JP2010031160A - Oxidizer for producing conductive polymer, solid electrolytic condenser using the same, and production method thereof - Google Patents

Oxidizer for producing conductive polymer, solid electrolytic condenser using the same, and production method thereof Download PDF

Info

Publication number
JP2010031160A
JP2010031160A JP2008195743A JP2008195743A JP2010031160A JP 2010031160 A JP2010031160 A JP 2010031160A JP 2008195743 A JP2008195743 A JP 2008195743A JP 2008195743 A JP2008195743 A JP 2008195743A JP 2010031160 A JP2010031160 A JP 2010031160A
Authority
JP
Japan
Prior art keywords
conductive polymer
oxidizing agent
producing
solution
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008195743A
Other languages
Japanese (ja)
Other versions
JP5327842B2 (en
Inventor
Akinori Watanabe
章範 渡邉
Hisanori Muto
尚徳 武藤
Kazufumi Inoue
和文 井上
Mikio Yamazaki
幹夫 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Carlit Co Ltd
Original Assignee
Japan Carlit Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Carlit Co Ltd filed Critical Japan Carlit Co Ltd
Priority to JP2008195743A priority Critical patent/JP5327842B2/en
Publication of JP2010031160A publication Critical patent/JP2010031160A/en
Application granted granted Critical
Publication of JP5327842B2 publication Critical patent/JP5327842B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a conductive polymer excellent in conductivity and thermal resistance, and an oxidizer for producing a conductive polymer excellent in storing stability, and a method for producing a solid electrolytic condenser exhibiting a low ESR and a high capacity, and being excellent in thermal resistance with the use of the oxidizer for preparing the conductive polymer. <P>SOLUTION: The oxidizer for producing a conductive polymer comprises a ferric salt of a benzene sulfonic acid derivative represented by formula (1) (wherein R represents a branched alkyl group). There are also provided the solid electrolytic condenser for forming a conductive polymer layer by using the oxidizer for producing a conductive polymer, and production method thereof. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は導電性高分子製造用酸化剤に関し、より詳しくは固体電解コンデンサの固体電解質として好適な導電性高分子層の形成時に使用し、高容量かつ低等価直列抵抗(以下、「ESR」と表す。)を示し、耐熱性に優れた固体電解コンデンサの製造に資する導電性高分子製造用酸化剤に関する。さらに、該酸化剤を使用してなる固体電解コンデンサ及びその製造方法に関する。   The present invention relates to an oxidizing agent for producing a conductive polymer, and more specifically, is used when forming a conductive polymer layer suitable as a solid electrolyte of a solid electrolytic capacitor, and has a high capacity and low equivalent series resistance (hereinafter referred to as “ESR”). And an oxidizing agent for producing a conductive polymer that contributes to the production of a solid electrolytic capacitor having excellent heat resistance. Furthermore, it is related with the solid electrolytic capacitor which uses this oxidizing agent, and its manufacturing method.

導電性高分子は、高い導電性を有するため、例えば、アルミニウム電解コンデンサ、タンタル電解コンデンサなどの固体電解質として有用である。   Since the conductive polymer has high conductivity, it is useful as a solid electrolyte such as an aluminum electrolytic capacitor and a tantalum electrolytic capacitor.

前記導電性高分子としては、例えば、ピロール又はその誘導体あるいはチオフェン又はその誘導体等を化学酸化重合または電解酸化重合することによって得られたものが知られている。   As the conductive polymer, for example, those obtained by chemical oxidative polymerization or electrolytic oxidative polymerization of pyrrole or a derivative thereof or thiophene or a derivative thereof are known.

前記ピロール又はその誘導体あるいはチオフェン又はその誘導体の化学酸化重合を行う際のドーパントとしては主に有機スルホン酸が用いられ、その中でも、芳香族スルホン酸を用いることが知られている。また、重合用酸化剤としてはそれら芳香族スルホン酸の遷移金属塩が用いられ、その中でも第二鉄塩を用いることが知られている。   An organic sulfonic acid is mainly used as a dopant in the chemical oxidative polymerization of the pyrrole or its derivative or thiophene or its derivative, and among them, it is known to use an aromatic sulfonic acid. Further, transition metal salts of these aromatic sulfonic acids are used as the oxidizing agent for polymerization, and among these, it is known to use a ferric salt.

特許文献1には、芳香族スルホン酸第二鉄塩であるp−トルエンスルホン酸第二鉄塩を酸化剤として使用し重合した導電性高分子層を固体電解質とするコンデンサが開示されている。   Patent Document 1 discloses a capacitor using a conductive polymer layer polymerized by using p-toluenesulfonic acid ferric salt, which is an aromatic sulfonic acid ferric salt, as an oxidant, as a solid electrolyte.

しかし、p−トルエンスルホン酸第二鉄塩を使用し、導電性高分子層を形成した固体電解コンデンサは、長期間高温に曝されると静電容量の低下や、ESRの増大を発生しやすく、耐熱性に欠けるという問題があり、さらなる耐熱性の向上が求められている。   However, a solid electrolytic capacitor using p-toluenesulfonic acid ferric salt and having a conductive polymer layer formed tends to cause a decrease in capacitance and an increase in ESR when exposed to high temperatures for a long period of time. There is a problem of lack of heat resistance, and further improvement in heat resistance is required.

特許文献2には高濃度かつ低粘性の酸化剤を使用することで、等価直列抵抗を低下せしめる固体電解コンデンサの製造方法が開示されている。
該文献によれば、従来高濃度の酸化剤溶液を用いることで導電性高分子の重合効率を向上させ、導電性高分子層の電気伝導度を高め、固体電解コンデンサのESRを低下できることが記載されている。
しかしながら、従来知られている酸化剤溶液の酸化剤濃度を向上させると、酸化剤溶液の粘度も急激に向上し、導電性高分子層形成工程における酸化剤溶液の取扱いが極めて困難になる問題点が指摘されている。
このような問題に鑑み、該文献においては酸化剤の溶媒を低粘性のものに変え、酸化剤濃度を高濃度に維持したまま、酸化剤の取扱い性を向上させる技術が開示されている。
Patent Document 2 discloses a method for manufacturing a solid electrolytic capacitor in which the equivalent series resistance is reduced by using a high concentration and low viscosity oxidizing agent.
According to this document, it is described that the polymerization efficiency of a conductive polymer can be improved by using a high-concentration oxidant solution, the electrical conductivity of the conductive polymer layer can be increased, and the ESR of the solid electrolytic capacitor can be decreased. Has been.
However, when the oxidant concentration of a conventionally known oxidant solution is increased, the viscosity of the oxidant solution is also rapidly increased, which makes it difficult to handle the oxidant solution in the conductive polymer layer forming process. Has been pointed out.
In view of such a problem, this document discloses a technique for improving the handleability of an oxidizing agent while changing the solvent of the oxidizing agent to a low viscosity one and maintaining the oxidizing agent concentration at a high concentration.

上記特許文献2によれば、上記構成の酸化剤溶液を用いることで初期特性に優れた固体電解コンデンサが得られるが、長期使用におけるコンデンサ特性の安定性が不十分であり、さらなる信頼性、耐熱性の向上が求められている。
さらに、当該文献に酸化剤溶液の溶媒として具体的に開示されているプロピルアルコールあるいはエチルアルコールは、比較的低沸点であるため、加熱重合時に急激かつ局所的な重合反応を招来する、酸化剤溶液の保存安定性に支障を来す、等のおそれがあることが指摘されている。
According to Patent Document 2, a solid electrolytic capacitor having excellent initial characteristics can be obtained by using the oxidant solution having the above structure, but the stability of the capacitor characteristics in long-term use is insufficient, and further reliability, heat resistance There is a need for improvement in performance.
Furthermore, since propyl alcohol or ethyl alcohol specifically disclosed as a solvent for the oxidant solution in the document has a relatively low boiling point, an oxidant solution that causes a rapid and local polymerization reaction during heat polymerization. It has been pointed out that there is a risk of disturbing the storage stability of the food.

特開平02−015611号公報Japanese Patent Laid-Open No. 02-015611 特開2003−272953号公報JP 2003-272953 A

一般に、化学重合法を用いてコンデンサ素子に導電性高分子層を形成する工程では、有機スルホン酸系金属塩等を酸化剤とする酸化剤溶液と、チオフェン系等のモノマーとを混合して混合液を作製し、該混合液をコンデンサ素子に含浸させた後、コンデンサ素子を乾燥させることによって導電性高分子層をコンデンサ素子に形成、あるいはコンデンサ素子をモノマー溶液と酸化剤溶液に浸漬し、乾燥することを繰り返すことによって導電性高分子層をコンデンサ素子に形成している。   In general, in the process of forming a conductive polymer layer on a capacitor element using a chemical polymerization method, an oxidant solution containing an organic sulfonic acid metal salt or the like as an oxidant and a thiophene monomer or the like are mixed and mixed. After the liquid is prepared and the mixed solution is impregnated into the capacitor element, the capacitor element is dried to form a conductive polymer layer on the capacitor element, or the capacitor element is immersed in the monomer solution and the oxidant solution and dried. By repeating this process, the conductive polymer layer is formed on the capacitor element.

しかしながら、従来知られている酸化剤は、酸化剤溶液の濃度が高くなるにつれて酸化剤溶液の粘度が急激に高くなるため、50重量%を超える濃度の酸化剤溶液を用いると、コンデンサ素子への含浸性が悪くなり、かつ、重合速度が向上するため、微細な空隙を有する多孔性コンデンサ素子内部へ重合液が浸入し難くなり、取り扱いの面で問題がある。   However, conventionally known oxidants rapidly increase in viscosity of the oxidant solution as the concentration of the oxidant solution increases. Therefore, when an oxidant solution having a concentration of more than 50% by weight is used, Since the impregnation property is deteriorated and the polymerization rate is improved, it is difficult for the polymerization solution to enter the porous capacitor element having fine voids, which causes a problem in handling.

本発明の目的は、固体電解質に導電性高分子を有した固体電解コンデンサの製造に資する新規な導電性高分子製造用酸化剤を提供することであり、高濃度かつ低粘性を示し、取り扱いに優れた酸化剤を提供することである。
また、そのような酸化剤を用い、高静電容量、低ESR等の電気特性に優れ、かつ、耐熱性に優れた固体電解コンデンサおよびその製造方法を提供することである。
An object of the present invention is to provide a novel oxidizer for producing a conductive polymer that contributes to the production of a solid electrolytic capacitor having a conductive polymer in the solid electrolyte. It is to provide an excellent oxidizing agent.
Another object of the present invention is to provide a solid electrolytic capacitor using such an oxidizing agent, having excellent electrical characteristics such as high capacitance and low ESR, and excellent heat resistance, and a method for producing the same.

本発明者等は鋭意検討し、分岐鎖状アルキル基を有するベンゼンスルホン酸誘導体の第二鉄塩を使用することで、著しく耐熱性に優れた固体電解コンデンサが得られることを見出した。
さらに、驚くべきことに当該ベンゼンスルホン酸誘導体の第二鉄塩を高濃度に溶解させた酸化剤溶液は、その濃度が50重量%以上であるにもかかわらず、粘性が低く、重合速度が制御された酸化剤溶液となることを見出し、そのような酸化剤溶液を用いることで高容量かつ低ESRの固体電解コンデンサが得られることを見出し、本発明を完成するに至った。
The present inventors diligently studied and found that a solid electrolytic capacitor having remarkably excellent heat resistance can be obtained by using a ferric salt of a benzenesulfonic acid derivative having a branched alkyl group.
Furthermore, surprisingly, the oxidizer solution in which the ferric salt of the benzenesulfonic acid derivative is dissolved at a high concentration has a low viscosity and the polymerization rate is controlled even though the concentration is 50% by weight or more. The present inventors have found that a solid electrolytic capacitor having a high capacity and low ESR can be obtained by using such an oxidant solution, and the present invention has been completed.

すなわち、本発明は以下に示すものである。   That is, the present invention is as follows.

第一の発明は、一般式(1)、   The first invention is a general formula (1),

Figure 2010031160
(式中、Rは分岐鎖状アルキル基を示す。)
で示されるベンゼンスルホン酸誘導体の第二鉄塩を含む導電性高分子製造用酸化剤である。
Figure 2010031160
(In the formula, R represents a branched alkyl group.)
It is an oxidizing agent for electroconductive polymer manufacture containing the ferric salt of the benzenesulfonic acid derivative shown by these.

第二の発明は、Rが、1−メチルエチル基、1,1−ジメチルエチル基、1−メチルプロピル基、2−メチルプロピル基、1−メチルブチル基、2−メチルブチル基、3−メチルブチル基、又は2−エチルブチル基であることを特徴とする第一の発明に記載の導電性高分子製造用酸化剤である。   In the second invention, R is 1-methylethyl group, 1,1-dimethylethyl group, 1-methylpropyl group, 2-methylpropyl group, 1-methylbutyl group, 2-methylbutyl group, 3-methylbutyl group, Or it is 2-ethylbutyl group, It is an oxidizing agent for electroconductive polymer manufacture as described in 1st invention characterized by the above-mentioned.

第三の発明は、第一又は第二の発明に記載の導電性高分子製造用酸化剤が、n−ブタノールに50重量%以上溶解されてなることを特徴とする導電性高分子製造用酸化剤溶液である。   The third invention is an oxidation for producing a conductive polymer, characterized in that the oxidizing agent for producing a conductive polymer according to the first or second invention is dissolved in n-butanol by 50% by weight or more. Agent solution.

第四の発明は、第三の発明に記載の導電性高分子製造用酸化剤溶液の水分含有量が3.0重量%未満であることを特徴とする導電性高分子製造用酸化剤溶液である。   A fourth invention is an oxidant solution for producing a conductive polymer, characterized in that the water content of the oxidant solution for producing a conductive polymer described in the third invention is less than 3.0% by weight. is there.

第五の発明は、第三又は第四の発明に記載の導電性高分子製造用酸化剤溶液を用いて重合した導電性高分子を固体電解質として用いることを特徴とする固体電解コンデンサである。   A fifth invention is a solid electrolytic capacitor characterized in that a conductive polymer polymerized using the oxidant solution for producing a conductive polymer described in the third or fourth invention is used as a solid electrolyte.

第六の発明は、導電性高分子モノマーと酸化剤溶液との混合液をコンデンサ素子に含浸させることにより、又は導電性高分子モノマー溶液と酸化剤溶液とをコンデンサ素子に含浸させることにより、
モノマーと酸化剤を重合反応させて導電性高分子層をコンデンサ素子に形成する工程を含む固体電解コンデンサの製造方法において、第三の発明又は第四の発明に記載の導電性高分子製造用酸化剤溶液を用いて重合した導電性高分子を固体電解質として用いることを特徴とする固体電解コンデンサの製造方法である。
According to a sixth aspect of the invention, by impregnating a capacitor element with a mixed liquid of a conductive polymer monomer and an oxidizing agent solution, or impregnating a capacitor element with a conductive polymer monomer solution and an oxidizing agent solution,
In the method for producing a solid electrolytic capacitor comprising a step of polymerizing a monomer and an oxidizing agent to form a conductive polymer layer on a capacitor element, the oxidation for producing a conductive polymer according to the third invention or the fourth invention A method for producing a solid electrolytic capacitor, wherein a conductive polymer polymerized using an agent solution is used as a solid electrolyte.

本発明の導電性高分子製造用酸化剤は、導電性及び耐熱性に優れた導電性高分子を与えることができる。   The oxidizing agent for producing a conductive polymer of the present invention can give a conductive polymer excellent in conductivity and heat resistance.

また、本発明の導電性高分子製造用酸化剤を用い、導電性高分子層を形成した固体電解コンデンサは低ESRかつ高容量を示し、耐熱性に優れた固体電解コンデンサとなる。   In addition, a solid electrolytic capacitor in which a conductive polymer layer is formed using the oxidant for producing a conductive polymer of the present invention exhibits a low ESR and a high capacity, and becomes a solid electrolytic capacitor excellent in heat resistance.

本発明の導電性高分子製造用酸化剤としては、ベンゼンスルホン酸誘導体の金属塩が用いられ、ベンゼンスルホン酸誘導体としては下記一般式(1)で示されるものである。   As the oxidizing agent for producing the conductive polymer of the present invention, a metal salt of a benzenesulfonic acid derivative is used, and the benzenesulfonic acid derivative is represented by the following general formula (1).

Figure 2010031160
Figure 2010031160

上記一般式(1)中のRは分岐鎖状アルキル基を示す。   R in the general formula (1) represents a branched alkyl group.

上記一般式(1)中の分岐鎖状アルキル基を有するベンゼンスルホン酸誘導体は、導電性高分子中にドーパントとして取り込まれることによって高導電性の導電性高分子を与え、かつ該ドーパントを有する導電性高分子は該ドーパントの脱離が生じにくく、極めて耐熱性に優れたものとなる。
また、上記一般式(1)中のベンゼンスルホン酸誘導体の金属塩は溶媒への溶解性に優れるため、高濃度の酸化剤溶液を容易に調整することができる。
The benzenesulfonic acid derivative having a branched alkyl group in the general formula (1) gives a highly conductive conductive polymer by being incorporated as a dopant in the conductive polymer, and the conductive having the dopant. The functional polymer is less likely to desorb the dopant and is extremely excellent in heat resistance.
Moreover, since the metal salt of the benzenesulfonic acid derivative in the general formula (1) is excellent in solubility in a solvent, a high-concentration oxidant solution can be easily prepared.

上記一般式(1)中の分岐鎖状アルキル基の具体例としては、好ましくは、1−メチルエチル基(iso−プロピル基)、1,1−ジメチルエチル基(t−ブチル基)、1−メチルプロピル基(sec−ブチル基)、1,1−ジメチルプロピル基、2−メチルプロピル基(iso−ブチル基)、1,2−ジメチルプロピル基、2,2−ジメチルプロピル基、1−メチルブチル基、2−メチルブチル基、3−メチルブチル基(iso−アミル基)、1,1−ジメチルブチル基、2,2−ジメチルブチル基、3,3−ジメチルブチル基、1,2−ジメチルブチル基からなる群から選ばれる分岐鎖状アルキル基が挙げられる。   Specific examples of the branched alkyl group in the general formula (1) are preferably 1-methylethyl group (iso-propyl group), 1,1-dimethylethyl group (t-butyl group), 1- Methylpropyl group (sec-butyl group), 1,1-dimethylpropyl group, 2-methylpropyl group (iso-butyl group), 1,2-dimethylpropyl group, 2,2-dimethylpropyl group, 1-methylbutyl group 2-methylbutyl group, 3-methylbutyl group (iso-amyl group), 1,1-dimethylbutyl group, 2,2-dimethylbutyl group, 3,3-dimethylbutyl group, 1,2-dimethylbutyl group And a branched alkyl group selected from the group.

これらの中でも、1−メチルエチル基、1,1−ジメチルエチル基、1−メチルプロピル基、2−メチルプロピル基、1−メチルブチル基、2−メチルブチル基、3−メチルブチル基及び2−エチルブチル基からなる群から選ばれる分岐鎖状アルキル基が、酸化剤溶液とした際の粘性あるいは溶解性の面から好ましく、より好ましくは、1−メチルエチル基である。   Among these, from 1-methylethyl group, 1,1-dimethylethyl group, 1-methylpropyl group, 2-methylpropyl group, 1-methylbutyl group, 2-methylbutyl group, 3-methylbutyl group and 2-ethylbutyl group A branched alkyl group selected from the group consisting of is preferably from the viewpoint of viscosity or solubility when used as an oxidizing agent solution, and more preferably a 1-methylethyl group.

上記一般式(1)中のベンゼンスルホン酸誘導体と金属塩を形成する金属としては、好ましくは遷移金属であり、具体的には、鉄(III)、銅(II)、クロム(VI)、セリウム(IV)、マンガン(IV)、マンガン(VII)、ルテニウム(III)及び亜鉛(II)が挙げられ、より好ましくは鉄(III)である。   The metal that forms a metal salt with the benzenesulfonic acid derivative in the general formula (1) is preferably a transition metal, specifically iron (III), copper (II), chromium (VI), cerium. (IV), manganese (IV), manganese (VII), ruthenium (III), and zinc (II) are mentioned, More preferably, it is iron (III).

本発明の酸化剤は、有機溶剤に溶解した酸化剤溶液として用いることが好ましい。当該有機溶剤としては、上記ベンゼンスルホン酸誘導体金属塩の溶解性の面からアルコールを好ましく使用することができる。該アルコールとしては、メタノール、エタノール、n−プロパノール、イソプロパノール、n−ブタノール及びアミルアルコール等の炭素数1〜5の低級アルコールが挙げられる。これらアルコールは、単独で用いることができるが、2種以上併用し混合溶媒とすることもできる。
これらの中でも、高濃度に調整した場合の酸化剤溶液の保存安定性の面から、n−ブタノールを主溶媒とするものが特に好ましい。
The oxidizing agent of the present invention is preferably used as an oxidizing agent solution dissolved in an organic solvent. As the organic solvent, alcohol can be preferably used from the viewpoint of the solubility of the benzenesulfonic acid derivative metal salt. Examples of the alcohol include lower alcohols having 1 to 5 carbon atoms such as methanol, ethanol, n-propanol, isopropanol, n-butanol, and amyl alcohol. These alcohols can be used alone, but two or more of them can be used in combination as a mixed solvent.
Among these, those having n-butanol as the main solvent are particularly preferable from the viewpoint of storage stability of the oxidant solution when adjusted to a high concentration.

前記溶媒に溶解させる酸化剤濃度は少なくとも50重量%以上であり、より好ましくは50〜65重量%の範囲のものである。本発明の酸化剤は、n-ブタノール中でも50重量%以上と高濃度でも安定性を保つことができ、かつ、50重量%を超える濃度においても、低粘性を示す。   The concentration of the oxidizing agent dissolved in the solvent is at least 50% by weight or more, more preferably in the range of 50 to 65% by weight. The oxidizing agent of the present invention can maintain stability even at a high concentration of 50% by weight or more even in n-butanol, and exhibits low viscosity even at a concentration exceeding 50% by weight.

酸化剤溶液として使用する際には、上記保存安定性を損なわない程度に、副溶媒が添加されたものでも良い。
該副溶媒としては、ジエチルエーテル、ジプロピルエーテル、ジブチルエーテル等のエーテル類、アセトン、メチルエチルケトン等のケトン類、エチレングリコール、プロピレングリコール類等のグリコール類等を添加することができる。
When used as an oxidant solution, it may be one to which a secondary solvent is added to such an extent that the storage stability is not impaired.
As the auxiliary solvent, ethers such as diethyl ether, dipropyl ether and dibutyl ether, ketones such as acetone and methyl ethyl ketone, glycols such as ethylene glycol and propylene glycol, and the like can be added.

また、本発明の酸化剤は、好ましくは水分を少量含んでなることを特徴とする酸化剤溶液である。水分を含有することで重合速度を適切に制御することができ、重合効率を向上することができる。
水分含有量としては、好ましくは3.0重量%未満であり、より好ましくは0.01〜2.0重量%含むものである。水分含有量が0.01重量%に満たない場合、重合速度が速すぎて微細な多孔質孔内に重合溶液が含浸する前に重合反応が開始してしまい、容量出現率あるいはESRが低下する場合がある。また、水分含有量が2.0重量%を超える場合、重合効率が低下し、ESRが増大する場合がある。
The oxidizing agent of the present invention is preferably an oxidizing agent solution characterized by containing a small amount of moisture. By containing moisture, the polymerization rate can be appropriately controlled, and the polymerization efficiency can be improved.
The water content is preferably less than 3.0% by weight, more preferably 0.01 to 2.0% by weight. When the water content is less than 0.01% by weight, the polymerization rate is too high and the polymerization reaction starts before the polymerization solution is impregnated into the fine porous pores, resulting in a decrease in the volume appearance rate or ESR. There is a case. On the other hand, when the water content exceeds 2.0% by weight, the polymerization efficiency may decrease and ESR may increase.

次に、本発明の酸化剤の製造方法について、鉄塩を例に挙げて説明する。
上記一般式(1)で示されるベンゼンスルホン酸誘導体の水溶液に、酸化鉄を加え、撹拌後、ろ過により、未反応酸化鉄及び不純物を除去した後、水を除去し目的とするベンゼンスルホン酸誘導体第二鉄塩を得る。
Next, the manufacturing method of the oxidizing agent of the present invention will be described by taking an iron salt as an example.
Iron oxide is added to the aqueous solution of the benzenesulfonic acid derivative represented by the general formula (1), and after stirring, the unreacted iron oxide and impurities are removed by filtration, and then the water is removed to remove the target benzenesulfonic acid derivative. A ferric salt is obtained.

反応に用いるベンゼンスルホン酸誘導体の水溶液濃度は40〜80%の濃度のものを用いることができる。
また、加える酸化鉄の量は、ベンゼンスルホン酸誘導体に対し、概ね当量加える。
通常、反応は100〜120℃にて5〜72時間行うことにより、目的とするベンゼンスルホン酸誘導体第二鉄塩を生成させることができる。
反応終了後、得られる反応液をろ過し、ろ液を濃縮、脱水する。
酸化剤溶液中の水分量はこの濃縮工程にて適宜コントロールすることができる。
また、脱水工程中に酸化剤の溶媒であるn−ブタノール等を添加し、濃縮することによって所定酸化剤濃度の酸化剤溶液とすることができる。さらに、脱水工程中に、エーテル化合物等の低沸点溶媒を加え、水、アルコール、エーテル化合物として共沸させながら脱水してもよい。
この脱水工程を複数回繰り返すことで、所望の水分含有量に調整することができる。
The aqueous solution concentration of the benzenesulfonic acid derivative used for the reaction can be 40 to 80%.
The amount of iron oxide to be added is approximately equivalent to the benzenesulfonic acid derivative.
Usually, the reaction can be carried out at 100 to 120 ° C. for 5 to 72 hours to produce the desired ferric salt of a benzenesulfonic acid derivative.
After completion of the reaction, the resulting reaction solution is filtered, and the filtrate is concentrated and dehydrated.
The amount of water in the oxidizing agent solution can be appropriately controlled in this concentration step.
Further, an oxidizing agent solution having a predetermined oxidizing agent concentration can be obtained by adding n-butanol or the like as a solvent for the oxidizing agent during the dehydration step and concentrating. Furthermore, during the dehydration step, a low-boiling solvent such as an ether compound may be added and dehydrated while azeotropically forming water, alcohol, or ether compound.
By repeating this dehydration step a plurality of times, the desired water content can be adjusted.

次に、本発明の酸化剤を用いる固体電解コンデンサの製造方法について説明する。まず、巻回型コンデンサの場合を例にとり説明する。
まずアルミニウム、タンタル、ニオブ、チタン等からなる弁作用金属表面に酸化皮膜を形成した陽極箔及び対向陰極となる金属製の陰極箔を準備する。帯状の陽極箔と陰極箔とを、帯状の絶縁性のセパレータを介して巻回して作製された巻回部を具備した素子を準備する。
素子への導電性高分子層への形成は該素子の巻回部に、本発明の酸化剤溶液と導電性高分子モノマーとの混合液を含浸させ、乾燥し、素子内で重合反応させることによる。
該素子部への重合液の含浸は、導電性高分子モノマー溶液と酸化剤溶液とを混合液とせず別途に含浸させても良い。
なお、この含浸、乾燥工程は繰り返し行っても良い。
Next, the manufacturing method of the solid electrolytic capacitor using the oxidizing agent of this invention is demonstrated. First, the case of a wound capacitor will be described as an example.
First, an anode foil in which an oxide film is formed on the surface of a valve metal made of aluminum, tantalum, niobium, titanium, or the like and a metal cathode foil that serves as a counter cathode are prepared. An element provided with a winding part prepared by winding a strip-shaped anode foil and a cathode foil through a strip-shaped insulating separator is prepared.
The conductive polymer layer is formed on the element by impregnating the wound portion of the element with the mixed solution of the oxidant solution and the conductive polymer monomer of the present invention, drying, and polymerizing reaction in the element. by.
For impregnation of the polymerization liquid into the element portion, the conductive polymer monomer solution and the oxidant solution may be impregnated separately instead of being mixed.
This impregnation and drying process may be repeated.

導電性高分子モノマーとしては、チオフェン系の導電性高分子材料、ピロール系又はアニリン系の導電性高分子材料が使用され、より好ましくは3,4−エチレンジオキシチオフェンである。
酸化剤としては、上記一般式(1)で示されるベンゼンスルホン酸誘導体の第二鉄塩を用いる。
As the conductive polymer monomer, a thiophene-based conductive polymer material, a pyrrole-based or aniline-based conductive polymer material is used, and 3,4-ethylenedioxythiophene is more preferable.
As the oxidizing agent, a ferric salt of a benzenesulfonic acid derivative represented by the above general formula (1) is used.

使用する酸化剤の濃度は50重量%以上のものを用い、好ましくは50〜65重量%のものである。使用する酸化剤の濃度が50〜65重量%では、粘度が低く、適切な重合速度をとるためである。好ましい粘度は500mPa・s以下、より好ましくは150mPa・s以下であり、好ましい重合速度は70〜160秒である。また、重合反応させる際のモノマーと酸化剤溶液との重量配合比は、好ましくは1:1〜1:10である。   The concentration of the oxidizing agent used is 50% by weight or more, preferably 50 to 65% by weight. This is because when the concentration of the oxidizing agent used is 50 to 65% by weight, the viscosity is low and an appropriate polymerization rate is obtained. The preferred viscosity is 500 mPa · s or less, more preferably 150 mPa · s or less, and the preferred polymerization rate is 70 to 160 seconds. Moreover, the weight blending ratio of the monomer and the oxidizing agent solution in the polymerization reaction is preferably 1: 1 to 1:10.

重合反応は通常45〜150℃にて行い、反応時間は0.5〜5時間とする。
重合後、重合残渣や余剰のモノマー、酸化剤溶液を取り除くために洗浄を行っても良い。その後、金属製ケースに封入し、必要に応じてエージング等の処理を行い、巻回型コンデンサを完成する。
The polymerization reaction is usually carried out at 45 to 150 ° C., and the reaction time is 0.5 to 5 hours.
After the polymerization, washing may be performed in order to remove the polymerization residue, excess monomer, and oxidant solution. Then, it encloses in a metal case and performs a process such as aging as necessary to complete a wound capacitor.

また、チップ型コンデンサの場合を例にとり説明する。
アルミニウム、タンタル、ニオブ、チタン等の弁作用金属の板状箔または焼結体を準備し、この陽極体表面を酸化し誘電体酸化皮膜を形成させた陽極体を準備する。この陽極体に導電性高分子からなる固体電解質層、導電性カーボンを含有するカーボン層、銀ペーストなどからなる陰極引き出し層が順次形成されコンデンサ素子が構成される。
該陽極体の一端面に植立された陽極リード部材に陽極端子が接続され、陰極引き出し層に陰極端子が接続され、コンデンサ素子がエポキシ樹脂などの外装樹脂によって被覆密封され、チップ型コンデンサを完成する。
The case of a chip capacitor will be described as an example.
A plate-like foil or sintered body of valve action metal such as aluminum, tantalum, niobium or titanium is prepared, and an anode body is prepared by oxidizing the surface of the anode body to form a dielectric oxide film. A solid electrolyte layer made of a conductive polymer, a carbon layer containing conductive carbon, and a cathode lead layer made of silver paste or the like are sequentially formed on the anode body to constitute a capacitor element.
The anode terminal is connected to the anode lead member planted on one end face of the anode body, the cathode terminal is connected to the cathode lead layer, and the capacitor element is covered and sealed with an exterior resin such as an epoxy resin to complete a chip type capacitor. To do.

チップ型コンデンサの場合においても固体電解質層(導電性高分子層)の形成は、上記巻回型コンデンサの場合と同様に行うことができる。   Also in the case of a chip type capacitor, the formation of the solid electrolyte layer (conductive polymer layer) can be performed in the same manner as in the case of the wound type capacitor.

以下、本発明を実施例に基づいてより詳細に説明する。なお、本発明は本実施例によりなんら限定されない。   Hereinafter, the present invention will be described in more detail based on examples. In addition, this invention is not limited at all by this Example.

(酸化剤1〜7)
98重量%の1−メチルエチルベンゼンスルホン酸(ハンツマン社製)30.7gに水30gを加え、酸化鉄(チタン工業社製)4gを撹拌しながら混合し、温度100℃で24時間還流した。
反応後、水を留去し、n−ブタノール20mlを加え、水と共沸させ、この操作を5回繰り返し、水を留去した。その後、n−ブタノールを加え、1−メチルエチルベンゼンスルホン酸第二鉄/n−ブタノール溶液を得た。
(Oxidizing agents 1-7)
30 g of water was added to 30.7 g of 98% by weight of 1-methylethylbenzenesulfonic acid (manufactured by Huntsman), 4 g of iron oxide (manufactured by Titanium Industry Co., Ltd.) was mixed with stirring, and refluxed at a temperature of 100 ° C. for 24 hours.
After the reaction, water was distilled off, 20 ml of n-butanol was added and azeotroped with water, this operation was repeated 5 times, and water was distilled off. Thereafter, n-butanol was added to obtain a ferric 1-methylethylbenzenesulfonate / n-butanol solution.

上記で得られた1−メチルエチルベンゼンスルホン酸第二鉄/n−ブタノール溶液の濃度は、0.1Nチオ硫酸ナトリウム水溶液で滴定し濃度を求めた。
その後、所定濃度(各々、30、40、50、55、60、65及び70重量%)となるようn−ブタノール溶液を添加し、酸化剤溶液1〜7を完成した。
なお、各酸化剤溶液中の水分量は、カールフィッシャー法によって測定し、それぞれ0.5重量%であった。
The concentration of the 1-methylethylbenzenesulfonic acid ferric acid / n-butanol solution obtained above was titrated with a 0.1N sodium thiosulfate aqueous solution to obtain the concentration.
Then, the n-butanol solution was added so that it might become a predetermined density | concentration (each 30, 40, 50, 55, 60, 65, and 70 weight%), and the oxidizing agent solutions 1-7 were completed.
The water content in each oxidant solution was measured by the Karl Fischer method and was 0.5% by weight, respectively.

(酸化剤8〜10)
上記酸化剤1〜7の1−メチルエチルベンゼンスルホン酸をp−トルエンスルホン酸に替えた以外は同様の方法で作製した。
(Oxidizing agent 8-10)
It was prepared in the same manner except that 1-methylethylbenzenesulfonic acid of the oxidizing agents 1 to 7 was replaced with p-toluenesulfonic acid.

〔酸化剤溶液の評価〕
上記工程にて所定の各濃度に調整した酸化剤溶液を準備し、粘度及び重合速度の評価を行った。なお、粘度は振動式粘度計(CBCマテリアルズ社製、VM−100A)を用いて測定した。重合速度は、各酸化剤と3,4−エチレンジオキシチオフェン(以下、「EDOT」と略記する。)をスクリュー管に入れ、20℃サーモプレート上に10分以上保持した。酸化剤とEDOTを5:1(重量比)混合し、10秒撹拌した。その後、直径1mm以上のポリマーの塊が析出するまでの時間を計測し、これを重合速度とした。
なお、この重合速度の測定方法で得られる重合速度の値が概ね70〜160秒であるものが、固体電解コンデンサにおける導電性高分子層の形成に適することが経験的に判っている。測定結果を表1に示す。
[Evaluation of oxidizing agent solution]
The oxidizer solution adjusted to each predetermined concentration in the above steps was prepared, and the viscosity and polymerization rate were evaluated. The viscosity was measured using a vibration viscometer (manufactured by CBC Materials, VM-100A). For the polymerization rate, each oxidizing agent and 3,4-ethylenedioxythiophene (hereinafter abbreviated as “EDOT”) were placed in a screw tube and held on a 20 ° C. thermoplate for 10 minutes or more. The oxidizing agent and EDOT were mixed 5: 1 (weight ratio) and stirred for 10 seconds. Then, the time until a polymer lump having a diameter of 1 mm or more was deposited was measured and used as a polymerization rate.
It has been empirically found that the polymerization rate obtained by this polymerization rate measurement method is generally 70 to 160 seconds, which is suitable for forming a conductive polymer layer in a solid electrolytic capacitor. The measurement results are shown in Table 1.

Figure 2010031160
Figure 2010031160

表1より、本発明の酸化剤溶液は濃度が50重量%以上であるにも関わらず、粘度が小さく、適切な重合速度を有している。   From Table 1, the oxidizer solution of the present invention has a low viscosity and an appropriate polymerization rate despite the concentration being 50% by weight or more.

〔固体電解コンデンサの評価〕
上記で調整した酸化剤溶液と、導電性高分子モノマーである3,4−エチレンジオキシチオフェンとを重量比が6:1となるように加え、18℃サーモプレート上で攪拌し重合溶液を準備した。
[Evaluation of solid electrolytic capacitors]
Add the oxidizer solution prepared above and 3,4-ethylenedioxythiophene, which is a conductive polymer monomer, so that the weight ratio is 6: 1, and stir on an 18 ° C. thermoplate to prepare a polymerization solution. did.

上記重合溶液に巻回型アルミニウム固体電解コンデンサ素子(直径7mm、高さ6mm)を1分間含浸させた。その後45℃で1時間、次いで105℃で15分重合し、さらに105℃で30分、125℃で1時間乾燥し、巻回型コンデンサに導電性高分子層を形成し固体電解コンデンサを完成した。乾燥後、デシケーター中で30分以上保存しLCRメーター(型式名 4284A、Agilent Technologeis製)で静電容量(μF)、ESR(mΩ)を測定した。測定結果を表2及び表3に示す。   The polymer solution was impregnated with a wound aluminum solid electrolytic capacitor element (diameter 7 mm, height 6 mm) for 1 minute. Thereafter, polymerization was carried out at 45 ° C. for 1 hour, then at 105 ° C. for 15 minutes, and further dried at 105 ° C. for 30 minutes and at 125 ° C. for 1 hour, and a conductive polymer layer was formed on the wound capacitor to complete a solid electrolytic capacitor. . After drying, it was stored in a desiccator for 30 minutes or more, and the capacitance (μF) and ESR (mΩ) were measured with an LCR meter (model name: 4284A, manufactured by Agilent Technology). The measurement results are shown in Tables 2 and 3.

Figure 2010031160
Figure 2010031160

表2に示すように、本発明の酸化剤溶液を用いることで、高容量かつ低ESRを示す固体電解コンデンサが得られた。
酸化剤の濃度が高いほどESRが低下する傾向がある。しかし70%に関しては、粘度が高く且つ重合速度が速いため、コンデンサに含浸される前に重合してしまうため、ESRがやや高くなったと考えられる。
As shown in Table 2, a solid electrolytic capacitor exhibiting high capacity and low ESR was obtained by using the oxidant solution of the present invention.
ESR tends to decrease as the concentration of the oxidizing agent increases. However, regarding 70%, since the viscosity is high and the polymerization rate is high, the polymer is polymerized before being impregnated in the capacitor, so that the ESR is considered to be slightly higher.

Figure 2010031160
*酸化剤4−1〜4−8:1−メチルエチルベンゼンスルホン酸第二鉄塩/n−BuOH溶液(55重量%)
*酸化剤5−1〜5−7:1−メチルエチルベンゼンスルホン酸第二鉄塩/n−BuOH溶液(60重量%)
Figure 2010031160
* Oxidizing agents 4-1 to 4-8: 1-methylethylbenzenesulfonic acid ferric salt / n-BuOH solution (55% by weight)
* Oxidizing agent 5-1 to 5-7: 1-methylethylbenzenesulfonic acid ferric salt / n-BuOH solution (60 wt%)

表3に示すように、水分含有率が低いほどESRが低い傾向がある。水分が増加することにより、重合速度が低下し、未反応EDOT量が増加するためであると考えられる。しかし、0.01重量%以下では0.01〜2.0重量%よりもESRが高い。これは水分が少ないことにより重合速度が大幅に速くなり、重合液がコンデンサに含浸される前に重合してしまうためであると考えられる。以上より、高濃度の酸化剤においては水分含有率0.01〜2.0重量%が好ましい。   As shown in Table 3, the lower the moisture content, the lower the ESR. This is probably because the polymerization rate decreases and the amount of unreacted EDOT increases as the water content increases. However, at 0.01% by weight or less, ESR is higher than 0.01 to 2.0% by weight. This is presumably because the polymerization rate is significantly increased due to the low moisture content, and the polymerization solution is polymerized before impregnating the capacitor. As mentioned above, in the high concentration oxidizing agent, the water content is preferably 0.01 to 2.0% by weight.

〔耐熱性試験の評価〕
上記と同様の方法で巻回型コンデンサに導電性高分子層を形成し、125℃の恒温槽中で負荷電圧4.0V、500時間の耐熱試験を行い、LCRメーター(型式名 4284A、Agilent Technologeis製)で静電容量(μF@120Hz)、抵抗損失:tanδ(%)、ESR(mΩ@100kHz)を測定した。測定結果を表4に示す。
[Evaluation of heat resistance test]
A conductive polymer layer is formed on a wound capacitor in the same manner as described above, and a heat resistance test is performed at a load voltage of 4.0 V for 500 hours in a constant temperature bath of 125 ° C., and an LCR meter (model name: 4284A, Agilent Technology) Product), capacitance (μF @ 120 Hz), resistance loss: tan δ (%), ESR (mΩ @ 100 kHz) were measured. Table 4 shows the measurement results.

Figure 2010031160
Figure 2010031160

表4に示すように、1−メチルエチルベンゼンスルホン酸第二鉄/n−BuOHを用いた酸化剤4から6では静電容量、tanδ、ESRが安定しているのに対し、p−トルエンスルホン酸第二鉄/n−BuOHを用いた酸化剤8から10では大幅に劣化している。これより、分岐鎖状アルキル基が置換したベンゼンスルホン酸がドーパントとして含有された固体電解質層を有する固体電解コンデンサは熱安定性に優れることがわかる。   As shown in Table 4, the oxidizing agent 4 to 6 using ferric 1-methylethylbenzenesulfonate / n-BuOH has stable capacitance, tan δ, and ESR, while p-toluenesulfonic acid. Oxidants 8 to 10 using ferric / n-BuOH are significantly deteriorated. This indicates that a solid electrolytic capacitor having a solid electrolyte layer containing a benzenesulfonic acid substituted with a branched alkyl group as a dopant is excellent in thermal stability.

本発明の導電性高分子製造用酸化剤を用いて製造した固体電解コンデンサは優れた電気特性を有し、高周波領域で使用される様々なデジタル機器等に適用できる。
また、本発明の導電性高分子製造用酸化剤は、導電性及び耐久性に優れた導電性高分子を与えるため、固体電解コンデンサのみならず、帯電防止処理用途の導電性高分子等の製造に好適に使用することができる。
The solid electrolytic capacitor manufactured using the oxidant for manufacturing a conductive polymer of the present invention has excellent electrical characteristics and can be applied to various digital devices used in a high frequency region.
In addition, the oxidant for producing a conductive polymer of the present invention provides a conductive polymer excellent in conductivity and durability, so that not only a solid electrolytic capacitor but also a conductive polymer for antistatic treatment use can be produced. Can be suitably used.

Claims (6)

一般式(1)、
Figure 2010031160
(式中、Rは分岐鎖状アルキル基を示す。)
で示されるベンゼンスルホン酸誘導体の第二鉄塩を含む導電性高分子製造用酸化剤。
Formula (1),
Figure 2010031160
(In the formula, R represents a branched alkyl group.)
An oxidizing agent for producing a conductive polymer comprising a ferric salt of a benzenesulfonic acid derivative represented by
Rが、1−メチルエチル基、1,1−ジメチルエチル基、1−メチルプロピル基、2−メチルプロピル基、1−メチルブチル基、2−メチルブチル基、3−メチルブチル基、又は2−エチルブチル基であることを特徴とする請求項1に記載の導電性高分子製造用酸化剤。   R is 1-methylethyl group, 1,1-dimethylethyl group, 1-methylpropyl group, 2-methylpropyl group, 1-methylbutyl group, 2-methylbutyl group, 3-methylbutyl group, or 2-ethylbutyl group. The oxidizing agent for producing a conductive polymer according to claim 1, wherein the oxidizing agent is used. 請求項1又は2に記載の導電性高分子製造用酸化剤が、n−ブタノールに50重量%以上溶解されてなることを特徴とする導電性高分子製造用酸化剤溶液。   An oxidizing agent solution for producing a conductive polymer, wherein the oxidizing agent for producing a conductive polymer according to claim 1 or 2 is dissolved in n-butanol by 50% by weight or more. 請求項3に記載の導電性高分子製造用酸化剤溶液の水分含有量が3.0重量%未満であることを特徴とする導電性高分子製造用酸化剤溶液。   The water content of the oxidant solution for producing a conductive polymer according to claim 3 is less than 3.0% by weight. 請求項3又は4に記載の導電性高分子製造用酸化剤溶液を用いて重合した導電性高分子を固体電解質として用いることを特徴とする固体電解コンデンサ。   A solid electrolytic capacitor, wherein a conductive polymer polymerized using the oxidant solution for producing a conductive polymer according to claim 3 or 4 is used as a solid electrolyte. 導電性高分子モノマーと酸化剤溶液との混合液をコンデンサ素子に含浸させることにより、又は導電性高分子モノマー溶液と酸化剤溶液とをコンデンサ素子に含浸させることにより、
モノマーと酸化剤を重合反応させて導電性高分子層をコンデンサ素子に形成する工程を含む固体電解コンデンサの製造方法において、請求項3又は4に記載の導電性高分子製造用酸化剤溶液を用いて重合した導電性高分子を固体電解質として用いることを特徴とする固体電解コンデンサの製造方法。
By impregnating a capacitor element with a mixed liquid of a conductive polymer monomer and an oxidizing agent solution, or impregnating a capacitor element with a conductive polymer monomer solution and an oxidizing agent solution,
In the manufacturing method of the solid electrolytic capacitor including the process of carrying out the polymerization reaction of a monomer and an oxidizing agent and forming a conductive polymer layer in a capacitor element, using the oxidizing agent solution for conductive polymer manufacture according to claim 3 or 4 A method for producing a solid electrolytic capacitor comprising using a polymerized conductive polymer as a solid electrolyte.
JP2008195743A 2008-07-30 2008-07-30 Oxidizing agent for producing conductive polymer, solid electrolytic capacitor using the same, and method for producing the same Expired - Fee Related JP5327842B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008195743A JP5327842B2 (en) 2008-07-30 2008-07-30 Oxidizing agent for producing conductive polymer, solid electrolytic capacitor using the same, and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008195743A JP5327842B2 (en) 2008-07-30 2008-07-30 Oxidizing agent for producing conductive polymer, solid electrolytic capacitor using the same, and method for producing the same

Publications (2)

Publication Number Publication Date
JP2010031160A true JP2010031160A (en) 2010-02-12
JP5327842B2 JP5327842B2 (en) 2013-10-30

Family

ID=41736027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008195743A Expired - Fee Related JP5327842B2 (en) 2008-07-30 2008-07-30 Oxidizing agent for producing conductive polymer, solid electrolytic capacitor using the same, and method for producing the same

Country Status (1)

Country Link
JP (1) JP5327842B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011222604A (en) * 2010-04-06 2011-11-04 Tayca Corp Oxidant/dopant solution for producing conductive polymer, conductive polymer and solid electrolytic capacitor using the same as solid electrolyte, and method for producing the same
JP2012025919A (en) * 2010-07-28 2012-02-09 Japan Carlit Co Ltd:The Oxidizing agent solution for producing conductive polymer and method for producing solid electrolytic capacitor using the same
JP2014204049A (en) * 2013-04-09 2014-10-27 カーリットホールディングス株式会社 Oxidant solution for production of conductive polymer, and method for production of solid electrolytic capacitor by use thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0494108A (en) * 1990-08-09 1992-03-26 Kao Corp Manufacture of solid electrolytic capacitor
JP2002138135A (en) * 2000-11-01 2002-05-14 Tayca Corp Oxidizer for producing electroconductive polymer and electroconductive polymer
JP2003160647A (en) * 2001-11-27 2003-06-03 Tayca Corp Conductive polymer and solid electrolytic capacitor using the same
JP2006096689A (en) * 2004-09-29 2006-04-13 Japan Carlit Co Ltd:The Manufacturing method of sulfonic acid derivative ferric salt and conductive polymer manufactured using ferric salt, and solid electrolytic capacitor
JP2007023090A (en) * 2005-07-13 2007-02-01 Tayca Corp Oxidizing agent and dopant for synthesis of conductive polymer, its alcohol solution, conductive polymer synthesized therewith and solid electrolytic capacitor produced by using the conductive polymer as solid electrolyte
JP2008063585A (en) * 2007-11-06 2008-03-21 Tayca Corp Oxidizing agent for producing electrically-conductive polymer and method for producing the same
WO2009001707A1 (en) * 2007-06-26 2008-12-31 Tayca Corporation Substance capable of acting as oxidizing agent and dopant for synthesis of electrically conductive polymer, alcohol solution thereof, electrically conductive polymer, and solid electrolyte capacitor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0494108A (en) * 1990-08-09 1992-03-26 Kao Corp Manufacture of solid electrolytic capacitor
JP2002138135A (en) * 2000-11-01 2002-05-14 Tayca Corp Oxidizer for producing electroconductive polymer and electroconductive polymer
JP2003160647A (en) * 2001-11-27 2003-06-03 Tayca Corp Conductive polymer and solid electrolytic capacitor using the same
JP2006096689A (en) * 2004-09-29 2006-04-13 Japan Carlit Co Ltd:The Manufacturing method of sulfonic acid derivative ferric salt and conductive polymer manufactured using ferric salt, and solid electrolytic capacitor
JP2007023090A (en) * 2005-07-13 2007-02-01 Tayca Corp Oxidizing agent and dopant for synthesis of conductive polymer, its alcohol solution, conductive polymer synthesized therewith and solid electrolytic capacitor produced by using the conductive polymer as solid electrolyte
WO2009001707A1 (en) * 2007-06-26 2008-12-31 Tayca Corporation Substance capable of acting as oxidizing agent and dopant for synthesis of electrically conductive polymer, alcohol solution thereof, electrically conductive polymer, and solid electrolyte capacitor
JP2008063585A (en) * 2007-11-06 2008-03-21 Tayca Corp Oxidizing agent for producing electrically-conductive polymer and method for producing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011222604A (en) * 2010-04-06 2011-11-04 Tayca Corp Oxidant/dopant solution for producing conductive polymer, conductive polymer and solid electrolytic capacitor using the same as solid electrolyte, and method for producing the same
JP2012025919A (en) * 2010-07-28 2012-02-09 Japan Carlit Co Ltd:The Oxidizing agent solution for producing conductive polymer and method for producing solid electrolytic capacitor using the same
JP2014204049A (en) * 2013-04-09 2014-10-27 カーリットホールディングス株式会社 Oxidant solution for production of conductive polymer, and method for production of solid electrolytic capacitor by use thereof

Also Published As

Publication number Publication date
JP5327842B2 (en) 2013-10-30

Similar Documents

Publication Publication Date Title
EP2622616B1 (en) A method for improving electrical parameters in capacitors comprising pedot/pss as a solid electrolyte through a polyalkylene glycol
JP5807997B2 (en) Manufacturing method of solid electrolytic capacitor
JP6376977B2 (en) Addition of polymer to thiophene monomer in in situ polymerization
JP4975237B2 (en) Method for producing conductive composition and solid electrolytic capacitor using the same
JP5745881B2 (en) Solid electrolytic capacitor
JP2010182426A (en) Conductive polymer composition and manufacturing method thereof, and solid electrolytic capacitor using the conductive polymer composition
WO2004075220A1 (en) Solid electrolytic capacitor and method for manufacturing same
JP5327842B2 (en) Oxidizing agent for producing conductive polymer, solid electrolytic capacitor using the same, and method for producing the same
JP6154461B2 (en) Oxidant solution for producing conductive polymer, solid electrolytic capacitor using the same, and method for producing solid electrolytic capacitor
JP2011228636A (en) Solid-state capacitor and manufacturing method of the same
JP5557638B2 (en) Oxidant solution for producing conductive polymer and method for producing solid electrolytic capacitor using the same
JP4019968B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP3551108B2 (en) Conductive composition precursor, conductive composition, and method for producing solid electrolytic capacitor
WO2021172199A1 (en) Electrolytic capacitor and method for producing same
JP2014192423A (en) Oxidant solution for conductive polymer production, and method for producing solid electrolytic capacitor by use thereof
JP2008288342A (en) Method of forming electrolyte for electrolytic capacitor
JP2014225538A (en) Oxidant solution for manufacturing conductive polymer, and method for manufacturing solid electrolytic capacitor by use thereof
JP2013179292A (en) Oxidant solution for manufacturing electroconductive polymer and method of manufacturing solid electrolytic capacitor using the same
JP6125301B2 (en) Oxidant solution for producing conductive polymer and method for producing solid electrolytic capacitor using the same
JP2014187222A (en) Method for manufacturing solid electrolytic capacitor
JP6100576B2 (en) Oxidant solution for producing conductive polymer, solid electrolytic capacitor using the same, and method for producing solid electrolytic capacitor
JP5481639B2 (en) Oxidizing agent for producing conductive polymer, solid electrolytic capacitor using the same, and method for producing the same
JP2012077218A (en) Polymerizable monomer composition, method for producing solid electrolytic capacitor
JP4063116B2 (en) Manufacturing method of solid electrolytic capacitor
JP2017027992A (en) Solid electrolytic capacitor and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110722

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130718

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130718

R150 Certificate of patent or registration of utility model

Ref document number: 5327842

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees