JP2010035690A - 光プローブおよび光断層画像化装置 - Google Patents

光プローブおよび光断層画像化装置 Download PDF

Info

Publication number
JP2010035690A
JP2010035690A JP2008199703A JP2008199703A JP2010035690A JP 2010035690 A JP2010035690 A JP 2010035690A JP 2008199703 A JP2008199703 A JP 2008199703A JP 2008199703 A JP2008199703 A JP 2008199703A JP 2010035690 A JP2010035690 A JP 2010035690A
Authority
JP
Japan
Prior art keywords
optical
light
optical fiber
measurement
ferrule
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008199703A
Other languages
English (en)
Inventor
Koki Nakabayashi
耕基 中林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujinon Corp
Fujifilm Corp
Original Assignee
Fujinon Corp
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujinon Corp, Fujifilm Corp filed Critical Fujinon Corp
Priority to JP2008199703A priority Critical patent/JP2010035690A/ja
Publication of JP2010035690A publication Critical patent/JP2010035690A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Endoscopes (AREA)

Abstract

【課題】
光プローブおよび光断層画像化装置において、回転ムラによる測定精度の劣化を低減するとともに、光プローブの細径化を安価に実現する。
【解決手段】
光ファイバ12と略円筒形のフェルール13、14を光ファイバ12の先端近傍で一体的に固定し、このフェルール13、14の先端で光ファイバ12からのレーザ光Lを測定対象Sbに向けて偏向する先端光学系15を保持し、振動体40をフェルール13の外周面13bに摺動自在に嵌合し、駆動手段30が振動体40を光軸LP方向に振動させる。
【選択図】図4

