JP3909666B2 - Conductive polymer and solid electrolytic capacitor using the same - Google Patents

Conductive polymer and solid electrolytic capacitor using the same Download PDF

Info

Publication number
JP3909666B2
JP3909666B2 JP2001346853A JP2001346853A JP3909666B2 JP 3909666 B2 JP3909666 B2 JP 3909666B2 JP 2001346853 A JP2001346853 A JP 2001346853A JP 2001346853 A JP2001346853 A JP 2001346853A JP 3909666 B2 JP3909666 B2 JP 3909666B2
Authority
JP
Japan
Prior art keywords
acid
conductive polymer
conductivity
dopant
solid electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001346853A
Other languages
Japanese (ja)
Other versions
JP2003158043A (en
Inventor
正明 戸澤
良介 杉原
隆生 都築
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tayca Corp
Original Assignee
Tayca Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tayca Corp filed Critical Tayca Corp
Priority to JP2001346853A priority Critical patent/JP3909666B2/en
Publication of JP2003158043A publication Critical patent/JP2003158043A/en
Application granted granted Critical
Publication of JP3909666B2 publication Critical patent/JP3909666B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、導電性高分子およびその導電性高分子を固体電解質として用いた固体電解コンデンサに関する。
【0002】
【従来の技術】
導電性高分子は、その高い導電性により、アルミニウムコンデンサ、タンタルコンデンサなどの固体電解コンデンサの固体電解質などに用いられている。
【0003】
そのような用途における導電性高分子としては、ピロール、チオフェン、アニリンまたはそれらの誘導体を化学酸化重合または電解酸化重合することによって合成したものが用いられている。
【0004】
酸化重合を行う際のドーパントには、主に有機スルホン酸が用いられ、それらの中でも特に芳香族スルホン酸が多用されている。
【0005】
しかしながら、芳香族スルホン酸の出発材料であるアルキルベンゼンのアルキル鎖は、長鎖の場合、混合アルキルであって単一化合物として一定していないので、得られる導電性高分子の導電性がばらつく原因となる。例えば、ドデシルベンゼンスルホン酸(分子量326)のように単一分子量であっても、構造異性体の存在が電気特性に影響する。また、長鎖アルキル基を有する長鎖型芳香族スルホン酸は、分子サイズが大きいため、ドーピングしづらく、結果として初期重合段階では充分な導電性が得られない。
【0006】
一方、短鎖型芳香族スルホン酸、例えばベンゼンスルホン酸(分子量158)やトルエンスルホン酸(分子量172)は、分子サイズが小さく、ドーピングしやすいので初期重合段階では良好な導電性が得られるものの、その小さい分子サイズのため、脱ドーピングが起こりやすく、特に高温・高湿条件下で放置した場合には、顕著な導電性の低下が認められる。
【0007】
上記のような状況から、初期重合段階で良好な導電性が得られ、しかも高温・高湿条件下で放置しても大きな導電性の低下が認められず、導電性のばらつきが少ない導電性高分子を構成することができるドーパントが求められている。
【0008】
そこで、上記のような要求に応えるべく、導電性高分子用ドーパントとして、特公平6−82590号公報にナフタレンスルホン酸を用いることが提案されている。しかしながら、上記ナフタレンスルホン酸をドーパントとする高分子は、導電性および耐熱性の点において充分に満足できるものとはいえなかった。
【0009】
【発明が解決しようとする課題】
本発明は、上記のような従来技術の問題点を解決し、導電性が優れ、しかも耐熱性が優れた導電性高分子を提供し、かつ、それを固体電解質として用いて高温・高湿条件下での信頼性の高い固体電解コンデンサを提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明者らは、上記課題を解決するため鋭意研究を重ねた結果、一つ以上のスルホン酸を含有するテトラヒドロナフタレンスルホン酸、または一つ以上のスルホン基を含有するメチルテトラヒドロナフタレンスルホン酸をドーパントとして含む導電性高分子が、上記課題を解決できる特徴を有していることを見出した。
【0011】
【発明の実施の形態】
上記一つ以上のスルホン酸を含有するテトラヒドロナフタレンスルホン酸の具体例としては、例えば、テトラヒドロナフタレンモノスルホン酸、テトラヒドロナフタレンジスルホン酸などが挙げられるが、スルホン酸部分に関して、モノ体であるか、ジ体であるか、トリ体であるかは、それほどこだわる必要はなく、テトラヒドロナフタレンスルホン酸またはメチルテトラヒドロナフタレンスルホン酸の範疇に入っているものであればよく、例えば実施例で用いるようなモノスルホン酸を主体とし、ジスルホン酸とトリスルホン酸を少量含むものであってもよい。
【0012】
テトラヒドロナフタレン(テトラリン)は、ナフタレンが有する二つの芳香環のうちの一方が完全に水素化されたシクロアルキル環が、ベンゼン環に付加した構造を有しており、したがって、単環であるベンゼンや複員環であるナフタレンとは全く異なった化学的性質を有している。
【0013】
テトラヒドロナフタレンスルホン酸は、上記テトラヒドロナフタレンを濃硫酸と混合し、スルホン化した後、苛性ソーダなどのアルカリ剤で中和し、晶析分離などの精製処理をすることによって合成することができる。
【0014】
また、メチルテトラヒドロナフタレンスルホン酸は、例えば、合成例2に示すように、メタノールとテトラヒドロナフタレンと濃硫酸や発煙硫酸などを混合し、アルキル化およびスルホン化した後、精製処理をすることによって合成することができる。
【0015】
本発明において、導電性高分子合成用モノマーとしては、例えば、ピロール、チオフェン、アニリンおよびそれらの誘導体から選ばれる少なくとも1種を用いることができる。
【0016】
つぎに、本発明の導電性高分子の合成方法について説明する。
【0017】
本発明の導電性高分子の合成にあたっては、まず、ピロール、チオフェン、アニリンおよびそれらの誘導体から選ばれる少なくとも1種の導電性高分子合成用モノマーを、(メチル)テトラヒドロナフタレンスルホン酸をドーパントとして用いて、化学酸化重合または電解酸化重合を行う。
【0018】
