JP2010039409A - 光モジュール、光モジュールの光制御方法、光スイッチおよび光スイッチ方法 - Google Patents

光モジュール、光モジュールの光制御方法、光スイッチおよび光スイッチ方法 Download PDF

Info

Publication number
JP2010039409A
JP2010039409A JP2008205070A JP2008205070A JP2010039409A JP 2010039409 A JP2010039409 A JP 2010039409A JP 2008205070 A JP2008205070 A JP 2008205070A JP 2008205070 A JP2008205070 A JP 2008205070A JP 2010039409 A JP2010039409 A JP 2010039409A
Authority
JP
Japan
Prior art keywords
mirror
light
optical
optical module
output light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008205070A
Other languages
English (en)
Other versions
JP5151794B2 (ja
Inventor
Shinji Yamashita
真司 山下
Takeshi Yamamoto
毅 山本
Masaaki Kawai
正昭 河合
Hiroyuki Fujita
博之 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
University of Tokyo NUC
Original Assignee
Fujitsu Ltd
University of Tokyo NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd, University of Tokyo NUC filed Critical Fujitsu Ltd
Priority to JP2008205070A priority Critical patent/JP5151794B2/ja
Priority to EP09166206A priority patent/EP2151703A3/en
Priority to US12/461,020 priority patent/US8441706B2/en
Publication of JP2010039409A publication Critical patent/JP2010039409A/ja
Application granted granted Critical
Publication of JP5151794B2 publication Critical patent/JP5151794B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • G02B26/0825Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a flexible sheet or membrane, e.g. for varying the focus
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/06Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the phase of light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/351Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements
    • G02B6/3512Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements the optical element being reflective, e.g. mirror
    • G02B6/352Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements the optical element being reflective, e.g. mirror the reflective optical element having a shaped reflective surface, e.g. a reflective element comprising several reflective surfaces or facets that function together

Abstract

【課題】光強度の絶対的な減少を抑え、安定した出力光を出力する。
【解決手段】入力光Laを反射させて、出力光Lbを出射するミラー11と、ミラー11と対向し、入力光Laをミラー11の反射面で反射させる際に、ミラー11に印加する電圧に応じて反射面を歪ませることにより、光結合特性が変化する出力光Lbを出射させるように反射面を制御するミラー制御部(図1では、電極12a,13aをそれぞれ有するガラス基板12および基板13)と、を有する光モジュール10によって、出力光Lbの光結合特性が変化する。
【選択図】図1

Description

本発明は光モジュール、光モジュールの光制御方法、光スイッチおよび光スイッチ方法に関し、特に、入力光を反射させる光モジュールおよび光モジュールの光制御方法、波長多重した入力光を波長ごとに選択的にスイッチングする光スイッチおよび光スイッチ方法に関する。
MEMS(Micro Electro Mechanical Systems)技術が進展して、様々な分野に適用されている。光通信分野においても、例えば、MEMS技術が適用されたマイクロミラーが開発され、可変光減衰器や光スイッチなどに利用されている。
光スイッチでは、MEMS技術が適用された、反射面の角度制御の可能なマイクロミラーが具備されている。複数の入力ポートから入力された入力光をこのマイクロミラーで反射させて、複数の出力ポートのうち選択されたそれぞれの出力ポートに入射させて、光通信を行うことができる。以下に、このような光スイッチについて説明する。
図20は、光スイッチの、(A)は光の反射機構、(B)は出力光が入射されるコリメータレンズの入射面をそれぞれ説明するための図である。なお、光スイッチ500は、光の反射機構を説明するための最低限の構成要素で記載されている。
光スイッチ500は、図20(A)に示されるように、入射された入力光P1をマイクロミラー510aで反射する。マイクロミラー510aで反射された出力光Q1は、レンズ540を通過して、円柱状のコリメータレンズ520に入射する。
次に、光スイッチ500にて、マイクロミラー510aからマイクロミラー510bの位置に回転させて入力光をスイッチさせる。この場合には、入力光P1と同方向から入射された入力光P2をマイクロミラー510bで反射する。すると、マイクロミラー510bで反射された出力光Q2は、図20(A)に示されるように、出力光Q1に対して角度を持って出力する。そして、レンズ540で集光されて、コリメータレンズ520に入射する。
出力光Q1および出力光Q2は、図20(B)に示されるように、コリメータレンズ520の入射面に対して、中央付近X1に入射された出力光Q1は、中心部から外側の縁部付近X2に入射された出力光Q2と比較して、減衰量が少ない。なお、出力光のコリメータレンズ520に対する入射面の位置による減衰量については後述する。そして、出力光Q1および出力光Q2は、コリメータレンズ520から光ファイバ530を伝って、外部へ出力される。
図21は、入射した光の入射面の中央部からの位置ずれに対する減衰量を示すグラフである。
図20(B)で説明したように、マイクロミラー510aで反射された出力光Q1および出力光Q2は、コリメータレンズ520の入射面に対する入射位置に依存して減衰量が変化する。図21では、入射位置に対する光の減衰量を示している。なお、X軸は、入射位置についてコリメータレンズ520の中心部(グラフのO点)からの位置ずれ量([mm])を表している。Y軸は、中心部での光強度を基準として、入射位置に対する光の減衰量([dB])を表している。
グラフによれば、入射位置がコリメータレンズ520の入射面の中心部から離れるほど、減衰量が2次関数的(二乗特性)に増加している。つまり、入射面の中心部から離れるほど、光の強度が減少していくことが示されている。また、減衰量は2次関数的に増加するため、入射位置が中心部から離れるに従って、減衰量の増加率も大きい。例えば、点Oから点a1へ、点a2から点a3へそれぞれ位置がずれた場合の減少量の増加について比較する。両者とも、位置ずれ量はdx[mm]である。この位置ずれ量に対して、前者の減衰量の差はdy1[dB]である。これに対して、後者の減衰量の差はdy2(>dy1)[dB]である。
上記から、出力光の光結合特性が二乗特性である場合には、光スイッチなどの光モジュールは駆動電圧の変動、電源ノイズまたは外来ノイズに影響を受けやすくなり、出力光の強度の変動が発生しやすくなるという問題があった。
そこで、出力光の光結合特性を二乗特性から線形特性に変化させることで、外部からの影響を受けても光強度の変動を抑える方法が提案されるようになった。例えば、マイクロミラーで反射された出力光に、位置によって光透過率を異ならせた透過フィルタを介させて、コリメータレンズに入射させるようにした。このため、光結合特性を線形特性に変化させることができ、外部の影響による光強度の変動を抑制することが可能となった(例えば、特許文献1参照)。
特開2008−40435号公報
上記特許文献でも外部の影響を抑制することが可能となった。一方、上記特許文献では、透過フィルタを介しているために、出力光の強度が低下する恐れがある。そこで、光強度の絶対的な減少を抑えて、安定した出力光を出力する光モジュール、光モジュールの光制御方法、光スイッチおよび光スイッチ方法を提供することを目的とする。
上記目的を達成するために、入力光が反射される光モジュールが提供される。
この光モジュールは、前記入力光を反射させて、出力光を出射するミラーと、前記ミラーと対向し、前記入力光を前記ミラーの反射面で反射させる際に、前記ミラーに印加する電圧に応じて前記反射面を歪ませることにより、光結合特性が変化する前記出力光を出射させるように前記反射面を制御するミラー制御部と、から構成される。
れる。
このような光モジュールによれば、ミラーによって、入力光が反射されて、出力光が出射され、ミラーと対向するミラー制御部によって、入力光をミラーの反射面で反射させる際に、ミラーに印加する電圧に応じて反射面を歪ませることにより、光結合特性が変化する出力光を出射させるように反射面が制御されるようになる。
上記目的を達成するために、入力光を反射させる光モジュールの光制御方法が提供される。
この光モジュールの光制御方法は、前記入力光をミラーで反射させる際に、前記ミラーと対向するミラー制御部が、前記ミラーに印加する電圧に応じて前記ミラーの反射面を歪ませることにより、光結合特性が変化する出力光を出射させるように前記反射面を制御する。
このような光モジュールの光制御方法によれば、入力光をミラーで反射させる際に、ミラーと対向するミラー制御部によって、ミラーに印加する電圧に応じてミラーの反射面を歪ませることにより、光結合特性が変化する出力光を出射させるように反射面が制御される。
上記目的を達成するために、波長多重した入力光を波長ごとに選択的にスイッチングする光スイッチが提供される。
この光スイッチは、前記入力光を入力する入力ポートと、前記入力ポートからの前記入力光を分光する分光素子と、前記分光素子で分光された分光光を反射させて、出力光を出射するミラーと、前記ミラーと対向し、前記分光光を前記ミラーの反射面で反射させる際に、前記ミラーに印加する電圧に応じて前記反射面を歪ませることにより、光結合特性が変化する前記出力光を出射させるように前記反射面を制御するミラー制御部と、を有する、前記分光光の波長ごとに設けられた複数の光モジュールと、前記光モジュールからの前記出力光を任意の方向に反射させる、前記波長ごとに設けられた複数の偏向ミラーと、前記偏向ミラーからの前記出力光を入射する、前記波長ごとに設けられた複数の出力ポートと、を有する。
このような光スイッチによれば、入力ポートからの入力光を分光素子で分光された分光光の波長ごとに設けられた複数の光モジュールのミラーによって、分光光が反射されて、出力光が出射され、ミラーと対向するミラー制御部によって、分光光をミラーの反射面で反射させる際に、ミラーに印加する電圧に応じて反射面を歪ませることにより、光結合特性が変化する出力光を出射させるように反射面が制御されるようになる。そして、波長ごとに設けられた複数の偏向ミラーによって光モジュールからの出力光を任意の方向に反射させ、波長ごとに設けられた複数の出力ポートによって偏向ミラーからの出力光を入射させるようになる。
上記目的を達成するために、波長多重した入力光を波長ごとに選択的にスイッチングする光スイッチ方法が提供される。
この光スイッチ方法は、入力ポートからの前記入力光が分光素子で分光された分光光の波長ごとに設けられた複数の光モジュールのミラーと対向するミラー制御部が、前記分光光を前記ミラーで反射させる際に、前記ミラーに印加する電圧に応じて前記ミラーの反射面を歪ませることにより、光結合特性が変化する出力光を出射させて、前記波長ごとに設けられた複数の偏向ミラーが、前記光モジュールからの前記出力光を任意の方向に反射させて、前記波長ごとに設けられた複数の出力ポートが、前記偏向ミラーからの前記出力光を入射する。
このような光スイッチ方法によれば、入力ポートからの入力光が分光素子で分光された分光光の波長ごとに設けられた複数の光モジュールのミラーと対向するミラー制御部によって、分光光をミラーで反射させる際に、ミラーに印加する電圧に応じてミラーの反射面を歪ませることにより、光結合特性が変化する出力光が出射させられて、波長ごとに設けられた複数の偏向ミラーによって、光モジュールからの出力光が任意の方向に反射されて、波長ごとに設けられた複数の出力ポートに、偏向ミラーからの出力光が入射されるようになる。
上記光モジュールでは、光強度の絶対的な減少を抑えて、安定した光を出力するようになる。
以下、実施の形態について図面を参照しながら説明する。