Description

本発明は、OCT(Optical Coherence Tomography)計測により光断層画像を取得する光断層画像化装置の光プローブおよびその光プローブが適用された光断層画像化装置に関するものである。より詳しくは、光プローブの先端に、レーザ光を測定対象に向けて偏向する先端光学系を回転させる駆動手段を設けた光プローブおよびその光プローブが適用される光断層画像化装置に関するものである。
従来、生体組織等の測定対象の断層画像を取得する方法の一つとして、OCT計測により断層画像を取得する方法が提案されている。OCT計測は、光干渉計の一種であり、光源から射出された低コヒーレント光を測定光と参照光に分割した後、この測定光が測定対象に照射されたときの測定対象からの反射光、もしくは後方散乱光と参照光とを合波し、この反射光と参照光との干渉光の強度に基づいて断層画像を取得するものである。以下、測定対象からの反射光、後方光散乱光をまとめて反射光という。
上記のOCT計測には、大きくわけてTD(Time Domain)−OCT計測とFD(Fourier Domain)−OCT計測の2種類が存在する。
TD−OCT計測は、参照光の光路長を変更しながら干渉強度を測定することにより、測定対象の深さ方向の位置(以下、深さ位置という)に対応した反射光強度分布を取得する方法である。
一方、FD−OCT計測は、参照光と信号光の光路長は変えることなく、光のスペクトル成分毎に干渉光強度を測定し、ここで得られたスペクトル干渉強度信号を計算機にてフーリエ変換に代表される周波数解析を行うことで、深さ位置に対応した反射光強度分布を取得する方法である。FD−OCT計測は、TD−OCT計測に依存する機械的な走査が不要となることで、高速な測定が可能となる手法として、近年注目されている。
FD−OCT計測を行う装置で代表的なものとしては、SD(Spectral Domain)−OCT装置とSS(Swept Source)−OCT装置の2種類が挙げられる。
SD−OCT装置は、広帯域の低コヒーレント光を用い、干渉光を分光手段により各光周波数成分に分解し、アレイ型光検出器等にて光周波数成分毎の干渉光強度を測定し、ここで得られたスペクトル干渉は波形を計算機でフーリエ変換解析することにより、断層画像を構成するようにしたものである。
一方、SS−OCT装置は、光周波数を時間的に掃引させるレーザ等を光源に用い、干渉光の光周波数の時間的変化に対応した信号の時間波形を測定し、これにより得られたスペクトル干渉強度信号を計算機でフーリエ変換することにより断層画像を構成するようにしたものである。
また、上記各方式の光断層画像化装置は、内視鏡と組み合わせて生体内計測へ適用するために内視鏡の鉗子チャンネルを挿通させて被検体内でレーザ光を照射する光プローブを用いることが知られている。一般的に、光プローブは、体腔内に挿入される先端部と駆動手段を内蔵する基端部とから構成される。
特許文献1には、被検体の内部に挿入される長尺のシース内に可撓性シャフトを配設し、可撓性シャフトが光ファイバを覆い、可撓性シャフトの先端に光ファイバからのレーザ光を測定対象に向けて偏向する先端光学系を固定し、この可撓性シャフトを基端部に内蔵されたモータで回転させてレーザ光を走査する光プローブが示されている。
非特許文献1には、近年のMEMS(Micro Electro Mechanical Systems)技術の発展に伴い、光プローブの先端近傍にMEMSモータを設け、先端光学系をMEMSモータの回転軸に固定して先端光学系を回転させることにより、レーザ光を走査する光プローブが示されている。
特許3104984号公報 OPTICS EXPRESS 10390 / Vol.15, No.16 / 6 August 2007"In vivo three-dimensional microelectromechanical endoscopic swept source optical coherencetomography"
しかしながら、特許文献1に示される光プローブは、先端光学系と基端側の駆動手段との間の距離が長いため、可撓性シャフトへの応力変動、シースと可撓性シャフトとの間の摩擦等の影響による回転ムラが発生し、測定精度が劣化する虞がある。
また、近年では、測定精度の向上とともに、光断層画像化装置に適用される光プローブの細径化の要求もある。
非特許文献1に示される光プローブは、構造が複雑なMEMSモータを使用するため、光プローブの細径化要求への対応が困難となるとともに、光プローブが高価なものになる。
本発明は、上記事情に鑑み、回転ムラを低減することにより、測定精度の劣化を低減するとともに、細径化可能な光プローブおよび光断層画像化装置を安価に実現する。
上記の課題を解決するために、本発明の光プローブは、光ファイバと、この光ファイバの先端近傍で、この光ファイバと一体的に固定された略円筒形のフェルールと、このフェルールの先端で保持され、光ファイバからのレーザ光を測定対象に向けて偏向する先端光学系と、フェルールの外周面に摺動自在に嵌合された振動体と、振動体を光軸方向に振動させる駆動手段とを備えたことを特徴とする。
ここで、「外周面に摺動自在」とは、外周面上の光軸方向の摺動だけではなく、外周面上の光軸回りの摺動も許容する意味である。
また、本発明の光プローブは、フェルールが外周面上に光ファイバの光軸回りに螺旋する溝を有し、振動体が溝を転動するベアリングとこのベアリングを収容する穴とを有するものでもよい。
また、本発明の光プローブは、フェルールが外周面上に光ファイバの光軸回りに螺旋する溝を有し、振動体が溝を摺動する突起を有するものでもよい。
