を有していてもよい2価の複素環基で置き換えられていてもよく、該アルキル基中の水素原子はフッ素原子に置換されていてもよい。)、炭素原子数3〜20のシクロアルキル基(該シクロアルキル基の1つもしくは隣接しない2つ以上のメチレン基は−O−、−S−、−CO−、−CO−O−、−O−CO−、−CH=CH−、で置き換えられていてもよく、また、1つもしくは2つ以上のメチレン基は置換基を有していてもよいアリーレン基または置換基を有していてもよい2価の複素環基で置き換えられていてもよく、該シクロアルキル基中の水素原子はフッ素原子に置換されていてもよい。)、置換基を有していてもよいアリール基または置換基を有していてもよい複素環基から選ばれ、隣接するものは結合して環構造を形成してもよい。〕
In an organic electroluminescence device including at least one light emitting layer sandwiched between an anode and a cathode, the light emitting layer is represented by the following general formula (1), (2), (3), or (4) Organic electroluminescence comprising an organic layer containing at least one compound containing a partial structure and containing at least one compound containing a partial structure represented by the following general formula (5) or (6) element.
Figure 2010040829
[In formula, E1a-E1q represents a carbon atom, a nitrogen atom, an oxygen atom, or a sulfur atom, and the skeleton comprised by E1a-E1q has a total of 18 (pi) electrons. E1a and E1p are different from each other and represent a carbon atom or a nitrogen atom. R1a to R1i each represents a hydrogen atom or a substituent. M represents a group 8-10 transition metal element in the periodic table. ]
Figure 2010040829
[Wherein, A 1 and A 2 each independently represent a single bond or an arylene group which may have a substituent or a divalent heterocyclic group which may have a substituent.
R 1 to R 20 each independently represent a hydrogen atom, a halogen atom, a linear or branched alkyl group having 1 to 20 carbon atoms (one or two or more methylene groups not adjacent to the alkyl group are- O—, —S—, —CO—, —CO—O—, —O—CO—, —CH═CH—, —C≡C— may be substituted, and one or more The methylene group may be substituted with an arylene group which may have a substituent or a divalent heterocyclic group which may have a substituent, and the hydrogen atom in the alkyl group is a fluorine atom. A cycloalkyl group having 3 to 20 carbon atoms (one or two or more methylene groups not adjacent to the cycloalkyl group may be -O-, -S-, -CO-,- Replaced by CO-O-, -O-CO-, -CH = CH- And one or two or more methylene groups may be substituted with an optionally substituted arylene group or an optionally substituted divalent heterocyclic group. Or a hydrogen atom in the cycloalkyl group may be substituted with a fluorine atom.), An aryl group which may have a substituent or a heterocyclic group which may have a substituent. Adjacent ones may be bonded to form a ring structure. ]
前記一般式(5)または(6)で表される部分構造を含む化合物が一般式(7)〜(12)のいずれかで表されることを特徴とする請求項1に記載の有機エレクトロルミネッセンス素子。
Figure 2010040829
Figure 2010040829
Figure 2010040829
〔式中、m1、m2、n1およびn2はそれぞれ0〜6の整数である。
ただし、m1+n1≦6であり、m2+n2≦6である。
m3、m4、m5、m6、n3、n4、n5およびn6はそれぞれ1〜6の整数である。ただし、m3+n3≦6であり、m4+n4≦6であり、m4+n4≦6であり、m5+n5≦6であり、m6+n6≦6である。
、X、X、X、XおよびXはそれぞれ、単結合、置換基を有していてもよいアリール基、置換基を有していてもよい複素環基、または、置換基を有していてもよいアミノ基から選ばれるmx+nx価の基を表す。ここで、xは1〜6のいずれかを表す。
およびAはそれぞれ独立して単結合または置換基を有していてもよいアリーレン基または置換基を有していてもよい2価の複素環基を示す。
およびAはそれぞれ独立して単結合または置換基を有していてもよいアリール基または置換基を有していてもよい複素環基を示す。
〜R20はそれぞれ独立して水素原子、ハロゲン原子、炭素原子数1〜20の直鎖状または分岐状のアルキル基(該アルキル基の1つもしくは隣接しない2つ以上のメチレン基は−O−、−S−、−CO−、−CO−O−、−O−CO−、−CH=CH−、−C≡C−で置き換えられていてもよく、また、1つもしくは2つ以上のメチレン基は置換基を有していてもよいアリーレン基または置換基を有していてもよい2価の複素環基で置き換えられていてもよく、該アルキル基中の水素原子はフッ素原子に置換されていてもよい。)、炭素原子数3〜20のシクロアルキル基(該シクロアルキル基の1つもしくは隣接しない2つ以上のメチレン基は−O−、−S−、−CO−、−CO−O−、−O−CO−、−CH=CH−、で置き換えられていてもよく、また、1つもしくは2つ以上のメチレン基は置換基を有していてもよいアリーレン基または置換基を有していてもよい2価の複素環基で置き換えられていてもよく、該シクロアルキル基中の水素原子はフッ素原子に置換されていてもよい。)、置換基を有していてもよいアリール基または置換基を有していてもよい複素環基から選ばれ、隣接するものは結合して環構造を形成してもよい。〕
The organic electroluminescence according to claim 1, wherein the compound containing the partial structure represented by the general formula (5) or (6) is represented by any one of the general formulas (7) to (12). element.
Figure 2010040829
Figure 2010040829
Figure 2010040829
[Wherein, m1, m2, n1, and n2 are each an integer of 0-6.
However, m1 + n1 ≦ 6 and m2 + n2 ≦ 6.
m3, m4, m5, m6, n3, n4, n5 and n6 are each an integer of 1-6. However, m3 + n3 ≦ 6, m4 + n4 ≦ 6, m4 + n4 ≦ 6, m5 + n5 ≦ 6, and m6 + n6 ≦ 6.
X 1 , X 2 , X 3 , X 4 , X 5 and X 6 are each a single bond, an aryl group which may have a substituent, a heterocyclic group which may have a substituent, or It represents an mx + nx valent group selected from an amino group which may have a substituent. Here, x represents any one of 1-6.
A 1 and A 2 each independently represent a single bond or an arylene group which may have a substituent or a divalent heterocyclic group which may have a substituent.
A 3 and A 4 each independently represent a single bond or an aryl group which may have a substituent or a heterocyclic group which may have a substituent.
R 1 to R 20 each independently represent a hydrogen atom, a halogen atom, a linear or branched alkyl group having 1 to 20 carbon atoms (one or two or more methylene groups not adjacent to the alkyl group are- O—, —S—, —CO—, —CO—O—, —O—CO—, —CH═CH—, —C≡C— may be substituted, and one or more The methylene group may be substituted with an arylene group which may have a substituent or a divalent heterocyclic group which may have a substituent, and the hydrogen atom in the alkyl group is a fluorine atom. A cycloalkyl group having 3 to 20 carbon atoms (one or two or more methylene groups not adjacent to the cycloalkyl group may be -O-, -S-, -CO-,- Replaced by CO-O-, -O-CO-, -CH = CH- And one or two or more methylene groups may be substituted with an optionally substituted arylene group or an optionally substituted divalent heterocyclic group. Or a hydrogen atom in the cycloalkyl group may be substituted with a fluorine atom.), An aryl group which may have a substituent or a heterocyclic group which may have a substituent. Adjacent ones may be bonded to form a ring structure. ]
前記一般式(7)〜(12)におけるX〜Xで表される連結基が芳香族環基、あるいは芳香族複素環基であることを特徴とする請求項2に記載の有機エレクトロルミネッセンス素子。 3. The organic electroluminescence according to claim 2, wherein the linking group represented by X 1 to X 6 in the general formulas (7) to (12) is an aromatic ring group or an aromatic heterocyclic group. element. 前記一般式(7)〜(12)におけるX〜Xで表される連結基がフェニル基、ビフェニル基、カルバゾリル基、ジベンゾフラニル基、ジベンゾチオフェニル基、フルオレニル基、ピレニル基、アントラセニル基からさらに水素原子を1つ除いてできる2価の基、およびそれらの組み合わせからなる基であるであることを特徴とする請求項2または3に記載の有機エレクトロルミネッセンス素子。 In the general formulas (7) to (12), the linking group represented by X 1 to X 6 is a phenyl group, a biphenyl group, a carbazolyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a fluorenyl group, a pyrenyl group, or an anthracenyl group. 4. The organic electroluminescence device according to claim 2, wherein the organic electroluminescence device is a divalent group formed by removing one hydrogen atom from the group, and a group comprising a combination thereof. 前記一般式(7)〜(12)で表される化合物におけるガラス転移点温度が100℃以上であることを特徴とする請求項2〜4のいずれか1項に記載の有機エレクトロルミネッセンス素子。 The organic electroluminescence device according to any one of claims 2 to 4, wherein a glass transition temperature of the compounds represented by the general formulas (7) to (12) is 100 ° C or higher. 前記一般式(7)〜(12)で表される化合物おけるR〜R10またはR〜R20で表される置換基のうち、各々少なくとも一つは重合性の置換基であることを特徴とする請求項2〜5のいずれか1項に記載の有機エレクトロルミネッセンス素子。 That at least one of the substituents represented by R 1 to R 10 or R 1 to R 20 in the compounds represented by the general formulas (7) to (12) is a polymerizable substituent. The organic electroluminescence element according to claim 2, wherein the organic electroluminescence element is characterized. 前記E1a〜E1eで構成される環が、イミダゾール環またはピラゾール環であることを特徴とする請求項1〜6のいずれか1項に記載の有機エレクトロルミネッセンス素子。 The organic electroluminescent element according to claim 1, wherein the ring composed of E1a to E1e is an imidazole ring or a pyrazole ring. 構成層として、前記一般式(1)〜(4)のいずれかで表される部分構造を含む化合物を少なくとも1種含有する有機層を有し、該有機層がウェットプロセスを用いて形成されたことを特徴とする請求項1〜7のいずれか1項に記載の有機エレクトロルミネッセンス素子。 As a constituent layer, it has an organic layer containing at least one compound containing a partial structure represented by any one of the general formulas (1) to (4), and the organic layer was formed using a wet process The organic electroluminescent element according to any one of claims 1 to 7, wherein 構成層として、前記一般式(7)〜(12)のいずれかで表される化合物を少なくとも1種含有する有機層を有し、該有機層がウェットプロセスを用いて形成されたことを特徴とする請求項2〜8のいずれか1項に記載の有機エレクトロルミネッセンス素子。 It has an organic layer containing at least one compound represented by any one of the general formulas (7) to (12) as a constituent layer, and the organic layer is formed using a wet process. The organic electroluminescent element according to any one of claims 2 to 8. 構成層として、前記一般式(7)〜(12)のいずれかで表される化合物を少なくとも1種含有する有機層が発光層であることを特徴とする、請求項2〜9のいずれか1項に記載の有機エレクトロルミネッセンス素子。 The organic layer containing at least one compound represented by any one of the general formulas (7) to (12) as a constituent layer is a light emitting layer. The organic electroluminescent element according to item. 前記一般式(7)〜(12)のいずれかで表される化合物を部分構造とする重合体を少なくとも1種含有する有機層を有することを特徴とする請求項2〜10のいずれか1項に記載の有機エレクトロルミネッセンス素子。 The organic layer containing at least one polymer having a partial structure of the compound represented by any one of the general formulas (7) to (12). The organic electroluminescent element of description. 前記一般式(1)〜(4)のいずれかで表される部分構造を含む化合物を部分構造とする重合体を少なくとも1種を含有することを特徴とする請求項1〜11のいずれか1項に記載の有機エレクトロルミネッセンス素子。 12. The polymer according to claim 1, comprising at least one polymer having a partial structure of a compound including the partial structure represented by any one of the general formulas (1) to (4). The organic electroluminescent element according to item. 前記Mが白金またはイリジウムであることを特徴とする請求項1〜12のいずれか1項に記載の有機エレクトロルミネッセンス素子。 The organic electroluminescent element according to claim 1, wherein M is platinum or iridium. 請求項1〜13のいずれか1項に記載の有機エレクトロルミネッセンス素子を備えたことを特徴とする表示装置。 A display device comprising the organic electroluminescence element according to claim 1. 請求項1〜13のいずれか1項に記載の有機エレクトロルミネッセンス素子を備えたことを特徴とする照明装置。 An illuminating device comprising the organic electroluminescent element according to claim 1.
JP2008202857A 2008-08-06 2008-08-06 Organic electroluminescence element, display device, lighting device Active JP5621187B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008202857A JP5621187B2 (en) 2008-08-06 2008-08-06 Organic electroluminescence element, display device, lighting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008202857A JP5621187B2 (en) 2008-08-06 2008-08-06 Organic electroluminescence element, display device, lighting device

Publications (2)

Publication Number Publication Date
JP2010040829A true JP2010040829A (en) 2010-02-18
JP5621187B2 JP5621187B2 (en) 2014-11-05

Family

ID=42013049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008202857A Active JP5621187B2 (en) 2008-08-06 2008-08-06 Organic electroluminescence element, display device, lighting device

Country Status (1)

Country Link
JP (1) JP5621187B2 (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011187783A (en) * 2010-03-10 2011-09-22 Konica Minolta Holdings Inc Organic electroluminescent device, display device, and lighting apparatus
WO2012014500A1 (en) * 2010-07-30 2012-02-02 保土谷化学工業株式会社 Compound having indenocarbazole ring structure and organic electroluminescent element
JP2012069737A (en) * 2010-09-24 2012-04-05 Konica Minolta Holdings Inc Organic electroluminescent element, display device and luminaire
WO2012050003A1 (en) 2010-10-13 2012-04-19 新日鐵化学株式会社 Organic electroluminescent element
WO2012050001A1 (en) * 2010-10-12 2012-04-19 新日鐵化学株式会社 Chalcogen-containing aromatic compound, organic semiconductor material, and organic electronic device
WO2013011891A1 (en) 2011-07-15 2013-01-24 出光興産株式会社 Nitrogenated aromatic heterocyclic derivative, and organic electroluminescent element using same
JP2013535476A (en) * 2010-08-05 2013-09-12 メルク パテント ゲーエムベーハー Materials for electronic devices
JP2014009196A (en) * 2012-06-29 2014-01-20 Idemitsu Kosan Co Ltd Aromatic amine derivative and organic electroluminescent element
JPWO2012050002A1 (en) * 2010-10-13 2014-02-24 新日鉄住金化学株式会社 Nitrogen-containing aromatic compounds, organic semiconductor materials, and organic electronic devices
WO2014196556A1 (en) 2013-06-06 2014-12-11 保土谷化学工業株式会社 Indenoindole derivative and organic electroluminescent element
WO2015053570A1 (en) * 2013-10-11 2015-04-16 에스에프씨 주식회사 Organic light-emitting compound and organic electroluminescent element comprising same
WO2015076601A1 (en) * 2013-11-20 2015-05-28 주식회사 동진쎄미켐 Novel light emission compound and organic light emitting device comprising same
KR20150066618A (en) * 2013-12-06 2015-06-17 에스에프씨 주식회사 Organic electroluminescent compounds and organic electroluminescent device using the same
KR20150069235A (en) * 2013-12-13 2015-06-23 에스에프씨 주식회사 Organic electroluminescent compounds and organic electroluminescent device using the same
KR20150077581A (en) * 2013-12-27 2015-07-08 희성소재 (주) Indole-based compound and organic light emitting device using the same
JP2015529639A (en) * 2012-07-10 2015-10-08 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Benzimidazo [1,2-a] benzimidazole derivatives for electronic applications
WO2015174791A1 (en) * 2014-05-16 2015-11-19 주식회사 동진쎄미켐 Novel compound and organic light-emitting element comprising same
WO2015174792A1 (en) * 2014-05-16 2015-11-19 주식회사 동진쎄미켐 Novel compound and organic light-emitting element comprising same
KR20150132020A (en) * 2014-05-16 2015-11-25 주식회사 동진쎄미켐 Novel compound and organic electroluminescent device comprising same
CN105745301A (en) * 2013-11-20 2016-07-06 东进世美肯株式会社 Novel light emission compound and organic light emitting device comprising same
WO2016111270A1 (en) * 2015-01-07 2016-07-14 保土谷化学工業株式会社 Organic electroluminescent element
CN106796993A (en) * 2014-08-20 2017-05-31 保土谷化学工业株式会社 Organic electroluminescence device
KR20220027096A (en) * 2021-03-05 2022-03-07 에스에프씨 주식회사 An organoelectro luminescent compounds and organoelectro luminescent device using the same
WO2022173270A1 (en) * 2021-02-15 2022-08-18 에스에프씨 주식회사 Organic light-emitting compound and organic light-emitting device comprising same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006219393A (en) * 2005-02-09 2006-08-24 Canon Inc Compound, light emitting device and image display device
WO2007095118A2 (en) * 2006-02-10 2007-08-23 Universal Display Corporation METAL COMPLEXES OF CYCLOMETALLATED IMIDAZO[1,2-f]PHENANTHRIDINE AND DIIMIDAZO[1,2-A:1',2'-C]QUINAZOLINE LIGANDS AND ISOELECTRONIC AND BENZANNULATED ANALOGS THEREOF
JP2008074940A (en) * 2006-09-21 2008-04-03 Konica Minolta Holdings Inc Organic electroluminescence element material, organic electroluminescence element, display device and illumination device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006219393A (en) * 2005-02-09 2006-08-24 Canon Inc Compound, light emitting device and image display device
WO2007095118A2 (en) * 2006-02-10 2007-08-23 Universal Display Corporation METAL COMPLEXES OF CYCLOMETALLATED IMIDAZO[1,2-f]PHENANTHRIDINE AND DIIMIDAZO[1,2-A:1',2'-C]QUINAZOLINE LIGANDS AND ISOELECTRONIC AND BENZANNULATED ANALOGS THEREOF
JP2008074940A (en) * 2006-09-21 2008-04-03 Konica Minolta Holdings Inc Organic electroluminescence element material, organic electroluminescence element, display device and illumination device

Cited By (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011187783A (en) * 2010-03-10 2011-09-22 Konica Minolta Holdings Inc Organic electroluminescent device, display device, and lighting apparatus
CN103038215A (en) * 2010-07-30 2013-04-10 保土谷化学工业株式会社 Compound having indenocarbazole ring structure and organic electroluminescent element
WO2012014500A1 (en) * 2010-07-30 2012-02-02 保土谷化学工業株式会社 Compound having indenocarbazole ring structure and organic electroluminescent element
US9196837B2 (en) 2010-07-30 2015-11-24 Hodogaya Chemical Co., Ltd. Compound having indenocarbazole ring structure, and organic electroluminescent device
CN106977448A (en) * 2010-07-30 2017-07-25 保土谷化学工业株式会社 Compound and organic electroluminescence device with indeno carbazole ring structure
JP2013535476A (en) * 2010-08-05 2013-09-12 メルク パテント ゲーエムベーハー Materials for electronic devices
US9893297B2 (en) 2010-08-05 2018-02-13 Merck Patent Gmbh Materials for electronic devices
US10749117B2 (en) 2010-08-05 2020-08-18 Merck Patent Gmbh Materials for electronic devices
JP2012069737A (en) * 2010-09-24 2012-04-05 Konica Minolta Holdings Inc Organic electroluminescent element, display device and luminaire
US9214637B2 (en) 2010-10-12 2015-12-15 Nippon Steel & Sumikin Chemical Co., Ltd. Chalcogen-containing aromatic compound, organic semiconductor material, and organic electronic device
JP5834014B2 (en) * 2010-10-12 2015-12-16 新日鉄住金化学株式会社 Organic semiconductor material containing chalcogen-containing aromatic compound and organic electronic device
CN103189380A (en) * 2010-10-12 2013-07-03 新日铁住金化学株式会社 Chalcogen-containing aromatic compound, organic semiconductor material, and organic electronic device
WO2012050001A1 (en) * 2010-10-12 2012-04-19 新日鐵化学株式会社 Chalcogen-containing aromatic compound, organic semiconductor material, and organic electronic device
US20130193429A1 (en) * 2010-10-13 2013-08-01 Yuichi Sawada Organic electroluminescent element
JPWO2012050002A1 (en) * 2010-10-13 2014-02-24 新日鉄住金化学株式会社 Nitrogen-containing aromatic compounds, organic semiconductor materials, and organic electronic devices
US9312496B2 (en) * 2010-10-13 2016-04-12 Nippon Steel & Sumikin Chemical Co., Ltd. Organic electroluminescent element
WO2012050003A1 (en) 2010-10-13 2012-04-19 新日鐵化学株式会社 Organic electroluminescent element
JP5767237B2 (en) * 2010-10-13 2015-08-19 新日鉄住金化学株式会社 Nitrogen-containing aromatic compounds, organic semiconductor materials, and organic electronic devices
KR102113468B1 (en) * 2011-07-15 2020-05-21 이데미쓰 고산 가부시키가이샤 Nitrogenated aromatic heterocyclic derivative, and organic electroluminescent element using same
JP2013040105A (en) * 2011-07-15 2013-02-28 Idemitsu Kosan Co Ltd Nitrogenated aromatic heterocyclic derivative, and organic electroluminescent element using the same
US10043977B2 (en) 2011-07-15 2018-08-07 Idemitsu Kosan Co., Ltd. Nitrogenated aromatic heterocyclic derivative, and organic electroluminescent element using same
WO2013011891A1 (en) 2011-07-15 2013-01-24 出光興産株式会社 Nitrogenated aromatic heterocyclic derivative, and organic electroluminescent element using same
KR20140056215A (en) 2011-07-15 2014-05-09 이데미쓰 고산 가부시키가이샤 Nitrogenated aromatic heterocyclic derivative, and organic electroluminescent element using same
TWI594992B (en) * 2012-06-29 2017-08-11 Idemitsu Kosan Co Aromatic amine derivatives and organic electroluminescent devices
JP2014009196A (en) * 2012-06-29 2014-01-20 Idemitsu Kosan Co Ltd Aromatic amine derivative and organic electroluminescent element
US11744152B2 (en) 2012-07-10 2023-08-29 Udc Ireland Limited Benzimidazo[1,2-a]benzimidazole derivatives for electronic applications
JP2015529639A (en) * 2012-07-10 2015-10-08 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Benzimidazo [1,2-a] benzimidazole derivatives for electronic applications
US10862051B2 (en) 2012-07-10 2020-12-08 Udc Ireland Limited Benzimidazo[1,2-a]benzimidazole derivatives for electronic applications
US10243150B2 (en) 2012-07-10 2019-03-26 Udc Ireland Limited Benzimidazo[1,2-a]benzimidazole derivatives for electronic applications
WO2014196556A1 (en) 2013-06-06 2014-12-11 保土谷化学工業株式会社 Indenoindole derivative and organic electroluminescent element
KR20160017055A (en) * 2013-06-06 2016-02-15 호도가야 가가쿠 고교 가부시키가이샤 Indenoindole derivative and organic electroluminescent element
KR102234873B1 (en) * 2013-06-06 2021-03-31 호도가야 가가쿠 고교 가부시키가이샤 Indenoindole derivative and organic electroluminescent element
CN105492424A (en) * 2013-06-06 2016-04-13 保土谷化学工业株式会社 Indenoindole derivative and organic electroluminescent element
US9985216B2 (en) 2013-06-06 2018-05-29 Hodogaya Chemical Co., Ltd. Indenoindole derivative and organic electroluminescent element
JPWO2014196556A1 (en) * 2013-06-06 2017-02-23 保土谷化学工業株式会社 Indenoindole derivatives and organic electroluminescence devices
TWI620735B (en) * 2013-06-06 2018-04-11 保土谷化學工業股份有限公司 Indenoindole derivatives and organic electroluminescence devices
WO2015053570A1 (en) * 2013-10-11 2015-04-16 에스에프씨 주식회사 Organic light-emitting compound and organic electroluminescent element comprising same
WO2015076601A1 (en) * 2013-11-20 2015-05-28 주식회사 동진쎄미켐 Novel light emission compound and organic light emitting device comprising same
CN105745301A (en) * 2013-11-20 2016-07-06 东进世美肯株式会社 Novel light emission compound and organic light emitting device comprising same
KR20150066618A (en) * 2013-12-06 2015-06-17 에스에프씨 주식회사 Organic electroluminescent compounds and organic electroluminescent device using the same
KR102169442B1 (en) * 2013-12-06 2020-10-26 에스에프씨 주식회사 Organic electroluminescent compounds and organic electroluminescent device using the same
KR20150069235A (en) * 2013-12-13 2015-06-23 에스에프씨 주식회사 Organic electroluminescent compounds and organic electroluminescent device using the same
KR102195338B1 (en) * 2013-12-13 2020-12-24 에스에프씨 주식회사 Organic electroluminescent compounds and organic electroluminescent device using the same
KR20150077581A (en) * 2013-12-27 2015-07-08 희성소재 (주) Indole-based compound and organic light emitting device using the same
KR101626889B1 (en) * 2013-12-27 2016-06-03 희성소재 (주) Indole-based compound and organic light emitting device using the same
WO2015174792A1 (en) * 2014-05-16 2015-11-19 주식회사 동진쎄미켐 Novel compound and organic light-emitting element comprising same
CN106458893A (en) * 2014-05-16 2017-02-22 东进世美肯株式会社 Novel compound and organic light-emitting element comprising same
WO2015174791A1 (en) * 2014-05-16 2015-11-19 주식회사 동진쎄미켐 Novel compound and organic light-emitting element comprising same
KR102437956B1 (en) * 2014-05-16 2022-09-01 주식회사 동진쎄미켐 Novel compound and organic electroluminescent device comprising same
KR20150132020A (en) * 2014-05-16 2015-11-25 주식회사 동진쎄미켐 Novel compound and organic electroluminescent device comprising same
CN106796993B (en) * 2014-08-20 2019-05-28 保土谷化学工业株式会社 Organic electroluminescence device
US10424742B2 (en) 2014-08-20 2019-09-24 Hodogaya Chemical Co., Ltd. Organic electroluminescent device
CN106796993A (en) * 2014-08-20 2017-05-31 保土谷化学工业株式会社 Organic electroluminescence device
WO2016111270A1 (en) * 2015-01-07 2016-07-14 保土谷化学工業株式会社 Organic electroluminescent element
US9905775B2 (en) 2015-01-07 2018-02-27 Hodogaya Chemical Co., Ltd. Organic electroluminescent device
JPWO2016111270A1 (en) * 2015-01-07 2017-10-19 保土谷化学工業株式会社 Organic electroluminescence device
WO2022173270A1 (en) * 2021-02-15 2022-08-18 에스에프씨 주식회사 Organic light-emitting compound and organic light-emitting device comprising same
KR20220027096A (en) * 2021-03-05 2022-03-07 에스에프씨 주식회사 An organoelectro luminescent compounds and organoelectro luminescent device using the same
KR102508662B1 (en) * 2021-03-05 2023-03-15 에스에프씨 주식회사 An organoelectro luminescent compounds and organoelectro luminescent device using the same

Also Published As

Publication number Publication date
JP5621187B2 (en) 2014-11-05

Similar Documents

Publication Publication Date Title
JP5621187B2 (en) Organic electroluminescence element, display device, lighting device
JP5338184B2 (en) Organic electroluminescence element, display device, lighting device
JP5509634B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT, DISPLAY DEVICE, LIGHTING DEVICE, AND ORGANIC ELECTROLUMINESCENT ELEMENT MATERIAL
JP5482201B2 (en) Organic electroluminescence element, display device and lighting device
JP5629980B2 (en) Organic electroluminescence element, display device and lighting device
JP5600891B2 (en) Organic electroluminescence element, display device and lighting device
JP5604808B2 (en) Organic electroluminescence element, display device and lighting device
JP5564942B2 (en) Organic electroluminescence element, display device and lighting device
JP5653617B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT, ORGANIC ELECTROLUMINESCENT ELEMENT MATERIAL, DISPLAY DEVICE AND LIGHTING DEVICE
JP5304010B2 (en) Organic electroluminescence element, display device and lighting device
JP5724204B2 (en) Organic electroluminescence element, display device, and lighting device
JP5499519B2 (en) Organic electroluminescence element, display device and lighting device
JP5531446B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT, ORGANIC ELECTROLUMINESCENT ELEMENT MATERIAL, DISPLAY DEVICE AND LIGHTING DEVICE
WO2010032663A1 (en) Organic electroluminescent element, display device, lighting device, and organic electroluminescent element material
JP5278314B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT, DISPLAY DEVICE, LIGHTING DEVICE, AND ORGANIC ELECTROLUMINESCENT ELEMENT MATERIAL
JP2008311607A (en) Organic electroluminescence element, organic electroluminescence element material, display device, and illuminating device
JP2014017493A (en) Organic electroluminescent element, organic electroluminescent element material, display device and illuminating device
JP5629970B2 (en) Organic electroluminescence element, display device and lighting device
WO2010004887A1 (en) Organic electroluminescent element, display device, illuminating device, and organic electroluminescent element material
JP5482313B2 (en) Organic electroluminescence element, display device, and lighting device
JP5515283B2 (en) Organic electroluminescence element, display device and lighting device
JP5272608B2 (en) Organic electroluminescence element, display device, and lighting device
JP5359088B2 (en) Organic electroluminescence element, display device and lighting device
JP5320881B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT, DISPLAY DEVICE, LIGHTING DEVICE, AND ORGANIC ELECTROLUMINESCENT ELEMENT MATERIAL
JP5724987B2 (en) Organic electroluminescence element, display device and lighting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110119

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130423

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140826

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140908

R150 Certificate of patent or registration of utility model

Ref document number: 5621187

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250