まず、実施の形態の概要について説明する。
図1は、実施の形態の概要を説明するための図である。
光モジュール10は、ミラー11、ガラス基板12および基板13を有する。なお、ミラー11は、ガラス基板12および基板13のそれぞれと対向するように挟まれている。ガラス基板12および基板13には図1に示されるように電極12a,13aがそれぞれ設置されている。電極12a,13aには外部の制御回路(図示を省略)と接続されている。
このような光モジュール10は、入力された入力光Laを反射して、入力光Laの強度を保持したまま、光結合特性が線形に近づくように変化した出力光Lbを出力する。以下にこの光結合特性の変化について説明する。
まず、入力コネクタ14からの入力光Laがガラス基板12を透過してミラー11に到達する。
この時、ミラー11によって反射された出力光Lbの光結合特性が線形に近づくように、ミラー11の反射面が所定の形状に制御される。ミラー11の反射面の制御は、外部の制御回路からの制御信号により電極12a,13aが反射面に対して電圧Vを印加されて、ミラー11の反射面を歪ませることで行われる。
そして、所望の形状に歪ませたミラー11の反射面によって反射された出力光Lbは、光結合特性がほぼ線形に変化して、出力コネクタ15に出射される。
このようなミラー11の反射面の制御によって、出力光Lbの光結合特性を所望の特性に近づけることができる。光結合特性が線形に近づくと、起動電圧の変動や外部ノイズなどの外部の影響に対する耐性が高くなる。上記方法では、特許文献のようにフィルタを用いていないために、光強度の余分な低下を招くことはない。さらに、ミラー11の反射面の形状を制御させて光結合特性を変化させているために、光の径などの条件が変わっても、所望の光結合特性を実現させることができる。光モジュール10の組み立て後でもミラー11の反射面の形状の補正が可能であるため、光モジュール10ごとのばらつきを抑えて、どの光モジュール10でも同等の光結合特性を実現させることができる。また、ミラー11の制御は即時可能であるために、光結合特性の経時変化が可能である。
次に、光の形状を制御することによって、光結合特性が変化することについて図面を参照しながら説明する。
図2は、光結合特性のシミュレーションに係るシミュレーションの実施方法を説明するための図、図3は、光結合特性のシミュレーションに係る、(A)は入力光、(B)は別の入力光を説明するためのグラフである。
図2に示されるように、光ファイバ24からの異なる2種の入力光La1を別々に、集光レンズ26を介して、出力光Lb1を光ファイバ25に入射させて、出力光Lb1の光結合特性のシミュレーションを行った。なお、シミュレーションは、シミュレーションソフト「CODE V(Optical Research Associates社製)」を用いて、波長を1550nm、光ファイバ24,25は、コア半径が5.2μmのシングルモードファイバ、集光レンズ26のレンズ厚さを2mm、集光レンズ26と光ファイバ24,25とのそれぞれの距離を2mmとして、光ファイバ24,25の間の距離は6mmとした。
また、シミュレーションで用いられる入力光La1には、以下の関数で表わされる形状を用いた。なお、φa1およびφb1で表わされる光の形状はそれぞれ図3(A),(B)に示されている。但し、図3(A),(B)では、横軸をx軸(またはy軸)とし、縦軸を光強度としている。また、以下に示す光の形状についても同様に横軸をx軸(またはy軸)とし、縦軸を光強度としている。
φa1(x,y)=A1exp(−(x2+y2)/w1 2
(但し、A1,w1は定数)・・・・・・・・・・・・(1)
φb1(x,y)=A2exp(−(sqrt(x2+y2))/w2 2
(但し、A2,w2は定数、sqrtは平方根)・・・(2)
上記条件にて行われたそれぞれの出力光Lb1の光結合特性のシミュレーション結果について説明する。
図4は、光結合特性のシミュレーション結果を示すグラフである。
なお、図4では、光ファイバ25の入射位置に対する光の減衰量を示している。X軸は、入射位置であって、光ファイバ25の中心部(X軸上の0)からの位置ずれ量([mm])を表している。Y軸は、光ファイバ25の中心部での光強度を基準として、入射位置に対する光の減衰量([dB])を表している。また、グラフの“◇印”は形状が図3(A)で表わされるφa1の入力光La1を、“●印”は形状が図3(B)で表わされるφb1の入力光La1をそれぞれ用いた場合の出力光Lb1の減衰量を表している。
このグラフによれば、φa1では、光ファイバ25の中心部からの位置ずれ量が大きくなるにつれて、減衰量も2次関数的に増加していることが示される。一方、φb1では、光ファイバ25の中心部からの位置ずれ量が大きくなるにつれて、減衰量は増加しているものの、ほぼ線形的に増加している。このため、例えば、減衰量が−20dB付近において、φb1はφa1よりもトレランス傾斜が約40%緩和された。
このように、光の形状が異なれば光結合特性も異なることが示された。また、光結合特性がほぼ線形となる光の形状の一つとして、図3(A)で表わされるφa1の光であることも示された。これを図1の光モジュール10に適用すれば、ミラー11によって、出力光Lbの形状がφb1になるように制御すれば、出力光Lbの光結合特性を線形にでき、外部の影響を低減させることができる。
また、出力光Lbの形状がφb1になるように制御するためには、ミラー11の反射面を、出力光Lbの形状φb1から入力光の形状の差で表わされる形状になるように制御すればよい。例えば、入力光Laの形状がφa1である場合には、出力光Lbの形状がφb1となるように制御させるミラー11の反射面の形状は、φb1−φa1で表わされる。
次に、実施の形態について説明する。
まず、第1の実施の形態について説明する。
第1の実施の形態では具体的な光モジュールの例を挙げて説明する。
図5は、第1の実施の形態に係る光モジュールの構成を説明するための斜視図、図6,7は、第1の実施の形態に係る光モジュールの構成を説明するための断面図である。
なお、図6,7は、図5の一点鎖線A−A,B−Bにおける断面をそれぞれ表している。
光モジュール100は、上部ガラス基板120および下部ガラス基板130がミラー基板110を挟むように構成されている。
ミラー基板110は、シリコン(Si)層111、酸化シリコン(SiO2)層112およびSi層113により順に積層されて構成されるSOI(Silicon On Insulator)構造である。なお、Si層111およびSiO2層112は内側が除去された額縁状である。Si層113の内壁に、トーションバー116、さらには薄膜ミラー114が一体的に形成されている。薄膜ミラー114の反射面には、反射率を高めるために金属膜115が形成されている。また、Si層113を構成する対向する一組の枠部に、はんだバンプにより構成されるスペーサ117が形成されている。
上部ガラス基板120は、スペーサ117を介してミラー基板110と接合する。なお、上部ガラス基板120をミラー基板110に接合させる際には、図に示す位置から裏表を逆にして、ミラー基板110に接合させる。上部ガラス基板120は、ガラス板121に、電極パッド122および複数の制御電極123が形成されて構成されている。電極パッド122は貫通電極122aが形成されており、外部の制御回路と接続される。制御電極123は、透明の電極であって、例えば、インジウム錫酸化膜(ITO)により構成されている。複数の制御電極123は、上部ガラス基板120がミラー基板110と接合した際には、薄膜ミラー114と対向して、薄膜ミラー114を覆うようにガラス板121に設置されている。制御電極123は、電極パッド122と配線(図示を省略)で接続されている。複数ある中の任意の制御電極123は、電極パッド122を介して制御回路からの制御信号を受信して、電圧を印加する。
下部ガラス基板130は、ガラス板131の中央部に突起部134が設置されており、突起部134の上面には複数の制御電極133が、ガラス板131に電極パッド132が形成されて構成されている。電極パッド132は貫通電極132aが形成されており、外部の制御回路と接続される。制御電極133は、透明であって、例えば、ITOにより構成されている。複数の制御電極133は、下部ガラス基板130がミラー基板110と接合した際には、薄膜ミラー114と対向して、薄膜ミラー114を覆うようにガラス板131に設置されている。制御電極133は、電極パッド132と配線(図示を省略)で接続されている。複数ある中の任意の制御電極133は、電極パッド132を介して制御回路からの制御信号を受信して、電圧を印加する。
上記の各構成要素から、図6,7に示されるように、ミラー基板110と上部ガラス基板120とをスペーサ117を介して接合させる。さらに、ミラー基板110の額縁状のSi層111およびSiO2層112の内部に、突起部134を嵌合させて、ミラー基板110と下部ガラス基板130を接合させる。このようにして光モジュール100が構成される。
次に、光モジュール100にて、薄膜ミラー114(および金属膜115)の反射面の制御について、図7を参照しながら説明する。
既述の通り、上部ガラス基板120および下部ガラス基板130のガラス板121,131に複数の制御電極123,133が形成されている。複数の制御電極123,133は薄膜ミラー114(および金属膜115)と対向して、薄膜ミラー114(および金属膜115)を覆うように配置されている。それぞれの制御電極123,133は、ガラス板121,131上に形成された電極パッド122,132と配線で接続されている。さらに、電極パッド122,132は外部の制御回路(図示を省略)と接続されている。
光モジュール100の薄膜ミラー114(および金属膜115)で入力光を反射させる際に、制御回路から電極パッド122,132を介して任意の制御電極123,133に電圧を印加させる。例えば、図7では、中央部に位置する制御電極123に電圧V1を印加させ、制御電極133に電圧V2〜V5を印加させる。すると、薄膜ミラー114(および金属膜115)の反射面が歪み、所望の形状に制御される。このように制御された薄膜ミラー114(および金属膜115)の反射面によって、光結合特性が線形に変化して出力光が出射される。
次に、光モジュール100の製造方法について図面を参照しながら説明する。
図8,9は、第1の実施の形態に係る光モジュールの製造工程を説明するための図である。なお、図8,9は図5で示したミラー基板110の一点鎖線C−Cの断面について示すこととする。
まず、Si層111、SiO2層112およびSi層113aにより構成されるSOI構造を形成する。
そして、このSOI構造のSi層113aの表面の一部に金(Au)/銅(Cr)を用いてメタライズを行って、金属膜115を形成する(図8(A))。
メタライズが行われたSOI構造に対して、Si層113aの一部および金属膜115上に薄膜ミラーのパターンが描かれたフォトレジストパターン90を形成する(図8(B))。
なお、フォトレジストパターンの形成方法は、周知従来の方法である。例えば、フォトレジストパターン形成領域にフォトレジストを塗布機によって塗布する。塗布したフォトレジストを露光し、マスク・パターンを転写する。熱処理および現像処理を順に行って、所望のフォトレジストパターンが得られる。
薄膜ミラー114のパターンが描かれたフォトレジストパターン90をマスクとして、DRIE(Deep Reaction Ion Etching)によって、Si層113aの一部を除去すると、Si層113の内壁に、トーションバー(図8では不図示)と薄膜ミラー114とが一体的に形成されている。なお、トーションバーは一点鎖線C−Cの断面では確認されないが、実際はこの工程にてトーションバーが形成される(図8(C))。
Si層113aのエッチングを行った後、再びDRIEにて、Si層111の一部をエッチングする(図9(A))。
Si層111の一部のエッチング後、フォトレジストパターン90を除去して、フッ化水素(HF)を用いて、SiO2層112の一部を溶解して、ミラー基板110を形成する(図9(B))。
ガラス板131の中央部に突起部134を有する下部ガラス基板130を、ミラー基板110に張り合わせる。なお、突起部134の高さは、薄膜ミラー114と接触しない高さにする。また、下部ガラス基板130には電極パッド132および制御電極133の記載は省略している(図9(C))。
最後に、スペーサ117を介して、上部ガラス基板120をミラー基板110に張り合わせて、光モジュール100が完成する。なお、上部ガラス基板120には電極パッド122および制御電極123の記載は省略している(図9(D))。
次に、第2の実施の形態について説明する。
第2の実施の形態の光モジュールのミラー基板は、薄膜ミラーが、対向する一組のトーションバーのみで支持されている場合を例に挙げて説明する。第2の実施の形態の光モジュールの上部ガラス基板および下部ガラス基板の構成については、図5で示した光モジュール100と同一である。
図10は、第2の実施の形態に係る光モジュールを構成するミラー基板の平面図である。
光モジュールを構成するミラー基板210は、図10に示されるように、Si層213の内壁に、対向する一組のトーションバー216のみに支持される薄膜ミラー214が形成されている。なお、Si層213、トーションバー216および薄膜ミラー214は一体的に形成されている。また、薄膜ミラー214の反射面には、反射率を高めるために金属膜を形成しても構わない。トーションバー216による薄膜ミラー214の支持方向と垂直方向である、Si層213を構成する枠部に、はんだバンプもしくはマイクロビーズなどにより構成されるスペーサ217が形成されている。
次に、このミラー基板210を具備する光モジュールの構成および薄膜ミラー214の反射面の制御について図面を参照しながら説明する。
図11は、第2の実施の形態に係る光モジュールの構成を説明するための断面図である。
なお、図11は、図10の一点鎖線B−Bにおける断面を表している。また、図10の一点鎖線A−Aにおける断面図は、図6と同一であるためにその記載については省略する。
光モジュール200は、上部ガラス基板120および下部ガラス基板130がミラー基板210を挟むように構成されている。
ミラー基板210は、Si層211、SiO2層212およびSi層213により順に積層されて構成されるSOI構造である。なお、Si層211およびSiO2層212は内側が除去された額縁状である。Si層213の内壁に、対向する一組のトーションバー216(但し、一点鎖線B−Bの断面では表れない)のみに支持される薄膜ミラー214が形成されている。また、Si層213を構成する対向する一組の枠部に、はんだバンプにより構成されるスペーサ217が形成されている。
上部ガラス基板120および下部ガラス基板130は第1の実施の形態と同一であるために詳細な説明を省略する。
上記の各構成要素から、図11に示されるように、ミラー基板210と上部ガラス基板120とをスペーサ217を介して接合させる。さらに、ミラー基板210の額縁状のSi層211およびSiO2層212の内部に、突起部134を嵌合させて、ミラー基板210と下部ガラス基板130を接合させる。このようにして光モジュール200が構成される。
光モジュール200にて、薄膜ミラー214の反射面の制御について、図11を参照しながら説明する。
薄膜ミラー214は、Si層213の内部で、一組のトーションバー216によって両側から支持されている。このため、トーションバー216を支点として薄膜ミラー214を回転させることが可能となり、出力光の光結合特性だけでなく、反射方向も制御(偏向)することができる。
光モジュール200の薄膜ミラー214で入力光を反射させる際には、複数ある中の任意の制御電極123,133は、電極パッド122,132を介して制御回路からの制御信号を受信して、電圧を薄膜ミラー214に印加する。印加された電圧は、薄膜ミラー214の傾斜用の制御電圧および反射面の形状用の制御電圧の合成値である。図11に示されるように、制御電極123に合成値の電圧V1〜Vnを印加させ、制御電極133には、合成値の電圧Vn+1〜V2nを印加させる。すると、薄膜ミラー214が所望の反射面の形状に制御されるとともに、所望の傾斜に制御されて、光結合特性が線形に変化して、所望の方向に出力光が出射される。
次に、第3の実施の形態について説明する。
第3の実施の形態では、第2の実施の形態と異なる機構で出力光の光結合特性を変化させるとともに反射角度を制御する場合を例に挙げて説明する。なお、第3の実施の形態の光モジュールの下部ガラス基板の構成については、図5で示した光モジュール100と同一である。
図12は、第3の実施の形態に係る光モジュールを構成する、(A)はミラー基板、(B)は上部ガラス基板の平面図である。
光モジュールを構成するミラー基板310は、図12(A)に示されるように、Si層313の内壁に、対向する一組のトーションバー319のみに支持されるSiフレーム層318が形成されている。なお、Si層313の内壁、トーションバー319およびSiフレーム層318は一体的に形成されている。さらに、Siフレーム層318の内壁に、二組のトーションバー316で四方から支持される薄膜ミラー314が形成されている。なお、同様に、Siフレーム層318、トーションバー316および薄膜ミラー314は一体的に形成されている。また、薄膜ミラー314の反射面には、反射率を高めるために金属膜を形成しても構わない。また、Si層313を構成する対向する一組の枠部に、はんだバンプにより構成されるスペーサ317が形成されている。
光モジュールを構成する上部ガラス基板320は、図12(B)に示されるように、ガラス板321に、電極パッド322および複数の制御電極323が形成されて構成されている。電極パッド322は貫通電極322aが形成されており、外部の制御回路と接続される。制御電極323は、透明の電極であって、例えば、ITOにより構成されている。さらに、上部ガラス基板320には、新たに電極324が電極パッド322と制御電極323との間にそれぞれ設置されている。既述の通り、制御電極323は、上部ガラス基板320をミラー基板310に接合させる際には、薄膜ミラー314と対向して、薄膜ミラー314を覆うようにガラス板321に設置されている。上部ガラス基板320をミラー基板310に接合させた際には、電極324は、トーションバー319と平行なSiフレーム層318の枠部と重なるようにガラス板321に設置されている。また、制御電極323のみならず電極324も、電極パッド322と配線(図示を省略)で接続されている。複数ある中の任意の制御電極323および電極324が、電極パッド322を介して制御回路により電圧を印加させられる。
次に、このミラー基板310および上部ガラス基板320を具備する光モジュールの構成について図面を参照しながら説明する。
図13,14は、第3の実施の形態に係る光モジュールの構成を説明するための断面図である。
なお、図13,14は、図12の一点鎖線A−A,B−Bにおける断面をそれぞれ表している。
光モジュール300は、上部ガラス基板320および下部ガラス基板130がミラー基板310を挟むように構成されている。
ミラー基板310は、Si層311、SiO2層312およびSi層313により順に積層されて構成されるSOI構造である。なお、Si層311およびSiO2層312は内側が除去された額縁状である。Si層313の内壁には、既述の通り、対向する一組のトーションバー319のみに支持されるSiフレーム層318、さらに、Siフレーム層318の内壁に、二組のトーションバー316で四方から支持される薄膜ミラー314が形成されている。
上部ガラス基板320は、既述の通りであって、第1および第2の実施の形態の上部ガラス基板に対して、新たに電極324が電極パッド322と制御電極323との間にそれぞれ設置されている。
下部ガラス基板130は、第1および第2の実施の形態と同一の構成であるために詳細な説明を省略する。
上記の各構成要素から、図13,14に示されるように、ミラー基板310と上部ガラス基板320とをスペーサ317を介して接合させる。さらに、ミラー基板310の額縁状のSi層311およびSiO2層312の内部に、突起部134を嵌合させて、ミラー基板310と下部ガラス基板130を接合させる。このようにして光モジュール300が構成される。
次に、このミラー基板310および上部ガラス基板320を具備する光モジュール300の薄膜ミラー314の反射面の制御について図面を参照しながら説明する。
図15は、第3の実施の形態に係る光モジュールの薄膜ミラーの制御を説明するための断面図、図16は、第3の実施の形態に係る光モジュールの薄膜ミラーに対する補正電圧の印加を説明するための断面図である。
薄膜ミラー314で入力光を反射させる際に、制御回路から電極パッド322,132を介して任意の制御電極323,133から薄膜ミラー314に電圧を印加させて、薄膜ミラー314の反射面の形状を制御させる。反射された出力光は光結合特性が線形に変化して出射する。例えば、図15に示されるように、光結合特性が線形となった出力光が出射されるための最適電圧として、制御電極323に電圧V1、制御電極133に電圧V2〜V5を印加させる。
これに加えて、出力光の出射方向を制御するために、制御回路から電極パッド322,132を介して、電極324からSiフレーム層318に電圧を印加させて、Siフレーム層318を、トーションバー319を支点にして回転させる。一方、Siフレーム層318の傾斜によって、薄膜ミラー314が制御電極323,133と近づくと、最適電圧も変化する。この場合、図16に示されるように、薄膜ミラー314が制御電極133に近づくと、例えば、V2−ΔV2およびV4−ΔV4のように、電圧を下げて、遠ざかる。V3+ΔV3およびV5+ΔV5のように、電圧を上げるように補正電圧を加えることで所望の反射面の形状が維持されるともに、所望の傾斜に制御された薄膜ミラー314によって、光結合特性が線形に変化して、所望の方向に出力光が出射される。
次に、第4の実施の形態について説明する。
第4の実施の形態では、第1〜第3の実施の形態で説明した光モジュールを適用させた例をあげて説明する。
なお、第4の実施の形態では、入力光の形状を図3(A)で説明した式(1)で表わされるφa1とし、出力光の形状を図3(B)で説明した式(2)で表わされるφb1とする。このため、光モジュールの薄膜ミラーの反射面はφm=φb1−φa1で表わされる形状に制御するものとする。
(実施例4−1)
図17は、第4の実施の形態に係る光スイッチを説明するための図である。
光スイッチシステム20は、入力ポート21、分光素子22、集光光学系23a,23b、出力ポート24a1,・・・,24an、第1の実施の形態で説明した光モジュール100、および偏向ミラー101を有する。なお、光モジュール100および偏向ミラー101は一対となっており、入力光に多重している波長ごとにn組が備えられている。また、偏向ミラー101には駆動電圧が印加される。すなわち、偏向ミラー101は偏向用駆動電圧に応じて偏向角度が変化する。
n個の波長多重した入力光φinは入力ポート21を通じて入力されると、分光素子22によって、n個の波長ごとの光に分光される。分光された分光光は集光光学系23aで集光されて、分光光の波長ごとに設けられた光モジュール100に分光光が波長ごとに入力される。予め反射面がφb1−φa1で表わされる形状φm1,・・・,φmnに制御された光モジュール100は、分光された分光光の光結合特性を線形に変化させる。光モジュール100から出力された分光した分光光は、波長ごとに設けられた偏向ミラー101で出力ポートごとの方向φk1,・・・,φknに反射される。そして、集光光学系23bで集光されて、波長ごとの出力光φout1,φout2,・・・,φoutnが出力ポート24a1,24a2,・・・,24anに入射して出力させる。
このような構成の光スイッチシステム20における偏向ミラー101の駆動電力に対する出力光の減衰量について図面を参照しながら説明する。
図18は、第4の実施の形態に係る偏向用駆動電圧に対する出力光の減衰量のグラフである。なお、X軸は、偏向ミラー101を偏向させるための偏向用駆動電圧([V])である。Y軸は、出力ファイバの中心部での光強度を基準として、偏向用駆動電圧に対する出力光ごとの減衰量([dB])を表している。
このグラフによれば、出力光φoutnのnが小さくなるにつれて、出力光φの減少量が最も少なくなる偏向用駆動電圧(最適電圧)は大きくなっている。また、例えば、φout1では、最適電圧にて減衰量が最も少なく、その電圧が増加または減少すると、減衰量が線形的に増加している。他の出力光でも同様のことが言える。したがって、出力光が光モジュール100によって光結合特性が線形に制御されて、外部の影響による偏向用駆動電圧への変動を小さくすることができる。
なお、実施例4−1では、光モジュール100と偏向ミラー101とを用いて波長多重した入力光φinを選択的にスイッチングした場合を例に挙げて説明した。光モジュール100に代えて、光モジュール200または光モジュール300を用いても構わない。これらの場合では、光結合特性を変化させるだけでなく、偏向角度も制御できるため、光モジュール200または光モジュール300は、光結合特性を変化させた出力光を直接出力ポートに入射することが可能となる。したがって、偏向ミラー101を備える必要がなくなる。
(実施例4−2)
図19は、第4の実施の形態に係る別の光スイッチを説明するための図である。
光スイッチシステム30は、入力ファイバ31、集光光学系33、出力ファイバ34および第2の実施の形態で説明した光モジュール200を有する。なお、光モジュール200は、第3の実施の形態で説明した光モジュール300でも構わない。
入力光φinは入力ファイバ31を通じて入力されると、集光光学系33で集光されて、光モジュール200に入力される。予め図2,3で説明した反射面がφb1−φa1で表わされる形状φmに制御された光モジュール200は、出力光φoutの光結合特性を線形に変化させる。さらに、光モジュール200は、出力ファイバ34に入射させるように出力光φoutの偏向を制御する。光モジュール200から出力された出力光φoutは光結合特性が線形に制御されて、出力ファイバ34の方向に反射される。そして、集光光学系33で集光されて、出力ファイバ34に出力光φoutを入射させて出力させる。
このように、光モジュール200(または光モジュール300)を用いることにより、入力光の光結合特性を線形に変化させて、所望の方向に出力光を出射させることが可能となる。
なお、上記の実施例4−1,4−2では、あらかじめ薄膜ミラーの反射面を所望の形状に制御させて、光結合特性が変化した出力光を出射させるようにした。一方で、出力光をモニタリングしながら、出力光が所望の形状になるように薄膜ミラーの反射面を制御するようにしても構わない。
以上のように、薄膜ミラーの反射面の制御によって、出力光の光結合特性が線形に近づくと、駆動電圧の変動や外部ノイズなどの外部の影響に対する耐性が高くなる。上記方法では、薄膜ミラーを反射させているために光強度の余分な低下を招くことはない。さらに、薄膜ミラーの反射面の形状を制御させて光結合特性を変化させているために、光の径などの条件が変わっても、所望の光結合特性を実現することができる。光モジュールの組み立て後でも薄膜ミラーの反射面の形状の補正が可能であるため、光モジュールごとのばらつきを抑えて、どの光モジュールでも同等の光結合特性を実現することができる。また、薄膜ミラーの制御は即時可能であるために、光結合特性の経時変化が可能である。
(付記1) 入力光を反射させる光モジュールにおいて、
前記入力光を反射させて、出力光を出射するミラーと、
前記ミラーと対向し、前記入力光を前記ミラーの反射面で反射させる際に、前記ミラーに印加する電圧に応じて前記反射面を歪ませることにより、光結合特性が変化する前記出力光を出射させるように前記反射面を制御するミラー制御部と、
を有することを特徴とする光モジュール。
(付記2) 前記ミラー制御部は、前記出力光の形状と前記入力光の形状との差から得られる形状に、前記反射面を歪ませることを特徴とする付記1記載の光モジュール。
(付記3) 前記ミラー制御部は、前記光結合特性が線形に近づくように変化する前記出力光を出射させるように前記反射面を制御することを特徴とする付記1または2に記載の光モジュール。
(付記4) 前記ミラー制御部は、前記ミラーに印加する電圧に応じて、前記反射面を歪ませるとともに、前記反射面を傾かせることにより、前記光結合特性および出射方向が変化した前記出力光を出射させることを特徴とする付記1乃至3のいずれか1項に記載の光モジュール。
(付記5) 額縁状の第1のシリコン層と、額縁状の酸化シリコン層と、額縁状であって、内壁に複数のトーションバーを介して前記ミラーが一体的に形成された第2のシリコン層とが順に積層したミラー基板を備え、
前記ミラー制御部は、
外部の制御回路と接続される第1の電極パッドと、前記第1の電極パッドと配線で接続される複数の第1の制御電極とが主面に形成され、スペーサを介して前記主面と前記第2のシリコン層を接合すると前記第1の制御電極が前記ミラーと対向する上部ガラス基板と、
前記制御回路と接続される第2の電極パッドと、前記第2の電極パッドと配線で接続される複数の第2の制御電極が上面に形成される突起部とが主面に形成され、前記突起部を前記第1のシリコン層側から前記ミラー基板の内部に嵌合して、前記ミラー基板と接合すると前記第2の制御電極が前記ミラーと対向する下部ガラス基板と、
を有することを特徴とする付記1乃至3のいずれか1項に記載の光モジュール。
(付記6) 額縁状の第1のシリコン層と、額縁状の酸化シリコン層と、額縁状であって、内壁に対向する一対のトーションバーを介して前記ミラーが一体的に形成された第2のシリコン層とが順に積層したミラー基板を備え、
前記ミラー制御部は、
外部の制御回路と接続される第1の電極パッドと、前記第1の電極パッドと配線で接続される複数の第1の制御電極とが主面に形成され、スペーサを介して前記主面と前記第2のシリコン層を接合すると前記第1の制御電極が前記ミラーと対向する上部ガラス基板と、
前記制御回路と接続される第2の電極パッドと、前記第2の電極パッドと配線で接続される複数の第2の制御電極が上面に形成される突起部とが主面に形成され、前記突起部を前記第1のシリコン層側から前記ミラー基板の内部に嵌合して、前記ミラー基板と接合すると前記第2の制御電極が前記ミラーと対向する下部ガラス基板と、
を有することを特徴とする付記4記載の光モジュール。
(付記7) 額縁状の第1のシリコン層と、額縁状の酸化シリコン層と、額縁状であって、内壁に対向する一対のトーションバーを介して額縁状のシリコンフレーム層が一体的に形成され、さらに、前記シリコンフレーム層の内壁に複数のトーションバーを介して前記ミラーが一体的に形成された第2のシリコン層とが順に積層したミラー基板を備え、
前記ミラー制御部は、
外部の制御回路と接続される第1の電極パッドと、前記第1の電極パッドと配線で接続される電極と、前記第1の電極パッドと配線で接続される複数の第1の制御電極と、が主面に形成され、スペーサを介して前記主面側と前記第2のシリコン層を接合すると、前記電極が前記シリコンフレーム層の枠部と重なり、前記第1の制御電極が前記ミラーと対向する上部ガラス基板と、
前記制御回路と接続される第2の電極パッドと、前記第2の電極パッドと配線で接続される複数の第2の制御電極が上面に形成される突起部とが主面に形成され、前記突起部を前記第1のシリコン層側から前記ミラー基板の内部に嵌合して、前記ミラー基板と接合すると前記第2の制御電極が前記ミラーと対向する下部ガラス基板と、
を有することを特徴とする付記4記載の光モジュール。
(付記8) 制御電極は、酸化インジウム錫で構成されることを特徴とする付記5乃至7のいずれか1項に記載の光モジュール。
(付記9) 入力光を反射させる光モジュールの光制御方法において、
前記入力光をミラーで反射させる際に、前記ミラーと対向するミラー制御部が、前記ミラーに印加する電圧に応じて前記ミラーの反射面を歪ませることにより、光結合特性が変化する出力光を出射させるように前記反射面を制御することを特徴とする光制御方法。
(付記10) 波長多重した入力光を波長ごとに選択的にスイッチングする光スイッチにおいて、
前記入力光を入力する入力ポートと、
前記入力ポートからの前記入力光を分光する分光素子と、
前記分光素子で分光された分光光を反射させて、出力光を出射するミラーと、前記ミラーと対向し、前記分光光を前記ミラーの反射面で反射させる際に、前記ミラーに印加する電圧に応じて前記反射面を歪ませることにより、光結合特性が変化する前記出力光を出射させるように前記反射面を制御するミラー制御部と、を有する、前記分光光の波長ごとに設けられた複数の光モジュールと、
前記光モジュールからの前記出力光を任意の方向に反射させる、前記波長ごとに設けられた複数の偏向ミラーと、
前記偏向ミラーからの前記出力光を入射する、前記波長ごとに設けられた複数の出力ポートと、
を有することを特徴とする光スイッチ。
(付記11) 前記ミラー制御部は、前記光結合特性が線形に近づくように変化する前記出力光を出射させるように前記反射面を制御することを特徴とする付記10記載の光スイッチ。
(付記12) 前記ミラー制御部は、前記ミラーに印加する電圧に応じて、前記反射面を歪ませるとともに、前記反射面を傾かせることにより、前記光結合特性および出射方向が変化した前記出力光を、前記複数の出力ポートに直接出射させることを特徴とする付記10または11に記載の光スイッチ。
(付記13) 波長多重した入力光を波長ごとに選択的にスイッチングする光スイッチ方法において、
入力ポートからの前記入力光が分光素子で分光された分光光の波長ごとに設けられた複数の光モジュールのミラーと対向するミラー制御部が、前記分光光を前記ミラーで反射させる際に、前記ミラーに印加する電圧に応じて前記ミラーの反射面を歪ませることにより、光結合特性が変化する出力光を出射させて、
前記波長ごとに設けられた複数の偏向ミラーが、前記光モジュールからの前記出力光を任意の方向に反射させて、
前記波長ごとに設けられた複数の出力ポートが、前記偏向ミラーからの前記出力光を入射する、
ことを特徴とする光スイッチ方法。
実施の形態の概要を説明するための図である。 光結合特性のシミュレーションに係るシミュレーションの実施方法を説明するための図である。 光結合特性のシミュレーションに係る、(A)は入力光、(B)は別の入力光を説明するためのグラフである。 光結合特性のシミュレーション結果を示すグラフである。 第1の実施の形態に係る光モジュールの構成を説明するための斜視図である。 第1の実施の形態に係る光モジュールの構成を説明するための断面図(その1)である。 第1の実施の形態に係る光モジュールの構成を説明するための断面図(その2)である。 第1の実施の形態に係る光モジュールの製造工程を説明するための図(その1)である。 第1の実施の形態に係る光モジュールの製造工程を説明するための図(その2)である。 第2の実施の形態に係る光モジュールを構成するミラー基板の平面図である。 第2の実施の形態に係る光モジュールの構成を説明するための断面図である。 第3の実施の形態に係る光モジュールを構成する、(A)はミラー基板、(B)は上部ガラス基板の平面図である。 第3の実施の形態に係る光モジュールの構成を説明するための断面図(その1)である。 第3の実施の形態に係る光モジュールの構成を説明するための断面図(その2)である。 第3の実施の形態に係る光モジュールの薄膜ミラーの制御を説明するための断面図である。 第3の実施の形態に係る光モジュールの薄膜ミラーに対する補正電圧の印加を説明するための断面図である。 第4の実施の形態に係る光スイッチを説明するための図である。 第4の実施の形態に係る偏向用駆動電圧に対する出力光の減衰量のグラフである。 第4の実施の形態に係る別の光スイッチを説明するための図である。 光スイッチの、(A)は光の反射機構、(B)は出力光が入射されるコリメータレンズの入射面をそれぞれ説明するための図である。 入射した光の入射面の中央部からの位置ずれに対する減衰量を示すグラフである。
符号の説明
10 光モジュール
11 ミラー
12 ガラス基板
12a,13a 電極
13 基板
14 入力コネクタ
15 出力コネクタ
La 入力光
Lb 出力光

Claims (10)

  1. 入力光を反射させる光モジュールにおいて、
    前記入力光を反射させて、出力光を出射するミラーと、
    前記ミラーと対向し、前記入力光を前記ミラーの反射面で反射させる際に、前記ミラーに印加する電圧に応じて前記反射面を歪ませることにより、光結合特性が変化する前記出力光を出射させるように前記反射面を制御するミラー制御部と、
    を有することを特徴とする光モジュール。
  2. 前記ミラー制御部は、前記出力光の形状と前記入力光の形状との差から得られる形状に、前記反射面を歪ませることを特徴とする請求項1記載の光モジュール。
  3. 前記ミラー制御部は、前記光結合特性が線形に近づくように変化する前記出力光を出射させるように前記反射面を制御することを特徴とする請求項1または2に記載の光モジュール。
  4. 前記ミラー制御部は、前記ミラーに印加する電圧に応じて、前記反射面を歪ませるとともに、前記反射面を傾かせることにより、前記光結合特性および出射方向が変化した前記出力光を出射させることを特徴とする請求項1乃至3のいずれか1項に記載の光モジュール。
  5. 額縁状の第1のシリコン層と、額縁状の酸化シリコン層と、額縁状であって、内壁に複数のトーションバーを介して前記ミラーが一体的に形成された第2のシリコン層とが順に積層したミラー基板を備え、
    前記ミラー制御部は、
    外部の制御回路と接続される第1の電極パッドと、前記第1の電極パッドと配線で接続される複数の第1の制御電極とが主面に形成され、スペーサを介して前記主面と前記第2のシリコン層を接合すると前記第1の制御電極が前記ミラーと対向する上部ガラス基板と、
    前記制御回路と接続される第2の電極パッドと、前記第2の電極パッドと配線で接続される複数の第2の制御電極が上面に形成される突起部とが主面に形成され、前記突起部を前記第1のシリコン層側から前記ミラー基板の内部に嵌合して、前記ミラー基板と接合すると前記第2の制御電極が前記ミラーと対向する下部ガラス基板と、
    を有することを特徴とする請求項1乃至3のいずれか1項に記載の光モジュール。
  6. 入力光を反射させる光モジュールの光制御方法において、
    前記入力光をミラーで反射させる際に、前記ミラーと対向するミラー制御部が、前記ミラーに印加する電圧に応じて前記ミラーの反射面を歪ませることにより、光結合特性が変化する出力光を出射させるように前記反射面を制御することを特徴とする光制御方法。
  7. 波長多重した入力光を波長ごとに選択的にスイッチングする光スイッチにおいて、
    前記入力光を入力する入力ポートと、
    前記入力ポートからの前記入力光を分光する分光素子と、
    前記分光素子で分光された分光光を反射させて、出力光を出射するミラーと、前記ミラーと対向し、前記分光光を前記ミラーの反射面で反射させる際に、前記ミラーに印加する電圧に応じて前記反射面を歪ませることにより、光結合特性が変化する前記出力光を出射させるように前記反射面を制御するミラー制御部と、を有する、前記分光光の波長ごとに設けられた複数の光モジュールと、
    前記光モジュールからの前記出力光を任意の方向に反射させる、前記波長ごとに設けられた複数の偏向ミラーと、
    前記偏向ミラーからの前記出力光を入射する、前記波長ごとに設けられた複数の出力ポートと、
    を有することを特徴とする光スイッチ。
  8. 前記ミラー制御部は、前記光結合特性が線形に近づくように変化する前記出力光を出射させるように前記反射面を制御することを特徴とする請求項7記載の光スイッチ。
  9. 前記ミラー制御部は、前記ミラーに印加する電圧に応じて、前記反射面を歪ませるとともに、前記反射面を傾かせることにより、前記光結合特性および出射方向が変化した前記出力光を、前記複数の出力ポートに直接出射させることを特徴とする請求項7または8に記載の光スイッチ。
  10. 波長多重した入力光を波長ごとに選択的にスイッチングする光スイッチ方法において、
    入力ポートからの前記入力光が分光素子で分光された分光光の波長ごとに設けられた複数の光モジュールのミラーと対向するミラー制御部が、前記分光光を前記ミラーで反射させる際に、前記ミラーに印加する電圧に応じて前記ミラーの反射面を歪ませることにより、光結合特性が変化する出力光を出射させて、
    前記波長ごとに設けられた複数の偏向ミラーが、前記光モジュールからの前記出力光を任意の方向に反射させて、
    前記波長ごとに設けられた複数の出力ポートが、前記偏向ミラーからの前記出力光を入射する、
    ことを特徴とする光スイッチ方法。
JP2008205070A 2008-08-08 2008-08-08 光モジュール、光モジュールの光制御方法、光スイッチおよび光スイッチ方法 Expired - Fee Related JP5151794B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008205070A JP5151794B2 (ja) 2008-08-08 2008-08-08 光モジュール、光モジュールの光制御方法、光スイッチおよび光スイッチ方法
EP09166206A EP2151703A3 (en) 2008-08-08 2009-07-23 Optical module, optical control method by optical module, optical switch, and optical switching method
US12/461,020 US8441706B2 (en) 2008-08-08 2009-07-29 Optical module, optical control method by optical module, optical switch, and optical switching method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008205070A JP5151794B2 (ja) 2008-08-08 2008-08-08 光モジュール、光モジュールの光制御方法、光スイッチおよび光スイッチ方法

Publications (2)

Publication Number Publication Date
JP2010039409A true JP2010039409A (ja) 2010-02-18
JP5151794B2 JP5151794B2 (ja) 2013-02-27

Family

ID=41335556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008205070A Expired - Fee Related JP5151794B2 (ja) 2008-08-08 2008-08-08 光モジュール、光モジュールの光制御方法、光スイッチおよび光スイッチ方法

Country Status (3)

Country Link
US (1) US8441706B2 (ja)
EP (1) EP2151703A3 (ja)
JP (1) JP5151794B2 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005092175A (ja) * 2003-08-08 2005-04-07 Olympus Corp 光学特性可変光学素子
JP2005249914A (ja) * 2004-03-02 2005-09-15 Ricoh Co Ltd レーザ光走査装置
EP1662290A1 (en) * 2004-11-30 2006-05-31 Northrop Grumman Corporation Bi-directionally actuated thin membrane mirror

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6445433B1 (en) * 1999-11-19 2002-09-03 Nokia Corporation Pixel structure having deformable material and method for forming a light valve
JP2002006241A (ja) * 2000-06-19 2002-01-09 Sony Corp 光スイッチング素子およびこれを用いたスイッチング装置並びに画像表示装置
US6999677B2 (en) * 2000-11-30 2006-02-14 Nortel Networks Limited Protection switching arrangement for an optical switching system
US7079770B2 (en) * 2000-12-19 2006-07-18 Nortel Networks Limited System and apparatus for dropping and adding optical data streams in an optical communication network
US6666559B2 (en) * 2001-04-17 2003-12-23 Olympus Optical Co., Ltd. Variable-profile optical device including variable-profile mirror and optical element including variable-profile optical element
US6639710B2 (en) * 2001-09-19 2003-10-28 Lucent Technologies Inc. Method and apparatus for the correction of optical signal wave front distortion using adaptive optics
US6972883B2 (en) * 2002-02-15 2005-12-06 Ricoh Company, Ltd. Vibration mirror, optical scanning device, and image forming using the same, method for making the same, and method for scanning image
JP4025990B2 (ja) * 2002-09-26 2007-12-26 セイコーエプソン株式会社 ミラーデバイス、光スイッチ、電子機器およびミラーデバイス駆動方法
JP4360923B2 (ja) * 2004-01-20 2009-11-11 Hoya株式会社 マイクロミラー装置
JP4528112B2 (ja) * 2004-12-27 2010-08-18 富士通株式会社 光スイッチ並びに光スイッチの制御装置及び制御方法
JP4476140B2 (ja) * 2005-03-07 2010-06-09 富士通株式会社 波長選択スイッチ
US7352927B2 (en) * 2005-04-11 2008-04-01 Capella Photonics Optical add-drop multiplexer architecture with reduced effect of mirror edge diffraction
JP4691704B2 (ja) * 2005-04-13 2011-06-01 独立行政法人産業技術総合研究所 光走査装置
JP2007010966A (ja) * 2005-06-30 2007-01-18 Olympus Corp 光スイッチ装置
US7283709B2 (en) * 2005-10-06 2007-10-16 Lucent Technologies Inc. Integrated microelectromechanical wavelength selective switch and method of making same
JP4570598B2 (ja) 2006-08-10 2010-10-27 富士通株式会社 光伝送システム
US7643199B2 (en) * 2007-06-19 2010-01-05 Qualcomm Mems Technologies, Inc. High aperture-ratio top-reflective AM-iMod displays
JP5146937B2 (ja) * 2008-04-07 2013-02-20 富士通株式会社 光波面制御システムおよび光波面制御方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005092175A (ja) * 2003-08-08 2005-04-07 Olympus Corp 光学特性可変光学素子
JP2005249914A (ja) * 2004-03-02 2005-09-15 Ricoh Co Ltd レーザ光走査装置
EP1662290A1 (en) * 2004-11-30 2006-05-31 Northrop Grumman Corporation Bi-directionally actuated thin membrane mirror

Also Published As

Publication number Publication date
US20100033796A1 (en) 2010-02-11
EP2151703A2 (en) 2010-02-10
US8441706B2 (en) 2013-05-14
EP2151703A3 (en) 2010-03-24
JP5151794B2 (ja) 2013-02-27

Similar Documents

Publication Publication Date Title
JP5373555B2 (ja) ミラー装置
US20020080465A1 (en) MEMS based variable optical attenuator (MBVOA)
JP5640549B2 (ja) 光フィルター、光フィルターの製造方法および光機器
JP4495095B2 (ja) マイクロミラー装置およびミラーアレイ
US20020176651A1 (en) Modular fiber optic switch core
US6473544B1 (en) Optical switch having equalized beam spreading in all connections
JP2002082292A (ja) 光スイッチ
JP4158895B2 (ja) 機能性光ファイバコネクタ
JP2000241644A (ja) 多モード干渉光カプラ
JP5151794B2 (ja) 光モジュール、光モジュールの光制御方法、光スイッチおよび光スイッチ方法
JP5002757B2 (ja) 光波面制御装置
US6597827B1 (en) Voltage reduction in integrated control systems of mirrors
JP2008170528A (ja) 光モジュール及びその製造方法
KR20040072406A (ko) 파장 조절 광 공진기 및 그를 이용한 튜너블 광 필터
EP1400823A1 (en) Planar optical waveguide switching device using mirrors
JP4461918B2 (ja) 可動ミラーデバイス、分散補償器、利得等化器、及び光adm装置
JP5416185B2 (ja) ミラーアレイ、ミラー素子およびミラーアレイのアライメント方法
WO2009122969A1 (ja) 光スイッチ
JP2005205578A (ja) 櫛歯型アクチュエータ
JP2005140831A (ja) 波長特性可変フィルタ
JP4559744B2 (ja) 櫛歯型アクチュエータおよび光制御素子
JP4677427B2 (ja) 光デバイス
KR100442831B1 (ko) 광 스위치 및 그 제조 방법
JP2004309791A (ja) 光可変減衰器
KR100443670B1 (ko) 마이크로 광 스위치 및 그 제조 방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101013

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120717

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151214

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5151794

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees