JPH07153456A - Manufacture of positive electrode material for battery - Google Patents

Manufacture of positive electrode material for battery

Info

Publication number
JPH07153456A
JPH07153456A JP5297720A JP29772093A JPH07153456A JP H07153456 A JPH07153456 A JP H07153456A JP 5297720 A JP5297720 A JP 5297720A JP 29772093 A JP29772093 A JP 29772093A JP H07153456 A JPH07153456 A JP H07153456A
Authority
JP
Japan
Prior art keywords
battery
positive electrode
conductive polymer
electrode material
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5297720A
Other languages
Japanese (ja)
Inventor
Fumio Takei
文雄 武井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP5297720A priority Critical patent/JPH07153456A/en
Publication of JPH07153456A publication Critical patent/JPH07153456A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To apply a large quantity of doping in a short manufacturing period by drying a solution film obtained by spreading or coating a solution dissolved with a conductive polymer material and a dopant precursor. CONSTITUTION:An oxidant is added under the low-temperature condition to an aqueous solution of an acid conductive polymer material to obtain a conductive polymer material soluble in an organic solvent. This conductive polymer material and a dopant precursor soluble in an organic solvent are dissolved in the organic solvent to obtain a mixed solution. This mixed solution is spread or applied on a substrate, then it is heated to remove the solvent, and a film is obtained. A nonaqueous electrolytic material 2 is sandwiched and fixed between a positive electrode material 1 for a battery obtained when the film is processed and a negative electrode 3, then it is stored in a case 4, a positive lead 5 is connected to the positive electrode material 1, and a negative electrode lead 6 is connected to the negative electrode 3 to obtain the battery.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電池用正極材料の製造方
法に係り、特に、導電性高分子物質を電極材料に用い、
小型で大きな容量の電池の製造に適した電池用正極材料
の製造方法に関する。近年、マイクロエレクトロニク
ス、とりわけ半導体素子製造技術の顕著な進歩により、
大規模集積回路(VLSI)に代表される、高度に集積
化された高機能デバイスが実現されている。これを種々
の装置の制御系に採用することにより、電子機器の飛躍
的な小型化を達成している。高集積・高機能デバイス
は、各種産業のみならず、一般家庭における家電製品の
小型化・多機能化にも大きく貢献している。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a positive electrode material for a battery, and in particular, using a conductive polymer substance as an electrode material,
The present invention relates to a method for manufacturing a positive electrode material for a battery, which is suitable for manufacturing a small-sized and large-capacity battery. In recent years, due to remarkable progress in microelectronics, especially semiconductor device manufacturing technology,
Highly integrated highly functional devices, represented by large scale integrated circuits (VLSI), have been realized. By adopting this in the control system of various devices, dramatic downsizing of electronic equipment has been achieved. Highly integrated and highly functional devices have contributed greatly not only to various industries but also to miniaturization and multifunctionalization of home appliances in general households.

【0002】上述した電子機器は、自立した電源装置を
有し、商用電源等に頼ることなく動作可能な、いわゆる
コードレス化の方向に進んでいる。電源装置としては一
般的に電池が用いられている。電子機器全体の小型軽量
化や装置の長時間オペレーションのために、高性能な電
池の開発が求められている。電子機器全体の小型軽量化
に適したものとして、近年、導電性高分子物質を正極活
物質に用いた電池が注目されている。それは、導電性高
分子物質が有機物質であるために軽量であること、優れ
た柔軟性を有するために電池自身の加工性に優れている
等の特徴を有するからである。
The above-mentioned electronic equipment has a self-contained power supply device and can be operated without relying on a commercial power supply or the like, and is progressing toward so-called cordless. A battery is generally used as the power supply device. In order to reduce the size and weight of the entire electronic device and operate the device for a long time, development of high-performance batteries is required. In recent years, a battery using a conductive polymer material as a positive electrode active material has attracted attention as a material suitable for reducing the size and weight of the entire electronic device. This is because the conductive polymer substance is an organic substance, and thus has a light weight, and since it has excellent flexibility, it has excellent processability of the battery itself.

