JP4135449B2 - Oxidizing agent for conductive polymer polymerization - Google Patents

Oxidizing agent for conductive polymer polymerization Download PDF

Info

Publication number
JP4135449B2
JP4135449B2 JP2002274488A JP2002274488A JP4135449B2 JP 4135449 B2 JP4135449 B2 JP 4135449B2 JP 2002274488 A JP2002274488 A JP 2002274488A JP 2002274488 A JP2002274488 A JP 2002274488A JP 4135449 B2 JP4135449 B2 JP 4135449B2
Authority
JP
Japan
Prior art keywords
solution
conductive polymer
oxidizing agent
oxidant
pedt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002274488A
Other languages
Japanese (ja)
Other versions
JP2004107552A (en
Inventor
淳視 田中
和芳 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemi Con Corp
Original Assignee
Nippon Chemi Con Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemi Con Corp filed Critical Nippon Chemi Con Corp
Priority to JP2002274488A priority Critical patent/JP4135449B2/en
Publication of JP2004107552A publication Critical patent/JP2004107552A/en
Application granted granted Critical
Publication of JP4135449B2 publication Critical patent/JP4135449B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、導電性高分子を形成するために用いられる導電性高分子重合用酸化剤に関するものである。
【0002】
【従来の技術】
導電性高分子を固体電解質として用いた固体電解コンデンサとしては、ポリエチレンジオキシチオフェン(以下、PEDTと記す)を固体電解質として用いたものが知られている。
このような固体電解コンデンサは、コンデンサ素子をエチレンジオキシチオフェン(以下、EDTと記す)のモノマー溶液に浸漬した後、酸化剤溶液に浸漬して、化学重合することによって製造する方法が知られている(例えば、特許文献1参照)。そして、酸化剤としては、有機スルホン酸遷移金属塩を水または有機溶媒に溶解したものが広く使用されている(溶媒を水とした例としては、特許文献2参照)。
【0003】
【特許文献1】
特開平11−238648号公報
【特許文献2】
特開平11−251191号公報
【0004】
【発明が解決しようとする課題】
ところで、上記のようなコンデンサ素子をモノマー溶液及び酸化剤溶液に順次浸漬して導電性高分子を重合する工程を含む固体電解コンデンサの製造方法においては、酸化剤溶液は、その液面が大気に開放された浴で使用されることが多い。そのため、予め酸化剤溶液を作成し、相当の時間が経過した後に、コンデンサ素子をこの酸化剤溶液に浸漬する場合が発生する。
このうち、酸化剤溶液として有機スルホン酸遷移金属塩を水に溶解したものを用いた場合、解離した水のOH-基と有機スルホン酸遷移金属塩とが錯体を形成して、酸化剤溶液中に沈殿する。また、有機溶媒に酸化剤を溶解したものであっても、酸化剤溶液が大気中の水分を吸湿して、水に溶解した場合と同様に水の解離が起こり、錯体を形成してしまうことがある。
【0005】
なお、次式は、有機スルホン酸遷移金属塩がp−トルエンスルホン酸第二鉄(FePTS)の場合の錯体形成の反応式を示したものである。
【化1】
Fe3++OH-→Fe(OH)3
【0006】
一般に、EDT等の重合性モノマーを化学酸化重合により重合して導電性高分子とするには、酸化剤溶液中の酸化剤の濃度がその反応速度に大きく関与することが知られている。図1は、酸化剤濃度と、EDTに対するPEDTの生成量(収率)の関係を示した図であるが、それぞれ同条件(反応温度30℃、反応時間4時間)の下で重合反応を起こさせたところ、収率は酸化剤濃度が高いほど大きくなっている。これは、酸化剤濃度が高ければ、重合反応速度も速くなり、PEDTの生成量も多くなることを示している。
【0007】
従って、上記のように酸化剤溶液中で錯体が形成されて、沈殿してしまうと、酸化剤溶液中の酸化剤の濃度が低下して、PEDTの重合反応の速度も低下し、PEDTの生成量も減少してしまうという問題があった。
【0008】
本発明は、上述したような従来技術の問題点を解決するために提案されたものであり、その目的は、錯体形成を抑制し、重合性モノマーの重合反応速度を損ねることのない導電性高分子重合用酸化剤を提供することにある。
【0009】
【課題を解決するための手段】
本発明者等は、上記課題を解決すべく、解離した水のOH-基と有機スルホン酸遷移金属塩とが錯体を形成しない酸化剤の条件について鋭意検討を重ねた結果、酸性を示す有機スルホン酸遷移金属塩溶液を、重合性モノマーの重合に用いる酸化剤とした場合に良好な結果が得られることが判明したものである。
【0010】
(酸性を示す有機スルホン酸遷移金属塩溶液について)
酸化剤が酸性であるためには、有機スルホン酸遷移金属塩の酸である有機スルホン酸を、化学量論的に過剰にすれば良いことが分かった。具体的には、有機スルホン酸遷移金属塩水溶液に、同種の有機スルホン酸を添加することによって達成することができる。
【0011】
また、この効果は、有機スルホン酸がp−トルエンスルホン酸(PTS)であり、遷移金属が第二鉄である場合に顕著である。p−トルエンスルホン酸第二鉄(FePTS)は、酸化力が強く、導電性高分子の重合反応の速度が大幅に向上する。
さらに、p−トルエンスルホン酸(PTS)は、導電性高分子中でドーパントとして機能する。そのため、同アニオン種であるp−トルエンスルホン酸(PTS)を過剰にして酸性にすれば、ドーパントとしての機能も失われない。一方、異種の酸を加えた場合には、ドーパントとして機能しない場合もあると考えられる。
【0012】
なお、上記のように、H2Oの解離を抑制するために添加するp−トルエンスルホン酸(PTS)は、酸化剤溶液の溶媒に対して10wt%以上の濃度であることが必要である。10wt%以下では、H2Oの解離を抑制する効果が十分でなく、錯体を形成して沈殿を発生する。
【0013】
(作用)
上記のように酸化剤溶液を酸性にする、換言すれば、H+イオンを過剰にすることによって、たとえ、酸化剤溶液が吸湿してH2Oが解離したとしても、溶液中に過剰に存在するH+イオンが、OH-イオンと反応してH2Oとなる反応が進行するため、酸化剤溶液中のOH-濃度が極めて低くなるため、錯体形成反応がほとんど進行しない。その結果、酸化剤濃度の低下を防止することができ、重合反応速度も速くなるため、PEDTの生成量も多くなる。
【0014】
【実施例】
続いて、以下の2つの実験例に基づいて本発明をさらに詳細に説明する。
(1)実験例1
本実験例は、溶媒として水を用いた場合(実施例1〜4、従来例1)とエタノールを用いた場合(実施例5〜8、従来例2)のそれぞれにおいて、添加する酸の量を変化させて、PEDTの重合反応の違いを調べたものである。
【0015】
なお、本実験例において、重合性モノマーとしては、エチレンジオキシチオフェン(EDT)、酸化剤としては、p−トルエンスルホン酸第二鉄(FePTS)の水溶液あるいはエタノール溶液を用い、添加する酸としては、p−トルエンスルホン酸(PTS)を用いた。そして、表1及び表2に示すようにして調製した各酸化剤溶液にEDT2gを添加し、温度30℃で4時間放置してPEDTを得た。そして、得られたPEDTの電導度、収率の測定を行った。
【0016】
【表1】

Figure 0004135449
【0017】
【表2】
Figure 0004135449
【0018】
(実験結果)
表1、表2及び図2に示したように、溶媒として水を用いた場合、エタノールを用いた場合の両方共、溶媒に対する重量%が10%以上のp−トルエンスルホン酸(PTS)を添加した場合には、錯体を形成せず、PEDTの電導度、収率ともに向上することが判明した。
なかでも、添加するp−トルエンスルホン酸(PTS)の濃度を40%とした時に、PEDTの電導度、収率がピークを示し、添加する酸の濃度が40%を超えると収率が低下する傾向を示したが、これは、PEDTの生長反応よりも分解反応の方が促進するためと考えられる。
【0019】
この実験例1により、酸を添加することにより、錯体形成を阻害して酸化剤濃度を維持させることができ、また、添加する酸の量は、酸化剤溶液の溶媒に対して10%以上であることが好ましいことが示された。
【0020】
(2)実験例2
本発明に係る酸化剤を用いて固体電解コンデンサを製造した。なお、コンデンサ素子として、サイズ:T×W×H=1.7×3.4×3.9のタンタルペレットを用いた。このコンデンサ素子を、まず重合性モノマー溶液に浸漬した。この重合性モノマー溶液としては、50%EDTのブタノール溶液を用いた。次に、このタンタルペレットを酸化剤水溶液に浸漬した。この酸化剤水溶液は、100gの水にp−トルエンスルホン酸第二鉄(FePTS)を40g溶解し、さらにp−トルエンスルホン酸(PTS)を40g添加したものである。すなわち、この酸化剤溶液中のp−トルエンスルホン酸(PTS)の濃度は40%となる(上記表1の実施例3に相当)。
この酸化剤水溶液中にコンデンサ素子を4時間浸漬して重合反応を起こさせたところ、コンデンサ素子には、5mgのPEDTが形成された。
【0021】
また、比較例として、上記実施例と同様のコンデンサ素子を、まず重合性モノマー溶液に浸漬した。この重合性モノマー溶液としては、50%EDTのブタノール溶液を用いた。次に、このタンタルペレットを酸化剤水溶液に浸漬した。この酸化剤水溶液は、100gの水にp−トルエンスルホン酸第二鉄(FePTS)を40g溶解したものである。
この酸化剤水溶液中にコンデンサ素子を4時間浸漬して重合反応を起こさせたところ、コンデンサ素子には、0.5mgのPEDTが形成された。
【0022】
実験例2の結果においても、酸化剤溶液に酸を添加した場合としない場合で、固体電解コンデンサの製造の際のコンデンサ素子に対するPEDTの付着量に差異があり、PEDTの重合速度に違いがあることが確認された。
【0023】
【発明の効果】
以上述べたように、本発明によれば、錯体形成を抑制し、重合性モノマーの重合反応速度を損ねることのない導電性高分子重合用酸化剤を提供することができる。
【図面の簡単な説明】
【図1】酸化剤濃度と、EDTに対するPEDTの生成量(収率)の関係を示した図
【図2】酸濃度と、EDTに対するPEDTの生成量(収率)及び電導度の関係を示す図[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an oxidizing agent for polymerizing a conductive polymer used for forming a conductive polymer.
[0002]
[Prior art]
As a solid electrolytic capacitor using a conductive polymer as a solid electrolyte, a capacitor using polyethylene dioxythiophene (hereinafter referred to as PEDT) as a solid electrolyte is known.
A method of manufacturing such a solid electrolytic capacitor by immersing a capacitor element in a monomer solution of ethylenedioxythiophene (hereinafter referred to as EDT) and then immersing in an oxidant solution and chemical polymerization is known. (For example, refer to Patent Document 1). And as an oxidizing agent, what melt | dissolved the organic sulfonic acid transition metal salt in water or the organic solvent is used widely (refer patent document 2 for the example which used the solvent as water).
[0003]
[Patent Document 1]
JP-A-11-238648 [Patent Document 2]
JP-A-11-251191 [0004]
[Problems to be solved by the invention]
By the way, in the manufacturing method of the solid electrolytic capacitor including the step of polymerizing the conductive polymer by sequentially immersing the capacitor element as described above in the monomer solution and the oxidant solution, the oxidant solution has the liquid surface in the atmosphere. Often used in open baths. Therefore, there is a case where the capacitor element is immersed in the oxidant solution after an oxidant solution is prepared in advance and a considerable time has elapsed.
Of these, when an organic sulfonic acid transition metal salt dissolved in water is used as the oxidant solution, the dissociated OH group of the water and the organic sulfonic acid transition metal salt form a complex, To settle. Even if the oxidant is dissolved in an organic solvent, the oxidant solution absorbs moisture in the air and dissociates water to form a complex in the same manner as when dissolved in water. There is.
[0005]
The following formula shows the reaction formula for complex formation when the organic sulfonic acid transition metal salt is ferric p-toluenesulfonate (FePTS).
[Chemical 1]
Fe 3+ + OH → Fe (OH) 3
[0006]
Generally, in order to polymerize a polymerizable monomer such as EDT by chemical oxidative polymerization to form a conductive polymer, it is known that the concentration of the oxidant in the oxidant solution greatly affects the reaction rate. FIG. 1 is a graph showing the relationship between the oxidant concentration and the amount of PEDT produced (yield) relative to EDT. The polymerization reaction occurred under the same conditions (reaction temperature 30 ° C., reaction time 4 hours). As a result, the yield increases as the oxidant concentration increases. This indicates that the higher the oxidant concentration, the faster the polymerization reaction rate and the greater the amount of PEDT produced.
[0007]
Therefore, if a complex is formed and precipitated in the oxidant solution as described above, the concentration of the oxidant in the oxidant solution is lowered, the rate of the polymerization reaction of PEDT is also lowered, and the production of PEDT is reduced. There was a problem that the amount would also decrease.
[0008]
The present invention has been proposed in order to solve the above-described problems of the prior art, and its purpose is to suppress the formation of a complex and to prevent the polymerization reaction rate of the polymerizable monomer from being impaired. The object is to provide an oxidizing agent for molecular polymerization.
[0009]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present inventors have conducted extensive studies on the conditions of an oxidizing agent that does not form a complex between the dissociated OH - group of water and the organic sulfonic acid transition metal salt. It has been found that good results can be obtained when an acid transition metal salt solution is used as an oxidizing agent for polymerization of a polymerizable monomer.
[0010]
(About organic sulfonic acid transition metal salt solution showing acidity)
It has been found that in order for the oxidizing agent to be acidic, the organic sulfonic acid, which is an acid of the organic sulfonic acid transition metal salt, is stoichiometrically excessive. Specifically, it can be achieved by adding the same kind of organic sulfonic acid to the organic sulfonic acid transition metal salt aqueous solution.
[0011]
This effect is remarkable when the organic sulfonic acid is p-toluenesulfonic acid (PTS) and the transition metal is ferric iron. p-Toluenesulfonic acid ferric acid (FePTS) has a strong oxidizing power and greatly improves the rate of the polymerization reaction of the conductive polymer.
Furthermore, p-toluenesulfonic acid (PTS) functions as a dopant in the conductive polymer. Therefore, if p-toluenesulfonic acid (PTS), which is the same anion species, is excessively acidified, the function as a dopant is not lost. On the other hand, when different acids are added, it may not function as a dopant.
[0012]
As described above, p-toluenesulfonic acid (PTS) added to suppress the dissociation of H 2 O needs to have a concentration of 10 wt% or more with respect to the solvent of the oxidant solution. If it is 10 wt% or less, the effect of suppressing the dissociation of H 2 O is not sufficient, and a complex is formed and precipitation occurs.
[0013]
(Function)
By making the oxidant solution acidic as described above, in other words, by making H + ions excessive, even if the oxidant solution absorbs moisture and H 2 O is dissociated, it exists in excess in the solution. Since the reaction of H + ions to be reacted with OH ions to become H 2 O proceeds, the OH concentration in the oxidant solution becomes extremely low, so that the complex formation reaction hardly proceeds. As a result, a decrease in the oxidant concentration can be prevented and the polymerization reaction rate is increased, so that the amount of PEDT produced is also increased.
[0014]
【Example】
Subsequently, the present invention will be described in more detail based on the following two experimental examples.
(1) Experimental example 1
In this experimental example, when water is used as a solvent (Examples 1 to 4, Conventional Example 1) and when ethanol is used (Examples 5 to 8, Conventional Example 2), the amount of acid to be added is determined. It was changed and the difference in the polymerization reaction of PEDT was investigated.
[0015]
In this experimental example, ethylenedioxythiophene (EDT) is used as the polymerizable monomer, and an aqueous solution or ethanol solution of ferric p-toluenesulfonate (FePTS) is used as the oxidizing agent. P-Toluenesulfonic acid (PTS) was used. Then, 2 g of EDT was added to each oxidizing agent solution prepared as shown in Tables 1 and 2, and left at a temperature of 30 ° C. for 4 hours to obtain PEDT. Then, the conductivity and yield of the obtained PEDT were measured.
[0016]
[Table 1]
Figure 0004135449
[0017]
[Table 2]
Figure 0004135449
[0018]
(Experimental result)
As shown in Table 1, Table 2, and FIG. 2, p-toluenesulfonic acid (PTS) having a weight percentage of 10% or more with respect to the solvent is added in both cases where water is used as the solvent and ethanol is used. In this case, it was found that the conductivity and yield of PEDT were improved without forming a complex.
In particular, when the concentration of p-toluenesulfonic acid (PTS) to be added is 40%, the conductivity and yield of PEDT show a peak, and when the concentration of the acid to be added exceeds 40%, the yield decreases. Although the tendency was shown, it is thought that this is because the decomposition reaction is promoted more than the growth reaction of PEDT.
[0019]
According to Experimental Example 1, by adding an acid, it is possible to inhibit the complex formation and maintain the oxidant concentration, and the amount of the acid to be added is 10% or more with respect to the solvent of the oxidant solution. It has been shown to be preferred.
[0020]
(2) Experimental example 2
A solid electrolytic capacitor was manufactured using the oxidizing agent according to the present invention. As the capacitor element, a tantalum pellet having a size of T × W × H = 1.7 × 3.4 × 3.9 was used. This capacitor element was first immersed in a polymerizable monomer solution. As this polymerizable monomer solution, a 50% EDT butanol solution was used. Next, the tantalum pellet was immersed in an oxidizing agent aqueous solution. This oxidizing agent aqueous solution is obtained by dissolving 40 g of ferric p-toluenesulfonate (FePTS) in 100 g of water, and further adding 40 g of p-toluenesulfonic acid (PTS). That is, the concentration of p-toluenesulfonic acid (PTS) in this oxidizing agent solution is 40% (corresponding to Example 3 in Table 1 above).
When the capacitor element was immersed in this oxidizing agent aqueous solution for 4 hours to cause a polymerization reaction, 5 mg of PEDT was formed in the capacitor element.
[0021]
As a comparative example, a capacitor element similar to the above example was first immersed in a polymerizable monomer solution. As this polymerizable monomer solution, a 50% EDT butanol solution was used. Next, the tantalum pellet was immersed in an oxidizing agent aqueous solution. This oxidizing agent aqueous solution is obtained by dissolving 40 g of ferric p-toluenesulfonate (FePTS) in 100 g of water.
When the capacitor element was immersed in this oxidizing agent aqueous solution for 4 hours to cause a polymerization reaction, 0.5 mg of PEDT was formed in the capacitor element.
[0022]
Also in the result of Experimental Example 2, there is a difference in the amount of PEDT attached to the capacitor element during the production of the solid electrolytic capacitor, with or without the addition of acid to the oxidizer solution, and there is a difference in the polymerization rate of PEDT. It was confirmed.
[0023]
【The invention's effect】
As described above, according to the present invention, it is possible to provide an oxidizing agent for conductive polymer polymerization that suppresses complex formation and does not impair the polymerization reaction rate of the polymerizable monomer.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between the oxidizing agent concentration and the amount of PEDT produced (yield) relative to EDT. FIG. 2 is the relationship between the acid concentration, the amount of PEDT produced (yield) relative to EDT, and conductivity. Figure

Claims (2)

コンデンサ素子を重合性モノマー溶液に浸漬した後、導電性高分子重合用酸化剤に浸漬することにより、導電性高分子よりなる固体電解質を形成する場合に用いられる前記導電性高分子重合用酸化剤が、有機スルホン酸遷移金属塩溶液に、該溶液の溶媒量に対して10wt%以上の有機スルホン酸を添加して調整したものであることを特徴とする導電性高分子重合用酸化剤。The conductive polymer polymerization oxidant used when forming a solid electrolyte made of a conductive polymer by immersing the capacitor element in a polymerizable monomer solution and then immersing in a conductive polymer polymerization oxidant. Is prepared by adding 10 wt% or more of organic sulfonic acid to the organic sulfonic acid transition metal salt solution with respect to the amount of solvent in the solution . 前記有機スルホン酸が、p−トルエンスルホン酸であり、前記遷移金属が第二鉄であることを特徴とする請求項に記載の導電性高分子重合用酸化剤。The oxidant for conductive polymer polymerization according to claim 1 , wherein the organic sulfonic acid is p-toluenesulfonic acid, and the transition metal is ferric iron.
JP2002274488A 2002-09-20 2002-09-20 Oxidizing agent for conductive polymer polymerization Expired - Fee Related JP4135449B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002274488A JP4135449B2 (en) 2002-09-20 2002-09-20 Oxidizing agent for conductive polymer polymerization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002274488A JP4135449B2 (en) 2002-09-20 2002-09-20 Oxidizing agent for conductive polymer polymerization

Publications (2)

Publication Number Publication Date
JP2004107552A JP2004107552A (en) 2004-04-08
JP4135449B2 true JP4135449B2 (en) 2008-08-20

Family

ID=32270946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002274488A Expired - Fee Related JP4135449B2 (en) 2002-09-20 2002-09-20 Oxidizing agent for conductive polymer polymerization

Country Status (1)

Country Link
JP (1) JP4135449B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004029133A1 (en) 2002-09-24 2004-04-08 E.I. Du Pont De Nemours And Company Water dispersible polyanilines made with polymeric acid colloids for electronics applications
CA2499377A1 (en) 2002-09-24 2004-04-08 E. I. Du Pont De Nemours And Company Water dispersible polythiophenes made with polymeric acid colloids
US7390438B2 (en) 2003-04-22 2008-06-24 E.I. Du Pont De Nemours And Company Water dispersible substituted polydioxythiophenes made with fluorinated polymeric sulfonic acid colloids
WO2004106404A1 (en) 2003-05-27 2004-12-09 Fujitsu Limited Organic conductive polymer composition, transparent conductive film and transparent conductor both comprising the composition, and input device comprising the transparent conductor and its manufacturing method
US7338620B2 (en) * 2004-03-17 2008-03-04 E.I. Du Pont De Nemours And Company Water dispersible polydioxythiophenes with polymeric acid colloids and a water-miscible organic liquid
US7351358B2 (en) * 2004-03-17 2008-04-01 E.I. Du Pont De Nemours And Company Water dispersible polypyrroles made with polymeric acid colloids for electronics applications
US7250461B2 (en) * 2004-03-17 2007-07-31 E. I. Du Pont De Nemours And Company Organic formulations of conductive polymers made with polymeric acid colloids for electronics applications, and methods for making such formulations
US7749407B2 (en) 2005-06-28 2010-07-06 E.I. Du Pont De Nemours And Company High work function transparent conductors
US8153029B2 (en) 2006-12-28 2012-04-10 E.I. Du Pont De Nemours And Company Laser (230NM) ablatable compositions of electrically conducting polymers made with a perfluoropolymeric acid applications thereof
US8062553B2 (en) 2006-12-28 2011-11-22 E. I. Du Pont De Nemours And Company Compositions of polyaniline made with perfuoropolymeric acid which are heat-enhanced and electronic devices made therewith
US20080191172A1 (en) 2006-12-29 2008-08-14 Che-Hsiung Hsu High work-function and high conductivity compositions of electrically conducting polymers
KR101087902B1 (en) 2007-06-26 2011-11-30 데이카 가부시키가이샤 Substance capable of acting as oxidizing agent and dopant for synthesis of electrically conductive polymer, alcohol solution thereof, electrically conductive polymer, and solid electrolyte capacitor
JP2011071087A (en) 2009-03-12 2011-04-07 Sanyo Electric Co Ltd Conductive polymer film, electronic device, and methods of manufacturing the same
JP5557638B2 (en) * 2010-07-28 2014-07-23 カーリットホールディングス株式会社 Oxidant solution for producing conductive polymer and method for producing solid electrolytic capacitor using the same
JP4798812B1 (en) * 2010-08-19 2011-10-19 テイカ株式会社 Oxidizing agent / dopant solution for conductive polymer production, conductive polymer and solid electrolytic capacitor
KR101139040B1 (en) * 2010-08-19 2012-04-30 데이카 가부시키가이샤 Oxidizing agent and dopant solution for preparation of electrically conductive polymer, electrically conductive polymer, and solid electrolytic capacitor

Also Published As

Publication number Publication date
JP2004107552A (en) 2004-04-08

Similar Documents

Publication Publication Date Title
JP4135449B2 (en) Oxidizing agent for conductive polymer polymerization
EP2185661B1 (en) Process for producing conducting polymers
JP5441952B2 (en) Conductive polymer suspension and method for producing the same, conductive polymer material, and electrolytic capacitor and method for producing the same
EP2238194B1 (en) Method for the production of conductive<i></i>polymers
EP1979393B1 (en) Process for preparing polythiophenes
EP1713103B1 (en) Electrolytic capacitors having a polymeric outer layer and process of their production
EP2297753B1 (en) Method for production of electrolyte capacitors
EP1524678B2 (en) Electrolytic capacitors with polymeric outer layer
EP2283497B1 (en) Method for producing solid electrolyte capacitors
JP5465025B2 (en) Conductive polymer suspension and manufacturing method thereof, conductive polymer material, solid electrolytic capacitor and manufacturing method thereof
JP5410251B2 (en) Conductive polymer suspension and method for producing the same, conductive polymer material, electrolytic capacitor, and solid electrolytic capacitor and method for producing the same
DE102008036525A1 (en) Process for the preparation of polythiophenes
EP1598841A1 (en) Method for producing electrolytic capacitors
WO2008034848A1 (en) Process for preparing polythiophenes
JP2006228679A (en) Conductive polymer composition and solid electrolytic capacitor using the same
JP2010040770A (en) Conductive polymer suspension, method of manufacturing same, conductive polymer material, electrolytic capacitor, solid electrolytic capacitor, and method of manufacturing same
WO2010090206A1 (en) Electrically conductive polymer composition and process for production thereof, and solid electrolytic capacitor utilizing electrically conductive polymer composition
WO2004075220A1 (en) Solid electrolytic capacitor and method for manufacturing same
US20040182199A1 (en) Niobium powder, sintered body thereof and capacitor using the same
JP2605596B2 (en) Conductive polymer film and method for producing the same, conductive polymer compound solution, and solid electrolytic capacitor and method for producing the same
DE102004022674A1 (en) Electrolytic condenser for use in electronic circuits, e.g. for computers, comprises porous electrode, dielectric, solid electrolyte and a layer containing a polymeric anion, a polyaniline or polythiophene and a binder
JP2546617B2 (en) Conductive polymer compound with improved temperature characteristics
JP3736275B2 (en) Conductive composition and method for producing the same
JP2013089648A (en) Conductive polymer suspension and production method therefor, conductive polymer material, and solid electrolytic capacitor and manufacturing method therefor
JP2004111773A (en) Method for manufacturing solid electrolytic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080513

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080526

R150 Certificate of patent or registration of utility model

Ref document number: 4135449

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees