JP5557638B2 - Oxidant solution for producing conductive polymer and method for producing solid electrolytic capacitor using the same - Google Patents

Oxidant solution for producing conductive polymer and method for producing solid electrolytic capacitor using the same Download PDF

Info

Publication number
JP5557638B2
JP5557638B2 JP2010168725A JP2010168725A JP5557638B2 JP 5557638 B2 JP5557638 B2 JP 5557638B2 JP 2010168725 A JP2010168725 A JP 2010168725A JP 2010168725 A JP2010168725 A JP 2010168725A JP 5557638 B2 JP5557638 B2 JP 5557638B2
Authority
JP
Japan
Prior art keywords
conductive polymer
producing
oxidant solution
solution
sulfonic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010168725A
Other languages
Japanese (ja)
Other versions
JP2012028709A (en
Inventor
公男 高瀬
正明 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Carlit Holdings Co Ltd
Original Assignee
Carlit Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carlit Holdings Co Ltd filed Critical Carlit Holdings Co Ltd
Priority to JP2010168725A priority Critical patent/JP5557638B2/en
Publication of JP2012028709A publication Critical patent/JP2012028709A/en
Application granted granted Critical
Publication of JP5557638B2 publication Critical patent/JP5557638B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Description

本発明は、導電性高分子モノマーを化学酸化重合させる導電性高分子製造用酸化剤溶液と、該酸化剤溶液を用いて化学酸化重合させてなる導電性高分子を固体電解質として用いた固体電解コンデンサの製造方法に関する。   The present invention relates to an oxidant solution for producing a conductive polymer that chemically oxidatively polymerizes a conductive polymer monomer, and a solid electrolyte using a conductive polymer obtained by chemical oxidative polymerization using the oxidant solution as a solid electrolyte. The present invention relates to a method for manufacturing a capacitor.

近年、π共役系導電性高分子は、多岐分野にわたって研究されており、有機素材の軽量性と、高い導電性を生かして、様々な電子デバイス素子が実用化され、例えば、アルミニウム固体電解コンデンサやタンタル固体電解コンデンサ用の固体電解質として使用されている。   In recent years, π-conjugated conductive polymers have been studied in various fields, and various electronic device elements have been put to practical use by taking advantage of the lightness and high conductivity of organic materials. For example, aluminum solid electrolytic capacitors and It is used as a solid electrolyte for tantalum solid electrolytic capacitors.

上記導電性高分子は、導電性高分子モノマー、例えば、ピロール、チオフェン、アニリン及びそれらの誘導体を、化学酸化重合させて製造することができる。特許文献1に開示されているように、導電性高分子モノマーとしてチオフェン誘導体である3,4−アルキレンジオキシチオフェンと化学酸化重合用酸化剤として導電性高分子のドーパントとなる有機スルホン酸と、酸化作用を有する遷移金属カチオンとからなる塩が提案されているが、これらの中でもパラトルエンスルホン酸第二鉄が最も一般的に用いられている。   The conductive polymer can be produced by chemical oxidative polymerization of conductive polymer monomers such as pyrrole, thiophene, aniline, and derivatives thereof. As disclosed in Patent Document 1, 3,4-alkylenedioxythiophene, which is a thiophene derivative as a conductive polymer monomer, and an organic sulfonic acid that is a conductive polymer dopant as an oxidizing agent for chemical oxidative polymerization, Salts composed of transition metal cations having an oxidizing action have been proposed, and among these, ferric paratoluenesulfonate is most commonly used.

しかしながら、パラトルエンスルホン酸第二鉄は、導電性高分子モノマーの酸化剤として適用した場合、ドーパントとして機能するアニオンの量が十分ではないため、それを用いて作製した固体電解コンデンサは、高温度下にさらされるとコンデンサ容量の低下やコンデンサ抵抗損失の増大を発生しやすいという欠点があった。   However, when ferric toluene sulfonate is applied as an oxidizing agent for conductive polymer monomers, the amount of anion that functions as a dopant is not sufficient. When exposed to the lower side, there is a drawback in that it tends to cause a decrease in capacitor capacity and an increase in capacitor resistance loss.

特許文献2には、有機スルホン酸遷移金属塩溶液に、溶媒量に対して10質量%以上の有機スルホン酸を添加することで、ドーパントに寄与するアニオン量を増加させる方法が開示されている。しかし、この方法では、酸を添加することになるため、重合速度が増加してしまい、得られる固体電解コンデンサの電気特性に劣る欠点があった。   Patent Document 2 discloses a method of increasing the amount of anions contributing to a dopant by adding 10% by mass or more of an organic sulfonic acid to an organic sulfonic acid transition metal salt solution with respect to the amount of solvent. However, in this method, since an acid is added, the polymerization rate increases, and there is a disadvantage that the electric characteristics of the obtained solid electrolytic capacitor are inferior.

特開平1−313521号公報Japanese Patent Laid-Open No. 1-313521 特開2004−107552号公報JP 2004-107552 A

本発明の目的は、適切な重合速度有し、かつ、ドーパントに寄与するアニオンの量を増加させた導電性高分子製造用酸化剤とそれを用いて作製した固体電解コンデンサの製造方法を提供することである。   An object of the present invention is to provide an oxidizing agent for producing a conductive polymer having an appropriate polymerization rate and an increased amount of anion contributing to a dopant, and a method for producing a solid electrolytic capacitor produced using the same. That is.

本発明者らは、鋭意検討を行った結果、有機スルホン酸第二鉄を溶質としたアルコール溶液中に、スルホン酸エステル化合物を添加した導電性高分子製造用酸化剤溶液及び該導電性高分子製造用酸化剤溶液を用いて作製した固体電解コンデンサの製造方法を用いることで上記課題を解決できることを見出し、本発明を完成するに至った。   As a result of intensive studies, the present inventors have found that an oxidant solution for producing a conductive polymer in which a sulfonic acid ester compound is added to an alcohol solution containing ferric organic sulfonate as a solute, and the conductive polymer It has been found that the above-mentioned problems can be solved by using a method for producing a solid electrolytic capacitor produced using an oxidizing solution for production, and the present invention has been completed.

すなわち、本発明は以下に示すものである。   That is, the present invention is as follows.

第一の発明は、アルコール溶媒中に、有機スルホン酸第二鉄を溶解させた導電性高分子製造用酸化剤溶液であって、導電性高分子製造用酸化剤溶液中にスルホン酸エステル化合物を含有させることを特徴とする導電性高分子製造用酸化剤溶液である。   A first invention is an oxidant solution for producing a conductive polymer in which ferric organic sulfonate is dissolved in an alcohol solvent, and the sulfonate compound is added to the oxidant solution for producing a conductive polymer. An oxidizing agent solution for producing a conductive polymer, characterized in that it is contained.

第二の発明は、導電性高分子製造用酸化剤溶液における有機スルホン酸第二鉄の含有量が、30〜70質量%であることを特徴とする第一の発明に記載の導電性高分子製造用酸化剤溶液である。   The second invention is characterized in that the content of ferric organic sulfonate in the oxidant solution for producing a conductive polymer is 30 to 70% by mass, according to the first invention. This is an oxidant solution for production.

第三の発明は、導電性高分子製造用酸化剤溶液中の含水分量が1〜20質量%であることを特徴とする第一又は第二の発明に記載の導電性高分子製造用酸化剤溶液である。   3rd invention is 1-20 mass% in moisture content in the oxidizing agent solution for conductive polymer manufacture, The oxidizing agent for conductive polymer manufacture as described in 1st or 2nd invention characterized by the above-mentioned It is a solution.

第四の発明は、有機スルホン酸第二鉄がパラトルエンスルホン酸第二鉄であることを特徴とする第一から第三の発明のいずれかに記載の導電性高分子製造用酸化剤溶液である。   A fourth invention is an oxidizing agent solution for producing a conductive polymer according to any one of the first to third inventions, wherein the ferric organic sulfonate is ferric paratoluenesulfonate. is there.

第五の発明は、スルホン酸エステル化合物が、下記一般式(1)で表されるスルホン酸エステル化合物であることを特徴とする請求項1から4のいずれかに記載の導電性高分子製造用酸化剤溶液である。   5th invention is a sulfonic acid ester compound represented by following General formula (1), The sulfonic acid ester compound is for conductive polymer manufacture in any one of Claim 1 to 4 characterized by the above-mentioned. It is an oxidant solution.

Figure 0005557638
(式(1)中、Rは炭素数1〜8のアルキル基を示し、Rは炭素数1〜4のアルキル基を示す。)
Figure 0005557638
(In formula (1), R 1 represents an alkyl group having 1 to 8 carbon atoms, and R 2 represents an alkyl group having 1 to 4 carbon atoms.)

第六の発明は、導電性高分子製造用酸化剤溶液におけるスルホン酸エステル化合物の含有量が、有機スルホン酸第二鉄1モルに対し、0.01〜20モル%であることを特徴とする第一から第五の発明のいずれかに記載の導電性高分子製造用酸化剤溶液である。   6th invention is characterized by the content of the sulfonic acid ester compound in the oxidizing agent solution for electroconductive polymer manufacture being 0.01-20 mol% with respect to 1 mol of ferric organic sulfonates. It is an oxidizing agent solution for electroconductive polymer manufacture in any one of the 1st to 5th invention.

第七の発明は、アルコール溶媒が、ブタノールとメタノールの混合溶媒であることを特徴とする第一から第六の発明のいずれかに記載の導電性高分子製造用酸化剤溶液である。   A seventh invention is the oxidant solution for producing a conductive polymer according to any one of the first to sixth inventions, wherein the alcohol solvent is a mixed solvent of butanol and methanol.

第八の発明は、誘電体酸化皮膜が形成された弁作用金属上に導電性高分子からなる固体電解質を具備した固体電解コンデンサの製造方法において、
第一から第七の発明のいずれかに記載の導電性高分子製造用酸化剤溶液と、導電性高分子モノマーとを液層にて接触させることにより化学酸化重合し、誘電体酸化皮膜が形成された弁作用金属に導電性高分子を形成する工程を有することを特徴とする固体電解コンデンサの製造方法である。
An eighth invention is a method for producing a solid electrolytic capacitor comprising a solid electrolyte made of a conductive polymer on a valve metal having a dielectric oxide film formed thereon,
Conductive oxidizer solution according to any one of the first to seventh inventions and chemical oxidative polymerization by contacting the conductive polymer monomer in a liquid layer to form a dielectric oxide film It is a manufacturing method of a solid electrolytic capacitor characterized by having a process of forming a conductive polymer in the valve action metal made.

本発明によれば、適切な重合速度を有し、かつ、ドーパントに寄与するアニオンの量を増加させた導電性高分子製造用酸化剤溶液とそれを用いて作製した、優れたESR特性と耐熱性を示す固体電解コンデンサの製造方法を提供することができる。   According to the present invention, an oxidizing agent solution for producing a conductive polymer having an appropriate polymerization rate and an increased amount of anion contributing to a dopant, and excellent ESR characteristics and heat resistance produced using the same. The manufacturing method of the solid electrolytic capacitor which shows the property can be provided.

本発明の導電性高分子製造用酸化剤溶液は、アルコール溶媒中に、有機スルホン酸第二鉄と、スルホン酸エステル化合物とを含有させたものである。   The oxidant solution for producing a conductive polymer of the present invention is obtained by containing ferric organic sulfonate and a sulfonate compound in an alcohol solvent.

スルホン酸エステル化合物を添加すると化学酸化重合時の加熱の際に酸化剤溶液中の残留水分、及び大気中の水分により該スルホン酸エステル化合物の加水分解が生じ、スルホン酸とアルコールが生成する。従って、導電性高分子製造用酸化剤溶液中のドーパントとして機能するスルホン酸量が増大し、導電性高分子に取り込まれるドーパント量が増大する。該導電性高分子を固体電解質として用いることで、優れた等価直列抵抗(ESR)と高い耐熱性を有する固体電解コンデンサを製造することができる。   When a sulfonic acid ester compound is added, hydrolysis of the sulfonic acid ester compound occurs due to residual moisture in the oxidant solution and moisture in the atmosphere during heating during chemical oxidative polymerization, and sulfonic acid and alcohol are generated. Therefore, the amount of sulfonic acid that functions as a dopant in the oxidant solution for producing the conductive polymer increases, and the amount of the dopant incorporated into the conductive polymer increases. By using the conductive polymer as a solid electrolyte, a solid electrolytic capacitor having excellent equivalent series resistance (ESR) and high heat resistance can be manufactured.

前記方法を用いることで酸化剤溶液中のドーパント量が増大するため、酸化剤溶液中の含水分量が高くなると、加水分解の進行はより円滑となり、スルホン酸エステル化合物を添加する効果はより高くなる。
酸化剤溶液中の含水分量は1〜20質量%が好ましい。1質量%未満の場合、スルホン酸エステル化合物の添加効果は小さくなり、20質量%超の場合、酸化剤溶液に溶解している有機スルホン酸第二鉄の析出が生じてしまうため、溶液の安定性が低くなる問題点がある。
Since the amount of dopant in the oxidant solution is increased by using the above method, when the moisture content in the oxidant solution increases, the hydrolysis proceeds more smoothly, and the effect of adding the sulfonate compound increases. .
The moisture content in the oxidant solution is preferably 1 to 20% by mass. When the amount is less than 1% by mass, the effect of adding the sulfonic acid ester compound is reduced. When the amount exceeds 20% by mass, ferric organic sulfonate dissolved in the oxidant solution is precipitated. There is a problem that the performance becomes low.

有機スルホン酸第二鉄塩の構成成分である有機スルホン酸化合物としては、例えば、メタンスルホン酸、エタンスルホン酸、プロパンスルホン酸、ブタンスルホン酸、ベンゼンスルホン酸、トルエンスルホン酸、エチルベンゼンスルホン酸、プロピルベンゼンスルホン酸、キシレンスルホン酸、スチレンスルホン酸、イソプロピルベンゼンスルホン酸、ブチルベンゼンスルホン酸、ドデシルベンゼンスルホン酸、ペンタデシルベンゼンスルホン酸、ナフタレンスルホン酸、メチルナフタレンスルホン酸、エチルナフタレンスルホン酸、プロピルナフタレンスルホン酸、ブチルナフタレンスルホン酸、ジブチルナフタレンスルホン酸、ノニルナフタレンスルホン酸、ジノニルナフタレンスルホン酸等が挙げられ、これらの中でもパラトルエンスルホン酸が特に好ましく挙げられる。   Examples of the organic sulfonic acid compound that is a constituent of the organic sulfonic acid ferric salt include methanesulfonic acid, ethanesulfonic acid, propanesulfonic acid, butanesulfonic acid, benzenesulfonic acid, toluenesulfonic acid, ethylbenzenesulfonic acid, and propyl. Benzenesulfonic acid, xylenesulfonic acid, styrenesulfonic acid, isopropylbenzenesulfonic acid, butylbenzenesulfonic acid, dodecylbenzenesulfonic acid, pentadecylbenzenesulfonic acid, naphthalenesulfonic acid, methylnaphthalenesulfonic acid, ethylnaphthalenesulfonic acid, propylnaphthalenesulfone Acid, butyl naphthalene sulfonic acid, dibutyl naphthalene sulfonic acid, nonyl naphthalene sulfonic acid, dinonyl naphthalene sulfonic acid, etc. Acid, among others preferred.

導電性高分子製造用酸化剤溶液における有機スルホン酸第二鉄の含有量は、特に限定されるものではないが、30〜70質量%が好ましく挙げられる。   Although content of ferric organic sulfonate in the oxidizing agent solution for conductive polymer manufacture is not specifically limited, 30-70 mass% is mentioned preferably.

スルホン酸エステル化合物は、一般式(RSOOR)で表すことができ、Rは、炭素数1〜18の脂肪族炭化水素基又は炭素数1〜18の芳香族炭化水素基を含有してもよく、発明に用いるスルホン酸エステル化合物としては、炭素数1〜18の芳香族炭化水素基を含有するものが好ましく挙げられる。また、Rは、炭素数1〜18の脂肪族炭化水素基である。
上記スルホン酸エステルの中でも特に下記一般式(1)で表されるスルホン酸エステル化合物が好ましく挙げられる。
The sulfonic acid ester compound can be represented by a general formula (R a SO 2 OR b ), and R a represents an aliphatic hydrocarbon group having 1 to 18 carbon atoms or an aromatic hydrocarbon group having 1 to 18 carbon atoms. The sulfonic acid ester compound used in the invention is preferably a compound containing an aromatic hydrocarbon group having 1 to 18 carbon atoms. R b is an aliphatic hydrocarbon group having 1 to 18 carbon atoms.
Among the sulfonic acid esters, a sulfonic acid ester compound represented by the following general formula (1) is particularly preferable.

Figure 0005557638
Figure 0005557638

上記一般式(1)中、Rは炭素数1〜8のアルキル基を示し、Rは炭素数1〜4のアルキル基を示す。 In the general formula (1), R 1 represents an alkyl group having 1 to 8 carbon atoms, and R 2 represents an alkyl group having 1 to 4 carbon atoms.

スルホン酸エステル化合物は、例えば、硫酸メチル、硫酸エチル、硫酸プロピル、硫酸イソプロピル、硫酸ブチル、ベンゼンスルホン酸メチル、ベンゼンスルホン酸エチル、ベンゼンスルホン酸ブチル、ベンゼンスルホン酸ネオペンチル、トルエンスルホン酸メチル、トルエンスルホン酸エチル、トルエンスルホン酸プロピル、トルエンスルホン酸ブチル、トルエンスルホン酸メトキシエチル、トルエンスルホン酸ヘキシル、トルエンスルホン酸ヘプチル、トルエンスルホン酸オクチル、トルエンスルホン酸ドデシル、トルエンスルホン酸フェニル、トルエンスルホン酸フェネチル、トルエンスルホン酸オクタデシル、トルエンスルホン酸ナフチル等が挙げられ、トルエンスルホン酸メチル、トルエンスルホン酸エチル、トルエンスルホン酸プロピル、トルエンスルホン酸ブチルがより好ましく挙げられる。   Examples of the sulfonic acid ester compounds include methyl sulfate, ethyl sulfate, propyl sulfate, isopropyl sulfate, butyl sulfate, methyl benzenesulfonate, ethyl benzenesulfonate, butyl benzenesulfonate, neopentyl benzenesulfonate, methyl toluenesulfonate, toluenesulfone. Ethyl sulfonate, propyl toluenesulfonate, butyl toluenesulfonate, methoxyethyl toluenesulfonate, hexyl toluenesulfonate, heptyl toluenesulfonate, octyl toluenesulfonate, dodecyl toluenesulfonate, phenyl toluenesulfonate, phenethyl toluenesulfonate, toluene Examples include octadecyl sulfonate, naphthyl toluenesulfonate, methyl toluenesulfonate, ethyl toluenesulfonate, toluenesulfonic acid. Propyl, butyl toluenesulfonic acid more preferably.

導電性高分子製造用酸化剤にスルホン酸エステル化合物を含有させることで、重合速度を上げることなく、ドーパントに寄与するアニオンの量を増加させることができる。   By containing the sulfonic acid ester compound in the oxidizing agent for producing the conductive polymer, the amount of anions contributing to the dopant can be increased without increasing the polymerization rate.

導電性高分子製造用酸化剤溶液におけるスルホン酸エステル化合物の含有量は、有機スルホン酸第二鉄1モルに対し、0.01〜20モル%が好ましく挙げられ、0.1〜10モル%が特に好ましく挙げられる。   The content of the sulfonic acid ester compound in the oxidant solution for producing the conductive polymer is preferably 0.01 to 20 mol% with respect to 1 mol of ferric organic sulfonate, and 0.1 to 10 mol% is preferable. Particularly preferred is mentioned.

本発明に用いられる導電性高分子製造用酸化剤溶液に用いるアルコール溶媒としては、例えば、メタノール、エタノール、プロパノール、ブタノール等が挙げられ、これらは単独、若しくは混合して用いることができる。
これらの中でも、ブタノール、メタノールがより好ましく挙げられ、ブタノールとメタノールの混合溶媒が特に好ましく挙げられる。
Examples of the alcohol solvent used in the oxidant solution for producing the conductive polymer used in the present invention include methanol, ethanol, propanol, butanol and the like, and these can be used alone or in combination.
Among these, butanol and methanol are more preferable, and a mixed solvent of butanol and methanol is particularly preferable.

次に、本発明の導電性高分子製造用酸化剤溶液の製造方法について例を挙げて説明する。   Next, an example is given and demonstrated about the manufacturing method of the oxidizing agent solution for conductive polymer manufacture of this invention.

有機スルホン酸化合物の水溶液を調製して、該水溶液に酸化第二鉄を加えて加熱還流を行う。これをフィルター濾過操作により、有機スルホン酸化合物をアニオンとした第二鉄塩の水溶液を得る。該水溶液を溶媒除去して、有機スルホン酸第二鉄を得る。
アルコール溶媒中に、得られた有機スルホン酸第二鉄とスルホン酸エステル化合物と水を添加して、本願発明の導電性高分子製造用酸化剤溶液を製造することができる。
An aqueous solution of an organic sulfonic acid compound is prepared, and ferric oxide is added to the aqueous solution and heated to reflux. By filtering this, an aqueous solution of a ferric salt having an organic sulfonic acid compound as an anion is obtained. The aqueous solution is removed with a solvent to obtain ferric organic sulfonate.
The obtained ferric organic sulfonate, sulfonic acid ester compound and water can be added to an alcohol solvent to produce the oxidant solution for producing a conductive polymer of the present invention.

本発明に用いられる導電性高分子モノマーとしては、ピロール、チオフェン又はそれらの誘導体からなる群から選ばれる少なくとも一種が挙げられる。   Examples of the conductive polymer monomer used in the present invention include at least one selected from the group consisting of pyrrole, thiophene, and derivatives thereof.

導電性高分子モノマーの具体例としては、例えば、ピロール、チオフェン、1−アルキル−3−アルキルピロール、3−アルキルチオフェン、1−アルキル−3,4−アルキレンジオキシピロール、3,4−アルキレンジオキシチオフェン等が挙げられる。これらの中でも、3,4−アルキレンジオキシチオフェン、ピロールが好ましく挙げられる。前記導電性高分子モノマーは一種又は二種以上を同時に含有することができる。   Specific examples of the conductive polymer monomer include, for example, pyrrole, thiophene, 1-alkyl-3-alkylpyrrole, 3-alkylthiophene, 1-alkyl-3,4-alkylenedioxypyrrole, 3,4-alkylenediylene. And oxythiophene. Among these, 3,4-alkylenedioxythiophene and pyrrole are preferable. The said conductive polymer monomer can contain 1 type (s) or 2 or more types simultaneously.

本発明に用いる導電性高分子は、上記の導電性高分子製造用酸化剤溶液と導電性高分子モノマーを接触、混合させることで製造することができる。   The conductive polymer used in the present invention can be produced by contacting and mixing the above oxidizing polymer solution for producing a conductive polymer and a conductive polymer monomer.

本発明において、重合速度とは、以下の方法で測定して得られた時間として評価した。
導電性高分子製造用酸化剤溶液と3,4−エチレンジオキシチオフェン(EDOT)をそれぞれスクリュー管に入れ、20℃サーモプレート上に10分以上保持した。該酸化剤溶液とEDOTを5:1(質量比)で混合し、10秒撹拌した。その後、1mm以上のポリマーの塊が析出するまでの時間を計測し、これを重合速度とした。
In the present invention, the polymerization rate was evaluated as the time obtained by measurement by the following method.
An oxidant solution for producing a conductive polymer and 3,4-ethylenedioxythiophene (EDOT) were each put in a screw tube and held on a 20 ° C. thermoplate for 10 minutes or more. The oxidant solution and EDOT were mixed at 5: 1 (mass ratio) and stirred for 10 seconds. Thereafter, the time until a lump of polymer of 1 mm or more was deposited was measured and used as the polymerization rate.

本発明における適切な重合速度とは、導電性高分子モノマーとしてEDOTを用いた場合、70〜160秒である。より適切な重合速度は70〜130秒である。
70秒未満の場合、重合速度が速すぎ、多孔質の弁作用金属酸化皮膜の奥まで入りこまないで重合してしまうため、得られる固体電解コンデンサのESRが劣る結果となる。
160秒超の場合、重合速度が遅すぎ、重合しにくくなる欠点がある。
導電性高分子製造用酸化剤溶液に含有する水分量を1〜20質量%に調節することで、上記重合速度に容易に調整することができ、優れた電気特性の固体電解コンデンサを得ることができる。
An appropriate polymerization rate in the present invention is 70 to 160 seconds when EDOT is used as the conductive polymer monomer. A more suitable polymerization rate is 70 to 130 seconds.
When the time is less than 70 seconds, the polymerization rate is too high, and polymerization is performed without penetrating into the porous valve metal oxide film, resulting in poor ESR of the obtained solid electrolytic capacitor.
If it exceeds 160 seconds, the polymerization rate is too slow, which makes it difficult to polymerize.
By adjusting the amount of water contained in the oxidant solution for producing the conductive polymer to 1 to 20% by mass, the polymerization rate can be easily adjusted, and a solid electrolytic capacitor having excellent electrical characteristics can be obtained. it can.

次に本発明の固体電解コンデンサの製造方法について以下に説明する。   Next, the manufacturing method of the solid electrolytic capacitor of this invention is demonstrated below.

誘電体酸化皮膜が形成された弁作用金属上に導電性高分子からなる固体電解質を具備した固体電解コンデンサの製造方法において、本願発明の導電性高分子製造用酸化剤溶液と、導電性高分子モノマーとを液層にて接触させることにより化学酸化重合し、誘電体酸化皮膜が形成された弁作用金属に導電性高分子を形成する工程を有することを特徴とする固体電解コンデンサの製造方法である。   In the method of manufacturing a solid electrolytic capacitor comprising a solid electrolyte made of a conductive polymer on a valve action metal on which a dielectric oxide film is formed, the oxidizing agent solution for manufacturing a conductive polymer of the present invention, and the conductive polymer A method for producing a solid electrolytic capacitor comprising a step of chemical oxidation polymerization by bringing a monomer into contact with a liquid layer and forming a conductive polymer on a valve metal having a dielectric oxide film formed thereon. is there.

より詳細には、誘電体酸化皮膜を形成させたアルミニウム、タンタル及びニオブ等の弁作用金属表面に、本発明に用いられる導電性高分子製造用酸化剤溶液を塗布し、導電性高分子モノマーの溶液内に浸漬するか、導電性高分子モノマーの溶液を塗布し、導電性高分子製造用酸化剤溶液に浸漬するか、または該酸化剤溶液と該モノマーを混合して1液とした溶液に浸漬して、導電性高分子皮膜を形成させる。この導電性高分子皮膜は、固体電解コンデンサの固体電解質となる。   More specifically, the oxidant solution for producing the conductive polymer used in the present invention is applied to the surface of the valve action metal such as aluminum, tantalum and niobium on which the dielectric oxide film is formed, and the conductive polymer monomer. Immerse it in a solution, apply a conductive polymer monomer solution, immerse it in an oxidant solution for producing a conductive polymer, or mix the oxidant solution and the monomer into a single solution. Immerse to form a conductive polymer film. This conductive polymer film becomes a solid electrolyte of the solid electrolytic capacitor.

次いで、導電性高分子皮膜上に、カーボンペースト、銀ペーストを塗布、乾燥させて、陰極層を形成し、コンデンサ素子を得、該コンデンサ素子の弁作用金属を陽極端子に、また、陰極層を陰極端子に接続後、樹脂により外装を施して本発明の固体電解コンデンサを得ることができる。   Next, a carbon paste and a silver paste are applied and dried on the conductive polymer film, and a cathode layer is formed to obtain a capacitor element. The valve metal of the capacitor element is used as an anode terminal, and the cathode layer is formed. After connecting to the cathode terminal, the solid electrolytic capacitor of the present invention can be obtained by coating with resin.

以下、本発明を実施例に基づいてより詳細に説明する。なお、本発明は本実施例によりなんら限定されない。実施例中の「%」は「質量%」を表す。   Hereinafter, the present invention will be described in more detail based on examples. In addition, this invention is not limited at all by this Example. “%” In the examples represents “% by mass”.

(導電性高分子製造用酸化剤溶液の評価)
(実施例1)
純水50mlにパラトルエンスルホン酸1水和物15.5g(8.4×10−2mol)を溶解した溶液に酸化第二鉄4.45g(2.8×10−2mol)を加えて、12時間加熱還流を行った。
(Evaluation of oxidant solution for conductive polymer production)
Example 1
To a solution obtained by dissolving 15.5 g (8.4 × 10 −2 mol) of paratoluenesulfonic acid monohydrate in 50 ml of pure water, 4.45 g (2.8 × 10 −2 mol) of ferric oxide was added. For 12 hours.

反応溶液をフィルター濾過操作することでパラトルエンスルホン酸第二鉄の水溶液を得た。その後、溶媒を除去し、パラトルエンスルホン酸第二鉄を得た。   The reaction solution was filtered and an aqueous solution of ferric paratoluenesulfonate was obtained. Thereafter, the solvent was removed to obtain ferric paratoluenesulfonate.

次いで、1−ブタノールとメタノールの混合溶媒(質量比1:1)100g中に、得られたパラトルエンスルホン酸第二鉄と、パラトルエンスルホン酸メチル0.051g(2.8×10−4mol)加えた後、含水分量が6%となるように水を添加し、濃度60%パラトルエンスルホン酸第二鉄の1−ブタノールとメタノールの混合溶液である導電性高分子製造用酸化剤溶液(酸化剤溶液(1))を得た。(有機スルホン酸第二鉄1モルに対するスルホン酸エステル化合物の含有量は1モル%である。)
なお、含水分量はカールフィッシャー水分計(KF−100、三菱ケミカル社製)を用いて測定した。
Next, in 100 g of a mixed solvent of 1-butanol and methanol (mass ratio 1: 1), the obtained ferric paratoluenesulfonate and 0.051 g (2.8 × 10 −4 mol) of methyl paratoluenesulfonate were obtained. ) After addition, water was added so that the water content was 6%, and an oxidizing agent solution for producing a conductive polymer, which was a mixed solution of 1-butanol and methanol of 60% concentration of ferric paratoluenesulfonate ( An oxidant solution (1)) was obtained. (The content of the sulfonic acid ester compound with respect to 1 mol of ferric organic sulfonate is 1 mol%.)
The moisture content was measured using a Karl Fischer moisture meter (KF-100, manufactured by Mitsubishi Chemical Corporation).

(実施例2)
実施例1のパラトルエンスルホン酸メチルの含有量を1モル%から5モル%に代えた以外は実施例1と同様にして、導電性高分子製造用酸化剤溶液(酸化剤溶液(2))を得た。
(Example 2)
An oxidizing agent solution (oxidizing agent solution (2)) for producing a conductive polymer in the same manner as in Example 1 except that the content of methyl paratoluenesulfonate in Example 1 was changed from 1 mol% to 5 mol%. Got.

(実施例3)
実施例1のパラトルエンスルホン酸メチルの含有量を1モル%から10モル%に代えた以外は実施例1と同様にして、導電性高分子製造用酸化剤溶液(酸化剤溶液(3))を得た。
(Example 3)
An oxidant solution (oxidant solution (3)) for producing a conductive polymer in the same manner as in Example 1, except that the content of methyl paratoluenesulfonate in Example 1 was changed from 1 mol% to 10 mol%. Got.

(実施例4)
実施例1のパラトルエンスルホン酸メチルの含有量を1モル%から20モル%に代えた以外は実施例1と同様にして、導電性高分子製造用酸化剤溶液(酸化剤溶液(4))を得た。
(Example 4)
An oxidizing agent solution (oxidizing agent solution (4)) for producing a conductive polymer in the same manner as in Example 1 except that the content of methyl paratoluenesulfonate in Example 1 was changed from 1 mol% to 20 mol%. Got.

参考例1
実施例1のパラトルエンスルホン酸メチルの含有量を1モル%から30モル%に代えた以外は実施例1と同様にして、導電性高分子製造用酸化剤溶液(酸化剤溶液(5))を得た。
( Reference Example 1 )
An oxidant solution for producing a conductive polymer (oxidant solution (5)) in the same manner as in Example 1 except that the content of methyl paratoluenesulfonate in Example 1 was changed from 1 mol% to 30 mol%. Got.

参考例2
実施例1のパラトルエンスルホン酸メチルの含有量を1モル%から50モル%に代えた以外は実施例1と同様にして、導電性高分子製造用酸化剤溶液(酸化剤溶液(6))を得た。
( Reference Example 2 )
An oxidant solution for producing a conductive polymer (oxidant solution (6)) in the same manner as in Example 1 except that the content of methyl paratoluenesulfonate in Example 1 was changed from 1 mol% to 50 mol%. Got.

(比較例1)
実施例1のパラトルエンスルホン酸メチルを含有させなかった以外は実施例1と同様にして、導電性高分子製造用酸化剤溶液(酸化剤溶液(7))を得た。
(Comparative Example 1)
An oxidizing agent solution (oxidizing agent solution (7)) for producing a conductive polymer was obtained in the same manner as in Example 1 except that the methyl paratoluenesulfonate of Example 1 was not contained.

(比較例2)
純水50mlにパラトルエンスルホン酸1水和物15.5g(8.4×10−2mol)を溶解した溶液に酸化第二鉄4.45g(2.8×10−2mol)を加えて、12時間加熱還流を行った。
(Comparative Example 2)
To a solution obtained by dissolving 15.5 g (8.4 × 10 −2 mol) of paratoluenesulfonic acid monohydrate in 50 ml of pure water, 4.45 g (2.8 × 10 −2 mol) of ferric oxide was added. For 12 hours.

反応溶液をフィルター濾過操作することでパラトルエンスルホン酸第二鉄の水溶液を得た。その後、溶媒を除去し、パラトルエンスルホン酸第二鉄を得た。   The reaction solution was filtered and an aqueous solution of ferric paratoluenesulfonate was obtained. Thereafter, the solvent was removed to obtain ferric paratoluenesulfonate.

次いで、1−ブタノールとメタノールの混合溶媒(質量比1:1)100g中に、得られたパラトルエンスルホン酸第二鉄と、パラトルエンスルホン酸を酸化剤溶媒に対し、10質量%となるように加えた後、含水分量が6%となるように水を加え、濃度60%パラトルエンスルホン酸第二鉄の1−ブタノールとメタノールの混合溶液である導電性高分子製造用酸化剤溶液(酸化剤溶液(8))を得た。   Next, in 100 g of a mixed solvent of 1-butanol and methanol (mass ratio 1: 1), the obtained paratoluenesulfonic acid ferric acid and paratoluenesulfonic acid are 10% by mass with respect to the oxidizing agent solvent. Then, water is added so that the water content becomes 6%, and an oxidizing agent solution for producing a conductive polymer (oxidation solution) is a mixed solution of 1-butanol and methanol of ferric paratoluenesulfonate 60% in concentration. An agent solution (8) was obtained.

上記工程で得られた酸化剤溶液(1)〜(8)を準備し、重合速度の評価を行った。なお、重合速度は、各酸化剤溶液と3,4−エチレンジオキシチオフェン(EDOT)をそれぞれスクリュー管に入れ、20℃サーモプレート上に10分以上保持した。該酸化剤溶液とEDOTを5:1(重量比)混合し、10秒保持撹拌した。その後、直径1mm以上のポリマーの塊が析出するまでの時間を計測し、これを重合速度とした。測定結果を表1に示す。   The oxidant solutions (1) to (8) obtained in the above steps were prepared, and the polymerization rate was evaluated. The polymerization rate was as follows: each oxidant solution and 3,4-ethylenedioxythiophene (EDOT) were each put in a screw tube and kept on a 20 ° C. thermoplate for 10 minutes or more. The oxidant solution and EDOT were mixed 5: 1 (weight ratio) and stirred for 10 seconds. Then, the time until a polymer lump having a diameter of 1 mm or more was deposited was measured and used as a polymerization rate. The measurement results are shown in Table 1.

Figure 0005557638
表中の略語
PTS:パラトルエンスルホン酸
Figure 0005557638
Abbreviations in the table PTS: p-toluenesulfonic acid

表1より、酸化剤溶液(1)〜(6)は、適切な重合速度を有していることがわかる。   From Table 1, it can be seen that the oxidizing agent solutions (1) to (6) have an appropriate polymerization rate.

(固体電解コンデンサの評価)
(実施例7)
陽極リードを備えたタンタル焼結体素子に、リン酸水溶液中、25Vの電圧を印加させて化成処理を施し、誘電体酸化皮膜を形成させた。該素子の硫酸水溶液中における静電容量は300μFであった。
(Evaluation of solid electrolytic capacitors)
(Example 7)
A tantalum sintered body element having an anode lead was subjected to chemical conversion treatment by applying a voltage of 25 V in an aqueous phosphoric acid solution to form a dielectric oxide film. The capacitance of the device in an aqueous sulfuric acid solution was 300 μF.

次に、実施例1に記載の酸化剤溶液(1)及び導電性高分子モノマーとしてEDOTをモル比で1:1になるように混合し、1液の化学酸化重合液として容器に準備した。   Next, the oxidizing agent solution (1) described in Example 1 and EDOT as a conductive polymer monomer were mixed at a molar ratio of 1: 1, and prepared as a one-component chemical oxidation polymerization solution in a container.

タンタル焼結体素子を、上記の化学酸化重合液に室温で5分間浸漬させて、素子を引上げて50℃で1時間熱処理し化学酸化重合を進行させて、素子表面に導電性高分子層を形成させた。   The tantalum sintered body element is immersed in the above chemical oxidation polymerization solution at room temperature for 5 minutes, the element is pulled up and heat-treated at 50 ° C. for 1 hour to advance chemical oxidation polymerization, and a conductive polymer layer is formed on the surface of the element. Formed.

次いで、上記素子の陰極層に、カーボンペースト及び銀ペーストを塗布して導電性塗膜を形成し、その一部から対極を取り出した後、エポキシ樹脂でモールドさせ、その後、8Vの電圧を印加させてエージングを行い、定格電圧6.3V、定格静電容量250μFの固体電解コンデンサを完成させた。   Next, a carbon paste and a silver paste are applied to the cathode layer of the device to form a conductive coating film, and a counter electrode is taken out from a part thereof, then molded with an epoxy resin, and then a voltage of 8 V is applied. Aging was then performed to complete a solid electrolytic capacitor having a rated voltage of 6.3 V and a rated capacitance of 250 μF.

(実施例8)
実施例7の酸化剤溶液(1)の代わりに、酸化剤溶液(2)を用いた以外は実施例7と同様の方法で固体電解コンデンサを完成させた。
(Example 8)
A solid electrolytic capacitor was completed in the same manner as in Example 7 except that the oxidant solution (2) was used instead of the oxidant solution (1) in Example 7.

(実施例9)
実施例7の酸化剤溶液(1)の代わりに、酸化剤溶液(3)を用いた以外は実施例7と同様の方法で固体電解コンデンサを完成させた。
Example 9
A solid electrolytic capacitor was completed in the same manner as in Example 7 except that the oxidant solution (3) was used instead of the oxidant solution (1) in Example 7.

(実施例10)
実施例7の酸化剤溶液(1)の代わりに、酸化剤溶液(4)を用いた以外は実施例7と同様の方法で固体電解コンデンサを完成させた。
(Example 10)
A solid electrolytic capacitor was completed in the same manner as in Example 7 except that the oxidant solution (4) was used instead of the oxidant solution (1) in Example 7.

参考例3
実施例7の酸化剤溶液(1)の代わりに、酸化剤溶液(5)を用いた以外は実施例7と同様の方法で固体電解コンデンサを完成させた。
( Reference Example 3 )
A solid electrolytic capacitor was completed in the same manner as in Example 7 except that the oxidant solution (5) was used instead of the oxidant solution (1) in Example 7.

参考例4
実施例7の酸化剤溶液(1)の代わりに、酸化剤溶液(6)を用いた以外は実施例7と同様の方法で固体電解コンデンサを完成させた。
( Reference Example 4 )
A solid electrolytic capacitor was completed in the same manner as in Example 7 except that the oxidant solution (6) was used instead of the oxidant solution (1) in Example 7.

(比較例3)
実施例7の酸化剤溶液(1)の代わりに、酸化剤溶液(7)を用いた以外は実施例7と同様の方法で固体電解コンデンサを完成させた。
(Comparative Example 3)
A solid electrolytic capacitor was completed in the same manner as in Example 7 except that the oxidant solution (7) was used instead of the oxidant solution (1) in Example 7.

(比較例4)
実施例7の酸化剤溶液(1)の代わりに、酸化剤溶液(8)を用いた以外は実施例7と同様の方法で固体電解コンデンサを完成させた。
(Comparative Example 4)
A solid electrolytic capacitor was completed in the same manner as in Example 7 except that the oxidant solution (8) was used instead of the oxidant solution (1) in Example 7.

実施例7〜10、参考例3、4及び比較例3、4より得られた固体電解コンデンサについて、120Hzでの静電容量(以下、Csと略記する。)、120Hzでの誘電損失(以下、tanδと略記する。)、100kHzでの等価直列抵抗(以下、ESRと略記する。)を測定した。また、高温負荷試験(温度260℃の雰囲気に3分間保持)を実施した。測定結果を表2に示す。 About the solid electrolytic capacitors obtained from Examples 7 to 10, Reference Examples 3 and 4 and Comparative Examples 3 and 4, electrostatic capacity at 120 Hz (hereinafter abbreviated as Cs), dielectric loss at 120 Hz (hereinafter, tan δ), and equivalent series resistance at 100 kHz (hereinafter abbreviated as ESR) was measured. Further, a high temperature load test (held in an atmosphere at a temperature of 260 ° C. for 3 minutes) was performed. The measurement results are shown in Table 2.

Figure 0005557638
Figure 0005557638

表2に示すように、実施例7〜10は、比較例3、4よりもESR特性と耐熱性に優れていることがわかる。
特に有機スルホン酸第二鉄1モルに対し、スルホン酸エステル化合物を5モル%含有させた酸化剤溶液を用いて製造した固体電解コンデンサにおいては、ESR特性に優れていることがわかった。
As shown in Table 2, it can be seen that Examples 7 to 10 are superior to Comparative Examples 3 and 4 in ESR characteristics and heat resistance.
In particular, it was found that a solid electrolytic capacitor manufactured using an oxidizing agent solution containing 5 mol% of a sulfonic acid ester compound with respect to 1 mol of ferric organic sulfonate has excellent ESR characteristics.

本発明の導電性高分子製造用酸化剤溶液を用いて製造した固体電解コンデンサは、優れた電気特性を有するため、高周波数のデジタル機器等に適用できる。   Since the solid electrolytic capacitor manufactured using the oxidant solution for manufacturing a conductive polymer of the present invention has excellent electrical characteristics, it can be applied to high-frequency digital devices and the like.

Claims (6)

アルコール溶媒中に、有機スルホン酸第二鉄を溶解させた導電性高分子製造用酸化剤溶液において、
導電性高分子製造用酸化剤溶液中に、スルホン酸エステル化合物を含有させ、
導電性高分子製造用酸化剤溶液におけるスルホン酸エステル化合物の含有量が、有機スルホン酸第二鉄1モルに対し、0.01〜20モル%であり、
導電性高分子製造用酸化剤溶液中の含水分量が1〜20質量%であることを特徴とする導電性高分子製造用酸化剤溶液。
In an oxidizing agent solution for producing a conductive polymer in which ferric organic sulfonate is dissolved in an alcohol solvent ,
In the oxidant solution for producing the conductive polymer, a sulfonic acid ester compound is contained,
The content of the sulfonic acid ester compound in the oxidant solution for producing the conductive polymer is 0.01 to 20 mol% with respect to 1 mol of the ferric organic sulfonate,
An oxidant solution for producing a conductive polymer, wherein the moisture content in the oxidant solution for producing a conductive polymer is 1 to 20% by mass.
導電性高分子製造用酸化剤溶液における有機スルホン酸第二鉄の含有量が、30〜70質量%であることを特徴とする請求項1に記載の導電性高分子製造用酸化剤溶液。   2. The oxidant solution for producing a conductive polymer according to claim 1, wherein the content of ferric organic sulfonate in the oxidant solution for producing the conductive polymer is 30 to 70% by mass. 有機スルホン酸第二鉄がパラトルエンスルホン酸第二鉄であることを特徴とする請求項1又は2に記載の導電性高分子製造用酸化剤溶液。 The oxidant solution for producing a conductive polymer according to claim 1 or 2 , wherein the ferric organic sulfonate is ferric paratoluenesulfonate. スルホン酸エステル化合物が、下記一般式(1)で表されるスルホン酸エステル化合物であることを特徴とする請求項1からのいずれかに記載の導電性高分子製造用酸化剤溶液。
Figure 0005557638
(式(1)中、Rは炭素数1〜8のアルキル基を示し、Rは炭素数1〜4のアルキル基を示す。)
The oxidizing agent solution for producing a conductive polymer according to any one of claims 1 to 3 , wherein the sulfonic acid ester compound is a sulfonic acid ester compound represented by the following general formula (1).
Figure 0005557638
(In formula (1), R 1 represents an alkyl group having 1 to 8 carbon atoms, and R 2 represents an alkyl group having 1 to 4 carbon atoms.)
アルコール溶媒が、ブタノールとメタノールの混合溶媒であることを特徴とする請求項1からのいずれかに記載の導電性高分子製造用酸化剤溶液。 The oxidant solution for producing a conductive polymer according to any one of claims 1 to 4 , wherein the alcohol solvent is a mixed solvent of butanol and methanol. 誘電体酸化皮膜が形成された弁作用金属上に導電性高分子からなる固体電解質を具備した固体電解コンデンサの製造方法において、
請求項1からのいずれかに記載の導電性高分子製造用酸化剤溶液と、導電性高分子モノマーとを液層にて接触させることにより化学酸化重合し、誘電体酸化皮膜が形成された弁作用金属に導電性高分子を形成する工程を有することを特徴とする固体電解コンデンサの製造方法。
In a method for producing a solid electrolytic capacitor comprising a solid electrolyte made of a conductive polymer on a valve action metal on which a dielectric oxide film is formed,
A oxidant solution for producing a conductive polymer according to any one of claims 1 to 5 and a conductive polymer monomer are brought into contact with each other in a liquid layer for chemical oxidative polymerization to form a dielectric oxide film. A method for producing a solid electrolytic capacitor comprising a step of forming a conductive polymer on a valve metal.
JP2010168725A 2010-07-28 2010-07-28 Oxidant solution for producing conductive polymer and method for producing solid electrolytic capacitor using the same Active JP5557638B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010168725A JP5557638B2 (en) 2010-07-28 2010-07-28 Oxidant solution for producing conductive polymer and method for producing solid electrolytic capacitor using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010168725A JP5557638B2 (en) 2010-07-28 2010-07-28 Oxidant solution for producing conductive polymer and method for producing solid electrolytic capacitor using the same

Publications (2)

Publication Number Publication Date
JP2012028709A JP2012028709A (en) 2012-02-09
JP5557638B2 true JP5557638B2 (en) 2014-07-23

Family

ID=45781252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010168725A Active JP5557638B2 (en) 2010-07-28 2010-07-28 Oxidant solution for producing conductive polymer and method for producing solid electrolytic capacitor using the same

Country Status (1)

Country Link
JP (1) JP5557638B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012025919A (en) * 2010-07-28 2012-02-09 Japan Carlit Co Ltd:The Oxidizing agent solution for producing conductive polymer and method for producing solid electrolytic capacitor using the same
JP6148988B2 (en) * 2014-01-10 2017-06-14 信越ポリマー株式会社 Conductive polymer dispersion and conductive coating film
JP6452265B2 (en) * 2017-04-03 2019-01-16 信越ポリマー株式会社 Conductive polymer dispersion and conductive coating film

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07153456A (en) * 1993-11-29 1995-06-16 Fujitsu Ltd Manufacture of positive electrode material for battery
JP4135449B2 (en) * 2002-09-20 2008-08-20 日本ケミコン株式会社 Oxidizing agent for conductive polymer polymerization
JP5324866B2 (en) * 2008-08-29 2013-10-23 富山薬品工業株式会社 Oxidizing agent for polymerization of 3,4-ethylenedioxythiophene

Also Published As

Publication number Publication date
JP2012028709A (en) 2012-02-09

Similar Documents

Publication Publication Date Title
KR101803997B1 (en) A Method for improving electrical parameters in capacitors comprising PEDOT/PSS as a solid electrolyte through a polyalkylene glycol
TWI425528B (en) Dopant solution for conductive polymer, oxidant-and-dopant solution for conductive polymer, conductive composition, and solid electrolytic capacitor
TWI534218B (en) Layer compositions with improved electrical parameters comprising pedot/pss and a stabilizer
EP2154197A1 (en) Conductive polymer suspension and method for producing the same, conductive polymer material, electrolytic capacitor, and solid electrolytic capacitor and method for producing the same
JP5557638B2 (en) Oxidant solution for producing conductive polymer and method for producing solid electrolytic capacitor using the same
JP6154461B2 (en) Oxidant solution for producing conductive polymer, solid electrolytic capacitor using the same, and method for producing solid electrolytic capacitor
JP2009032895A (en) Solid-state electrolytic capacitor, and manufacturing method thereof
JP6223703B2 (en) Conductive polymer solution and method for producing the same, conductive polymer material, and solid electrolytic capacitor
TW201131601A (en) Solid electrolytic capacitor and method for producing same
JP3846760B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP5327842B2 (en) Oxidizing agent for producing conductive polymer, solid electrolytic capacitor using the same, and method for producing the same
JP2004265941A (en) Solid state electrolytic capacitor and its manufacturing method
JP4925144B2 (en) Manufacturing method of solid electrolytic capacitor
JP2012025919A (en) Oxidizing agent solution for producing conductive polymer and method for producing solid electrolytic capacitor using the same
JP2014192423A (en) Oxidant solution for conductive polymer production, and method for producing solid electrolytic capacitor by use thereof
JP2014225538A (en) Oxidant solution for manufacturing conductive polymer, and method for manufacturing solid electrolytic capacitor by use thereof
JP5481639B2 (en) Oxidizing agent for producing conductive polymer, solid electrolytic capacitor using the same, and method for producing the same
JP4621383B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2017027992A (en) Solid electrolytic capacitor and manufacturing method therefor
JP2010037466A (en) Electrolytic solution for electropolymerization for forming electroconductive polymer, electroconductive polymer, solid electrolytic capacitor using the same, and method for manufacturing the capacitor
JP2010143996A (en) Electroconductive polymer, solid electrolytic capacitor using the same, and method for manufacturing the same
JP2013179292A (en) Oxidant solution for manufacturing electroconductive polymer and method of manufacturing solid electrolytic capacitor using the same
JP2011108835A (en) Solid electrolytic capacitor, and method of manufacturing the same
JP6100576B2 (en) Oxidant solution for producing conductive polymer, solid electrolytic capacitor using the same, and method for producing solid electrolytic capacitor
JP5289212B2 (en) Oxidizing agent for producing conductive polymer, solid electrolytic capacitor using the same, and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130611

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20140115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140307

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140603

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140603

R150 Certificate of patent or registration of utility model

Ref document number: 5557638

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250