【0003】[0003]

【従来の技術】従来、導電性高分子物質を正極活物質と
して用いる電池においては、ポリピロール、ポリチオフ
ェン、ポリアセチレン、ポリアニリン等の導電性高分子
物質が用いられていた。このような導電性高分子物質を
用いる場合には、特開昭61−71552号公報等に開
示されているように、電解重合法によって正極活物質と
しての導電性高分子物質を析出させ、正極の電極として
いる。また、負極においては、リチウム等のアルカリ金
属又はその合金を用いて、電極を構成する。
2. Description of the Related Art Conventionally, in a battery using a conductive polymer substance as a positive electrode active material, a conductive polymer substance such as polypyrrole, polythiophene, polyacetylene or polyaniline has been used. When such a conductive polymer substance is used, as disclosed in JP-A-61-71552, a conductive polymer substance as a positive electrode active material is deposited by an electrolytic polymerization method to form a positive electrode. It is used as an electrode. In the negative electrode, an electrode is formed by using an alkali metal such as lithium or its alloy.

【0004】両極を非水溶液系の電解質で接続すること
により、正極では還元反応、すなわち、導電性高分子物
質にドーピングされたドーパントの脱ドープ現象が進む
と同時に、負極では、対応した電気量に基づく物質が酸
化されて電解中に拡散し、両者の電気化学ポテンシャル
の差に基づく電圧が出力される。このような導電性高分
子物質を用いた電池用正極材料の製造方法として、従来
から電解重合法とキャスト法が知られている。
By connecting both electrodes with a non-aqueous electrolyte, a reduction reaction at the positive electrode, that is, a dedoping phenomenon of the dopant doped in the conductive polymer substance, progresses, and at the same time, at the negative electrode, a corresponding amount of electricity is obtained. The base substance is oxidized and diffused during electrolysis, and a voltage based on the difference in electrochemical potential between the two is output. As a method for producing a positive electrode material for a battery using such a conductive polymer substance, an electrolytic polymerization method and a casting method have been conventionally known.

【0005】電解重合法によれば、導電性高分子材料を
予め電解重合することによりフィルム状の電池用正極材
料に成形し、そのフィルム状の電池用正極材料を電極と
して組み立ている。また、可溶性の導電性高分子物質、
例えば、可溶性ポリアニリンを使用した場合には、キャ
スト法によって成膜し、プロトン酸水溶液中に浸漬して
ドーピング処理を行うようにしている。
According to the electrolytic polymerization method, a conductive polymer material is electrolytically polymerized in advance to form a film-like battery positive electrode material, and the film-like battery positive electrode material is assembled as an electrode. In addition, a soluble conductive polymer substance,
For example, when soluble polyaniline is used, a film is formed by a casting method, and the film is dipped in an aqueous solution of a protonic acid to perform a doping process.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、電解重
合法による従来の電池用正極材料の製造方法では、電解
重合の効率が低く、生産性の向上が望めないという問題
があった。すなわち、電解重合法では、限られた面積の
電極界面でのみ重合反応が進み、また、その反応速度は
電流量に比例するので、膜質の維持のためには電解重合
速度をある一定の速度以上に設定することが困難であ
り、製造効率に限界があった。
However, the conventional method for producing a positive electrode material for a battery by the electrolytic polymerization method has a problem that the efficiency of the electrolytic polymerization is low and improvement in productivity cannot be expected. That is, in the electrolytic polymerization method, the polymerization reaction proceeds only at the electrode interface of a limited area, and the reaction rate is proportional to the amount of current, so that the electrolytic polymerization rate should be kept above a certain rate in order to maintain the film quality. It was difficult to set to, and there was a limit to the manufacturing efficiency.

【0007】一方、可溶性の導電性高分子をキャスト法
で成膜した後にドーピングを行う方法では、ドーパント
がフィルム中に拡散するのに多大の時間を要すると共
に、ドーピングされるドーパントの量が、拡散作用と導
電性高分子物質との相互作用で決まるという制限がある
ため、一定量以上のドーピングを行えず、蓄積される電
気量の小さい電池しか製造できないという問題があっ
た。
On the other hand, in the method of doping after forming a soluble conductive polymer by a casting method, it takes a lot of time for the dopant to diffuse into the film, and the amount of the dopant to be doped is diffused. Since there is a limitation that it is determined by the interaction between the action and the conductive polymer substance, there is a problem that a certain amount or more of doping cannot be performed and only a battery having a small amount of accumulated electricity can be manufactured.

【0008】本発明は、短い製造時間で多量のドーピン
グを行うことができる生産効率の高い電池用正極材料の
製造方法を提供することを目的とする。
An object of the present invention is to provide a method for producing a positive electrode material for a battery, which has a high production efficiency and can perform a large amount of doping in a short production time.

【0009】[0009]

【課題を解決するための手段】上記目的は、溶媒に導電
性高分子物質とドーパント前駆体とを溶解した混合溶液
を流延又は塗布して溶液膜を形成する工程と、前記溶液
膜を加熱することにより、前記溶液膜から前記溶媒を除
去して乾燥する工程とを有する電池用正極材料の製造方
法によって達成される。
The above-mentioned object is to cast or coat a mixed solution of a conductive polymer substance and a dopant precursor in a solvent to form a solution film, and to heat the solution film. This is achieved by the method for producing a positive electrode material for a battery, which comprises a step of removing the solvent from the solution film and drying.

【0010】上記電池用正極材料の製造方法において、
前記導電性高分子物質は、ポリアニリン又はその誘導体
であることが望ましい。上記電池用正極材料の製造方法
において、前記ドーパント前駆体は、芳香族スルホン酸
エステルであることが望ましい。上記電池用正極材料の
製造方法において、前記芳香族スルホン酸は、ベンゼン
スルホン酸、p−トルエンスルホン酸、ナフタレンスル
ホン酸、アルキルナフタレンスルホン酸、スチレンスル
ホン酸、又はn−ドデシルベンゼンスルホン酸であるこ
とが望ましい。
In the above method for producing a positive electrode material for a battery,
The conductive polymer material is preferably polyaniline or a derivative thereof. In the method for producing a battery positive electrode material, the dopant precursor is preferably an aromatic sulfonic acid ester. In the above method for producing a battery positive electrode material, the aromatic sulfonic acid is benzenesulfonic acid, p-toluenesulfonic acid, naphthalenesulfonic acid, alkylnaphthalenesulfonic acid, styrenesulfonic acid, or n-dodecylbenzenesulfonic acid. Is desirable.

【0011】[0011]

【作用】本発明によれば、溶媒に導電性高分子物質とド
ーパント前駆体とを溶解した混合溶液を流延又は塗布し
て溶液膜を形成し、溶液膜を加熱することにより、溶液
膜から溶媒を除去して乾燥するようにしたので、多量の
ドーピングがなされた電池用正極材料の短い製造時間で
製造することができる。
According to the present invention, a mixed solution in which a conductive polymer substance and a dopant precursor are dissolved in a solvent is cast or applied to form a solution film, and the solution film is heated to remove the solution film from the solution film. Since the solvent is removed and drying is performed, a large amount of doped positive electrode material for a battery can be manufactured in a short manufacturing time.

【0012】[0012]

【実施例】本発明による電池用正極材料の製造方法の詳
細について説明する。先ず、塩酸や硫酸により酸性にし
たアニリン水溶液に、適当な酸化剤を低温条件下で添加
することにより、有機溶媒に可溶な導電性高分子ポリア
ニリンを得る。これを適当な溶媒に溶解し、更に、この
溶媒に可溶な芳香族スルホン酸のエステルを加え、均一
な溶液とする。
EXAMPLES Details of the method for producing a positive electrode material for a battery according to the present invention will be described. First, a conductive polymer polyaniline soluble in an organic solvent is obtained by adding an appropriate oxidizing agent to an aniline aqueous solution acidified with hydrochloric acid or sulfuric acid under low temperature conditions. This is dissolved in a suitable solvent, and then an aromatic sulfonic acid ester soluble in this solvent is added to form a uniform solution.

【0013】次に、この溶液をキャスト法等により、適
当な基体上に塗布し、乾燥することで均質な正極活物質
フィルムを得る。このフィルムを、高湿度条件下で適当
な温度で熱処理すると、エステルは加水分解し、芳香族
スルホン酸を発生する。この酸は、ポリアニリンをドー
ピングし、電極としての導電性を引き上げると同時に、
電池として動作しているときの対イオンとして作用し、
電池の容量を決定づけることとなる。
Next, this solution is applied on a suitable substrate by a casting method or the like and dried to obtain a homogeneous positive electrode active material film. When this film is heat-treated at a suitable temperature under a high humidity condition, the ester is hydrolyzed to generate an aromatic sulfonic acid. This acid is doped with polyaniline to increase the conductivity as an electrode, and at the same time,
Acts as a counter ion when operating as a battery,
It will determine the capacity of the battery.

【0014】このようにして製造されたフィルムを用い
た電池の具体例を図1に示す。本発明の方法により製造
されたフィルムを加工して正極物質1として用い、負極
金属3として、還元性の大きい、すなわち容易に酸化さ
れる性質を有する金属、例えば、アルカリ金属、望まし
くは、リチウム又はリチウム/アルミニウム合金を用い
る。
FIG. 1 shows a specific example of a battery using the film thus manufactured. The film produced by the method of the present invention is processed and used as the positive electrode material 1, and as the negative electrode metal 3, a metal having a large reducing property, that is, a property of being easily oxidized, for example, an alkali metal, preferably lithium or A lithium / aluminum alloy is used.

【0015】正極物質1と負極電極3の間に非水系電解
質2を挟み込み固定している。正極物質1と非水系電解
質2と負極電極3とをケース4に収納し、正極物質1に
正極リード5を接続し、負極電極3に負極リード6を接
続し、ケース4外に突出させている。本発明によれば、
溶媒可溶性の導電性高分子物質による電極活物質膜の製
造時に、その後の処理において酸を発生して導電性高分
子物質のドーパントとなる物質を混合して成膜すること
により、導電性高分子溶液の質を低下することなく、多
量のドーパントを膜中に混合させることができる。この
ため、従来の電解重合法よりも効率良く、かつ容易に良
質な電池用正極活物質膜を形成することができるように
なる。
A non-aqueous electrolyte 2 is sandwiched and fixed between the positive electrode material 1 and the negative electrode 3. The positive electrode substance 1, the non-aqueous electrolyte 2 and the negative electrode 3 are housed in a case 4, the positive electrode lead 5 is connected to the positive electrode substance 1, the negative electrode lead 6 is connected to the negative electrode 3, and they are projected outside the case 4. . According to the invention,
During production of an electrode active material film of a solvent-soluble conductive polymer substance, a conductive polymer is formed by mixing a substance that generates an acid in a subsequent process and becomes a dopant of the conductive polymer substance to form a film. Large amounts of dopant can be incorporated into the film without degrading the quality of the solution. Therefore, it becomes possible to form a high quality battery positive electrode active material film more efficiently and easily than the conventional electrolytic polymerization method.

【0016】また、ドーパントとなる酸を正極活物質の
形成後に拡散により保持させるよりも、多量のドーパン
トを系内に存在させることができるようになるため、電
池の容量を向上させ、小型で高容量の電池を構成するこ
とができる。次に、本発明の実施例と比較例について説
明する。 (実施例)まず、1N塩酸酸性の0.2Mアニリン水溶
液に、アニリンと同じモル数の過硫酸アンモニウムを添
加し、−5℃で化学重合することで、溶媒可溶性のポリ
アニリンを得た。
Further, since it becomes possible to allow a large amount of dopant to be present in the system, rather than holding the acid serving as a dopant by diffusion after forming the positive electrode active material, the capacity of the battery is improved, and the battery is small and high in size. A battery of capacity can be constructed. Next, examples of the present invention and comparative examples will be described. Example First, a solvent-soluble polyaniline was obtained by adding the same mole number of ammonium persulfate as aniline to an aqueous 0.2M aniline solution acidic with 1N hydrochloric acid and performing chemical polymerization at -5 ° C.

【0017】次に、このポリアニリンを1N水酸化ナト
リウム水溶液中で煮沸還流した後、純水で洗浄、加熱乾
燥して、脱ドーピングされた還元体を得た。次に、この
ポリアニリン1部とp−トルエンスルホン酸メチル1部
をN−メチル−2−ピロリドン(NMP)20部に溶解
し、均一な溶液を作製した。次に、この溶液をポリエス
テル基板上に流延し、80℃で1時間、減圧乾燥した
後、80℃,90%RHの高温高湿条件に1時間放置
し、ドーパントの加水分解反応を促進した。
Next, the polyaniline was boiled under reflux in a 1N aqueous sodium hydroxide solution, washed with pure water, and dried by heating to obtain a dedoped doping material. Next, 1 part of this polyaniline and 1 part of methyl p-toluenesulfonate were dissolved in 20 parts of N-methyl-2-pyrrolidone (NMP) to prepare a uniform solution. Next, this solution was cast on a polyester substrate, dried under reduced pressure at 80 ° C. for 1 hour, and then left under high temperature and high humidity conditions of 80 ° C. and 90% RH for 1 hour to accelerate the hydrolysis reaction of the dopant. .

【0018】以上の処理によって製造された電池用正極
材料からなる正極物質1と、リチウムからなる負極金属
3により、非水系電解質(ポリオキシメチレン/プロピ
レンカーボネート/硝酸リチウム混合物)2を挟み込
み、正極物質1及び負極金属3に正極リード5、負極リ
ード6を設けた後、エポキシ樹脂で周囲をモールドして
ケース4とし、電池を製造した。
The non-aqueous electrolyte (polyoxymethylene / propylene carbonate / lithium nitrate mixture) 2 is sandwiched between the positive electrode material 1 made of the positive electrode material for battery manufactured by the above treatment and the negative electrode metal 3 made of lithium, and the positive electrode material is obtained. After providing the positive electrode lead 5 and the negative electrode lead 6 on 1 and the negative electrode metal 3, the periphery was molded with the epoxy resin to form the case 4, and the battery was manufactured.

【0019】上述したように製造した実施例の電池に対
して、1mAの定電流を流して放電した場合における放
電特性を測定した。図2の測定結果から明らかなよう
に、実施例では、3Vの電圧が2Vに低下するまで約4
0時間を必要とした。 (比較例)ポリアニリンフィルムを作製した後、酸溶液
(ドーパントはp−トルエンスルホン酸)に2〜3時間
浸漬することによりドーピングして電池用正極材料を得
た。
The discharge characteristics of the battery of the example manufactured as described above were measured when a constant current of 1 mA was applied and the battery was discharged. As is clear from the measurement result of FIG. 2, in the embodiment, it takes about 4 times until the voltage of 3V drops to 2V.
Needed 0 hours. (Comparative Example) A polyaniline film was prepared and then doped by immersing it in an acid solution (dopant: p-toluenesulfonic acid) for 2 to 3 hours to obtain a battery positive electrode material.

【0020】このようにして得た電池用正極材料を正極
物質1として用い、実施例と同様にして、リチウムから
なる負極金属3との間に、非水系電解質(ポリオキシメ
チレン/プロピレンカーポネート/硝酸リチウム混合
物)2を挟み込み、正極物質1及び負極金属3に正極リ
ード5、負極リード6を設けた後、エポキシ樹脂で周囲
をモールドしてケース4とした。
Using the battery positive electrode material thus obtained as the positive electrode substance 1, a non-aqueous electrolyte (polyoxymethylene / propylene carbonate / metal oxide) was formed between the negative electrode metal 3 made of lithium in the same manner as in Example. Lithium nitrate mixture 2 was sandwiched, positive electrode lead 5 and negative electrode lead 6 were provided on positive electrode material 1 and negative electrode metal 3, and then the periphery was molded with epoxy resin to form case 4.

【0021】上述したように製造した比較例の電池に対
して、1mAの定電流を流して放電した場合における放
電特性を測定した。図2の測定結果から明らかなよう
に、比較例では、初期の3Vの電圧が約18時間で2V
まで低下した。このように上述した実施例によれば比較
例に比べて2倍以上の大きな容量の電池をほぼ同じ製造
時間で製造することができた。
The discharge characteristics of the battery of the comparative example manufactured as described above were measured when the battery was discharged by applying a constant current of 1 mA. As is clear from the measurement result of FIG. 2, in the comparative example, the initial voltage of 3V was 2V in about 18 hours.
Fell to. As described above, according to the above-described embodiment, a battery having a capacity twice as large as that of the comparative example could be manufactured in substantially the same manufacturing time.

【0022】また、電解重合法により同等の特性を有す
る電池用正極材料を製造するには約4時間を必要とし
た。したがって、上述した実施例によれば、電解重合法
と比較して製造時間を50〜60%にも短縮することが
できた
Further, it took about 4 hours to produce a positive electrode material for a battery having the same characteristics by the electrolytic polymerization method. Therefore, according to the example described above, the manufacturing time could be shortened to 50 to 60% as compared with the electrolytic polymerization method.

【0023】[0023]

【発明の効果】以上の通り、本発明によれば、溶媒に導
電性高分子物質とドーパント前駆体とを溶解した混合溶
液を流延又は塗布して溶液膜を形成し、溶液膜を加熱す
ることにより、溶液膜から溶媒を除去して乾燥するよう
にしたので、多量のドーピングがなされた電池用正極材
料の短い製造時間で製造することができる。このため、
本発明の電池用正極材料を用いることにより、短い製造
時間で、小型で大容量の電池を実現することができる。
したがって、コードレス機器等、電池を使用する装置の
小型化に寄与するところが大きい。
As described above, according to the present invention, a mixed solution in which a conductive polymer substance and a dopant precursor are dissolved is cast or applied to form a solution film, and the solution film is heated. As a result, the solvent is removed from the solution film and the solution film is dried. Therefore, a large amount of doped positive electrode material for a battery can be manufactured in a short manufacturing time. For this reason,
By using the positive electrode material for a battery of the present invention, a small-sized and large-capacity battery can be realized in a short manufacturing time.
Therefore, it greatly contributes to downsizing of devices using batteries, such as cordless devices.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による電池の構成図である。FIG. 1 is a schematic diagram of a battery according to the present invention.

【図2】実施例の電池と比較例の電池の定電流放電特性
を示すグラフである。
FIG. 2 is a graph showing constant current discharge characteristics of a battery of Example and a battery of Comparative Example.

【符号の説明】[Explanation of symbols]

1:正極物質 2:非水系電解質 3:負極金属 4:ケース 5:正極リード 6:負極リード 1: Positive electrode material 2: Non-aqueous electrolyte 3: Negative electrode metal 4: Case 5: Positive electrode lead 6: Negative electrode lead

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 溶媒に導電性高分子物質とドーパント前
駆体とを溶解した混合溶液を流延又は塗布して溶液膜を
形成する工程と、 前記溶液膜を加熱することにより、前記溶液膜から前記
溶媒を除去して乾燥する工程とを有する電池用正極材料
の製造方法。
1. A step of casting or coating a mixed solution of a conductive polymer substance and a dopant precursor dissolved in a solvent to form a solution film, and heating the solution film to remove the solution film from the solution film. A method for producing a positive electrode material for a battery, comprising the step of removing the solvent and drying.
【請求項2】 請求項1記載の電池用正極材料の製造方
法において、 前記導電性高分子物質は、ポリアニリン又はその誘導体
であることを特徴とする電池用正極材料の製造方法。
2. The method for producing a positive electrode material for a battery according to claim 1, wherein the conductive polymer substance is polyaniline or a derivative thereof.
【請求項3】 請求項1又は2記載の電池用正極材料の
製造方法において、 前記ドーパント前駆体は、芳香族スルホン酸エステルで
あることを特徴とする電池用正極材料の製造方法。
3. The method for producing a battery positive electrode material according to claim 1, wherein the dopant precursor is an aromatic sulfonic acid ester.
【請求項4】 請求項3記載の電池用正極材料の製造方
法において、 前記芳香族スルホン酸は、ベンゼンスルホン酸、p−ト
ルエンスルホン酸、ナフタレンスルホン酸、アルキルナ
フタレンスルホン酸、スチレンスルホン酸、又はn−ド
デシルベンゼンスルホン酸であることを特徴とする電池
用正極材料の製造方法。
4. The method for producing a battery positive electrode material according to claim 3, wherein the aromatic sulfonic acid is benzenesulfonic acid, p-toluenesulfonic acid, naphthalenesulfonic acid, alkylnaphthalenesulfonic acid, styrenesulfonic acid, or A method for producing a positive electrode material for a battery, which is n-dodecylbenzenesulfonic acid.
JP5297720A 1993-11-29 1993-11-29 Manufacture of positive electrode material for battery Withdrawn JPH07153456A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5297720A JPH07153456A (en) 1993-11-29 1993-11-29 Manufacture of positive electrode material for battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5297720A JPH07153456A (en) 1993-11-29 1993-11-29 Manufacture of positive electrode material for battery

Publications (1)

Publication Number Publication Date
JPH07153456A true JPH07153456A (en) 1995-06-16

Family

ID=17850308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5297720A Withdrawn JPH07153456A (en) 1993-11-29 1993-11-29 Manufacture of positive electrode material for battery

Country Status (1)

Country Link
JP (1) JPH07153456A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100573098B1 (en) * 1999-08-11 2006-04-24 삼성에스디아이 주식회사 Surface-treating composition of electrode current collector for lithium secondary battery and surface-treating method using the same
JP2012028709A (en) * 2010-07-28 2012-02-09 Japan Carlit Co Ltd:The Oxidizing agent solution for manufacturing electroconductive polymer, and method for manufacturing solid electrolytic capacitor using the same
CN113540452A (en) * 2021-06-02 2021-10-22 江苏大学 Aluminum ion secondary battery and positive electrode material thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100573098B1 (en) * 1999-08-11 2006-04-24 삼성에스디아이 주식회사 Surface-treating composition of electrode current collector for lithium secondary battery and surface-treating method using the same
JP2012028709A (en) * 2010-07-28 2012-02-09 Japan Carlit Co Ltd:The Oxidizing agent solution for manufacturing electroconductive polymer, and method for manufacturing solid electrolytic capacitor using the same
CN113540452A (en) * 2021-06-02 2021-10-22 江苏大学 Aluminum ion secondary battery and positive electrode material thereof

Similar Documents

Publication Publication Date Title
CN107742728B (en) Electrolyte/electrode interface integrated construction process in all-solid-state lithium battery
JP7084587B2 (en) Polymers, electrode active materials and secondary batteries
CN108493434A (en) A kind of nickel cobalt lithium aluminate cathode material and preparation method thereof of conducting polymer cladding
JPH07153456A (en) Manufacture of positive electrode material for battery
JP2766987B2 (en) Battery
JP2001319655A (en) Secondary battery and capacitor using polyquinoxaline ether
JPS63215772A (en) Production of electrically conductive polymer composition
JP3201466B2 (en) Conductive polymer terminals and solid electrolytic capacitors
JP4397117B2 (en) Fuel cell
CN111892698A (en) Preparation method of oxidizing solution and solid aluminum electrolytic capacitor
JPH0645195A (en) Manufacture of solid-state electrolytic capacitor
JPH11251191A (en) Solid electrolytic capacitor and its manufacture
JPS61225214A (en) Production of thin-film oxidation polymer of aniline
JP2612007B2 (en) Method for manufacturing solid electrolytic capacitor
JP3458594B2 (en) Current collector for lead-acid battery, method of manufacturing the same, and electrode plate using the same
JPH05152169A (en) Manufacture of solid electrolytic capacitor
JP3344152B2 (en) Manufacturing method of electrode plate for lead-acid battery
JPH04245166A (en) Secondary battery
JPS6326955A (en) Nonaqueous electrolyte battery
JPH11283877A (en) Solid-state electrolyte and manufacture thereof
JPH10208746A (en) Sealed lead-acid battery
CN115863745A (en) Polymer/graphene composite solid electrolyte membrane and preparation method thereof
JPH11283876A (en) Solid electrolytic capacitor and manufacture thereof
CN117776122A (en) Method for preparing layered heterojunction through topology conversion, prepared layered heterojunction and application of layered heterojunction
KR20040022916A (en) Lithium battery having enhanced energy density and enhanced power density

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010130