JP2010034463A - レーザアニール装置 - Google Patents

レーザアニール装置 Download PDF

Info

Publication number
JP2010034463A
JP2010034463A JP2008197535A JP2008197535A JP2010034463A JP 2010034463 A JP2010034463 A JP 2010034463A JP 2008197535 A JP2008197535 A JP 2008197535A JP 2008197535 A JP2008197535 A JP 2008197535A JP 2010034463 A JP2010034463 A JP 2010034463A
Authority
JP
Japan
Prior art keywords
oxide film
surface oxide
laser annealing
film
amorphous silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008197535A
Other languages
English (en)
Inventor
Masahito Hiramatsu
雅人 平松
Masateru Kado
昌輝 門
Arichika Ishida
有親 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Display Central Inc
Original Assignee
Toshiba Mobile Display Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Mobile Display Co Ltd filed Critical Toshiba Mobile Display Co Ltd
Priority to JP2008197535A priority Critical patent/JP2010034463A/ja
Publication of JP2010034463A publication Critical patent/JP2010034463A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Recrystallisation Techniques (AREA)

Abstract

【課題】 表面酸化膜除去から表面酸化膜形成までの前処理工程を速やかに行うことができ、均一な多結晶シリコン膜の作成が可能なレーザアニール装置を提供する。
【解決手段】 アモルファスシリコン薄膜に対して固体レーザアニール法により結晶化を行うレーザアニール装置である。アモルファスシリコン薄膜の表面酸化膜を除去する表面酸化膜除去装置1と、アモルファスシリコン薄膜の表面に所定の厚さの酸化膜を形成する表面酸化膜形成装置2とを前処理装置として有する。表面酸化膜除去装置1と表面酸化膜形成装置2は、連続処理可能な状態に配置されている。例えば、表面酸化膜除去装置1と表面酸化膜形成装置2は同一の搬送ロボット4の周囲に配置されている。あるいは、表面酸化膜除去装置1と表面酸化膜形成装置2が連結されている。
【選択図】 図1

Description

本発明は、固体レーザアニール法によりアモルファスシリコン薄膜を結晶化するレーザアニール装置に関するものであり、特に、予めアモルファスシリコン薄膜に対して表面処理を行う前処理装置の改良に関する。
ガラス基板上に作製された多結晶シリコン薄膜トランジスタ(ポリシリコンTFT)は、結晶シリコンデバイスにおいてSOI構造と同様の構造を有することになるため、電気特性においてもSOIデバイスと同様の特徴を有する。チャネル層(活性層)を薄膜化することにより、完全空乏型の動作をさせることが可能となり、オフ状態からオン状態への立ち上がり電圧差が非常に小さくなることもその一つである。
また、透光性基板(ガラス基板)を使用しているため、液晶ディスプレイ等の表示装置の駆動素子としての利用も可能であり、結晶半導体では不可能な応用が可能となっている。リシリコン膜を活性層とするポリシリコンTFTを駆動素子とすることで、例えば携帯電話の表示部分等において、対角2インチ程度の領域に1/4VGA程度の精細度の表示を行うことが可能になっている。
前述のポリシリコンTFTの製造に際しては、多結晶シリコン膜の形成が不可欠であり、これまでエキシマレーザを用いてアモルファスシリコン膜を多結晶化すること(エキシマレーザアニール)が行われている(例えば、特許文献1等を参照)。
特許文献1記載の発明は、薄膜トランジスタの製造方法およびそれを備える表示装置の製造方法に関するものであり、ガラス基板上に非晶質シリコン膜を堆積する工程と、非晶質シリコン膜中に含有される水素を離脱させるために400℃以上の温度で非晶質シリコン膜を加熱する工程と、非晶質シリコン膜上に形成された自然酸化シリコン膜を、オゾン溶液で洗浄した後、フッ酸溶液で除去する工程と、非晶質シリコン膜の表面に膜厚1〜10nmの酸化シリコン膜を形成する工程と、酸化シリコン膜が形成された非晶質シリコン膜にレーザ光を照射して多結晶シリコン膜を形成する工程とを備えることを特徴としている。結晶化に際して照射するレーザ光は、エキシマレーザである。
特開2003−158135号公報
ところで、近年、液晶表示素子に要求される機能や性能の向上に対応するため、薄膜トランジスタの特性向上を目的として、固体レーザアニール法による結晶化が検討されている。
固体レーザアニール法では、パルス状のビームを高エネルギー且つ狭ピッチで照射することにより、シリコンの結晶を連続ラテラル成長させることが可能である。固体レーザアニール法による多結晶シリコン薄膜は、結晶粒径が幅0.5μm程度、長さ20μm程度であり、エキシマレーザアニール法による多結晶シリコン薄膜の結晶粒径が縦、横ともに0.3μm程度であることに比べて大きな結晶を有しており、固体レーザアニール法による多結晶シリコン薄膜を薄膜トランジスタの活性半導体層に用いることで、より高性能、高機能な液晶表示素子を作ることができるものと考えられる。
また、固体レーザの高調波を用いた結晶化技術は、ガス放電を用いたエキシマレーザによる結晶化技術と比較して、照射エネルギーの安定性が高いことから、多数回レーザ照射しながら基板を掃引する結晶化法においては有望である。特に、チューブ交換が必要なエキシマレーザと比較して、メンテナンスに要する手間や費用が激減する点は、ランニングコストに大きな影響を及ぼす。さらに、固体レーザの高調波を用いるためレーザ出力が小さく、そのため掃引する際のビーム幅が小さいというデメリットは、照射周波数でカバー可能であることから、量産への適用も期待される。
ただし、アニールにより結晶化を行う場合、初期膜の表面状態によって得られる多結晶シリコン膜の特性に差が生ずることがわかっており、工業化に向けては何らかの対策が必要である。
例えば、チャネルとなるアモルファスシリコン薄膜の膜厚に対して、その2%程度の膜厚を有する酸化シリコン(SiO)膜を形成しておけば、シリコンの凝集が発生することがなく、均一な多結晶シリコン膜が作成可能である。したがって、一般的なアモルファスシリコン薄膜の膜厚(50nm)に対しては、1nm程度の膜厚を有する酸化シリコン膜が必要である。ここで、前記膜厚の酸化シリコン膜は、大気中長期保存でも表面が徐々に酸化することにより達成可能であるが、制御されていない雰囲気中での酸化は、レーザ照射後の多結晶シリコン膜中への不純物添加となってしまい、電気特性が安定しないという問題が生ずるおそれがある。
また、もともと初期膜表面に残留している不純物を除去するための還元性液体やフッ化水素酸含有液体での処理は欠かせないが、アモルファスシリコン薄膜の表面は非常に活性であるため、この状態で長時間放置すると、やはり空気中の不純物の吸着が見られ、作製されたトランジスタの電気特性に影響を与える。
本発明は、このような従来の実情に鑑みて提案されたものであり、表面酸化膜除去から表面酸化膜形成までの前処理工程を速やかに行うことができ、アモルファスシリコン薄膜の表面に予め形成される酸化膜の膜厚変化を最小限に抑えることが可能で、面内で均一な結晶化膜(多結晶シリコン膜)の作成が可能なレーザアニール装置を提供することを目的とする。
前述の目的を達成するために、本発明のレーザアニール装置は、アモルファスシリコン薄膜に対して固体レーザアニール法により結晶化を行うレーザアニール装置であって、前記アモルファスシリコン薄膜の表面酸化膜を除去する表面酸化膜除去装置と、前記アモルファスシリコン薄膜の表面に所定の厚さの酸化膜を形成する表面酸化膜形成装置を前処理装置として有し、前記表面酸化膜除去装置と表面酸化膜形成装置は、連続処理可能な状態に配置されていることを特徴とする。
本発明のレーザアニール装置は、固体レーザアニール法によってアモルファスシリコン薄膜を結晶化するものである。固体レーザアニール法では、シリコンの結晶を連続ラテラル成長させることが可能であり、得られる多結晶シリコン薄膜の結晶粒径が大きいことから、薄膜トランジスタのチャネル(活性半導体層)に用いることで高性能化、高機能化が実現される。また、固体レーザアニール法では、エキシマレーザアニール法と比べて得られる多結晶シリコン薄膜の表面の突起が小さいことから、多結晶ポリシリコン薄膜と他の層のショートに起因する不良を改善することが可能となる。
ただし、固体レーザアニール法では、初期膜(アモルファスシリコン膜)の表面状態によって特性に差が生じ易く、アニールによる結晶化に際しては、表面酸化膜の膜厚や表面状態を厳しく管理する必要がある。例えば、固体レーザで結晶化するためには、表面酸化膜の形成が欠かせないが、前処理として表面酸化膜の除去、表面に制御された酸化膜の速やかな形成、長時間おかず結晶化の手順が必要である。これらの中で、特に表面酸化膜除去から酸化膜形成までの前処理については、短時間のうちに行う必要がある。表面酸化膜除去から酸化膜形成に移行するまでに時間を要すると、自然酸化の進行等によって酸化膜の厚さに変動を生ずるおそれがあり、アモルファスシリコン薄膜の表面が再汚染される可能性も高くなる。
本発明のレーザアニール装置では、表面酸化膜除去装置と表面酸化膜形成装置とが連続処理可能な状態に配置されているので、アモルファスシリコン薄膜の表面酸化膜を除去した後、所定の厚さの酸化膜を形成が短時間のうちに行われ、前記問題が解消される。
本発明のレーザアニール装置によれば、表面酸化膜除去から表面酸化膜形成までの前処理工程を速やかに行うことができ、アモルファスシリコン薄膜の表面に予め形成される酸化膜の膜厚変化や不純物による表面の再汚染等を最小限に抑えることが可能である。したがって、面内で均一な結晶化膜(多結晶シリコン膜)の作成が可能であり、電気特性のばらつきを低減することが可能である。
以下、本発明を適用したレーザアニール装置の実施形態について、図面を参照して詳細に説明する。
(第1の実施形態)
本実施形態のレーザアニール装置では、表面酸化膜除去装置と表面酸化膜形成装置を同一の搬送ロボットの周囲に配置することで、連続処理可能な状態としている。すなわち、本実施形態のレーザアニール装置は、図1に示すように、前処理装置である表面酸化膜除去装置1、表面酸化膜形成装置2、及び結晶化装置3を備えており、これらが1台の搬送ロボット4の周囲に配置されている。
搬送ロボット4の周囲には、さらに搬入機構(ローダ)5及び搬出機構(アンローダ)6も設置されており、搬入機構5から供給される基板(アモルファスシリコン薄膜が形成された基板)は、搬送ロボット4を介して表面酸化膜除去装置1、表面酸化膜形成装置2、結晶化装置3の順に連続して投入され、各処理が行われた後、搬出機構6によって運び出される。
前記表面酸化膜除去装置1は、基板上に形成されたアモルファスシリコン薄膜の表面に形成された自然酸化膜や不純物を除去するためのものである。アモルファスシリコン薄膜の表面には自然酸化による表面酸化膜(酸化シリコン膜)が形成されており、その上には汚染物質やパーティクル等が存在する。そこで、表面酸化膜除去装置2において、アモルファスシリコン薄膜の表面に存在する汚染物質及びパーティクルを酸化シリコン膜とともに除去する。
表面酸化膜除去装置1では、処理液によりアモルファスシリコン薄膜の表面を洗浄することにより表面酸化膜の除去を行うが、処理液としては、例えばフッ化水素酸、フッ化水素酸含有混合液、アンモニア含有還元性液体から選ばれる1種を用いることができる。前記処理液による洗浄に際しては、アモルファスシリコン薄膜が形成された基板を回転させることが好ましく、これにより均一且つ迅速な処理を実現することが可能である。したがって、前記表面酸化膜除去装置2は、基板を回転(スピン)させる構造とすることが好ましい。
前記表面酸化膜形成装置2は、表面酸化膜除去装置1により自然酸化膜や不純物、パーティクル等を除去したアモルファスシリコン薄膜の表面を酸化し、所定の膜厚の酸化膜を形成するためのものである。ここで、形成する酸化膜の膜厚は、チャネルとなるアモルファスシリコン薄膜の膜厚に対して2%以上であることが好ましく、これによりシリコンの凝集が発生することなく、均一な多結晶シリコン薄膜が作成可能となる。表1は、酸化膜のアモルファスシリコン薄膜に対する膜厚比率と、シリコンの凝集の有無の関係を調べた結果を示すものである。この表1にも示される通り、前記膜厚比率を2%以上とすることにより、シリコンの凝集が発生していない。
Figure 2010034463
したがって、例えばアモルファスシリコン薄膜の膜厚が50nmに対しては、1nm程度の膜厚の酸化膜の形成が必要である。このような膜厚の酸化膜は、例えば大気中保存によって表面が徐々に酸化することによっても達成可能であるが、制御されていない雰囲気中での酸化は、レーザアニール後の多結晶シリコン膜中への不純物添加となってしまい、電気特性が安定しない。また、純水中にオゾンが多く含有されているオゾン水等の酸化性液体での酸化では、厚さが不足し、常温で行う限りは1nmの酸化膜を形成することはできない。さらに、CVD等の真空を用いた成膜方法では、膜厚1nm程度の極めて薄い酸化膜を均一に形成することは難しい。
そこで、前記表面酸化膜形成装置2においては、制御された酸素雰囲気中での紫外線(UV)照射、あるいは酸素雰囲気中でのプラズマ酸化によって、アモルファスシリコン薄膜の表面に酸化膜を形成する。前者の場合、紫外線照射は大気圧中で行ってもよいし、減圧下で行ってもよい。
図2は、酸素雰囲気中での紫外線照射による酸化膜形成において、紫外線照射時間と酸化膜厚の関係を示す特性図である。図3は、酸素雰囲気中でのプラズマ酸化による酸化膜形成において、放電時間と酸化膜厚の関係を示す特性図である。いずれの場合においても、酸化速度は時間とともに低下する。これら酸化方法では、1nm程度の膜厚の酸化膜の形成にある程度の時間を要し、係る条件においては酸化膜厚を概ね一定に保つことが可能である。
また、図4は、表面酸化膜の形成において、表面酸化膜の厚さと酸化膜を1原子層(約0.2nm)増加させるために必要な時間との関係を示すものである。表面酸化膜の膜厚が厚くなるにしたがい、1原子層増加させるのに必要な時間が長くなる。装置タクトタイムを考慮すると、15分程度のマージンが必要であり、図中A領域で示す膜厚は前記酸素雰囲気中での紫外線照射や酸素雰囲気中でのプラズマ酸化によって実現可能である。図中B領域で示すオゾン水により形成される膜厚領域では、酸化不足である。
前記結晶化装置3は、固体レーザの照射により基板上に形成されたアモルファスシリコン薄膜の結晶化を行うものである。照射するレーザ光としては、固体レーザの高調波(例えばYAGレーザの高調波)であり、波長400nm〜600nm(例えばNd:YAGの532nm)のレーザ光を用いる。固体レーザの高調波をシリコン膜再結晶化プロセスへの適用することができれば、高出力短波長のエキシマレーザと置き換えることで、装置コストやメンテナンス費用の削減が可能になる。
前述のレーザアニール装置においては、隔壁7によって搬送ロボット4の周囲を仕切り、装置エリアとクリーンエリアとを分離することで、雰囲気管理を容易なものとすることも可能である。搬送ロボット4とその周囲に配置される表面酸化膜除去装置1、表面酸化膜形成装置2、及び結晶化装置3の投入口をクリーンエリア内に配置することで、一連の工程を同一の雰囲気中で行うことができ、アモルファスシリコン薄膜の表面汚染や自然酸化を最小限に抑えることができる。
以上の構成を有するレーザアニール装置では、表面酸化膜の除去(不純物の除去)から制御された雰囲気中での所定膜厚の酸化膜形成までの前処理工程を時間をおかず実施することができるので、酸化膜厚の変化を最小限に抑えることができる。したがって、表面酸化膜厚を基板間で一定に制御することができ、同一結晶化条件では常に同じ結晶化膜を得ることが可能である。また、表面に吸着した不純物等に由来する電気特性のばらつきも低減することができる。
さらに、本実施形態のレーザアニール装置では、酸化による酸化膜形成を行うようにしているが、成膜による酸化膜形成と異なり、酸化による酸化膜形成では成膜速度が膜厚が厚くなるにしたがって急激に低下するため、表面酸化膜形成装置3において面内の紫外光強度分布やプラズマ密度分布があったとしても、膜厚分布に反映され難く、基板内で均一な結晶化膜を得ることができる。また、レーザアニールには、装置タクト上、2〜3分間程度の時間が必要であるが、この時間内で酸化膜厚変化がないことにより、やはり面内で均一な結晶化膜を作成することが可能である。
次に、前述のレーザアニール装置による結晶化プロセス(多結晶シリコン膜の作成方法)について説明する。
アモルファスシリコン薄膜の結晶化プロセスにおいては、先ず、図5(a)に示すように、ガラス基板等の基板11上にPE−CVD法等により不純物の拡散を防ぐアンダーコート膜12を形成し、その上に活性半導体層となるアモルファスシリコン薄膜13を堆積させる。
ここで、アモルファスシリコン薄膜13の表面には自然酸化による自然酸化シリコン層14が形成されており、その上には汚染物質およびパーティクル15が存在する。そこで、表面酸化膜除去装置1において、例えばフッ化水素酸による洗浄を行い、図5(b)に示すように、表面に存在する汚染物質およびパーティクル15を自然酸化シリコン層14ごと除去する。表面酸化膜除去装置1において、前記処理を行うに際しては、前記アモルファスシリコン薄膜13及びアンダーコート膜12が形成された基板11を、搬入機構5から搬送ロボット4を介して表面酸化膜除去装置1に供給する。
次いで、図5(c)に示すように、プラズマ酸化によりアモルファスシリコン薄膜13の表面を酸化することで酸化シリコン層16の形成を行う。アモルファスシリコン薄膜13の表面に形成される酸化シリコン層16の膜厚は、アモルファルシリコン薄膜13の膜厚の2%以上とすることで、結晶化時のシリコンの凝集発生を抑制できる。アモルファスシリコン薄膜13の表面の酸化には、前述のUV酸化(酸素雰囲気中での紫外線照射)またはプラズマ酸化を用いる。前記酸化シリコン層16の形成は、表面酸化膜形成装置2によって行うが、アモルファスシリコン薄膜13の表面が清浄化された基板11は、搬送ロボット4によって表面酸化膜除去装置1から取り出され、極めて短時間のうちに表面酸化膜形成装置2に投入されるので、アモルファスシリコン薄膜13の表面の再汚染や自然酸化膜の形成が最小限に抑えられる。
その後、結晶化装置3において固体レーザアニール法による結晶化を行って、図5(d)に示すように、アモルファスシリコン薄膜13を結晶化し、多結晶シリコン薄膜17を形成する。形成される多結晶シリコン膜17は、均一な結晶化膜である。なお、酸化シリコン層16の形成が行われた基板11は、搬送ロボット4によって表面酸化膜形成装置2から取り出され、極めて短時間のうちに結晶化装置3に投入されるので、酸化シリコン層16表面の再汚染や酸化の進行が最小限に抑えられる。
以上が結晶化プロセスであるが、結晶化プロセスの後、形成された多結晶シリコン膜17を利用して薄膜トランジスタの作製、さらには液晶表示素子アレイ基板の作製が行われる。
すなわち、多結晶シリコン薄膜の上にフォトレジストをパターニングした後、CDE法等を用いて多結晶シリコン膜をアイランド状に加工する。その後、薄膜トランジスタの閾値電圧の制御用にアクセプタとなるBをイオンドーピング法等を用いて多結晶シリコン膜に低濃度注入する。次に、PE−CVD法によりゲート絶縁膜を形成し、スパッタ法、フォトリソグラフによるフォトレジストパターン形成、RIE法によるゲート電極形成を行う。その加工の段階において、アクセプタとなるBを高濃度で、ドナーとなるPHを高濃度と低濃度で2回に分けてイオンドーピング法により多結晶シリコン膜にそれぞれ領域を選択して注入する。この結果、LDD構造を持ったn形薄膜トランジスタと、p型薄膜トランジスタのソース領域およびドレイン領域が形成できる。ここで注入された不純物を活性化するために500℃でアニールした後、PE−CVD法により層間絶縁膜を全面に堆積させ、フォトリソグラフによるフォトレジストパターン形成した後、エッチングすることでコンタクトホールを多結晶シリコン膜の表面まで開口する。そして、スパッタ法、フォトリソグラフによるフォトレジストパターン形成、RIE法により薄膜トランジスタのソース及びドレイン電極につながる配線を形成する。以上でn形およびp型薄膜トランジスタが完成する。
図6に、固体レーザアニールによって作製された多結晶シリコン膜を用いた薄膜トランジスタのI−V特性を示す。薄膜トランジスタのサイズはW/L=4.5/3μm、ゲート絶縁膜の膜厚は80nm、チャネル部の方向とシリコン結晶のラテラル成長方向は平行である。その特性は、Vd=0.05Vでは移動度がn型225cm/Vs、p型85cm/Vs、Sファクターがn型0.15V/dec、p型0.14V/decであった。これは、従来のエキシマレーザアニール法により結晶化を行った同様の薄膜トランジスタの移動度n型120cm/Vs、p型80cm/Vs、Sファクターn型0.20V/dec、p型0.20V/decと比較して良好であった。
その後、PE−CVD法によりパッシベーション膜となる窒化シリコン膜で全面を覆った上にフォトレジストパターニングを行い、CDE法でエッチングすることでコンタクトホールを開口する。最後に感光性透明樹脂膜の塗布及びパターニングの後、スパッタ法、フォトレジストパターニング、エッチングによりITOから成る透明画素電極を形成する。以上で液晶表示素子アレイ基板が完成する。
(第2の実施形態)
本実施形態のレーザアニール装置では、表面酸化膜除去装置と表面酸化膜形成装置をインラインに配置することで、連続処理可能な状態としている。すなわち、本実施形態のレーザアニール装置は、図7に示すように、搬入機構5からバッファ室21、表面酸化膜除去装置1、乾燥室22、表面酸化膜形成装置2、準備室23までを連結部24によってそれぞれ連結し、その先に搬送ロボット4を設置するとともに、その周囲に結晶化装置3及び搬出機構6を配置している。したがって、搬出機構5から供給される基板(アモルファスシリコン薄膜)は、準備室23から取り出されるまで外気に触れることがなく、一連の前処理工程が閉鎖空間内で行われる。
前述の通り、固体レーザで結晶化するためには、表面酸化膜の形成が欠かせないが、前処理として自然酸化膜の除去、表面に制御された酸化膜の速やかな形成、長時間おかず結晶化の手順が必要である。これらの中で、特に自然酸化膜除去から酸化膜形成までの前処理については、短時間のうちに行う必要があり、本実施形態のように連結構造とすることが好ましい。例えば、フッ化水素(HF)系液体で表面酸化膜(自然酸化膜)を除去した場合、シリコン原子に水素原子が吸着した構造となるため、1〜2分間程度は表面への酸化が抑えられる。したがって、この時間内に所定の酸化膜の形成ができる構造が必須であり、そのためには表面酸化膜除去装置1と表面酸化膜形成装置2が連結されていることが必要である。
なお、アモルファスシリコン薄膜の表面に1nm程度の酸化膜が形成されている場合、20分間程度の放置では電気特性が変わらない。このため、本実施形態のレーザアニール装置では、結晶化装置3は表面酸化膜形成装置2と連結されていない。ただし、装置タクトを考慮すると、結晶化装置3も連結する構造とすることが望ましい。これにより、前処理から結晶化までの工程を全てインラインで行うことが可能である。
本実施形態のレーザアニール装置では、アモルファスシリコン薄膜が形成された基板は、搬入機構5によってバッファ室21に供給される。このバッファ室21内で所定の雰囲気とされた後、表面酸化膜除去装置1へと移送され、アモルファスシリコン薄膜表面の自然酸化膜の除去、及びパーティクル等の不純物の除去が行われる。次いで、乾燥室22に移送され、基板表面の乾燥が行われる。基板の乾燥は、例えば酸素を含まないガスを吹き付けることで行われる。なお、乾燥に使用するガスは微量の水素を含んでいてもよい。
乾燥された基板は、表面酸化膜形成装置2に移送され、所定の膜厚の酸化膜が形成される。酸化膜形成の後、基板は準備室23へと移送され、搬送ロボット4によって準備室23から取り出され、結晶化装置3へ移行される。結晶化装置3でアモルファスシリコン薄膜が結晶化され、多結晶シリコン膜とされた後、再び搬送ロボット4で結晶化装置3から取り出され、搬出機構6によって運び出される。
本実施形態のレーザアニール装置においても、表面酸化膜の除去(不純物の除去)から所定膜厚の酸化膜形成までの前処理工程を時間をおかず実施することができるが、表面酸化膜除去装置と表面酸化膜形成装置をインラインとしているので、先の第1の実施形態のレーザアニール装置に比べてより一層の時間短縮を実現することができ、より厳密な雰囲気制御が可能である。したがって、酸化膜厚の変化をさらに抑えることができ、同一結晶化条件では常に同じ結晶化膜を得ることが可能である。また、再汚染等も確実に防止することができるので、表面に吸着した不純物等に由来する電気特性のばらつきも低減することができる。
第1の実施形態のレーザアニール装置の構成を示す模式図である。 酸素雰囲気中での紫外線照射による酸化膜形成において、紫外線照射時間と酸化膜厚の関係を示す特性図である。 酸素雰囲気中でのプラズマ酸化による酸化膜形成において、放電時間と酸化膜厚の関係を示す特性図である。 表面酸化膜の厚さと酸化膜を1原子層増加させるために必要な時間との関係を示す特性図である。 (a)〜(d)は結晶化プロセスを工程順に示す概略断面図である。 固体レーザアニールによって作製された多結晶シリコン膜を用いた薄膜トランジスタのI−V特性を示す特性図である。 第2の実施形態のレーザアニール装置の構成を示す模式図である。
符号の説明
1 表面酸化膜除去装置、2 表面酸化膜形成装置、3 結晶化装置、4 搬送ロボット、5 搬入機構、6 搬出機構、7 隔壁、11 基板、12 アンダーコート膜、13 アモルファスシリコン薄膜、14 自然酸化シリコン層、15 パーティクル、16 酸化シリコン層、17 多結晶シリコン薄膜、21 バッファ室、22 乾燥室、23 準備室

Claims (9)

  1. アモルファスシリコン薄膜に対して固体レーザアニール法により結晶化を行うレーザアニール装置であって、
    前記アモルファスシリコン薄膜の表面酸化膜を除去する表面酸化膜除去装置と、前記アモルファスシリコン薄膜の表面に所定の厚さの酸化膜を形成する表面酸化膜形成装置を前処理装置として有し、
    前記表面酸化膜除去装置と表面酸化膜形成装置は、連続処理可能な状態に配置されていることを特徴とするレーザアニール装置。
  2. 前記表面酸化膜除去装置と表面酸化膜形成装置は同一の搬送ロボットの周囲に配置されていることを特徴とする請求項1記載のレーザアニール装置。
  3. 前記表面酸化膜除去装置と表面酸化膜形成装置は連結されていることを特徴とする請求項1記載のレーザアニール装置。
  4. 前記表面酸化膜除去装置と表面酸化膜形成装置は、乾燥室を介して連結されていることを特徴とする請求項3記載のレーザアニール装置。
  5. アモルファスシリコン薄膜に対して固体レーザの高調波を照射して結晶化を行う結晶化装置を備え、当該結晶化装置も前記前処理装置に対して連続処理可能な状態に配置されていることを特徴とする請求項1から4のいずれか1項記載のレーザアニール装置。
  6. 前記表面酸化膜除去装置では、フッ化水素酸、フッ化水素酸含有混合液、アンモニア含有還元性液体から選択される1種により酸化膜除去が行われることを特徴とする請求項1から5のいずれか1項記載のレーザアニール装置。
  7. 前記表面酸化膜除去装置は、アモルファスシリコン薄膜が形成された基板を回転させる構造を有することを特徴とする請求項6記載のレーザアニール装置。
  8. 前記表面酸化膜形成装置では、酸素雰囲気中での紫外線照射によって酸化膜の形成が行われることを特徴とする請求項1から7のいずれか1項記載のレーザアニール装置。
  9. 前記表面酸化膜形成装置では、酸素雰囲気中でのプラズマ酸化によって酸化膜の形成が行われることを特徴とする請求項1から7のいずれか1項記載のレーザアニール装置。
JP2008197535A 2008-07-31 2008-07-31 レーザアニール装置 Pending JP2010034463A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008197535A JP2010034463A (ja) 2008-07-31 2008-07-31 レーザアニール装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008197535A JP2010034463A (ja) 2008-07-31 2008-07-31 レーザアニール装置

Publications (1)

Publication Number Publication Date
JP2010034463A true JP2010034463A (ja) 2010-02-12

Family

ID=41738564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008197535A Pending JP2010034463A (ja) 2008-07-31 2008-07-31 レーザアニール装置

Country Status (1)

Country Link
JP (1) JP2010034463A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9384965B2 (en) 2013-11-19 2016-07-05 Japan Display Inc. Polycrystallization method
WO2016153852A1 (en) * 2015-03-23 2016-09-29 Sunpower Corporation Blister-free polycrystalline silicon for solar cells

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9384965B2 (en) 2013-11-19 2016-07-05 Japan Display Inc. Polycrystallization method
WO2016153852A1 (en) * 2015-03-23 2016-09-29 Sunpower Corporation Blister-free polycrystalline silicon for solar cells
US9559245B2 (en) 2015-03-23 2017-01-31 Sunpower Corporation Blister-free polycrystalline silicon for solar cells
US10516071B2 (en) 2015-03-23 2019-12-24 Sunpower Corporation Blister-free polycrystalline silicon for solar cells
US11101398B2 (en) 2015-03-23 2021-08-24 Sunpower Corporation Blister-free polycrystalline silicon for solar cells

Similar Documents

Publication Publication Date Title
CN1182570C (zh) 场效应晶体管的制造方法
JP2010145984A (ja) 有機電界発光表示装置及びその製造方法
JP3927634B2 (ja) レーザーアニール方法及び薄膜トランジスタの作製方法
TW201518561A (zh) 一種平坦化多晶矽薄膜的製造方法
JP2010034463A (ja) レーザアニール装置
JP4162727B2 (ja) 半導体装置の作製方法
JP5051949B2 (ja) 半導体装置の作製方法
JPH1092745A (ja) 結晶半導体の製造方法および製造装置
JP4001906B2 (ja) 半導体装置の作製方法
JP2004055838A (ja) 薄膜トランジスタの製造方法
JP3680677B2 (ja) 半導体素子製造装置および半導体素子の製造方法
JP2007188953A (ja) 多結晶シリコン層の製造方法
JP2004288864A (ja) 薄膜半導体、薄膜トランジスタの製造方法、電気光学装置及び電子機器
CN105742370A (zh) 低温多晶硅薄膜晶体管及其制备方法
US20060172469A1 (en) Method of fabricating a polycrystalline silicon thin film transistor
JP4200530B2 (ja) 薄膜トランジスタの製造方法
JP3925085B2 (ja) 半導体装置の製造方法、光変調素子の製造方法、および表示装置の製造方法
WO2011161901A1 (ja) 多結晶シリコン薄膜の形成方法、多結晶シリコン薄膜基板、シリコン薄膜太陽電池及びシリコン薄膜トランジスタ装置
JP2004356637A (ja) 薄膜トランジスタ及びその製造方法
JP3911947B2 (ja) 電界効果トランジスタの製造方法
JP4016539B2 (ja) 薄膜半導体の製造装置および薄膜半導体の製造方法
JP3618604B2 (ja) 半導体装置作製方法
JP4066564B2 (ja) 薄膜半導体製造装置および薄膜半導体の製造方法
JP3950307B2 (ja) 半導体装置の作製方法
JP2005259818A (ja) 半導体膜の結晶化方法、薄膜トランジスタの製造方法、電気光学装置及び電子機器