化学酸化重合の場合、上記(メチル)テトラヒドロナフタレンスルホン酸を遷移金属塩、例えば第二鉄塩や第二銅塩とし、それらの金属塩と導電性高分子合成用モノマーとを、有機溶媒で特定濃度となるよう、それぞれ別途あらかじめ希釈しておき、溶液同士を混合して一定時間反応させた後、洗浄、乾燥して導電性高分子を合成することができる(ここで用いているスルホン酸塩は、その遷移金属成分が導電性高分子合成用モノマーの酸化重合剤として働き、残りのスルホン酸成分は高分子マトリックス中に含有され、いわゆるドーパントの役割を果たす)。上記重合に際して用いる有機溶媒としては、例えばメタノール、エタノール、n−プロパノール、n−ブタノールなどが挙げられ、洗浄の際にも上記溶媒のいずれかを用いればよい。
【0019】
電解酸化重合の場合、上記(メチル)テトラヒドロナフタレンスルホン酸またはその塩(ナトリウム、カリウム塩など)と、導電性高分子合成用モノマーとを、溶媒に溶解しておき、定電位または定電流条件下でモノマーの重合を進めて導電性高分子を合成する。この電解酸化重合に際して用いる溶媒としては、例えば、水、メタノール、エタノール、n−プロパノール、n−ブタノールなどが挙げられ、洗浄の際にも上記溶媒のいずれかを用いればよい。
【0020】
このようにして合成された導電性高分子は、導電性が優れ、しかも耐熱性が優れており、したがって、コンデンサ、バッテリー、帯電防止シート、耐腐食用塗料などの用途において有用である。
【0021】
【実施例】
以下に実施例を挙げて本発明をより具体的に説明する。ただし、本発明はそれらの実施例に例示のもののみに限定されることはない。また、実施例に先立ち、実施例の導電性高分子のドーパントとなる一つ以上のスルホン基を含有するテトラヒドロナフタレンスルホン酸や一つ以上のスルホン基を含有するメチルテトラヒドロナフタレンスルホン酸の合成を合成例1〜2として示す。なお、以下において、溶液や分散液などの濃度を示す%は質量基準によるものである。
【0022】
合成例1
温度80℃の条件下、攪拌しながら98%硫酸392gをテトラヒドロナフタレン580gに滴下した。上記硫酸の滴下後、反応液の温度を120℃に上げ、その温度を保ちながら4時間攪拌した。反応終了後、300gの蒸留水を加え、2層分離した下層部分のみを取り出し、蒸留による濃縮と水の添加を繰り返して、完全に未反応のテトラヒドロナフタレンを除去することにより、テトラヒドロナフタレンスルホン酸を得た。なお、このようにして得たテトラヒドロナフタレンスルホン酸は、モノスルホン酸が主体で、ジスルホン酸とトリスルホン酸を少量含んでいた。
【0023】
合成例2
テトラヒドロナフタレン245gとメタノール110gとを混合した。水冷下、この混合液を攪拌しながら、その中に98%硫酸975gをゆっくり添加した。その後、30分間攪拌した。さらに、28%発煙硫酸124gをゆっくり添加した後、55℃の条件下、4時間攪拌を続け反応させた。得られた反応液に、n−ブタノール300gと蒸留水500gを添加した後、2層分離した上層部分を取り出した。取り出した上層部分にさらにもう一度蒸留水500gを添加し、2層分離した上層を取り出すことにより、反応液から硫酸分を除去した。得られた反応液を蒸留により濃縮し、水を添加する操作をさらに6回繰り返すことによって、反応液の溶媒をn−ブタノールから水に置換した。さらに、未反応のテトラヒドロナフタレンおよびメチルテトラヒドロナフタレンを取り除くため、石油エーテル500mlを添加し、充分に攪拌した後、静置した。2層分離した下層を取り出し、蒸留により濃縮し、水を添加する操作を繰り返して非水溶性成分を取り除くことにより、メチルテトラヒドロナフタレンスルホン酸を得た。なお、このようにして得たメチルテトラヒドロナフタレンスルホン酸は、モノスルホン酸が主体で、ジスルホン酸とトリスルホン酸を少量含んでいた。
【0024】
実施例1
まず、上記合成例1で得たテトラヒドロナフタレンスルホン酸を水酸化第二鉄と反応させて、濃度50%のテトラヒドロナフタレンスルホン酸第二鉄塩水溶液を得た。なお、使用した水酸化第二鉄は次に示すように合成した。
【0025】
室温の条件下、1000mlの蒸留水にFe(SO ・8H Oを108.6g(0.2mol)溶解して調製した溶液を激しく攪拌しながら、その中に5mol/lの水酸化ナトリウム水溶液をゆっくりと添加してpH7に調整した後、遠心分離により上澄みを取り除いて水酸化第二鉄の沈殿を得た。余分の水溶性塩を取り除くため、4000mlの蒸留水に上記水酸化第二鉄の沈殿を分散させた後、遠心分離で上清を取り除く操作を2回繰り返した。得られた水酸化第二鉄の沈殿を500gのノルマルブタノールに分散させた。
【0026】
これとは別に、上記合成例1で得たテトラヒドロナフタレンスルホン酸229gをあらかじめ500gのノルマルブタノールに溶解しておき、その溶液中に上記方法で調製した水酸化第二鉄の分散液を添加した。室温下、12時間かきまぜて反応させた後、蒸留して濃度50%のテトラヒドロナフタレンスルホン酸第二鉄塩のノルマルブタノール液を得た。
【0027】
上記テトラヒドロナフタレンスルホン酸第二鉄塩を濃度が0.5mol/lになるようにn−ブタノールを添加して濃度調整した後、その溶液に3,4−エチレンジオキシチオフェンを濃度が0.5mol/lになるように添加し、充分にかき混ぜ、上記テトラヒドロナフタレンスルホン酸第二鉄塩を酸化剤として、3,4−エチレンジオキシチオフェンの化学酸化重合を開始させ、それを直ちに、3cm×5cmのセラミックプレート上に180μl滴下した。そして、そのセラミックプレート上で湿度55%、温度25℃で12時間重合した後、エタノール中に上記プレートをその上に形成された重合物膜と共に入れ、洗浄し、130℃で30分間乾燥した。乾燥後、上記プレートに1.5tの荷重をかけたまま5分間放置して、膜圧を均等にした後、その重合物であるポリエチレンジオキシチオフェンの電導度を4探針方式の電導度測定器(三菱化学社製のMCP−T600)により測定した。その結果を後記の表1に示す。
【0028】
実施例2
合成例1で得たテトラヒドロナフタレンスルホン酸に代えて、合成例2で得たメチルテトラヒドロナフタレンスルホン酸244gを用いた以外は、実施例1と同様に3,4−エチレンジオキシチオフェンの化学酸化重合を行い、得られたポリエチレンジオキシチオフェンについて電導度を測定した。その結果を後記の表1に示す。
【0029】
比較例1
合成例1で得たテトラヒドロナフタレンスルホン酸に代えて、p−トルエンスルホン酸186gを用いた以外は、実施例1と同様に3,4−エチレンジオキシチオフェンの化学酸化重合を行い、得られたポリエチレンジオキシチオフェンについて電導度を測定した。その結果を後記の表1に示す。
【0030】
比較例2
合成例1で得たテトラヒドロナフタレンスルホン酸に代えて、分岐型ドデシルベンゼンスルホン酸352gを用いた以外は、実施例1と同様に3,4−エチレンジオキシチオフェンの化学酸化重合を行い、得られたポリエチレンジオキシチオフェンについて電導度を測定した。その結果を後記の表1に示す。
【0031】
比較例3
合成例1で得たテトラヒドロナフタレンスルホン酸に代えて、ナフタレンスルホン酸225gを用いた以外は、実施例1と同様に3,4−エチレンジオキシチオフェンの化学酸化重合を行い、得られたポリエチレンジオキシチオフェンについて電導度を測定した。その結果を後記の表1に示す。
【0032】
比較例4
合成例1で得たテトラヒドロナフタレンスルホン酸に代えて、メチルナフタレンスルホン酸240gを用いた以外は、実施例1と同様に3,4−エチレンジオキシチオフェンの化学酸化重合を行い、得られたポリエチレンジオキシチオフェンについて電導度を測定した。その結果を後記の表1に示す。
【0033】
上記実施例1〜2および比較例1〜4で得たポリエチレンジオキシチオフェンの電導度を表1にそのドーパントと共に示す。
【0034】
【表1】

Figure 0003909666
【0035】
表1に示すように、実施例1〜2のポリエチレンジオキシチオフェンは、比較例1〜4のポリエチレンジオキシチオフェンに比べて、電導度が高く、導電性が優れていた。
【0036】
すなわち、テトラヒドロナフタレンスルホン酸をドーパントとする実施例1のポリエチレンジオキシチオフェンおよびメチルテトラヒドロナフタレンスルホン酸をドーパントとする実施例2のポリエチレンジオキシチオフェンは、p−トルエンスルホン酸をドーパントとする比較例1のポリエチレンジオキシチオフェン、分岐型ドデシルベンゼンスルホン酸をドーパントとする比較例2のポリエチレンジオキシチオフェン、ナフタレンスルホン酸をドーパントとする比較例3のポリエチレンジオキシチオフェンおよびメチルナフタレンスルホン酸をドーパントとする比較例4のポリエチレンジオキシチオフェンより、高い電導度を有していて、導電性が優れていた。
【0037】
つぎに、上記実施例1〜2および比較例1〜4のポリエチレンジオキシチオフェンについて高温貯蔵による電導度の低下率を調べた。その結果を表2に示す。その高温貯蔵試験の方法は次の通りである。
【0038】
高温貯蔵試験:
上記実施例1〜2および比較例1〜4のポリエチレンジオキシチオフェンのシートについて、前記のように電導度を測定した後、各シートを130℃の高温槽中に貯蔵し、経時的にシートを取り出して電導度を測定して、高温貯蔵による電導度の低下率を調べた。なお、電導度の低下率は、初期電導度値(すなわち、貯蔵前に測定した電導度値)から貯蔵後の電導度値を引いた時の差を初期電導度値で割り、パーセント(%)で示した。これを式で表すと次の通りである。
【0039】
初期電導度値−貯蔵後の電導度値
電導度の低下率(%)=──────────────────×100
初期電導度値
【0040】
【表2】
Figure 0003909666
【0041】
表2に示す結果から明らかなように、実施例1〜2のポリエチレンジオキシチオフェンは、比較例1〜4のポリエチレンジオキシチオフェンに比べて、24時間貯蔵後、48時間貯蔵後とも、電導度の低下が少なく、耐熱性が優れていた。
【0042】
すなわち、テトラヒドロナフタレンスルホン酸をドーパントとする実施例1のポリエチレンジオキシチオフェンおよびメチルテトラヒドロナフタレンスルホン酸をドーパントとする実施例2のポリエチレンジオキシチオフェンは、p−トルエンスルホン酸をドーパントとする比較例1のポリエチレンジオキシチオフェン、分岐型ドデシルベンゼンスルホン酸をドーパントとする比較例2のポリエチレンジオキシチオフェン、ナフタレンスルホン酸をドーパントとする比較例3のポリエチレンジオキシチオフェンおよびメチルナフタレンスルホン酸をドーパントとする比較例4のポリエチレンジオキシチオフェンに比べて、高温貯蔵による電導度の低下が少なく、耐熱性が優れていた。
【0043】
実施例3〜4および比較例5〜8
アルミニウム箔の表面をエッチング処理した後、化成処理を行い、誘電体皮膜を形成した陽極箔と陰極箔としてのアルミニウム箔とをセパレータを介して巻回してコンデンサ素子を作製した。そして、このコンデンサ素子のセパレータ部分に3,4−エチレンジオキシチオフェンを含浸させ、さらに実施例1〜2および比較例1〜4の過程で得られたそれぞれのスルホン酸第二鉄塩をそれぞれ別々に含浸させ、60℃で2時間加熱することによりポリエチレンジオキシチオフェンからなる固体電解質層を形成した。そして、それを外装材で外装して、固体電解コンデンサを得た。
【0044】
このようにして作製した実施例3〜4および比較例5〜8の固体電解コンデンサの等価直列抵抗(ESR)の測定した。その結果をドーパントの種類と共に表3に示す。
【0045】
【表3】
Figure 0003909666
【0046】
表3に示すように、実施例3〜4の固体電解コンデンサは、比較例5〜8の固体電解コンデンサに比べて、ESR値が小さかった。
【0047】
すなわち、テトラヒドロナフタレンスルホン酸をドーパントとする導電性高分子を固体電解質として用いた実施例3の固体電解コンデンサおよびメチルテトラヒドロナフタレンスルホン酸をドーパントとする導電性高分子を固体電解質として用いた実施例4の固体電解コンデンサは、p−トルエンスルホン酸をドーパントとする導電性高分子を固体電解質として用いた比較例5の固体電解コンデンサ、分岐型ドデシルベンゼンスルホン酸をドーパントとする導電性高分子を固体電解質として用いた比較例6の固体電解コンデンサ、ナフタレンスルホン酸をドーパントとする導電性高分子を固体電解質として用いた比較例7の固体電解コンデンサおよびメチルナフタレンスルホン酸をドーパントとする導電性高分子を固体電解質として用いた比較例8の固体電解コンデンサに比べて、ESRが小さく、高温・高湿条件下における特性の信頼性が高かった。
【0048】
【発明の効果】
以上説明したように、本発明では、導電性が優れ、かつ耐熱性が優れた導電性高分子を提供することができ、また、その導電性高分子を固体電解質として用いて高温・高湿条件下における信頼性の高い固体電解コンデンサを提供することができた。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a conductive polymer and a solid electrolytic capacitor using the conductive polymer as a solid electrolyte.
[0002]
[Prior art]
Conductive polymers are used for solid electrolytes of solid electrolytic capacitors such as aluminum capacitors and tantalum capacitors because of their high conductivity.
[0003]
As the conductive polymer in such applications, those synthesized by chemical oxidative polymerization or electrolytic oxidative polymerization of pyrrole, thiophene, aniline or their derivatives are used.
[0004]
An organic sulfonic acid is mainly used as a dopant for oxidative polymerization, and among them, aromatic sulfonic acid is frequently used.
[0005]
However, the alkyl chain of the alkylbenzene, which is the starting material of the aromatic sulfonic acid, is a mixed alkyl in the case of a long chain and is not constant as a single compound. Therefore, the conductivity of the resulting conductive polymer varies. Become. For example, even if it has a single molecular weight such as dodecylbenzenesulfonic acid (molecular weight 326), the presence of structural isomers affects the electrical properties. In addition, the long-chain aromatic sulfonic acid having a long-chain alkyl group has a large molecular size, so that it is difficult to dope, and as a result, sufficient conductivity cannot be obtained in the initial polymerization stage.
[0006]
On the other hand, short-chain aromatic sulfonic acids such as benzene sulfonic acid (molecular weight 158) and toluene sulfonic acid (molecular weight 172) are small in molecular size and easy to be doped, so that good conductivity is obtained in the initial polymerization stage. Due to its small molecular size, dedoping is likely to occur, and a remarkable decrease in conductivity is observed particularly when left under high temperature and high humidity conditions.
[0007]
From the above situation, good conductivity can be obtained in the initial polymerization stage, and even if it is left under high temperature and high humidity conditions, there is no significant decrease in conductivity, and there is little variation in conductivity. There is a need for dopants that can constitute molecules.
[0008]
Therefore, in order to meet the above requirements, it has been proposed to use naphthalene sulfonic acid in Japanese Patent Publication No. 6-82590 as a dopant for a conductive polymer. However, the polymer using naphthalenesulfonic acid as a dopant has not been sufficiently satisfactory in terms of conductivity and heat resistance.
[0009]
[Problems to be solved by the invention]
The present invention solves the problems of the prior art as described above, provides a conductive polymer having excellent conductivity and excellent heat resistance, and using it as a solid electrolyte under high temperature and high humidity conditions An object of the present invention is to provide a solid electrolytic capacitor having high reliability below.
[0010]
[Means for Solving the Problems]
As a result of intensive studies in order to solve the above problems, the present inventors have found that tetrahydronaphthalenesulfonic acid containing one or more sulfonic acids or methyltetrahydronaphthalenesulfonic acid containing one or more sulfone groups is a dopant. It has been found that the conductive polymer contained as has characteristics that can solve the above problems.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Specific examples of the tetrahydronaphthalene sulfonic acid containing one or more sulfonic acids include, for example, tetrahydronaphthalene monosulfonic acid, tetrahydronaphthalenedisulfonic acid, and the like. It is not necessary to be particular about whether it is a isomer or a tri-isomer, and it may be in the category of tetrahydronaphthalene sulfonic acid or methyl tetrahydronaphthalene sulfonic acid. For example, monosulfonic acid as used in the examples The main component may be a small amount of disulfonic acid and trisulfonic acid.
[0012]
Tetrahydronaphthalene (tetralin) has a structure in which a cycloalkyl ring in which one of two aromatic rings of naphthalene is completely hydrogenated is added to a benzene ring. It has completely different chemical properties from naphthalene, which is a double-membered ring.
[0013]
Tetrahydronaphthalenesulfonic acid can be synthesized by mixing the above tetrahydronaphthalene with concentrated sulfuric acid, sulfonating it, neutralizing it with an alkaline agent such as caustic soda, and performing purification treatment such as crystallization separation.
[0014]
Further, methyltetrahydronaphthalene sulfonic acid is synthesized, for example, by mixing methanol, tetrahydronaphthalene, concentrated sulfuric acid, fuming sulfuric acid, etc., alkylating and sulfonating, and then purifying as shown in Synthesis Example 2. be able to.
[0015]
In the present invention, as the conductive polymer synthesis monomer, for example, at least one selected from pyrrole, thiophene, aniline, and derivatives thereof can be used.
[0016]
Next, a method for synthesizing the conductive polymer of the present invention will be described.
[0017]
In the synthesis of the conductive polymer of the present invention, first, at least one monomer for synthesizing a conductive polymer selected from pyrrole, thiophene, aniline and derivatives thereof is used as a dopant with (methyl) tetrahydronaphthalenesulfonic acid. Then, chemical oxidation polymerization or electrolytic oxidation polymerization is performed.
[0018]
In the case of chemical oxidative polymerization, the above (methyl) tetrahydronaphthalene sulfonic acid is used as a transition metal salt, for example, a ferric salt or a cupric salt, and the metal salt and the monomer for synthesizing a conductive polymer are specified with an organic solvent. In order to obtain a concentration, the conductive polymer can be synthesized by diluting separately in advance, mixing the solutions and reacting for a certain period of time, washing and drying (the sulfonate used here) The transition metal component functions as an oxidative polymerization agent for the monomer for synthesizing the conductive polymer, and the remaining sulfonic acid component is contained in the polymer matrix and serves as a so-called dopant). Examples of the organic solvent used for the polymerization include methanol, ethanol, n-propanol, and n-butanol. Any of the above solvents may be used for washing.
[0019]
In the case of electrolytic oxidation polymerization, the above (methyl) tetrahydronaphthalenesulfonic acid or a salt thereof (sodium, potassium salt, etc.) and a monomer for synthesizing a conductive polymer are dissolved in a solvent, and are subjected to constant potential or constant current conditions. The polymerization of the monomer proceeds to synthesize a conductive polymer. Examples of the solvent used in the electrolytic oxidation polymerization include water, methanol, ethanol, n-propanol, and n-butanol. Any of the above solvents may be used in the washing.
[0020]
The conductive polymer synthesized in this way has excellent conductivity and heat resistance, and is therefore useful in applications such as capacitors, batteries, antistatic sheets, and anticorrosion paints.
[0021]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the examples illustrated in these examples. Also, prior to the examples, synthesis of tetrahydronaphthalenesulfonic acid containing one or more sulfone groups and methyltetrahydronaphthalenesulfonic acid containing one or more sulfone groups as the dopant of the conductive polymer of the examples was synthesized. It shows as Examples 1-2. In the following, “%” indicating the concentration of a solution or dispersion is based on mass.
[0022]
Synthesis example 1
Under a temperature of 80 ° C., 392 g of 98% sulfuric acid was added dropwise to 580 g of tetrahydronaphthalene with stirring. After dripping the sulfuric acid, the temperature of the reaction solution was raised to 120 ° C. and stirred for 4 hours while maintaining the temperature. After completion of the reaction, 300 g of distilled water is added, and only the lower layer part separated into two layers is taken out. Concentration by distillation and addition of water are repeated to completely remove unreacted tetrahydronaphthalene, thereby obtaining tetrahydronaphthalenesulfonic acid. Obtained. The tetrahydronaphthalenesulfonic acid thus obtained was mainly monosulfonic acid and contained a small amount of disulfonic acid and trisulfonic acid.
[0023]
Synthesis example 2
245 g of tetrahydronaphthalene and 110 g of methanol were mixed. While stirring the mixture under water cooling, 975 g of 98% sulfuric acid was slowly added thereto. Then, it stirred for 30 minutes. Furthermore, after adding 124 g of 28% fuming sulfuric acid slowly, the reaction was continued for 4 hours under the condition of 55 ° C. After adding 300 g of n-butanol and 500 g of distilled water to the obtained reaction solution, the upper layer part separated into two layers was taken out. Distilled water (500 g) was added once more to the taken-out upper layer portion, and the upper layer separated into two layers was taken out to remove the sulfuric acid content from the reaction solution. The reaction solution obtained was concentrated by distillation and the operation of adding water was further repeated 6 times to replace the solvent of the reaction solution from n-butanol to water. Furthermore, in order to remove unreacted tetrahydronaphthalene and methyltetrahydronaphthalene, 500 ml of petroleum ether was added, sufficiently stirred, and then allowed to stand. The lower layer separated into two layers was taken out, concentrated by distillation, and the operation of adding water was repeated to remove the water-insoluble component, thereby obtaining methyltetrahydronaphthalenesulfonic acid. The methyltetrahydronaphthalenesulfonic acid thus obtained was mainly monosulfonic acid and contained a small amount of disulfonic acid and trisulfonic acid.
[0024]
Example 1
First, the tetrahydronaphthalenesulfonic acid obtained in Synthesis Example 1 was reacted with ferric hydroxide to obtain an aqueous solution of tetrahydronaphthalenesulfonic acid ferric salt having a concentration of 50%. The ferric hydroxide used was synthesized as follows.
[0025]
Under conditions of room temperature, Fe 2 (SO 4 3 ・ 8H 2 A solution prepared by dissolving 108.6 g (0.2 mol) of O was vigorously stirred, and 5 mol / l aqueous sodium hydroxide solution was slowly added to adjust the pH to 7, and then the supernatant was removed by centrifugation. Removal of a ferric hydroxide precipitate was obtained. In order to remove excess water-soluble salts, the operation of dispersing the ferric hydroxide precipitate in 4000 ml of distilled water and then removing the supernatant by centrifugation was repeated twice. The obtained ferric hydroxide precipitate was dispersed in 500 g of normal butanol.
[0026]
Separately, 229 g of tetrahydronaphthalenesulfonic acid obtained in Synthesis Example 1 above was dissolved in 500 g of normal butanol in advance, and the dispersion of ferric hydroxide prepared by the above method was added to the solution. The reaction was stirred for 12 hours at room temperature and then distilled to obtain a normal butanol solution of tetrahydronaphthalenesulfonic acid ferric salt having a concentration of 50%.
[0027]
After adjusting the concentration of the tetrahydronaphthalenesulfonic acid ferric salt by adding n-butanol to a concentration of 0.5 mol / l, 3,4-ethylenedioxythiophene was added to the solution at a concentration of 0.5 mol. / L and mixed well, and using the tetrahydronaphthalenesulfonic acid ferric salt as an oxidizing agent, the chemical oxidative polymerization of 3,4-ethylenedioxythiophene is started, which is immediately 3 cm × 5 cm 180 μl was dropped on the ceramic plate. Then, after polymerizing on the ceramic plate at a humidity of 55% and a temperature of 25 ° C. for 12 hours, the plate was placed in ethanol together with the polymer film formed thereon, washed, and dried at 130 ° C. for 30 minutes. After drying, the plate is allowed to stand for 5 minutes while applying a load of 1.5 t to equalize the film pressure, and then the conductivity of polyethylene dioxythiophene, which is the polymer, is measured using a 4-probe method. Measured with an instrument (MCP-T600 manufactured by Mitsubishi Chemical Corporation). The results are shown in Table 1 below.
[0028]
Example 2
Chemical oxidative polymerization of 3,4-ethylenedioxythiophene in the same manner as in Example 1 except that 244 g of methyltetrahydronaphthalenesulfonic acid obtained in Synthesis Example 2 was used instead of tetrahydronaphthalenesulfonic acid obtained in Synthesis Example 1. The electrical conductivity of the obtained polyethylenedioxythiophene was measured. The results are shown in Table 1 below.
[0029]
Comparative Example 1
A chemical oxidative polymerization of 3,4-ethylenedioxythiophene was carried out in the same manner as in Example 1 except that 186 g of p-toluenesulfonic acid was used instead of tetrahydronaphthalenesulfonic acid obtained in Synthesis Example 1. Electrical conductivity was measured for polyethylenedioxythiophene. The results are shown in Table 1 below.
[0030]
Comparative Example 2
A chemical oxidative polymerization of 3,4-ethylenedioxythiophene was carried out in the same manner as in Example 1 except that 352 g of branched dodecylbenzenesulfonic acid was used instead of tetrahydronaphthalenesulfonic acid obtained in Synthesis Example 1. The electrical conductivity of polyethylenedioxythiophene was measured. The results are shown in Table 1 below.
[0031]
Comparative Example 3
In place of the tetrahydronaphthalenesulfonic acid obtained in Synthesis Example 1, 225 g of naphthalenesulfonic acid was used, except that chemical oxidation polymerization of 3,4-ethylenedioxythiophene was performed in the same manner as in Example 1, and the obtained polyethylene di The conductivity was measured for oxythiophene. The results are shown in Table 1 below.
[0032]
Comparative Example 4
Polyethylene obtained by chemical oxidation polymerization of 3,4-ethylenedioxythiophene in the same manner as in Example 1 except that 240 g of methylnaphthalenesulfonic acid was used instead of tetrahydronaphthalenesulfonic acid obtained in Synthesis Example 1. The conductivity was measured for dioxythiophene. The results are shown in Table 1 below.
[0033]
The electrical conductivity of the polyethylenedioxythiophene obtained in Examples 1-2 and Comparative Examples 1-4 is shown in Table 1 together with the dopant.
[0034]
[Table 1]
Figure 0003909666
[0035]
As shown in Table 1, the polyethylene dioxythiophenes of Examples 1-2 were higher in electrical conductivity and superior in conductivity than the polyethylene dioxythiophenes of Comparative Examples 1-4.
[0036]
That is, the polyethylenedioxythiophene of Example 1 using tetrahydronaphthalenesulfonic acid as a dopant and the polyethylenedioxythiophene of Example 2 using methyltetrahydronaphthalenesulfonic acid as a dopant are comparative examples 1 using p-toluenesulfonic acid as a dopant. Comparison of Polyethylenedioxythiophene and Branched Dodecylbenzenesulfonic Acid in Comparative Example 2 Using Polyethylenedioxythiophene in Comparative Example 2 and Naphthalenesulfonic Acid as a Dopant in Comparative Example 3 Polyethylenedioxythiophene and Methylnaphthalenesulfonic Acid as a Dopant It had higher conductivity than the polyethylene dioxythiophene of Example 4 and was excellent in conductivity.
[0037]
Next, the rate of decrease in electrical conductivity due to high-temperature storage was examined for the polyethylene dioxythiophenes of Examples 1-2 and Comparative Examples 1-4. The results are shown in Table 2. The method of the high temperature storage test is as follows.
[0038]
High temperature storage test:
About the sheet | seat of the polyethylene dioxythiophene of the said Examples 1-2 and Comparative Examples 1-4, after measuring an electrical conductivity as mentioned above, each sheet | seat is stored in a 130 degreeC high temperature tank, and a sheet | seat is time-dependent. The electrical conductivity was taken out and measured to examine the rate of decrease in electrical conductivity due to high temperature storage. Note that the rate of decrease in conductivity is calculated by dividing the difference when the conductivity value after storage is subtracted from the initial conductivity value (ie, the conductivity value measured before storage) by the initial conductivity value. It showed in. This is expressed as follows.
[0039]
Initial conductivity value-Conductivity value after storage Conductivity decrease rate (%) = ────────────────── × 100
Initial conductivity value [0040]
[Table 2]
Figure 0003909666
[0041]
As is clear from the results shown in Table 2, the polyethylene dioxythiophenes of Examples 1 and 2 are more conductive than the polyethylene dioxythiophenes of Comparative Examples 1 to 4 after 24 hours of storage and 48 hours of storage. The heat resistance was excellent.
[0042]
That is, the polyethylenedioxythiophene of Example 1 using tetrahydronaphthalenesulfonic acid as a dopant and the polyethylenedioxythiophene of Example 2 using methyltetrahydronaphthalenesulfonic acid as a dopant are comparative examples 1 using p-toluenesulfonic acid as a dopant. Comparison of Polyethylenedioxythiophene and Branched Dodecylbenzenesulfonic Acid in Comparative Example 2 Using Polyethylenedioxythiophene in Comparative Example 2 and Naphthalenesulfonic Acid as a Dopant in Comparative Example 3 Polyethylenedioxythiophene and Methylnaphthalenesulfonic Acid as a Dopant Compared with the polyethylenedioxythiophene of Example 4, there was little decrease in electrical conductivity due to high-temperature storage, and heat resistance was excellent.
[0043]
Examples 3-4 and Comparative Examples 5-8
After etching the surface of the aluminum foil, a chemical conversion treatment was performed, and an anode foil on which a dielectric film was formed and an aluminum foil as a cathode foil were wound through a separator to produce a capacitor element. And the separator part of this capacitor element is impregnated with 3,4-ethylenedioxythiophene, and each of the ferric sulfonic acid salts obtained in the process of Examples 1-2 and Comparative Examples 1-4 is separately provided. And a solid electrolyte layer made of polyethylene dioxythiophene was formed by heating at 60 ° C. for 2 hours. And it was armored with an exterior material to obtain a solid electrolytic capacitor.
[0044]
The equivalent series resistance (ESR) of the solid electrolytic capacitors of Examples 3 to 4 and Comparative Examples 5 to 8 thus manufactured was measured. The results are shown in Table 3 together with the type of dopant.
[0045]
[Table 3]
Figure 0003909666
[0046]
As shown in Table 3, the solid electrolytic capacitors of Examples 3 to 4 had smaller ESR values than the solid electrolytic capacitors of Comparative Examples 5 to 8.
[0047]
That is, Example 4 using a solid electrolytic capacitor of Example 3 using a conductive polymer having tetrahydronaphthalenesulfonic acid as a dopant as a solid electrolyte and Example 4 using a conductive polymer having methyltetrahydronaphthalenesulfonic acid as a dopant as a solid electrolyte The solid electrolytic capacitor is a solid electrolytic capacitor of Comparative Example 5 using a conductive polymer having p-toluenesulfonic acid as a dopant as a solid electrolyte, and a conductive polymer having branched dodecylbenzenesulfonic acid as a solid electrolyte. The solid electrolytic capacitor of Comparative Example 6 used as a solid electrolytic capacitor of Comparative Example 7 using a conductive polymer having naphthalene sulfonic acid as a dopant as a solid electrolyte and the conductive polymer having a dopant of methyl naphthalene sulfonic acid as a solid Ratio used as electrolyte Compared to a solid electrolytic capacitor of Example 8, ESR is small, higher reliability characteristics under high temperature and high humidity conditions.
[0048]
【The invention's effect】
As described above, the present invention can provide a conductive polymer having excellent conductivity and excellent heat resistance, and using the conductive polymer as a solid electrolyte under high temperature and high humidity conditions. The solid electrolytic capacitor with high reliability below could be provided.

Claims (3)

一つ以上のスルホン基を含有するテトラヒドロナフタレンスルホン酸、または一つ以上のスルホン基を含有するメチルテトラヒドロナフタレンスルホン酸から選ばれる、少なくとも一つ以上のスルホン酸をドーパントとして含む導電性高分子。Tetrahydronaphthalenesulfonate containing one or more sulphonic groups, or is selected from methylation tetrahydronaphthalenesulfonate containing one or more sulfonic groups, electroconductive polymer comprising at least one sulfonic acid as a dopant . 導電性高分子合成用のモノマーが、ピロール、チオフェン、アニリンおよびそれらの誘導体から選ばれる少なくとも一つ以上である請求項1記載の導電性高分子。 The conductive polymer according to claim 1, wherein the monomer for synthesizing the conductive polymer is at least one selected from pyrrole, thiophene, aniline, and derivatives thereof. 請求項1または2記載の導電性高分子を固体電解質として用いたことを特徴とする固体電解コンデンサ。 3. A solid electrolytic capacitor using the conductive polymer according to claim 1 as a solid electrolyte.
JP2001346853A 2001-09-10 2001-11-13 Conductive polymer and solid electrolytic capacitor using the same Expired - Lifetime JP3909666B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001346853A JP3909666B2 (en) 2001-09-10 2001-11-13 Conductive polymer and solid electrolytic capacitor using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001272842 2001-09-10
JP2001-272842 2001-09-10
JP2001346853A JP3909666B2 (en) 2001-09-10 2001-11-13 Conductive polymer and solid electrolytic capacitor using the same

Publications (2)

Publication Number Publication Date
JP2003158043A JP2003158043A (en) 2003-05-30
JP3909666B2 true JP3909666B2 (en) 2007-04-25

Family

ID=26621880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001346853A Expired - Lifetime JP3909666B2 (en) 2001-09-10 2001-11-13 Conductive polymer and solid electrolytic capacitor using the same

Country Status (1)

Country Link
JP (1) JP3909666B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060223976A1 (en) * 2003-08-11 2006-10-05 Tayca Corporation Conductive polymer and solid electrolytic capacitor using same
JP4632651B2 (en) * 2003-10-08 2011-02-16 三洋電機株式会社 Solid electrolytic capacitor
US7351358B2 (en) 2004-03-17 2008-04-01 E.I. Du Pont De Nemours And Company Water dispersible polypyrroles made with polymeric acid colloids for electronics applications
JP4315038B2 (en) 2004-03-29 2009-08-19 パナソニック株式会社 Solid electrolytic capacitor
TWI413995B (en) 2005-01-11 2013-11-01 Panasonic Corp Solid electrolytic capacitor and its manufacturing method
KR101144526B1 (en) 2005-02-08 2012-05-11 엔이씨 도낀 가부시끼가이샤 Dopant solution for electroconductive polymer, oxidizing agent and concurrently dopant solution for electroconductive polymer, electroconductive composition and solid electrolytic capacitor
US7722785B2 (en) * 2005-06-27 2010-05-25 E.I. Du Pont De Nemours And Company Electrically conductive polymer compositions
CN101460540B (en) 2006-06-07 2012-01-11 帝化株式会社 Catalyst for conductive polymer synthesis, conductive polymer and solid electrolytic capacitor
WO2008005413A2 (en) 2006-06-30 2008-01-10 E. I. Du Pont De Nemours And Company Stabilized compositions of conductive polymers and partially-fluorinated acid polymers
US20080191172A1 (en) 2006-12-29 2008-08-14 Che-Hsiung Hsu High work-function and high conductivity compositions of electrically conducting polymers
US20080251768A1 (en) 2007-04-13 2008-10-16 Che-Hsiung Hsu Electrically conductive polymer compositions
JP5327844B2 (en) * 2008-08-06 2013-10-30 日本カーリット株式会社 Electrolytic polymerization liquid for forming conductive polymer, conductive polymer, solid electrolytic capacitor using the same, and method for producing the same

Also Published As

Publication number Publication date
JP2003158043A (en) 2003-05-30

Similar Documents

Publication Publication Date Title
JP4688125B2 (en) Conductive polymer and solid electrolytic capacitor using the same
JP4342607B2 (en) Oxidizing agent and dopant for conductive polymer synthesis, alcohol solution thereof, conductive polymer and solid electrolytic capacitor
JP5191171B2 (en) Dispersant and dopant for conductive polymer synthesis, conductive polymer synthesized using the same, conductive composition containing the conductive polymer, dispersion of the conductive polymer or conductive composition, and the above Application of conductive polymer or conductive composition
JP3909666B2 (en) Conductive polymer and solid electrolytic capacitor using the same
JP4454041B2 (en) Dispersion liquid of conductive composition, conductive composition and use thereof
JP5093915B2 (en) Solid electrolytic capacitor
JP5745881B2 (en) Solid electrolytic capacitor
TWI470002B (en) And a method for producing a conductive film and a conductive film
JP4330160B2 (en) Oxidizing agent / dopant for conductive polymer synthesis, alcohol solution thereof, conductive polymer synthesized using them, and solid electrolytic capacitor using the conductive polymer as solid electrolyte
TW201038687A (en) Electroconductive coating composition and process for production of electroconductive coating film
WO2012137968A1 (en) Conductive polymer aqueous suspension, method for producing same, conductive organic material, solid electrolytic capacitor and method for manufacturing solid electrolytic capacitor
JP4338181B2 (en) Solid electrolytic capacitor
JP4204061B2 (en) Oxidizing agent and dopant for conductive polymer synthesis
JP4565522B2 (en) Method for producing conductive polymer dispersion, conductive polymer dispersion, conductive polymer and use thereof
JP2002138137A (en) Oxidizer for producing electroconductive polymer
JP4129961B2 (en) Oxidizing agent for producing conductive polymer and method for producing the same
JP4986062B2 (en) Manufacturing method of solid electrolytic capacitor
JP4740193B2 (en) Conductive polyaniline composition and method for producing the same
JP2002138135A (en) Oxidizer for producing electroconductive polymer and electroconductive polymer
JP2004307479A (en) 3, 4-alkylene dioxythiophene diol, method for producing the same, use of the same, electroconductive oligomer and polymer having structural unit derived from the same, use of the oligomer and polymer, and intermediate in process of diol production
TWI309237B (en) Fluorinated alkyl substituted-thieno[3,4-b]thiophene monomers and polymers therefrom
JP4443207B2 (en) Conductive polymer and solid electrolytic capacitor
JP5062694B2 (en) Oxidizing agent for producing conductive polymer, solid electrolytic capacitor using the same, and method for producing the same
JP5289212B2 (en) Oxidizing agent for producing conductive polymer, solid electrolytic capacitor using the same, and method for producing the same
JPH11209461A (en) Polymer having thiophene structure, composition comprising same, preparation of same and electroconductive material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040430

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061031

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070118

R150 Certificate of patent or registration of utility model

Ref document number: 3909666

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110202

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130202

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130202

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140202

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term