また、本発明の光プローブの駆動手段は、電磁式、圧電式、静電式のいずれかの方式により振動体を光軸方向に振動させてもよい。
ここで、「電磁式」とは、コイルを励磁して発生した磁界により振動を発生する方式を意味する。上記「圧電式」とは、圧電素子を利用して振動を発生する方式を意味する。上記「静電式」とは、電界により振動を発生させる方式を意味する。
また、本発明による光断層画像化装置は、先に説明したような各計測方式の光断層画像化装置に、本発明による光プローブを用いたことを特徴とするものである。すなわち、本発明による光断層画像化装置は、レーザ光を射出する光源手段と、この光源手段から射出されたレーザ光を測定光と参照光とに分割する光分割手段と、測定光を測定対象に照射する光プローブと、測定対象に測定光が照射されたときの測定対象からの反射光と参照光とを合波する合波手段と、合波された反射光と参照光との干渉光を検出する干渉光検出手段と、検出された干渉光の周波数および強度に基づいて、測定対象の複数の深さ位置における反射強度を検出し、これらの各深さ位置における反射光の強度に基づいて測定対象の断層画像を取得する断層画像処理手段とを備えてなる光断層画像化装置において、光プローブが、本発明の光プローブを含むものであることを特徴とする。
本発明の光プローブは、光ファイバと、この光ファイバの先端近傍で、この光ファイバと一体的に固定された略円筒形のフェルールと、このフェルールの先端で保持され、光ファイバからのレーザ光を測定対象に向けて偏向する先端光学系と、フェルールの外周面に摺動自在に嵌合された振動体と、振動体を光軸方向に振動させる駆動手段とを備えることにより、駆動手段からの振動でフェルールと摺動自在に嵌合している振動体をフェルールの外周面上で光軸方向に往復動させるとともに、フェルールを光軸回りに回転動させるため、駆動手段は、先端光学系の近傍に配置可能となり、回転ムラを低減できる。また、駆動手段は、光軸方向に単純な振動を発生するものであれば良く、安価な構造が可能となる。
したがって、本発明の光プローブは、回転ムラによる測定精度の劣化を低減するとともに、細径化を安価に実現する。
また、本発明の光断層画像化装置も、本発明の光プローブが適用されたものであるから、先端光学系の回転ムラによる測定精度の劣化の低減を安価に実現する。
以下、図面を参照しながら本発明の光プローブ実施形態および本発明の光プローブが適用される光断層画像化装置の実施形態について説明する。図1は、本発明の光断層画像化装置の実施形態の概略構成図である。本実施形態において、光断層画像化装置は、SS−OCT計測により光断層画像を取得する光断層画像化装置として説明する。
光断層画像化装置100は、コネクタ101で着脱自在に接続された光プローブ1と、レーザ光Lを射出する光源手段110と、この光源手段110から射出されたレーザ光Lを分割する光ファイバカプラ102と、この光ファイバカプラ102により分割されたレーザ光から周期クロック信号TCLKを出力する周期クロック生成手段120と、光ファイバカプラ102により分割された一方のレーザ光Lを測定光L1と参照光L2に分割する光分割手段103と、この光分割手段103により分割された参照光L2の光路長を調整する光路長調整手段130と、光分割手段103により分割された測定光L1が光プローブ1から測定対象Sbに照射され、この測定対象Sbからの反射光L3を参照光L2と合波する合波手段104と、この合波手段104での反射光L3と参照光L2との干渉光L4を検出する干渉光検出手段140と、この干渉信号検出手段140から出力された干渉信号ISを周波数解析することにより測定対象Sbの断層画像Pを取得する断層画像処理手段150とを有している。
光プローブ1ついて説明する。光プローブ1は、図示しない内視鏡の鉗子チャネルを挿通する先端部10と基端部20から構成される。
光プローブ1の測定光L1の測定対象Sbへの照射について説明する。図2は、先端部10の概略断面図である。先端部10は、同図に示すとおり、略円筒形の可撓性のシース11と、このシース11内に長手方向に配設された光ファイバ12と、光ファイバ12の先端近傍で、光ファイバ12と一体的に固定されたフェルール13、14と、フェルール13の先端で保持された略球形の先端光学系15とを有している。フェルール14は、フェルール13に圧入固定されている。なお、シース11の先端は、図示しないキャップにより閉塞されている。
光ファイバ12は、先端面14aまでフェルール14を挿通し、フェルール14に接着剤等で固定されている。本実施形態では、フェルール14の先端面14aを光ファイバ12とともに、所定の傾斜角度で研磨することにより、光ファイバ12の先端での不要な反射光を低減している。本実施形態では、傾斜角度をAPC(Angled PC)研磨規格に基づいて光軸LPの垂直方向から約7度程度とするが、特に限定されるものではない。
先端光学系15は、略球状の形状を有しており、光ファイバ12から射出した測定光L1を偏向して測定対象Sbに対し集光し、測定対象Sbからの反射光L3を偏向して集光し、光ファイバ12に入射させる。先端光学系15の焦点距離は、一例として光軸LPからシース11の径方向に向かって3mm程度の位置である。先端光学系15から出射する測定光L1は、光軸LPの垂直方向から約7度程度傾いている。先端光学系15は、接着剤等によりフェルール13に固定されている。
本実施形態では、加工の容易性からフェルールを2部品構成として説明するが、特に限定されるものではない。光ファイバ12の先端近傍で固定され、測定光L1が先端光学系15に入射するように、先端光学系15を保持する構造であれば、1部品であってもよい。
図3は、フェルール13の形状図である。同図において、下図は、フェルール13の斜視図、上図は、フェルール13の外周面13aの展開図を示す。フェルール13は、同図に示すとおり、外周面13aに、一例として2本の螺旋状の溝13bを有している。
ここで、同図における角度位置を0から2πで表示すると、各溝13bは、一例として外周面13aの円周上での間隔がπとなるように形成されている。各溝13bの位置A、位置B、位置Cは、溝13bにおける先端位置、中間位置、基端位置を示す。また、同位置での基端面13cからの距離は同一である。本実施形態では、一例として外周面13aでの円周上で、位置A(5/6π、11/6π)、位置B(1/2π、3/2π)、位置C(1/6π、7/6π)となるように各溝13bを形成する。位置Aと位置C間の外周面13aの円周上での間隔は、一例として2/3πである。
次に、光プローブ1の測定光L1の走査について説明する。図4は、先端部の第1の実施形態を示し、同図の(A)、(B)、(C)は、図3で説明した各溝13bの位置A、位置B、位置Cに後述する振動体のベアリングが通過した状態を示すものである。
先端部10は、測定光L1を光軸LP回りに走査するために、光軸LP方向の振動を発生する駆動手段30と、駆動手段30からの振動を光軸LP回りの回転に変換してフェルール13、14を光軸LP回りに回転させる振動体40と、フェルール14を回転保持する固定部50を有している。
駆動手段30は、固定部50に固定された電磁コイル31と、振動体40に固定された磁石32と、電磁コイル31と磁石32との間に配設された弾性体33とから構成される。電磁コイル31の励磁により、電磁コイル31と磁石32とは光軸LP方向に近接離間するように往復動する。フェルール13を磁性体にすることにより、磁石32の磁界と電磁コイル31による磁界とが重なる領域が増えて伝達効率が向上する。また、弾性体33は、電磁コイル31と磁石32による近接離間の往復動を安定させるとともに、振動体40が固定部50に対して光軸LP回りに回転することを抑制する。
振動体40は、本実施形態では、一例として各溝13b上の外周面13aの円周上での間隔がπとなる位置に配置された、各溝13bを転動する2個のベアリング41と、このベアリング41を収容する穴42aを有する保持器42と、ベアリング41の穴42aからの落下を防止するリング43とから構成される。また、振動体40は、本実施形態に限定されるものではなく、振動体40が各溝13bを摺動する突起を有する構造であってもよい。
固定部50は、フェルール14の外周面に形成された、光軸LPに垂直な溝14bを転動するベアリング51と、ベアリング51を収容する穴52aを有する保持器52と、ベアリング51の穴52aからの落下を防止するリング53と、一端が保持器52に固定され、他端が図示しない基端部20に固定されている金属製のシャフト54とから構成される。ここで、シャフト54は、保持器52を基端側に固定し、保持器52が光軸LP回りに回転することを防止する。
次に、同図を用いて、先端部10の測定光L1の走査について説明する。前述のとおり、同図の(A)は、各ベアリング41が、各溝13bの位置Aにある状態を示す。電磁コイル31と磁石32が互いに近接する方向の磁界を発生するように、電磁コイル31を励磁すると、磁石32および磁石32と固定された振動体40が基端側に引き寄せられる。
各ベアリング41が溝13bの位置Aから転動を開始するとともに、保持器42およびリング43が基端側に移動を開始する。この時、前述のとおり、振動体40は、シャフト54により光軸LP回りの回転が防止されているため、各ベアリング41が各溝13bを転動することにより、フェルール13をR1方向に回転させるせん断力が発生する
フェルール13のR1方向の回転により、先端光学系15、フェルール14、光ファイバ12がR1方向に回転する。また、フェルール14のR1方向の回転により、保持器52に受容されたベアリング51が溝14bを転動する。フェルール13が同図の(A)から1/3π回転すると、ベアリング41は、同図の(B)に示す溝13bの位置Bに到達し、フェルール13が同図の(A)から2/3π回転すると、ベアリング41は、同図の(C)に示す溝13bの位置Cに到達する。
ベアリング41が溝13bの位置Cに到達した後、電磁コイル31と磁石32が離間する方向の磁界を発生するように、電磁コイル31の励磁を切り換えると、磁石32および磁石32と固定された振動体40が先端側に引き離される。これにより、各ベアリング41が溝13bの位置Cから反対方向に転動を開始するとともに、同様の作用により、光ファイバ12、フェルール13、14、先端光学系15がR2方向に回転する。以後、電磁コイル31の励磁の切換えを繰り返すように制御することで、光ファイバ12、フェルール13、14、先端光学系15が光軸LP回りに揺動し、先端部10は、測定光L1を光軸LP回りに揺動させて走査する。一例として測定光L1が光軸LP回りに10〜20Hz程度の周波数で揺動するように、電磁コイル31は、励磁が切り換えられる。ここで、揺動範囲が光ファイバ12の強度範囲内である場合、光プローブ1は、先端部10と図示しない基端部20との間にロータリージョイントを有さずに、測定光L1を光軸LP回りに走査できるため、ロータリージョイントでの光損失を防止できる。
本実施形態では、各ベアリング41と各溝13bとが、外周面13aの円周上での間隔がπとなる位置に配置されるものとして説明するが、特に限定されるものではない。また、本実施形態では、ベアリング41および溝13bは2組として説明するが、特に限定されるものはなく、少なくとも1組以上であればよい。さらに、本実施形態での各溝13bは、位置Aと位置Cが外周面13aの円周上での間隔が2/3πとして説明したが、特に限定されるものではなく、光ファイバ12の強度範囲内であればよい。
次に、先端部の第2の実施形態について説明する。図5は、先端部の第2の実施形態を示す。同図において、第1の実施形態と同一の構成には、同一の番号を付し、その説明は省略する。第2の実施形態では、振動部30が電磁コイル31および磁石32の代わりに圧電素子を有する圧電振動子34を有する点が相違する。圧電振動子34は、光軸LP方向に振動するものである。また、圧電振動子34は、同図の示すように、第1の実施形態よりも先端側に延出した保持器42の先端面42bに固定されている。第2の実施形態においても、第1の実施形態と同様に、シャフト54は、保持器52を基端側に固定し、保持器52が光軸LP回りに回転することを防止する。
また、圧電振動子34は、小型化が容易という利点がある。一方、圧電振動子34は、振動振幅が小さいため、第2の実施形態では、弾性体33を共振させることにより、効率良く振動エネルギーを振動体40に供給している。第2の実施形態の他の構成および作用は、第1の実施形態と同様であり、その説明は省略する。なお、駆動手段30は、電界の方向を切換えて振動する静電式、その他の振動モータであってもよい。
再び図1を参照する。光源手段110は、波長を一定周期Tで掃印させながらレーザ光Lを射出するものである。具体的に、光源手段110は、半導体光増幅器(半導体利得媒質)111と光ファイバFB10とを有しており、光ファイブFB10が半導体光増幅器111の両端に接続された構造を有している。半導体光増幅器111は、駆動電流の注入により微弱な放出光を光ファイバFB10の一端側に射出するとともに、光ファイバFB10の他端側から入射された光を増幅する機能を有している。そして、半導体光増幅器111に駆動電流が供給されたとき、半導体光増幅器111および光ファイバFB10により形成される光共振器によりパルス状のレーザ光Lが、光ファイバFB0へ射出される。
さらに、光ファイバFB10にはサーキュレータ112が結合されており、光ファイバFB10内を導波する光の一部がサーキュレータ112から光ファイバFB11側へ射出される。この光ファイバFB11から射出した光はコリメータレンズ113、回折光学素子114、光学系115を介して回転多面鏡(ポリゴンミラー)116において反射される。この反射された光は、光学系115、回折光学素子114、コリメータレンズ113を介して再び光ファイバFB11に入射される。
ここで、この回転多面鏡116は矢印R1方向に例えば3万rpm程度の高速で回転するものであって、各反射面の角度が光学系115の光軸に対して変化する。これにより、回折光学素子114において分光された光のうち、特定の波長域からなる光だけが、再び光ファイバFB11に戻るようになる。この光ファイバFB11に戻る光の波長は光学系115の光軸と反射面との角度によって決まる。そして光ファイバFB11に入射した特定の波長域からなる光が、サーキュレータ112から光ファイバFB10に入射され、結果として特定の波長域からなるレーザ光Lが光ファイバFB0側に射出される。
したがって、回転多面鏡116が矢印R1方向に等速で回転したとき、再び光ファイバFB11に入射される光の波長λは、時間の経過にともなって、一定周期で変化することになっている。
光源手段110は、最小掃引波長λminから最大掃引波長λmaxまで一定周期T(例えば約50μsec)で掃引したレーザ光Lを射出する。この波長掃引されたレーザ光Lは、光ファイバFB0側に射出され、そのレーザ光Lはさらに光ファイバカプラ102により、分岐して光ファイバFB1、FB5にそれぞれ入射される。光ファイバFB5に射出された光は、周期クロック生成手段120に導波される。
周期クロック生成手段120は、光源手段110から射出されるレーザ光Lの波長が一周期掃引される毎に1つの周期クロック信号TCLKを断層画像処理手段150に出力するものである。
光分割手段103は、例えば2×2の光ファイバカプラから構成されており、光源手段110から光ファイバFB1を介して導波されたレーザ光Lを測定光L1と参照光L2に分割する。光分割手段103は、2本の光ファイバFB2、FB3にそれぞれ光学的に接続されており、測定光L1は、光ファイバFB2により導波され、参照光L2は、光ファイバFB3により導波される。なお、本実施形態における光分割手段103は、合波手段104としても機能するものである。
光路長調整手段130は、光ファイバFB3の参照光L2の射出側に配置されている。この光路長調整手段130は、断層画像の取得を開始する位置を調整するために、参照光L2の光路長を変更するものであって、光ファイバFB3から射出された参照光L2を反射させる反射ミラー132と、反射ミラー132と光ファイバFB3との間に配置された第1光学レンズ131aと、この第1光学レンズ131aと反射ミラー132との間に配置された第2光学レンズ131bとを有している。
光ファイバFB3から射出した参照光L2は、第1光学レンズ131aにより平行光になり、第2光学レンズ131bにより反射ミラー132に集光される。その後、反射ミラー132により反射された参照光L2は、第2光学レンズ131bにより平行光になり、第1光学レンズ131aにより光ファイバFB3に集光される。
光路長調整手段130は、第2光学レンズ131bと反射ミラー132とを固定した基台133と、この基台133を第1光学レンズ131aの光軸方向に移動させるミラー移動手段134とを有している。そして基台133が矢印A方向に移動することにより、参照光L2の光路長が変えられる。
合波手段104は、前述の通り2×2の光ファイバカプラからなり、光路長調整手段130により光路長の調整が施された参照光L2と、測定対象Sbからの反射光L3とを合波し、光ファイバFB4を介して干渉光検出手段140に射出する。
干渉光検出手段140は、合波手段104により合波された反射光L3と参照光L2との干渉光L4を検出し、断層画像処理手段150に干渉信号ISを出力する。なお、本実施形態において、干渉光検出手段140は、干渉光L4を光分割手段103で二分し、光検出器140a、140bに導き、これを演算してバランス検波をする。
図6は、断層画像処理手段150の概略構成図である。断層画像処理手段150は、補助記憶装置に読み込まれた断層画像プログラムをコンピュータ上で実行することにより実現される。この断層画像処理手段150は、干渉信号取得手段151、干渉信号変換手段152、干渉信号解析手段153、断層情報生成手段154、画像補正手段155、回転制御手段156等を有している。
干渉信号取得手段151は、周期クロック生成手段120から出力される周期クロック信号TCLKに基づいて、干渉光検出手段140により検出された一周期分の干渉信号ISを取得するものである。この干渉信号取得手段151は、周期クロック信号TCLKの出力タイミングの前後の干渉信号ISを取得する。なお、干渉信号取得手段151は、周期クロック信号TCLKの出力タイミングを基準として一周期分の干渉信号ISを取得するものであればよく、周期クロック信号TCLKの出力タイミングは、掃引される波長帯域内であれば、波長の掃引開始直後、あるいは波長掃引終了直前に設定してもよい。
干渉信号変換手段152は、干渉信号取得手段151により所得された干渉信号ISを波数k(=2π/λ)軸において等間隔になるように再配列するものである。具体的に、干渉信号変換手段152は、光源手段110の時間−波長掃引特性データテーブルまたは関数を予め有しており、この時間−波長掃引特性データテーブル等を用いて波数k軸において等間隔になるように干渉信号ISを再配列する。これにより、干渉信号ISから断層情報を算出するときに、フーリエ変換処理、最大エントロピー法による処理等の周波数空間等において、等間隔であることを前提とするスペクトル解析法により精度の高い断層情報を得ることができる。なお、この信号変換手法の詳細はUS5956355号明細書に開示されている。
干渉信号解析手段153は、干渉信号変換手段152により信号変換された干渉信号ISを例えばフーリエ変換処理、最大エントロピー法、Yule−Walker法等の公知のスペクトル解析技術により、断層情報r(z)を取得するものである。
回転制御手段156は、駆動手段30の制御信号MCに出力する。また、回転制御手段156には、基端部20からの回転角度の情報が入力される。具体的に、回転角度の情報は、先端光学系15にロータリーエンコーダ、振動体40にリニアエンコーダ等を設けることにより、取得可能である。なお、回転角度の情報は、振動体40の振動を一定の周波数で規則的に振動させることで予測可能となり、必ずしも必要ではない。
断層情報生成手段154は、干渉信号解析手段153により取得された一周期分(1ライン分)の断層情報r(z)を、光プローブ1の先端部10の光軸LP回りの走査について取得して断層画像Pを生成するものである。この断層情報生成手段154は、順次取得される1ライン分の断層情報r(z)を断層情報蓄積手段154aに記憶する。 ここで、断層情報生成手段154は、断層情報蓄積手段154aからnライン分の断層情報r(z)を一括して読み込み断層画像Pを生成する。なお、断層情報生成手段154は、断層情報r(z)を断層情報蓄積手段154aから逐次読み込んで断層画像Pを生成することもできる。
画質補正手段155は、断層情報生成手段154により生成された断層画像Pに鮮鋭化処理、平滑化処理等を施す。
図1の表示手段160は、画質補正手段155により鮮鋭化処理、平滑化処理等が施された断層画像Pを表示する。
したがって、光プローブ1は、駆動手段30からの振動によりフェルール13と摺動自在に嵌合している振動体40を外周面13b上に光軸LP方向に往復動させるとともに、フェルール13を光軸LP回りに回動させるため、駆動手段30を先端光学系15の近傍に配置できるため、回転ムラによる測定精度の劣化が低減される。
また、駆動手段30は、振動体40を光軸LP方向に振動させればよく、構造も簡単となり、光プローブ1の細径化が可能であるとともに、安価に実現できる。
また、光断層画像化装置100も、光プローブ1が適用されたものであり、回転ムラによる測定精度の劣化の低減を安価に実現できる。
なお、本実施形態の光断層画像化装置は、SS−OCT計測により光断層画像を取得する光断層画像化装置として説明したが、本発明の光プローブは、SD−OCT計測およびTD−OCT計測により光断層画像を取得する光断層画像化装置にも適用可能である。
光断層画像化装置100の概略構成図 先端部10の概略断面図 フェルール13の形状図 先端部の第1の実施形態を示す図 先端部の第2の実施形態を示す図 断層画像処理手段150の概略構成図
符号の説明
L レーザ光
L1 測定光
L2 参照光
L3 反射光
L4 干渉光
LP 光軸
P 断層画像
Sb 測定対象
1 光プローブ
12 光ファイバ
13 フェルール
13a 外周面
13b 溝
14 フェルール
30 駆動手段
31 電磁コイル
32 磁石
15 先端光学系
40 振動体
41 ベアリング
42a 穴
100 光断層画像化装置
103 光分割手段
104 合波手段
110 光源手段
140 干渉光検出手段
150 断層画像処理手段

Claims (5)

  1. 光ファイバと、
    該光ファイバの先端近傍で、該光ファイバと一体的に固定された略円筒形のフェルールと、
    該フェルールの先端で保持され、前記光ファイバからのレーザ光を測定対象に向けて偏向する先端光学系と、
    前記フェルールの外周面に摺動自在に嵌合された振動体と、
    前記振動体を前記光軸方向に振動させる駆動手段とを備えたことを特徴とする光プローブ。
  2. 前記フェルールが外周面上に前記光ファイバの光軸回りに螺旋する溝を有し、前記振動体が前記溝を転動するベアリングと該ベアリングを収容する穴とを有することを特徴とする請求項1に記載の光プローブ。
  3. 前記フェルールが外周面上に前記光ファイバの光軸回りに螺旋する溝を有し、前記振動体が前記溝を摺動する突起を有することを特徴とする請求項1に記載の光プローブ。
  4. 前記駆動手段が、電磁式、圧電式、静電式のいずれかの方式により前記振動体を光軸方向に振動させるものであることを特徴とする請求項1〜3のいずれか1項に記載の光プローブ。
  5. レーザ光を射出する光源手段と、
    該光源手段から射出されたレーザ光を測定光と参照光とに分割する光分割手段と、
    前記測定光を測定対象に照射する光プローブと、
    前記測定対象に測定光が照射されたときの該測定対象からの反射光と前記参照光とを合波する合波手段と、
    合波された前記反射光と前記参照光との干渉光を検出する干渉光検出手段と、
    前記検出された干渉光の周波数および強度に基づいて、前記測定対象の複数の深さ位置における反射強度を検出し、これらの各深さ位置における反射光の強度に基づいて測定対象の断層画像を取得する断層画像処理手段とを備えてなる光断層画像化装置において、
    前記光プローブが、請求項1〜4のいずれか1項に記載の光プローブを含むものであることを特徴とする光断層画像化装置。
JP2008199703A 2008-08-01 2008-08-01 光プローブおよび光断層画像化装置 Withdrawn JP2010035690A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008199703A JP2010035690A (ja) 2008-08-01 2008-08-01 光プローブおよび光断層画像化装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008199703A JP2010035690A (ja) 2008-08-01 2008-08-01 光プローブおよび光断層画像化装置

Publications (1)

Publication Number Publication Date
JP2010035690A true JP2010035690A (ja) 2010-02-18

Family

ID=42008847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008199703A Withdrawn JP2010035690A (ja) 2008-08-01 2008-08-01 光プローブおよび光断層画像化装置

Country Status (1)

Country Link
JP (1) JP2010035690A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014506806A (ja) * 2010-12-23 2014-03-20 ヴォルカノ コーポレイション 統合システム構造および使用の方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014506806A (ja) * 2010-12-23 2014-03-20 ヴォルカノ コーポレイション 統合システム構造および使用の方法
US11141063B2 (en) 2010-12-23 2021-10-12 Philips Image Guided Therapy Corporation Integrated system architectures and methods of use

Similar Documents

Publication Publication Date Title
JP2009201969A (ja) Oct用光プローブおよび光断層画像化装置
JP5129562B2 (ja) 光断層画像化方法およびシステム
JP5069585B2 (ja) 光プローブを用いた光断層画像化装置
JP4838032B2 (ja) 画像診断装置およびその処理方法
JP2009172118A (ja) Oct用光プローブおよび光断層画像化装置
JP4895277B2 (ja) 光断層画像化装置
US7920271B2 (en) Apparatus and methods for enhancing optical coherence tomography imaging using volumetric filtering techniques
JP2008145376A (ja) 光断層画像化システム
JP2008253492A (ja) 断層画像処理方法および装置ならびにプログラム
JP2007101262A (ja) 光断層画像化装置
US8564787B2 (en) OCT apparatus and interference signal level control method for the same
JP2007097713A (ja) 光プローブおよび光断層画像化装置
JP5303804B2 (ja) 光断層画像化装置の較正用の変換テーブルの作成方法
JP2007117723A (ja) 光断層画像化装置
JP2010099465A (ja) 光断層画像取得装置、光断層画像取得方法
JP2007267927A (ja) 光断層画像化方法および装置
JP2010014514A (ja) 光断層画像化装置及び光断層画像化装置における干渉信号の処理方法
WO2011039956A1 (ja) 画像診断装置及びその制御方法
JP2007101267A (ja) 光断層画像化装置
JP2008089349A (ja) 光断層画像化装置
JP2010038634A (ja) 光プローブおよび光断層画像化装置
JP2009178200A (ja) Oct用光プローブおよび光断層画像化装置
JP2008275528A (ja) 補償テーブル生成方法、装置、プログラムおよびこれを用いた断層画像処理装置
JP2010035690A (ja) 光プローブおよび光断層画像化装置
JP5544036B2 (ja) 光断層画像化装置の較正用治具

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100614

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20111004