JP2003160647A - Conductive polymer and solid electrolytic capacitor using the same - Google Patents

Conductive polymer and solid electrolytic capacitor using the same

Info

Publication number
JP2003160647A
JP2003160647A JP2001360189A JP2001360189A JP2003160647A JP 2003160647 A JP2003160647 A JP 2003160647A JP 2001360189 A JP2001360189 A JP 2001360189A JP 2001360189 A JP2001360189 A JP 2001360189A JP 2003160647 A JP2003160647 A JP 2003160647A
Authority
JP
Japan
Prior art keywords
acid
conductive polymer
dopant
conductivity
examples
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001360189A
Other languages
Japanese (ja)
Other versions
JP4688125B2 (en
Inventor
Masaaki Tozawa
正明 戸澤
Ryosuke Sugihara
良介 杉原
Kohei Kitamura
耕平 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tayca Corp
Original Assignee
Tayca Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tayca Corp filed Critical Tayca Corp
Priority to JP2001360189A priority Critical patent/JP4688125B2/en
Publication of JP2003160647A publication Critical patent/JP2003160647A/en
Application granted granted Critical
Publication of JP4688125B2 publication Critical patent/JP4688125B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a conductive polymer excellent in conductivity and heat resistance, and to provide a solid electrolytic capacitor having high reliability in high temperature and high humidity conditions using the conductive polymer as a solid electrolyte. <P>SOLUTION: The conductive polymer comprises at least one sulfonic acid as a dopant selected from an alkoxy benzenesulfonic acid, an alkoxy naphthalenesulfonic acid and an alkoxy tetralinsulfonic acid including one or more 1-18C alkoxy groups and one or more sulfonic groups. The monomers for synthesizing above conductive polymer preferably include at least one or more monomers selected from pyrrole, thiophene, aniline and derivatives thereof. The solid electrolytic capacitor is composed by using the above conductive polymer as a solid electrolyte. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、導電性高分子およ
びその導電性高分子を固体電解質として用いた固体電解
コンデンサに関する。
TECHNICAL FIELD The present invention relates to a conductive polymer and a solid electrolytic capacitor using the conductive polymer as a solid electrolyte.

【0002】[0002]

【従来の技術】導電性高分子は、その高い導電性によ
り、アルミニウムコンデンサ、タンタルコンデンサなど
の固体電解コンデンサの固体電解質などに用いられてい
る。
2. Description of the Related Art Due to its high conductivity, conductive polymers are used as solid electrolytes for solid electrolytic capacitors such as aluminum capacitors and tantalum capacitors.

【0003】そのような用途における導電性高分子とし
ては、ピロール、チオフェン、アニリンまたはそれらの
誘導体を化学酸化重合または電解酸化重合することによ
って合成したものが用いられている。
As conductive polymers for such applications, those synthesized by chemical oxidative polymerization or electrolytic oxidative polymerization of pyrrole, thiophene, aniline or their derivatives are used.

【0004】酸化重合を行う際のドーパントには、主に
有機スルホン酸が用いられ、それらの中でも特に芳香族
スルホン酸が多用されている。
Organic sulfonic acids are mainly used as dopants in the oxidative polymerization, and among them, aromatic sulfonic acids are often used.

【0005】しかしながら、芳香族スルホン酸の出発材
料であるアルキルベンゼンのアルキル鎖は、長鎖の場
合、混合アルキルであって単一化合物として一定してい
ないので、得られる導電性高分子の導電性がばらつく原
因となる。例えば、ドデシルベンゼンスルホン酸(分子
量326)のように単一分子量であっても、構造異性体
の存在が電気特性に影響する。また、長鎖アルキル基を
有する長鎖型芳香族スルホン酸は、分子サイズが大きい
ため、ドーピングしづらく、結果として初期重合段階で
は充分な導電性が得られない。
However, since the alkyl chain of alkylbenzene, which is the starting material for aromatic sulfonic acid, is a mixed alkyl and is not constant as a single compound in the case of a long chain, the conductivity of the resulting conductive polymer is low. It causes variation. For example, even with a single molecular weight such as dodecylbenzenesulfonic acid (molecular weight 326), the presence of structural isomers affects the electrical properties. In addition, the long-chain type aromatic sulfonic acid having a long-chain alkyl group has a large molecular size, so that it is difficult to dope, and as a result, sufficient conductivity cannot be obtained in the initial polymerization stage.

【0006】一方、短鎖型芳香族スルホン酸、例えばベ
ンゼンスルホン酸(分子量158)やトルエンスルホン
酸(分子量172)は、分子サイズが小さく、ドーピン
グしやすいので初期重合段階では良好な導電性が得られ
るものの、その小さい分子サイズのため、脱ドーピング
が起こりやすく、特に高温・高湿条件下で放置した場合
には、顕著な導電性の低下が認められる。
On the other hand, short-chain aromatic sulfonic acids such as benzene sulfonic acid (molecular weight 158) and toluene sulfonic acid (molecular weight 172) have a small molecular size and are easily doped, so that good conductivity is obtained in the initial polymerization stage. However, due to its small molecular size, dedoping is likely to occur, and particularly when left under high temperature and high humidity conditions, a remarkable decrease in conductivity is observed.

【0007】上記のような状況から、初期重合段階で良
好な導電性が得られ、しかも高温・高湿条件下で放置し
ても大きな導電性の低下が認められず、導電性のばらつ
きが少ない導電性高分子を構成することができるドーパ
ントが求められている。
From the above situation, good conductivity is obtained in the initial polymerization stage, and even if it is left under the condition of high temperature and high humidity, no significant decrease in conductivity is observed, and there is little variation in conductivity. There is a need for a dopant that can form a conductive polymer.

【0008】そこで、上記のような要求に応えるべく、
導電性高分子用ドーパントとして、Chemistry
Letters,1996,253〜,Shinji
Takeoka,et.al.にOH基が付いた芳香
族スルホン酸を用いて、電解酸化重合により導電性高分
子を形成することが提案されている。しかしながら、一
般的に上記のような芳香族スルホン酸は、乳化力が弱
く、モノマーを完全に乳化できないため、均一な導電性
高分子を合成することができないという問題があった。
また、乳化力を高めるため、別途アルキル基を付加する
ことも考えられるが、反応が繁雑になり、かつ経済的で
はない。
Therefore, in order to meet the above demands,
As a dopant for conductive polymers, Chemistry
Letters, 1996, 253-, Shinji
Takeoka, et. al. It has been proposed to form a conductive polymer by electrolytic oxidative polymerization using an aromatic sulfonic acid having an OH group. However, the aromatic sulfonic acid as described above generally has a weak emulsifying power and cannot completely emulsify the monomer, so that there is a problem that a uniform conductive polymer cannot be synthesized.
It is also possible to add an alkyl group separately in order to enhance the emulsifying power, but the reaction becomes complicated and it is not economical.

【0009】また、化学酸化重合の場合、酸化剤として
アルコキシル基の付いた芳香族スルホン酸を遷移金属
塩、例えば第二鉄塩や第二銅塩に仕上げる必要がある
が、水酸基またはカルボキシル基が付いた芳香族スルホ
ン酸鉄は、キレート作用が強いため、均一な鉄塩を調製
することができなかった。
Further, in the case of chemical oxidative polymerization, it is necessary to finish an aromatic sulfonic acid having an alkoxyl group as an oxidizing agent into a transition metal salt such as a ferric salt or a cupric salt. Since the attached aromatic iron sulfonate has a strong chelating effect, it was not possible to prepare a uniform iron salt.

【0010】[0010]

【発明が解決しようとする課題】本発明は、上記のよう
な従来技術における問題点を解決し、導電性が優れ、し
かも耐熱性が優れた導電性高分子を提供し、かつ、それ
を固体電解質として用いて高温・高湿条件下での信頼性
の高い固体電解コンデンサを提供することを目的とす
る。
DISCLOSURE OF THE INVENTION The present invention solves the problems in the prior art as described above, provides a conductive polymer having excellent conductivity and heat resistance, and also provides a solid polymer thereof. It is an object of the present invention to provide a solid electrolytic capacitor which is used as an electrolyte and has high reliability under high temperature and high humidity conditions.

【0011】[0011]

【課題を解決するための手段】本発明者らは、上記課題
を解決するため鋭意研究を重ねた結果、炭素数1〜18
のアルコキシル基を一つ以上含有し、かつ一つ以上のス
ルホン基を含有するアルコキシベンゼンスルホン酸およ
びアルコキシナフタレンスルホン酸およびアルコキシテ
トラリンスルホン酸から選ばれる少なくとも一つ以上の
スルホン酸をドーパントとして含む導電性高分子が、導
電性が優れ、しかも耐熱性が優れていて、上記課題を解
決できる特徴を有していることを見出した。
The inventors of the present invention have conducted extensive studies to solve the above problems, and as a result, have 1 to 18 carbon atoms.
Conductivity containing at least one or more sulfonic acid selected from the group consisting of alkoxybenzene sulfonic acid, alkoxynaphthalene sulfonic acid, and alkoxytetraline sulfonic acid containing at least one alkoxyl group and containing at least one sulfone group It was found that the polymer has excellent electrical conductivity and excellent heat resistance, and has a feature capable of solving the above problems.

【0012】[0012]

【発明の実施の形態】上記炭素数が1〜18のアルコキ
シル基を一つ以上含有し、かつ一つ以上のスルホン基を
含有するアルコキシベンゼンスルホン酸、アルコキシナ
フタレンスルホン酸およびアルコキシテトラリンスルホ
ン酸から選ばれる少なくとも一つ以上のスルホン酸とし
ては、アルコキシル基の炭素数が1〜5のものが好まし
く、その具体例としては、例えば、メトキシベンゼンス
ルホン酸、エトキシベンゼンスルホン酸、ブトキシベン
ゼンスルホン酸、ペントキシベンゼンスルホン酸、メト
キシナフタレンスルホン酸、エトキシナフタレンスルホ
ン酸、ブトキシナフタレンスルホン酸、ペントキシナフ
タレンスルホン酸、メトキシテトラリンスルホン酸、エ
トキシテトラリンスルホン酸、ブトキシテトラリンスル
ホン酸、ペントキシテトラリンスルホン酸などが特に好
ましいものとして挙げられる。
BEST MODE FOR CARRYING OUT THE INVENTION Alkoxybenzenesulfonic acid, alkoxynaphthalenesulfonic acid, and alkoxytetralinsulfonic acid containing at least one alkoxyl group having 1 to 18 carbon atoms and having at least one sulfone group. As the at least one sulfonic acid to be used, those having an alkoxyl group having 1 to 5 carbon atoms are preferable, and specific examples thereof include, for example, methoxybenzenesulfonic acid, ethoxybenzenesulfonic acid, butoxybenzenesulfonic acid, pentoxy. Benzenesulfonic acid, methoxynaphthalenesulfonic acid, ethoxynaphthalenesulfonic acid, butoxynaphthalenesulfonic acid, pentoxynaphthalenesulfonic acid, methoxytetralinsulfonic acid, ethoxytetralinsulfonic acid, butoxytetralinsulfonic acid, pentoki Such as tetralin sulfonic acid as particularly preferred.

【0013】上記のような炭素数が1〜18のアルコキ
シル基を一つ以上含有し、かつ一つ以上のスルホン酸基
を含有するアルコキシ芳香族系化合物(ベンゼン、ナフ
タレン、テトラリン)のスルホン酸は、アルコキシル基
を有する芳香族系化合物を濃硫酸に混合してスルホン化
した後、苛性ソーダなどのアルカリ剤で中和し、晶析分
離などの精製処理をすることによって合成することがで
きる。
The sulfonic acid of the alkoxy aromatic compound (benzene, naphthalene, tetralin) containing at least one alkoxyl group having 1 to 18 carbon atoms as described above and containing at least one sulfonic acid group is The aromatic compound having an alkoxyl group is mixed with concentrated sulfuric acid to be sulfonated, then neutralized with an alkaline agent such as caustic soda, and purified by crystallization separation or the like.

【0014】本発明で用いる導電性高分子合成用モノマ
ーとしては、例えば、ピロール、チオフェン、アニリン
およびそれらの誘導体から選ばれる少なくとも1種を用
いることができる。
As the conductive polymer synthesizing monomer used in the present invention, for example, at least one selected from pyrrole, thiophene, aniline and their derivatives can be used.

【0015】つぎに、本発明の導電性高分子の合成およ
び上記導電性高分子を固体電解質として用いた固体電解
コンデンサについて説明する。
Next, the synthesis of the conductive polymer of the present invention and the solid electrolytic capacitor using the conductive polymer as a solid electrolyte will be described.

【0016】本発明の導電性高分子の合成にあたって
は、まず、ピロール、チオフェン、アニリンおよびそれ
らの誘導体から選ばれる少なくとも1種の導電性高分子
合成用モノマーを、上記アルコキシベンゼンスルホン
酸、アルコキシナフタレンスルホン酸、アルコキシテト
ラリンスルホン酸などをドーパントとして用いて、化学
酸化重合または電解酸化重合を行う。
In synthesizing the electroconductive polymer of the present invention, first, at least one kind of electroconductive polymer synthesizing monomer selected from pyrrole, thiophene, aniline and their derivatives is added to the above-mentioned alkoxybenzenesulfonic acid and alkoxynaphthalene. Chemical oxidation polymerization or electrolytic oxidation polymerization is performed using sulfonic acid, alkoxytetralin sulfonic acid, or the like as a dopant.

【0017】化学酸化重合の場合、上記アルコキシベン
ゼンスルホン酸、アルコキシナフタレンスルホン酸、ア
ルコキシテトラリンスルホン酸を遷移金属塩、例えば第
二鉄塩や第二銅塩とし、それらの金属塩と導電性高分子
合成用モノマーとを、有機溶媒で特定濃度となるよう、
それぞれ別途あらかじめ希釈しておき、溶液同士を混合
して一定時間反応させた後、洗浄、乾燥して導電性高分
子を合成することができる(ここで用いているスルホン
酸塩は、その遷移金属成分が導電性高分子合成用モノマ
ーの酸化重合剤として働き、残りのスルホン酸成分は高
分子マトリックス中に含有され、いわゆるドーパントの
役割を果たす)。上記重合に際して用いる有機溶媒とし
ては、例えば、メタノール、エタノール、n−プロパノ
ール、n−ブタノールなどが挙げられ、洗浄の際にも上
記溶媒のいずれかを用いればよい。
In the case of chemical oxidative polymerization, the above-mentioned alkoxybenzenesulfonic acid, alkoxynaphthalenesulfonic acid, and alkoxytetralinsulfonic acid are used as transition metal salts such as ferric salt and cupric salt, and the metal salts and the conductive polymer are used. Synthetic monomer and organic solvent to a specific concentration,
Separately pre-diluted separately, mix the solutions and react for a certain period of time, then wash and dry to synthesize the conductive polymer (the sulfonate used here is the transition metal The component acts as an oxidative polymerization agent for the monomer for synthesizing the conductive polymer, and the remaining sulfonic acid component is contained in the polymer matrix and functions as a so-called dopant). Examples of the organic solvent used in the above polymerization include methanol, ethanol, n-propanol, and n-butanol, and any of the above solvents may be used in washing.

【0018】電解酸化重合の場合、上記アルコキシベン
ゼンスルホン酸、アルコキシナフタレンスルホン酸、ア
ルコキシテトラリンスルホン酸またはその塩(ナトリウ
ム塩、カリウム塩など)と、導電性高分子合成用モノマ
ーとを、溶媒に溶解しておき、定電位または定電流条件
下でモノマーの重合を進めて導電性高分子を合成する。
この電解酸化重合に際して用いる溶媒としては、例え
ば、水、メタノール、エタノール、n−プロパノール、
n−ブタノールなどが挙げられ、洗浄の際にも上記溶媒
のいずれかを用いればよい。
In the case of electrolytic oxidative polymerization, the above-mentioned alkoxybenzenesulfonic acid, alkoxynaphthalenesulfonic acid, alkoxytetralinesulfonic acid or a salt thereof (sodium salt, potassium salt, etc.) and a monomer for synthesizing a conductive polymer are dissolved in a solvent. Then, the polymerization of the monomer is advanced under the constant potential or constant current condition to synthesize the conductive polymer.
Examples of the solvent used in this electrolytic oxidative polymerization include water, methanol, ethanol, n-propanol,
Examples of the solvent include n-butanol, and any of the above solvents may be used for washing.

【0019】このようにして合成された導電性高分子
は、導電性が優れ、しかも耐熱性が優れている。その理
由は現在のところ必ずしも明確ではないが、電解酸化重
合の場合、アルコキシ芳香族系化合物のスルホン酸塩
は、界面活性能があるので、モノマーを均一に乳化する
ことができ、それによって、均一な導電性高分子が形成
されて初期重合段階から優れた導電性が得られるように
なるものと考えられる。
The conductive polymer synthesized in this manner has excellent conductivity and heat resistance. The reason for this is not always clear at present, but in the case of electrolytic oxidative polymerization, the sulfonate of an alkoxyaromatic compound has a surface-active ability, so that the monomer can be uniformly emulsified, thereby providing a uniform emulsion. It is considered that such a conductive polymer is formed and excellent conductivity is obtained from the initial polymerization stage.

【0020】また、化学酸化重合の場合、アルコキシ芳
香族系化合物のスルホン酸を遷移金属塩、例えば、第二
鉄塩や第二銅塩とした場合、OH基のようにキレート作
用がないため、均一な遷移金属塩を得ることができる。
そして、上記アルコキシ芳香族系化合物のスルホン酸遷
移金属塩を酸化重合剤として使用した場合、均一な導電
性高分子が形成されるので、初期重合段階から優れた特
性が得られるようになるものと考えられる。このように
して導電性高分子中に取り込まれたドーパントのアルコ
キシル基は、長期保存中に分解されやすく、その際、ア
ルコキシル基がOH基に変わるので、優れた耐熱性が得
られるようになるものと考えられる。
Further, in the case of chemical oxidative polymerization, when the sulfonic acid of the alkoxyaromatic compound is a transition metal salt such as a ferric salt or a cupric salt, there is no chelating action like the OH group. A homogeneous transition metal salt can be obtained.
When the sulfonic acid transition metal salt of the alkoxyaromatic compound is used as an oxidative polymerization agent, a uniform conductive polymer is formed, so that excellent properties can be obtained from the initial polymerization stage. Conceivable. The alkoxyl group of the dopant thus taken into the conductive polymer is easily decomposed during long-term storage, and at that time, the alkoxyl group is changed to an OH group, so that excellent heat resistance can be obtained. it is conceivable that.

【0021】上記のように、本発明の導電性高分子は、
導電性が優れ、しかも耐熱性が優れているので、コンデ
ンサ、バッテリー、帯電防止シート、耐腐食用塗料など
の用途において有用である。
As described above, the conductive polymer of the present invention is
Since it has excellent conductivity and heat resistance, it is useful in applications such as capacitors, batteries, antistatic sheets, and corrosion resistant paints.

【0022】[0022]

【実施例】以下に実施例を挙げて本発明をより具体的に
説明する。ただし、本発明はそれらの実施例に例示のも
ののみに限定されることはない。また、実施例に先立
ち、実施例の導電性高分子のドーパントとなる炭素数が
1〜18のアルコキシル基を一つ以上含有し、かつ一つ
以上のスルホン酸を含有するアルコキシベンゼンスルホ
ン酸、アルコキシナフタレンスルホン酸およびアルコキ
シテトラリンスルホン酸から選ばれる少なくとも一つ以
上のスルホン酸の合成例を合成例1〜3として示す。な
お、以下において、溶液や分散液などの濃度を示す%は
質量基準によるものである。
EXAMPLES The present invention will be described in more detail with reference to the following examples. However, the present invention is not limited to only those illustrated in those examples. Further, prior to the examples, alkoxybenzene sulfonic acid, alkoxy containing at least one alkoxyl group having 1 to 18 carbon atoms and serving as a dopant for the conductive polymer of the examples, and containing at least one sulfonic acid. Synthetic examples 1 to 3 show synthetic examples of at least one sulfonic acid selected from naphthalene sulfonic acid and alkoxytetralin sulfonic acid. In the following,% indicating the concentration of a solution or dispersion is based on mass.

【0023】合成例1 室温下で攪拌しながら、98%硫酸560gをメトキシ
ベンゼン600gに滴下した。上記硫酸の滴下後、反応
液の温度を75℃に上げ、その温度を保ちながら3時間
攪拌した。反応終了後、500gの蒸留水を加え、エー
テル200gを添加し、2層分離した下層部分のみを取
り出し、さらに蒸留による濃縮と水の添加を2度繰り返
して、未反応のメトキシベンゼンを除去することによ
り、メトキシベンゼンスルホン酸を得た。さらに2mo
l/lの水酸化ナトリウムにより中和してメトキシベン
ゼンスルホン酸のナトリウム塩も得た。
Synthesis Example 1 While stirring at room temperature, 560 g of 98% sulfuric acid was added dropwise to 600 g of methoxybenzene. After the dropwise addition of the sulfuric acid, the temperature of the reaction liquid was raised to 75 ° C., and the temperature was maintained, and the mixture was stirred for 3 hours. After the reaction is completed, 500 g of distilled water is added, 200 g of ether is added, and only the lower layer separated into two layers is taken out, and further concentration by distillation and addition of water are repeated twice to remove unreacted methoxybenzene. Thus, methoxybenzenesulfonic acid was obtained. 2mo more
Neutralization with l / l sodium hydroxide also gave the sodium salt of methoxybenzenesulfonic acid.

【0024】合成例2 メトキシベンゼンに代えてにエトキシベンゼン678g
を用いた以外は、実施例1と同様の操作を行い、エトキ
シベンゼンスルホン酸を得た。
Synthesis Example 2 678 g of ethoxybenzene instead of methoxybenzene
The same operation as in Example 1 was carried out except that was used to obtain ethoxybenzenesulfonic acid.

【0025】合成例3 メトキシベンゼンに代えてメトキシナフタレン878g
を用いた以外は、実施例1と同様の操作を行い、メトキ
シナフタレンスルホン酸およびそのナトリウム塩を得
た。
Synthesis Example 3 878 g of methoxynaphthalene instead of methoxybenzene
The same operation as in Example 1 was carried out except that was used to obtain methoxynaphthalenesulfonic acid and its sodium salt.

【0026】実施例1 室温下、1000mlの蒸留水にFe2 (SO4 3
8H2 Oを108.6g(0.2mol)溶解して調製
した溶液を激しく攪拌しながら、その中に5mol/l
の水酸化ナトリウム水溶液をゆっくりと添加してpH7
に調整した後、遠心分離により上澄みを取り除いて水酸
化第二鉄の沈殿を得た。余分の水溶性塩を取り除くた
め、4000mlの蒸留水に上記水酸化第二鉄の沈殿を
分散させた後、遠心分離で上清を取り除く操作を2回繰
り返した。得られた水酸化第二鉄の沈殿を500gのノ
ルマルブタノールに分散させた。
Example 1 Fe 2 (SO 4 ) 3 ··· was added to 1000 ml of distilled water at room temperature.
A solution prepared by dissolving 108.6 g (0.2 mol) of 8H 2 O was vigorously stirred while 5 mol / l thereof was added.
Slowly add aqueous sodium hydroxide solution to pH 7
After the adjustment, the supernatant was removed by centrifugation to obtain a ferric hydroxide precipitate. In order to remove excess water-soluble salt, the above ferric hydroxide precipitate was dispersed in 4000 ml of distilled water, and the operation of removing the supernatant by centrifugation was repeated twice. The obtained ferric hydroxide precipitate was dispersed in 500 g of normal butanol.

【0027】これとは別に、合成例1で得たメトキシベ
ンゼンスルホン酸203gをあらかじめ500gのノル
マルブタノールにそれぞれ溶解しておき、その溶液中に
上記方法で調製した水酸化第二鉄の分散液を添加した。
室温下、12時間かきまぜて反応させた後、蒸留して濃
度50%のメトキシベンゼンスルホン酸第二鉄塩のノル
マルブタノール溶液を得た。
Separately, 203 g of methoxybenzenesulfonic acid obtained in Synthesis Example 1 was dissolved in 500 g of normal butanol in advance, and the ferric hydroxide dispersion prepared by the above method was added to the solution. Was added.
After stirring at room temperature for 12 hours for reaction, the mixture was distilled to obtain a normal butanol solution of ferric methoxybenzene sulfonate having a concentration of 50%.

【0028】上記メトキシベンゼンスルホン酸第二鉄塩
を濃度が0.5mol/lになるようにn−ブタノール
を添加して濃度調整した後、その溶液に3,4−エチレ
ンジオキシチオフェンを濃度が0.5mol/lになる
ように添加し、充分にかき混ぜ、上記メトキシベンゼン
スルホン酸第二鉄塩を酸化剤として、3,4−エチレン
ジオキシチオフェンの化学酸化重合を開始させ、それを
直ちに、3cm×5cmのセラミックプレート上に18
0μl滴下した。そして、そのセラミックプレート上で
湿度55%、温度25℃で12時間重合した後、エタノ
ール中に上記プレートをその上に形成された重合物膜と
共に入れ、洗浄し、130℃で30分間乾燥した。乾燥
後、上記プレートに1.5tの荷重をかけたまま5分間
放置して、膜厚を均等にした後、その重合物であるポリ
エチレンジオキシチオフェンの電導度を4探針方式の電
導度測定器(三菱化学社製のMCP−T600)により
測定した。その結果を後記の表1に示す。
After adjusting the concentration of the above-mentioned ferric methoxybenzene sulfonate by adding n-butanol to a concentration of 0.5 mol / l, 3,4-ethylenedioxythiophene was added to the solution. 0.5 mol / l was added, and the mixture was thoroughly stirred, and the oxidative polymerization of 3,4-ethylenedioxythiophene was started using the above-mentioned ferric methoxybenzenesulfonic acid salt as an oxidizing agent, and immediately, 18 on a 3 cm x 5 cm ceramic plate
0 μl was dropped. Then, after polymerizing on the ceramic plate at a humidity of 55% and a temperature of 25 ° C. for 12 hours, the plate was put in ethanol together with a polymer film formed thereon, washed, and dried at 130 ° C. for 30 minutes. After drying, the plate was allowed to stand for 5 minutes with a load of 1.5 t to make the film thickness uniform, and the conductivity of polyethylene dioxythiophene, which was the polymer, was measured by a 4-probe method. It was measured with a vessel (MCP-T600 manufactured by Mitsubishi Chemical Corporation). The results are shown in Table 1 below.

【0029】実施例2 合成例1で得たメトキシベンゼンスルホン酸に代えて、
合成例2で得たエトキシベンゼンスルホン酸218gを
用いた以外は、実施例1と同様に3,4−エチレンジオ
キシチオフェンの化学酸化重合を行い、得られたポリエ
チレンジオキシチオフェンについて電導度を測定した。
その結果を後記の表1に示す。
Example 2 Instead of the methoxybenzenesulfonic acid obtained in Synthesis Example 1,
Chemical oxidative polymerization of 3,4-ethylenedioxythiophene was carried out in the same manner as in Example 1 except that 218 g of ethoxybenzenesulfonic acid obtained in Synthesis Example 2 was used, and the electrical conductivity of the obtained polyethylenedioxythiophene was measured. did.
The results are shown in Table 1 below.

【0030】実施例3 合成例1で得たメトキシベンゼンスルホン酸に代えて、
合成例3で得たメトキシナフタレンスルホン酸257g
を用いた以外は、実施例1と同様に3,4−エチレンジ
オキシチオフェンの化学酸化重合を行い、得られたポリ
エチレンジオキシチオフェンについて電導度を測定し
た。その結果を後記の表1に示す。
Example 3 Instead of the methoxybenzenesulfonic acid obtained in Synthesis Example 1,
257 g of methoxynaphthalenesulfonic acid obtained in Synthesis Example 3
The chemical oxidative polymerization of 3,4-ethylenedioxythiophene was performed in the same manner as in Example 1 except that was used, and the electrical conductivity of the obtained polyethylenedioxythiophene was measured. The results are shown in Table 1 below.

【0031】比較例1 合成例1で得たメトキシベンゼンスルホン酸に代えて、
p−トルエンスルホン酸186gを用いた以外は、実施
例1と同様に3,4−エチレンジオキシチオフェンの化
学酸化重合を行い、得られたポリエチレンジオキシチオ
フェンについて電導度を測定した。その結果を後記の表
1に示す。
Comparative Example 1 Instead of the methoxybenzenesulfonic acid obtained in Synthesis Example 1,
Chemical oxidative polymerization of 3,4-ethylenedioxythiophene was performed in the same manner as in Example 1 except that 186 g of p-toluenesulfonic acid was used, and the electrical conductivity of the obtained polyethylenedioxythiophene was measured. The results are shown in Table 1 below.

【0032】比較例2 合成例1で得たメトキシベンゼンスルホン酸に代えて、
分岐型ドデシルベンゼンスルホン酸352gを用いた以
外は、実施例1と同様に3,4−エチレンジオキシチオ
フェンの化学酸化重合を行い、得られたポリエチレンジ
オキシチオフェンについて電導度を測定した。その結果
を後記の表1に示す。
Comparative Example 2 Instead of the methoxybenzenesulfonic acid obtained in Synthesis Example 1,
Chemical oxidative polymerization of 3,4-ethylenedioxythiophene was performed in the same manner as in Example 1 except that 352 g of branched dodecylbenzenesulfonic acid was used, and the electrical conductivity of the obtained polyethylenedioxythiophene was measured. The results are shown in Table 1 below.

【0033】比較例3 合成例1で得たメトキシベンゼンスルホン酸に代えて、
ナフタレンスルホン酸225gを用いた以外は、実施例
1と同様に3,4−エチレンジオキシチオフェンの化学
酸化重合を行い、得られたポリエチレンジオキシチオフ
ェンについて電導度を測定した。その結果を後記の表1
に示す。
Comparative Example 3 Instead of the methoxybenzenesulfonic acid obtained in Synthesis Example 1,
Chemical oxidative polymerization of 3,4-ethylenedioxythiophene was performed in the same manner as in Example 1 except that 225 g of naphthalenesulfonic acid was used, and the electrical conductivity of the obtained polyethylenedioxythiophene was measured. The results are shown in Table 1 below.
Shown in.

【0034】上記実施例1〜3および比較例1〜3で得
たポリエチレンジオキシチオフェンの電導度を表1にド
ーパントと共に示す。
The electrical conductivity of the polyethylenedioxythiophenes obtained in Examples 1 to 3 and Comparative Examples 1 to 3 is shown in Table 1 together with the dopant.

【0035】[0035]

【表1】 [Table 1]

【0036】表1に示すように、実施例1〜3のポリエ
チレンジオキシチオフェンは、比較例1〜3のポリエチ
レンジオキシチオフェンに比べて、電導度が高く、導電
性が優れていた。
As shown in Table 1, the polyethylenedioxythiophenes of Examples 1 to 3 were higher in electrical conductivity and excellent in conductivity than the polyethylenedioxythiophenes of Comparative Examples 1 to 3.

【0037】すなわち、メトキシベンゼンスルホン酸を
ドーパントとする実施例1のポリエチレンジオキシチオ
フェン、エトキシベンゼンスルホン酸をドーパントとす
る実施例2のポリエチレンジオキシチオフェンおよびメ
トキシナフタレンスルホン酸をドーパントとする実施例
3のポリエチレンジオキシチオフェンは、p−トルエン
スルホン酸をドーパントとする比較例1のポリエチレン
ジオキシチオフェン、分岐型ドデシルベンゼンスルホン
酸をドーパントとする比較例2のポリエチレンジオキシ
チオフェンおよびナフタレンスルホン酸をドーパントと
する比較例3のポリエチレンジオキシチオフェンより、
高い電導度を有していて、導電性が優れていた。
That is, polyethylenedioxythiophene of Example 1 using methoxybenzenesulfonic acid as a dopant, polyethylenedioxythiophene of Example 2 using ethoxybenzenesulfonic acid as a dopant, and Example 3 using methoxynaphthalenesulfonic acid as a dopant. The polyethylene dioxythiophene is a polyethylene dioxythiophene of Comparative Example 1 having p-toluenesulfonic acid as a dopant, and the polyethylenedioxythiophene and naphthalenesulfonic acid of Comparative Example 2 having a branched dodecylbenzenesulfonic acid as a dopant are dopants. From the polyethylene dioxythiophene of Comparative Example 3
It had high conductivity and excellent conductivity.

【0038】つぎに、上記実施例1〜3および比較例1
〜3のポリエチレンジオキシチオフェンについて高温貯
蔵による電導度の低下率を調べた。その結果を表2に示
す。その高温貯蔵試験の方法は次の通りである。
Next, the above Examples 1 to 3 and Comparative Example 1
With respect to polyethylenedioxythiophene of Nos. 3 to 3, the rate of decrease in conductivity due to high temperature storage was examined. The results are shown in Table 2. The method of the high temperature storage test is as follows.

【0039】高温貯蔵試験:上記実施例1〜3および比
較例1〜3のポリエチレンジオキシチオフェンのシート
について、前記のように電導度を測定した後、各シート
を130℃の恒温槽中に貯蔵し、経時的にシートを取り
出して電導度を測定して、高温貯蔵による電導度の低下
率を調べた。なお、電導度の低下率は、初期電導度値
(すなわち、貯蔵前に測定した電導度値)から貯蔵後の
電導度値を引いた時の差を初期電導度値で割り、パーセ
ント(%)で示した。これを式で表すと次の通りであ
る。
High temperature storage test: For the polyethylene dioxythiophene sheets of Examples 1 to 3 and Comparative Examples 1 to 3 above, after measuring the electric conductivity as described above, each sheet was stored in a constant temperature bath at 130 ° C. Then, the sheet was taken out with time and the electrical conductivity was measured to examine the rate of decrease in electrical conductivity due to high temperature storage. Note that the rate of decrease in conductivity is the difference between the initial conductivity value (that is, the conductivity value measured before storage) minus the conductivity value after storage divided by the initial conductivity value, and the percentage (%). Indicated by. This is expressed by the following formula.

【0040】 [0040]

【0041】[0041]

【表2】 [Table 2]

【0042】表2に示す結果から明らかなように、実施
例1〜3のポリエチレンジオキシチオフェンは、比較例
1〜3のポリエチレンジオキシチオフェンに比べて、2
4時間貯蔵後、48時間貯蔵後とも、電導度の低下が少
なく、耐熱性が優れていた。
As is clear from the results shown in Table 2, the polyethylenedioxythiophenes of Examples 1 to 3 are 2% less than the polyethylenedioxythiophenes of Comparative Examples 1 to 3.
Even after storage for 4 hours and storage for 48 hours, there was little decrease in electric conductivity and heat resistance was excellent.

【0043】すなわち、メトキシベンゼンスルホン酸を
ドーパントとする実施例1のポリエチレンジオキシチオ
フェン、エトキシベンゼンスルホン酸をドーパントとす
る実施例2のポリエチレンジオキシチオフェンおよびメ
トキシナフタレンスルホン酸をドーパントとする実施例
3のポリエチレンジオキシチオフェンは、p−トルエン
スルホン酸をドーパントとする比較例1のポリエチレン
ジオキシチオフェン、分岐型ドデシルベンゼンスルホン
酸をドーパントとする比較例2のポリエチレンジオキシ
チオフェンおよびナフタレンスルホン酸をドーパントと
する比較例3のポリエチレンジオキシチオフェンに比べ
て、高温貯蔵による電導度の低下が少なく、耐熱性が優
れていた。
That is, polyethylenedioxythiophene of Example 1 using methoxybenzenesulfonic acid as a dopant, polyethylenedioxythiophene of Example 2 using ethoxybenzenesulfonic acid as a dopant, and Example 3 using methoxynaphthalenesulfonic acid as a dopant. The polyethylene dioxythiophene is a polyethylene dioxythiophene of Comparative Example 1 having p-toluenesulfonic acid as a dopant, and the polyethylenedioxythiophene and naphthalenesulfonic acid of Comparative Example 2 having a branched dodecylbenzenesulfonic acid as a dopant are dopants. As compared with the polyethylene dioxythiophene of Comparative Example 3, the electric conductivity was less decreased by high temperature storage and the heat resistance was excellent.

【0044】つぎに、電解酸化重合により導電性高分子
を合成し、その評価をした例を実施例4〜5および比較
例4〜6として示す。
Next, examples in which a conductive polymer was synthesized by electrolytic oxidation polymerization and evaluated were shown as Examples 4 to 5 and Comparative Examples 4 to 6.

【0045】実施例4 まず、電解酸化重合の陽極として用いる導電性高分子で
コートしたセラミックプレートの作製を行った。すなわ
ち、酸化剤としてp−トルエンスルホン酸第二鉄塩を水
溶液状で用い、実施例1と同様の操作で化学酸化重合を
行うことにより、ポリエチレンジオキシチオフェンでコ
ートしたセラミックプレートを作製した。得られたセラ
ミックプレート(すなわち、ポリエチレンジオキシチオ
フェンでコートしたセラミックプレート)を陽極とし、
ステンレス鋼(SUS304)を陰極として以下に示す
ようにピロールの電解酸化重合を行った。
Example 4 First, a ceramic plate coated with a conductive polymer used as an anode for electrolytic oxidative polymerization was prepared. That is, a ferric p-toluenesulfonic acid salt was used as an oxidizing agent in the form of an aqueous solution, and chemical oxidative polymerization was performed in the same manner as in Example 1 to produce a ceramic plate coated with polyethylenedioxythiophene. The obtained ceramic plate (that is, a ceramic plate coated with polyethylenedioxythiophene) is used as an anode,
Using stainless steel (SUS304) as a cathode, electrolytic oxidation polymerization of pyrrole was performed as shown below.

【0046】前記合成例1で得たメトキシベンゼンスル
ホン酸のナトリウム塩をあらかじめ濃度が0.04mo
l/lになるように純水で濃度調整した溶液に、ピロー
ルを濃度が0.04mol/lになるように添加した。
そして、上記に示した電極を用い、1mA/cmの定電
流を70分かけて電解酸化重合することにより、メトキ
シベンゼンスルホン酸をドーパントとして取り込んだポ
リピロールを合成した。得られたポリピロールをエタノ
ールにより充分に洗浄し、150℃で1時間乾燥した
後、4探針方式の電導度測定器(三菱化学社製のMCP
−T600)により表面抵抗を測定した。その結果を後
記の表3に示す。
The sodium salt of methoxybenzenesulfonic acid obtained in Synthesis Example 1 was previously added to a concentration of 0.04 mo.
Pyrrole was added to a solution whose concentration was adjusted to 1 / l with pure water so that the concentration was 0.04 mol / l.
Then, a polypyrrole having methoxybenzenesulfonic acid incorporated as a dopant was synthesized by electrolytically oxidatively polymerizing a constant current of 1 mA / cm for 70 minutes using the above electrode. The obtained polypyrrole was thoroughly washed with ethanol, dried at 150 ° C. for 1 hour, and then a 4-probe conductivity measuring device (MCP manufactured by Mitsubishi Chemical Corporation).
-T600) was used to measure the surface resistance. The results are shown in Table 3 below.

【0047】実施例5 合成例1で得たメトキシベンゼンスルホン酸のナトリウ
ム塩に代えて、合成例3で得たメトキシナフタレンスル
ホン酸のナトリウム塩を用いた以外は、実施例4と同様
にピロールを電解酸化重合し、得られたポリピロールの
表面抵抗を測定した。その結果を後記の表3に示す。
Example 5 Pyrrole was prepared in the same manner as in Example 4 except that the sodium salt of methoxynaphthalenesulfonic acid obtained in Synthesis Example 3 was used in place of the sodium salt of methoxybenzenesulfonic acid obtained in Synthesis Example 1. The surface resistance of the polypyrrole obtained by electrolytic oxidative polymerization was measured. The results are shown in Table 3 below.

【0048】比較例4 合成例1で得たメトキシベンゼンスルホン酸のナトリウ
ム塩に代えて、p−トルエンスルホン酸のナトリウム塩
を用いた以外は、実施例4と同様にピロールを電解酸化
重合し、得られたポリピロールの表面抵抗を測定した。
その結果を後記の表3に示す。
Comparative Example 4 Pyrrole was electrolytically oxidatively polymerized in the same manner as in Example 4 except that the sodium salt of p-toluenesulfonic acid was used instead of the sodium salt of methoxybenzenesulfonic acid obtained in Synthesis Example 1. The surface resistance of the obtained polypyrrole was measured.
The results are shown in Table 3 below.

【0049】比較例5 合成例1で得たメトキシベンゼンスルホン酸のナトリウ
ム塩に代えて、分岐型ドデシルベンゼンスルホン酸のナ
トリウム塩を用いた以外は、実施例4と同様にピロール
を電解酸化重合し、得られたポリピロールの表面抵抗を
測定した。その結果を後記の表3に示す。
Comparative Example 5 Pyrrole was electrolytically oxidized and polymerized in the same manner as in Example 4 except that the sodium salt of branched dodecylbenzenesulfonic acid was used in place of the sodium salt of methoxybenzenesulfonic acid obtained in Synthesis Example 1. The surface resistance of the obtained polypyrrole was measured. The results are shown in Table 3 below.

【0050】比較例6 合成例1で得たメトキシベンゼンスルホン酸のナトリウ
ム塩に代えて、ブチルナフタレンスルホン酸のナトリウ
ム塩を用いた以外は、実施例3と同様にピロールを電解
酸化重合し、得られたポリピロールの表面抵抗を測定し
た。その結果を後記の表3に示す。
Comparative Example 6 Pyrrole was electrolytically oxidatively polymerized in the same manner as in Example 3 except that the sodium salt of butylnaphthalenesulfonic acid was used in place of the sodium salt of methoxybenzenesulfonic acid obtained in Synthesis Example 1. The surface resistance of the obtained polypyrrole was measured. The results are shown in Table 3 below.

【0051】上記実施例4〜5および比較例4〜6で得
たポリピロールの表面抵抗の測定結果を表3にそのドー
パントと共に示す。
The results of measuring the surface resistance of the polypyrroles obtained in Examples 4 to 5 and Comparative Examples 4 to 6 are shown in Table 3 together with their dopants.

【0052】[0052]

【表3】 [Table 3]

【0053】表3に示すように、実施例4〜5のポリピ
ロールは、比較例4〜6のポリピロールに比べて、表面
抵抗が小さく、高い電導度を有することが明らかであっ
た。すなわち、メトキシベンゼンスルホン酸をドーパン
トとする実施例4のポリピロールおよびメトキシナフタ
レンスルホン酸をドーパントとする実施例5のポリピロ
ールは、p−トルエンスルホン酸をドーパントとする比
較例4のポリピロール、分岐型ドデシルベンゼンスルホ
ン酸をドーパントとする比較例5のポリピロールおよび
ブチルナフタレンスルホン酸をドーパントとする比較例
6のポリピロールに比べて、表面抵抗が小さく、導電性
が優れていた。特に実施例4〜5のポリピロールは、ブ
チルナフタレンスルホン酸をドーパントとする比較例6
のポリピロールに比べて、表面抵抗が小さく、導電性が
優れていた。
As shown in Table 3, it was apparent that the polypyrroles of Examples 4 to 5 had a smaller surface resistance and a higher electric conductivity than the polypyrroles of Comparative Examples 4 to 6. That is, the polypyrrole of Example 4 having methoxybenzenesulfonic acid as a dopant and the polypyrrole of Example 5 having methoxynaphthalenesulfonic acid as a dopant are the polypyrrole of Comparative Example 4 having p-toluenesulfonic acid as a dopant and a branched dodecylbenzene. Compared to the polypyrrole of Comparative Example 5 using sulfonic acid as a dopant and the polypyrrole of Comparative Example 6 using butylnaphthalene sulfonic acid as a dopant, the surface resistance was small and the conductivity was excellent. Particularly, the polypyrroles of Examples 4 to 5 have a comparative example 6 in which butylnaphthalenesulfonic acid is used as a dopant.
The surface resistance was smaller and the conductivity was superior to that of the polypyrrole.

【0054】つぎに、上記実施例4〜5および比較例4
〜6のポリピロールについて、上記のように表面抵抗を
測定した後、前記実施例1のポリエチレンジオキシチオ
フェンなどと同様に高温貯蔵試験を行い、高温貯蔵によ
る表面抵抗の増加を調べた。その結果を表4に示す。
Next, the above Examples 4 to 5 and Comparative Example 4
After measuring the surface resistance of the polypyrroles Nos. 6 to 6 as described above, a high temperature storage test was conducted in the same manner as the polyethylenedioxythiophene of Example 1 to examine the increase in the surface resistance due to the high temperature storage. The results are shown in Table 4.

【0055】[0055]

【表4】 [Table 4]

【0056】表4に示すように、実施例4〜5のポリピ
ロールは、比較例4〜5のポリピロールに比べて、24
時間貯蔵後、48時間貯蔵後とも、表面抵抗が小さく、
耐熱性が優れていた。
As shown in Table 4, the polypyrroles of Examples 4 to 5 are 24 compared to the polypyrroles of Comparative Examples 4 to 5.
After storage for 48 hours, surface resistance is small,
The heat resistance was excellent.

【0057】すなわち、p−トルエンスルホン酸をドー
パントとする比較例4のポリピロールと分岐型ドデシル
ベンゼンスルホン酸をドーパントとする比較例5のポリ
ピロールは、前記表3に示すように、貯蔵前には、メト
キシベンゼンスルホン酸をドーパントとする実施例4の
ポリピロールやメトキシナフタレンスルホン酸をドーパ
ントとする実施例5のポリピロールに比べて、それほど
表面抵抗が大きくなかったが、高温で貯蔵した場合に
は、実施例4のポリピロールや実施例5のポリピロール
に比べて、表面抵抗が大きく増加して、耐熱性が劣って
いた。また、ブチルナフタレンスルホン酸をドーパント
とする比較例6のポリピロールは、高温貯蔵による表面
抵抗の増加はそれほど大きくなかったが、前記表3に示
したように、貯蔵前の表面抵抗が実施例4のポリピロー
ルや実施例5のポリピロールに比べて大きく、実施例4
のポリピロールや実施例5のポリピロールのように、優
れた導電性および優れた耐熱性を兼備することができな
かった。
That is, the polypyrrole of Comparative Example 4 containing p-toluenesulfonic acid as a dopant and the polypyrrole of Comparative Example 5 containing branched dodecylbenzenesulfonic acid as a dopant were, as shown in Table 3 above, The surface resistance was not so large as compared with the polypyrrole of Example 4 having methoxybenzenesulfonic acid as a dopant and the polypyrrole of Example 5 having methoxynaphthalenesulfonic acid as a dopant, but when stored at high temperature, As compared with the polypyrrole of Example 4 and the polypyrrole of Example 5, the surface resistance was greatly increased and the heat resistance was inferior. Further, the polypyrrole of Comparative Example 6 using butylnaphthalene sulfonic acid as a dopant did not show a significant increase in surface resistance due to high temperature storage, but as shown in Table 3 above, the surface resistance before storage was that of Example 4 Compared to the polypyrrole and the polypyrrole of Example 5, Example 4
Unlike the polypyrrole of Example 1 and the polypyrrole of Example 5, it was not possible to have both excellent conductivity and excellent heat resistance.

【0058】つぎに、導電性高分子を固体電解質として
用いた固体電解コンデンサを実施例6〜8および比較例
7〜9として示す。
Next, solid electrolytic capacitors using a conductive polymer as a solid electrolyte are shown as Examples 6 to 8 and Comparative Examples 7 to 9.

【0059】実施例6〜8および比較例7〜9 アルミニウム箔の表面をエッチング処理した後、化成処
理を行い、誘電体皮膜を形成した陽極箔と陰極箔として
のアルミニウム箔とをセパレータを介して巻回してコン
デンサ素子を作製した。そして、このコンデンサ素子の
セパレータ部分に3,4−エチレンジオキシチオフェン
を含浸させ、さらに実施例1〜3および比較例1〜3の
過程で得られたそれぞれのスルホン酸の第二鉄塩をそれ
ぞれ別々に含浸させ、60℃で2時間加熱することによ
りポリエチレンジオキシチオフェンからなる固体電解質
層を形成した。そして、それを外装材で外装して、固体
電解コンデンサを得た。
Examples 6 to 8 and Comparative Examples 7 to 9 After the surface of the aluminum foil was subjected to etching treatment, chemical conversion treatment was carried out, and the anode foil having the dielectric film formed thereon and the aluminum foil serving as the cathode foil were interposed via a separator. It wound and produced the capacitor element. Then, the separator portion of this capacitor element was impregnated with 3,4-ethylenedioxythiophene, and the respective ferric salts of sulfonic acid obtained in the processes of Examples 1 to 3 and Comparative Examples 1 to 3 were respectively added. The solid electrolyte layer made of polyethylenedioxythiophene was formed by separately impregnating and heating at 60 ° C. for 2 hours. Then, it was packaged with a packaging material to obtain a solid electrolytic capacitor.

【0060】このようにして作製した実施例6〜8およ
び比較例7〜9の固体電解コンデンサの等価直列抵抗
(ESR)の測定した。その結果をドーパントの種類と
共に表5に示す。
The equivalent series resistance (ESR) of the solid electrolytic capacitors of Examples 6 to 8 and Comparative Examples 7 to 9 thus produced were measured. The results are shown in Table 5 together with the type of dopant.

【0061】[0061]

【表5】 [Table 5]

【0062】表5に示すように、実施例6〜8の固体電
解コンデンサは、比較例7〜9の固体電解コンデンサに
比べて、ESR値が小さかった。
As shown in Table 5, the solid electrolytic capacitors of Examples 6 to 8 had a smaller ESR value than the solid electrolytic capacitors of Comparative Examples 7 to 9.

【0063】すなわち、メトキシベンゼンスルホン酸を
ドーパントとする導電性高分子を固体電解質として用い
た実施例6の固体電解コンデンサ、エトキシベンゼンス
ルホン酸をドーパントとする導電性高分子を固体電解質
として用いた実施例7の固体電解コンデンサおよびメト
キシナフタレンスルホン酸をドーパントとする導電性高
分子を固体電解質として用いた実施例8の固体電解コン
デンサは、p−トルエンスルホン酸をドーパントとする
導電性高分子を固体電解質として用いた比較例7の固体
電解コンデンサ、分岐型ドデシルベンゼンスルホン酸を
ドーパントとする導電性高分子を固体電解質として用い
た比較例8の固体電解コンデンサ、ナフタレンスルホン
酸をドーパントとする導電性高分子を固体電解質として
用いた比較例9の固体電解コンデンサに比べて、ESR
が低く、高温・高湿条件下における特性の信頼性が高か
った。
That is, a solid electrolytic capacitor of Example 6 using a conductive polymer having methoxybenzenesulfonic acid as a dopant and a conductive polymer having ethoxybenzenesulfonic acid as a dopant as a solid electrolyte. The solid electrolytic capacitor of Example 7 and the solid electrolytic capacitor of Example 8 using a conductive polymer having methoxynaphthalenesulfonic acid as a dopant as a solid electrolyte are the same as the conductive polymer having p-toluenesulfonic acid as a dopant. Used as a solid electrolytic capacitor of Comparative Example 7, a conductive polymer having a branched dodecylbenzenesulfonic acid as a dopant, a conductive polymer as a solid electrolyte, and a conductive polymer having naphthalenesulfonic acid as a dopant. Of Comparative Example 9 using as a solid electrolyte Compared to the body electrolytic capacitor, ESR
And the reliability of the characteristics was high under high temperature and high humidity conditions.

【0064】[0064]

【発明の効果】以上説明したように、本発明では、導電
性が優れ、かつ耐熱性が優れた導電性高分子を提供する
ことができ、また、その導電性高分子を固体電解質とし
て用いて高温・高湿条件下における信頼性の高い固体電
解コンデンサを提供することができた。
As described above, according to the present invention, it is possible to provide a conductive polymer having excellent conductivity and heat resistance, and using the conductive polymer as a solid electrolyte. It was possible to provide a solid electrolytic capacitor with high reliability under high temperature and high humidity conditions.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 北村 耕平 大阪市大正区船町1丁目3番47号 テイカ 株式会社内 Fターム(参考) 4J032 BA03 BA04 BA13 BA14 BB01 BB03 BB04 BB05 BC02 BC21 BC32 CG01 4J043 PA02 QB02 XA21 XA34 XB13 YB05 YB38 ZA44 ZB47 ZB49   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Kohei Kitamura             Takeka, 1-3-4, Funamachi, Taisho-ku, Osaka             Within the corporation F-term (reference) 4J032 BA03 BA04 BA13 BA14 BB01                       BB03 BB04 BB05 BC02 BC21                       BC32 CG01                 4J043 PA02 QB02 XA21 XA34 XB13                       YB05 YB38 ZA44 ZB47 ZB49

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 炭素数が1〜18のアルコキシル基を一
つ以上含有し、かつ一つ以上のスルホン基を含有するア
ルコキシベンゼンスルホン酸、アルコキシナフタレンス
ルホン酸およびアルコキシテトラリンスルホン酸から選
ばれる少なくとも一つ以上のスルホン酸をドーパントと
して含むことを特徴とする導電性高分子。
1. At least one selected from alkoxybenzene sulfonic acid, alkoxynaphthalene sulfonic acid, and alkoxy tetralin sulfonic acid containing at least one alkoxyl group having 1 to 18 carbon atoms and containing at least one sulfone group. A conductive polymer comprising one or more sulfonic acids as a dopant.
【請求項2】 導電性高分子合成用のモノマーが、ピロ
ール、チオフェン、アニリンおよびそれらの誘導体から
選ばれる少なくとも一つ以上である請求項1記載の導電
性高分子。
2. The conductive polymer according to claim 1, wherein the monomer for synthesizing the conductive polymer is at least one selected from pyrrole, thiophene, aniline and derivatives thereof.
【請求項3】 アルコキシル基の炭素数が1〜5である
請求項1記載の導電性高分子。
3. The conductive polymer according to claim 1, wherein the alkoxyl group has 1 to 5 carbon atoms.
【請求項4】 請求項1〜3に記載の導電性高分子を固
体電解質として用いたことを特徴とする固体電解コンデ
ンサ。
4. A solid electrolytic capacitor using the conductive polymer according to claim 1 as a solid electrolyte.
JP2001360189A 2001-11-27 2001-11-27 Conductive polymer and solid electrolytic capacitor using the same Expired - Lifetime JP4688125B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001360189A JP4688125B2 (en) 2001-11-27 2001-11-27 Conductive polymer and solid electrolytic capacitor using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001360189A JP4688125B2 (en) 2001-11-27 2001-11-27 Conductive polymer and solid electrolytic capacitor using the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008024632A Division JP4204061B2 (en) 2008-02-05 2008-02-05 Oxidizing agent and dopant for conductive polymer synthesis

Publications (2)

Publication Number Publication Date
JP2003160647A true JP2003160647A (en) 2003-06-03
JP4688125B2 JP4688125B2 (en) 2011-05-25

Family

ID=19171049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001360189A Expired - Lifetime JP4688125B2 (en) 2001-11-27 2001-11-27 Conductive polymer and solid electrolytic capacitor using the same

Country Status (1)

Country Link
JP (1) JP4688125B2 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005014692A1 (en) * 2003-08-11 2005-02-17 Tayca Corporation Conductive polymer and solid electrolytic capacitor using same
JP2005120363A (en) * 2003-09-25 2005-05-12 Showa Denko Kk pi-CONJUGATED COPOLYMER, MANUFACTURING METHOD THEREFOR AND CAPACITOR USING THE SAME
JP2006137940A (en) * 2004-10-13 2006-06-01 Showa Denko Kk Preparation process for conducting polymer
WO2006085601A1 (en) * 2005-02-08 2006-08-17 Tayca Corporation Dopant solution for electrocondctive polymer, oxidizing agent and concurrently dopant solution for electrocondctive polymer, electrocondctive composition and solid electrolytic capacitor
JP2007142070A (en) * 2005-11-17 2007-06-07 Tayca Corp Dopant solution for conductive polymer, oxidizing agent also serving as dopant for conductive polymer, conductive composition, solid electrolytic capacitor, and method of manufacturing same
WO2007142051A1 (en) * 2006-06-07 2007-12-13 Tayca Corporation Reaction accelerator for conductive polymer synthesis, conductive polymer and solid electrolytic capacitor
JP2008205405A (en) * 2007-02-22 2008-09-04 Sanyo Electric Co Ltd Method for manufacturing solid electrolytic capacitor
WO2009001707A1 (en) * 2007-06-26 2008-12-31 Tayca Corporation Substance capable of acting as oxidizing agent and dopant for synthesis of electrically conductive polymer, alcohol solution thereof, electrically conductive polymer, and solid electrolyte capacitor
JP2009059831A (en) * 2007-08-31 2009-03-19 Sanyo Electric Co Ltd Solid electrolytic capacitor
JP2009155263A (en) * 2007-12-26 2009-07-16 Tomiyama Pure Chemical Industries Ltd Method for producing iron (iii) aromatic sulfonate solution
JP2010031160A (en) * 2008-07-30 2010-02-12 Japan Carlit Co Ltd:The Oxidizer for producing conductive polymer, solid electrolytic condenser using the same, and production method thereof
JP2011100594A (en) * 2009-11-05 2011-05-19 Tayca Corp Conduction aid composition for lithium ion battery, method of manufacturing the same, electrode mixture composition for lithium ion battery, method of manufacturing the electrode mixture composition, and lithium ion battery
WO2011068026A1 (en) 2009-12-04 2011-06-09 テイカ株式会社 Conductive polymer and solid-electrolyte capacitor including same as solid electrolyte
JP2011146693A (en) * 2009-12-18 2011-07-28 Tayca Corp Solid electrolytic capacitor
US7990684B2 (en) 2008-04-21 2011-08-02 Tayca Corporation Dispersion liquid of a conductive composition, a conductive composition, and a solid electrolytic capacitor
WO2012023221A1 (en) 2010-08-19 2012-02-23 テイカ株式会社 Oxidant/dopant solution for producing conductive polymer, conductive polymer and solid electrolytic capacitor
KR20140016930A (en) 2011-05-12 2014-02-10 데이카 가부시키가이샤 Method for manufacturing solid electrolyte capacitor
KR20140057490A (en) 2011-09-06 2014-05-13 데이카 가부시키가이샤 Dispersion of electrically conductive polymer, and electrically conductive polymer and use thereof
KR20140107201A (en) 2011-12-19 2014-09-04 데이카 가부시키가이샤 Electrolyte capacitor, and method for producing same
US10049822B2 (en) 2013-09-11 2018-08-14 Tayca Corporation Monomer liquid for of conductive polymer production and a manufacturing method of an electrolyte capacitor using the same
US10208160B2 (en) 2014-02-27 2019-02-19 Tayca Corporation Oxidant dopant agent for conductive polymer production, and a solution thereof, and a conductive polymer prepared by using either of them, as well as an electrolyte capacitor using the conductive polymer as an electrolyte
WO2023054099A1 (en) 2021-09-29 2023-04-06 日本ケミコン株式会社 Solid electrolyte, solid electrolytic capacitor, electroconductive polymer dispersion, method for producing solid electrolyte, and method for producing electroconductive polymer dispersion

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100412104C (en) * 2003-08-11 2008-08-20 帝化株式会社 Conductive polymer and solid electrolytic capacitor using same
WO2005014692A1 (en) * 2003-08-11 2005-02-17 Tayca Corporation Conductive polymer and solid electrolytic capacitor using same
US7651639B2 (en) 2003-08-11 2010-01-26 Tayca Corporation Conductive polymer and solid electrolytic capacitor using the same
JP2005120363A (en) * 2003-09-25 2005-05-12 Showa Denko Kk pi-CONJUGATED COPOLYMER, MANUFACTURING METHOD THEREFOR AND CAPACITOR USING THE SAME
JP4535435B2 (en) * 2003-09-25 2010-09-01 昭和電工株式会社 PI CONJUGATED COPOLYMER, PROCESS FOR PRODUCING THE SAME, AND CAPACITOR USING THE COPOLYMER
JP2006137940A (en) * 2004-10-13 2006-06-01 Showa Denko Kk Preparation process for conducting polymer
US7651637B2 (en) 2005-02-08 2010-01-26 Tayca Corporation Dopant solution for an electroconductive polymer, an oxidant and dopant solution for an electroconductive polymer, an electroconductive composition and a solid electrolytic capacitor
KR101144526B1 (en) 2005-02-08 2012-05-11 엔이씨 도낀 가부시끼가이샤 Dopant solution for electroconductive polymer, oxidizing agent and concurrently dopant solution for electroconductive polymer, electroconductive composition and solid electrolytic capacitor
WO2006085601A1 (en) * 2005-02-08 2006-08-17 Tayca Corporation Dopant solution for electrocondctive polymer, oxidizing agent and concurrently dopant solution for electrocondctive polymer, electrocondctive composition and solid electrolytic capacitor
JP2007142070A (en) * 2005-11-17 2007-06-07 Tayca Corp Dopant solution for conductive polymer, oxidizing agent also serving as dopant for conductive polymer, conductive composition, solid electrolytic capacitor, and method of manufacturing same
US8262941B2 (en) 2006-06-07 2012-09-11 Tayca Corporation Reaction accelerator for synthesizing a conductive polymer, a conductive polymer, and a solid electrolytic capacitor
WO2007142051A1 (en) * 2006-06-07 2007-12-13 Tayca Corporation Reaction accelerator for conductive polymer synthesis, conductive polymer and solid electrolytic capacitor
JP2008205405A (en) * 2007-02-22 2008-09-04 Sanyo Electric Co Ltd Method for manufacturing solid electrolytic capacitor
KR101087902B1 (en) 2007-06-26 2011-11-30 데이카 가부시키가이샤 Substance capable of acting as oxidizing agent and dopant for synthesis of electrically conductive polymer, alcohol solution thereof, electrically conductive polymer, and solid electrolyte capacitor
CN101547956B (en) * 2007-06-26 2015-10-21 帝化株式会社 Electroconductive polymer synthesis oxygenant is held concurrently doping agent, its alcoholic solution, electroconductive polymer and solid electrolytic capacitor
WO2009001707A1 (en) * 2007-06-26 2008-12-31 Tayca Corporation Substance capable of acting as oxidizing agent and dopant for synthesis of electrically conductive polymer, alcohol solution thereof, electrically conductive polymer, and solid electrolyte capacitor
US8324341B2 (en) 2007-06-26 2012-12-04 Tayca Corporation Agent serving as oxidant and dopant for conductive polymer production, an alcohol solution thereof, a conductive polymer synthesized by using the same, and a solid electrolytic capacitor using the conductive polymer as a solid electrolyte
JP2009059831A (en) * 2007-08-31 2009-03-19 Sanyo Electric Co Ltd Solid electrolytic capacitor
JP2009155263A (en) * 2007-12-26 2009-07-16 Tomiyama Pure Chemical Industries Ltd Method for producing iron (iii) aromatic sulfonate solution
US7990684B2 (en) 2008-04-21 2011-08-02 Tayca Corporation Dispersion liquid of a conductive composition, a conductive composition, and a solid electrolytic capacitor
JP2010031160A (en) * 2008-07-30 2010-02-12 Japan Carlit Co Ltd:The Oxidizer for producing conductive polymer, solid electrolytic condenser using the same, and production method thereof
JP2011100594A (en) * 2009-11-05 2011-05-19 Tayca Corp Conduction aid composition for lithium ion battery, method of manufacturing the same, electrode mixture composition for lithium ion battery, method of manufacturing the electrode mixture composition, and lithium ion battery
WO2011068026A1 (en) 2009-12-04 2011-06-09 テイカ株式会社 Conductive polymer and solid-electrolyte capacitor including same as solid electrolyte
US8710177B2 (en) 2009-12-04 2014-04-29 Tayca Corporation Conductive polymer and a solid electrolytic capacitor using the same as a solid electrolyte
JP2011146693A (en) * 2009-12-18 2011-07-28 Tayca Corp Solid electrolytic capacitor
US8684576B2 (en) 2009-12-18 2014-04-01 Tayca Corporation Solid electrolytic capacitor
WO2012023221A1 (en) 2010-08-19 2012-02-23 テイカ株式会社 Oxidant/dopant solution for producing conductive polymer, conductive polymer and solid electrolytic capacitor
KR101139040B1 (en) 2010-08-19 2012-04-30 데이카 가부시키가이샤 Oxidizing agent and dopant solution for preparation of electrically conductive polymer, electrically conductive polymer, and solid electrolytic capacitor
US8426542B2 (en) 2010-08-19 2013-04-23 Tayca Corporation Oxidant and dopant solution for conductive polymer production, a conductive polymer and a solid electrolyte capacitor
KR20140016930A (en) 2011-05-12 2014-02-10 데이카 가부시키가이샤 Method for manufacturing solid electrolyte capacitor
US9362055B2 (en) 2011-05-12 2016-06-07 Tayca Corporation Method for manufacturing solid electrolytic capacitor
US9953767B2 (en) 2011-09-06 2018-04-24 Tayca Corporation Conductive polymer dispersion liquid, a conductive polymer, and use thereof
KR20160034431A (en) 2011-09-06 2016-03-29 데이카 가부시키가이샤 Dispersion of electrically conductive polymer, and electrically conductive polymer and use thereof
US9460860B2 (en) 2011-09-06 2016-10-04 Tayca Corporation Dispersion of electrically conductive polymer, and electrically conductive polymer and use thereof
KR20140057490A (en) 2011-09-06 2014-05-13 데이카 가부시키가이샤 Dispersion of electrically conductive polymer, and electrically conductive polymer and use thereof
KR20140107201A (en) 2011-12-19 2014-09-04 데이카 가부시키가이샤 Electrolyte capacitor, and method for producing same
US9589738B2 (en) 2011-12-19 2017-03-07 Tayca Corporation Solid electrolyte capacitor and a method for manufacturing the same
US10049822B2 (en) 2013-09-11 2018-08-14 Tayca Corporation Monomer liquid for of conductive polymer production and a manufacturing method of an electrolyte capacitor using the same
US10208160B2 (en) 2014-02-27 2019-02-19 Tayca Corporation Oxidant dopant agent for conductive polymer production, and a solution thereof, and a conductive polymer prepared by using either of them, as well as an electrolyte capacitor using the conductive polymer as an electrolyte
US10336859B2 (en) 2014-02-27 2019-07-02 Tayca Corporation Method for preparing an electrolyte capacitor
WO2023054099A1 (en) 2021-09-29 2023-04-06 日本ケミコン株式会社 Solid electrolyte, solid electrolytic capacitor, electroconductive polymer dispersion, method for producing solid electrolyte, and method for producing electroconductive polymer dispersion

Also Published As

Publication number Publication date
JP4688125B2 (en) 2011-05-25

Similar Documents

Publication Publication Date Title
JP4688125B2 (en) Conductive polymer and solid electrolytic capacitor using the same
JP5191171B2 (en) Dispersant and dopant for conductive polymer synthesis, conductive polymer synthesized using the same, conductive composition containing the conductive polymer, dispersion of the conductive polymer or conductive composition, and the above Application of conductive polymer or conductive composition
JP4342607B2 (en) Oxidizing agent and dopant for conductive polymer synthesis, alcohol solution thereof, conductive polymer and solid electrolytic capacitor
JP4454041B2 (en) Dispersion liquid of conductive composition, conductive composition and use thereof
CN102140176B (en) Conductive polymer suspension and method for producing the same, conductive polymer material, and solid electrolytic capacitor and method for producing the same
JP4454042B2 (en) Dispersion liquid of conductive composition, conductive composition, and solid electrolytic capacitor
JP5093915B2 (en) Solid electrolytic capacitor
JP4454029B2 (en) Conductive polymer and solid electrolytic capacitor using the same
JP3909666B2 (en) Conductive polymer and solid electrolytic capacitor using the same
JP2012169393A (en) Solid electrolytic capacitor
JP4330160B2 (en) Oxidizing agent / dopant for conductive polymer synthesis, alcohol solution thereof, conductive polymer synthesized using them, and solid electrolytic capacitor using the conductive polymer as solid electrolyte
WO2013181165A2 (en) Conductive polymer for solid electrolytic capacitor
JP2605596B2 (en) Conductive polymer film and method for producing the same, conductive polymer compound solution, and solid electrolytic capacitor and method for producing the same
JP4204061B2 (en) Oxidizing agent and dopant for conductive polymer synthesis
JP4565522B2 (en) Method for producing conductive polymer dispersion, conductive polymer dispersion, conductive polymer and use thereof
JP4338181B2 (en) Solid electrolytic capacitor
JP4129961B2 (en) Oxidizing agent for producing conductive polymer and method for producing the same
JP3736275B2 (en) Conductive composition and method for producing the same
JP2001163960A (en) Method for preparing electrically conductive polymer material and solid electrolytic capacitor
JP4986062B2 (en) Manufacturing method of solid electrolytic capacitor
JP2002138135A (en) Oxidizer for producing electroconductive polymer and electroconductive polymer
JP2002138136A (en) Oxidizer for producing electroconductive polymer
JP4443207B2 (en) Conductive polymer and solid electrolytic capacitor
JP2004307479A (en) 3, 4-alkylene dioxythiophene diol, method for producing the same, use of the same, electroconductive oligomer and polymer having structural unit derived from the same, use of the oligomer and polymer, and intermediate in process of diol production
JP5062694B2 (en) Oxidizing agent for producing conductive polymer, solid electrolytic capacitor using the same, and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070326

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070910

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071031

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080205

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110210

R150 Certificate of patent or registration of utility model

Ref document number: 4688125

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term