JP2003158043A - Conductive polymer and solid electrolytic capacitor using the same - Google Patents

Conductive polymer and solid electrolytic capacitor using the same

Info

Publication number
JP2003158043A
JP2003158043A JP2001346853A JP2001346853A JP2003158043A JP 2003158043 A JP2003158043 A JP 2003158043A JP 2001346853 A JP2001346853 A JP 2001346853A JP 2001346853 A JP2001346853 A JP 2001346853A JP 2003158043 A JP2003158043 A JP 2003158043A
Authority
JP
Japan
Prior art keywords
acid
conductive polymer
dopant
conductivity
solid electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001346853A
Other languages
Japanese (ja)
Other versions
JP3909666B2 (en
Inventor
Masaaki Tozawa
正明 戸澤
Ryosuke Sugihara
良介 杉原
Takao Tsuzuki
隆生 都築
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tayca Corp
Original Assignee
Tayca Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tayca Corp filed Critical Tayca Corp
Priority to JP2001346853A priority Critical patent/JP3909666B2/en
Publication of JP2003158043A publication Critical patent/JP2003158043A/en
Application granted granted Critical
Publication of JP3909666B2 publication Critical patent/JP3909666B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a conductive polymer with excellent conductivity and heat resistance, and to provide a solid electrolytic capacitor highly reliable under high-temperature and high-humidity conditions by using this conductive polymer as a solid electrolyte. SOLUTION: There is provided a conductive polymer by adding as a dopant at least one or more sulfonic acids selected from tetrahydronaphthalenesulfonic acid containing one or more sulfone groups or alkyltetrahydronaphthalenesulfonic acid containing one or more alkyl groups having 1-18 carbon atoms and one or more sulfone groups. As a monomer for synthesizing the conductive polymer, at least one or more selected from pyrrole, thiophene, and aniline and derivatives thereof are preferable. A solid electrolytic capacitor is provided by using this conductive polymer as a solid electrolyte.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、導電性高分子およ
びその導電性高分子を固体電解質として用いた固体電解
コンデンサに関する。
TECHNICAL FIELD The present invention relates to a conductive polymer and a solid electrolytic capacitor using the conductive polymer as a solid electrolyte.

【0002】[0002]

【従来の技術】導電性高分子は、その高い導電性によ
り、アルミニウムコンデンサ、タンタルコンデンサなど
の固体電解コンデンサの固体電解質などに用いられてい
る。
2. Description of the Related Art Due to its high conductivity, conductive polymers are used as solid electrolytes for solid electrolytic capacitors such as aluminum capacitors and tantalum capacitors.

【0003】そのような用途における導電性高分子とし
ては、ピロール、チオフェン、アニリンまたはそれらの
誘導体を化学酸化重合または電解酸化重合することによ
って合成したものが用いられている。
As conductive polymers for such applications, those synthesized by chemical oxidative polymerization or electrolytic oxidative polymerization of pyrrole, thiophene, aniline or their derivatives are used.

【0004】酸化重合を行う際のドーパントには、主に
有機スルホン酸が用いられ、それらの中でも特に芳香族
スルホン酸が多用されている。
Organic sulfonic acids are mainly used as dopants in the oxidative polymerization, and among them, aromatic sulfonic acids are often used.

【0005】しかしながら、芳香族スルホン酸の出発材
料であるアルキルベンゼンのアルキル鎖は、長鎖の場
合、混合アルキルであって単一化合物として一定してい
ないので、得られる導電性高分子の導電性がばらつく原
因となる。例えば、ドデシルベンゼンスルホン酸(分子
量326)のように単一分子量であっても、構造異性体
の存在が電気特性に影響する。また、長鎖アルキル基を
有する長鎖型芳香族スルホン酸は、分子サイズが大きい
ため、ドーピングしづらく、結果として初期重合段階で
は充分な導電性が得られない。
However, since the alkyl chain of alkylbenzene, which is the starting material for aromatic sulfonic acid, is a mixed alkyl and is not constant as a single compound in the case of a long chain, the conductivity of the resulting conductive polymer is low. It causes variation. For example, even with a single molecular weight such as dodecylbenzenesulfonic acid (molecular weight 326), the presence of structural isomers affects the electrical properties. In addition, the long-chain type aromatic sulfonic acid having a long-chain alkyl group has a large molecular size, so that it is difficult to dope, and as a result, sufficient conductivity cannot be obtained in the initial polymerization stage.

【0006】一方、短鎖型芳香族スルホン酸、例えばベ
ンゼンスルホン酸(分子量158)やトルエンスルホン
酸(分子量172)は、分子サイズが小さく、ドーピン
グしやすいので初期重合段階では良好な導電性が得られ
るものの、その小さい分子サイズのため、脱ドーピング
が起こりやすく、特に高温・高湿条件下で放置した場合
には、顕著な導電性の低下が認められる。
On the other hand, short-chain aromatic sulfonic acids such as benzene sulfonic acid (molecular weight 158) and toluene sulfonic acid (molecular weight 172) have a small molecular size and are easily doped, so that good conductivity is obtained in the initial polymerization stage. However, due to its small molecular size, dedoping is likely to occur, and particularly when left under high temperature and high humidity conditions, a remarkable decrease in conductivity is observed.

【0007】上記のような状況から、初期重合段階で良
好な導電性が得られ、しかも高温・高湿条件下で放置し
ても大きな導電性の低下が認められず、導電性のばらつ
きが少ない導電性高分子を構成することができるドーパ
ントが求められている。
From the above situation, good conductivity is obtained in the initial polymerization stage, and even if it is left under the condition of high temperature and high humidity, no significant decrease in conductivity is observed, and there is little variation in conductivity. There is a need for a dopant that can form a conductive polymer.

【0008】そこで、上記のような要求に応えるべく、
導電性高分子用ドーパントとして、特公平6−8259
0号公報にナフタレンスルホン酸を用いることが提案さ
れている。しかしながら、上記ナフタレンスルホン酸を
ドーパントとする高分子は、導電性および耐熱性の点に
おいて充分に満足できるものとはいえなかった。
Therefore, in order to meet the above demands,
As a dopant for conductive polymer, Japanese Patent Publication No. 6-8259
The use of naphthalene sulfonic acid has been proposed in JP-A-0. However, the polymer using naphthalene sulfonic acid as a dopant cannot be said to be sufficiently satisfactory in terms of conductivity and heat resistance.

【0009】[0009]

【発明が解決しようとする課題】本発明は、上記のよう
な従来技術の問題点を解決し、導電性が優れ、しかも耐
熱性が優れた導電性高分子を提供し、かつ、それを固体
電解質として用いて高温・高湿条件下での信頼性の高い
固体電解コンデンサを提供することを目的とする。
DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned problems of the prior art and provides a conductive polymer having excellent conductivity and heat resistance, which is solid-stated. It is an object of the present invention to provide a solid electrolytic capacitor which is used as an electrolyte and has high reliability under high temperature and high humidity conditions.

【0010】[0010]

【課題を解決するための手段】本発明者らは、上記課題
を解決するため鋭意研究を重ねた結果、一つ以上のスル
ホン酸を含有するテトラヒドロナフタレンスルホン酸、
または炭素数1〜18のアルキル基を一つ以上含有し、
かつ一つ以上のスルホン基を含有するアルキルテトラヒ
ドロナフタレンスルホン酸をドーパントとして含む導電
性高分子が、上記課題を解決できる特徴を有しているこ
とを見出した。
Means for Solving the Problems As a result of intensive studies to solve the above problems, the present inventors have found that tetrahydronaphthalene sulfonic acid containing at least one sulfonic acid,
Or containing one or more alkyl groups having 1 to 18 carbon atoms,
It has also been found that a conductive polymer containing, as a dopant, an alkyltetrahydronaphthalenesulfonic acid containing one or more sulfone groups has a feature capable of solving the above problems.

【0011】[0011]

【発明の実施の形態】上記一つ以上のスルホン酸を含有
するテトラヒドロナフタレンスルホン酸や炭素数1〜1
8のアルキル基を一つ以上含有し、かつ一つ以上のスル
ホン酸を含有するアルキルテトラヒドロナフタレンスル
ホン酸の具体例としては、例えば、テトラヒドロナフタ
レンモノスルホン酸、テトラヒドロナフタレンジスルホ
ン酸、ジイソプロピルテトラヒドロナフタレンモノスル
ホン酸、モノブチルテトラヒドロナフタレンジスルホン
酸、ジノニルテトラヒドロナフタレンモノスルホン酸な
どが挙げられるが、スルホン酸部分に関して、モノ体で
あるか、ジ体であるか、トリ体であるかは、それほどこ
だわる必要はなく、テトラヒドロナフタレンスルホン酸
またはアルキルテトラヒドロナフタレンスルホン酸の範
疇に入っているものであればよく、例えば実施例で用い
るようなモノスルホン酸を主体とし、ジスルホン酸とト
リスルホン酸を少量含むものであってもよい。
BEST MODE FOR CARRYING OUT THE INVENTION Tetrahydronaphthalenesulfonic acid containing one or more of the above-mentioned sulfonic acids and having 1 to 1 carbon atoms
Specific examples of the alkyl tetrahydronaphthalene sulfonic acid containing one or more alkyl groups of 8 and one or more sulfonic acids include, for example, tetrahydronaphthalene monosulfonic acid, tetrahydronaphthalene disulfonic acid, diisopropyl tetrahydronaphthalene monosulfone. Acid, monobutyl tetrahydronaphthalene disulfonic acid, dinonyl tetrahydronaphthalene monosulfonic acid, etc. can be mentioned, but regarding the sulfonic acid moiety, whether it is a mono body, a di body, or a tri body need not be so particular. However, it may be one that is in the category of tetrahydronaphthalene sulfonic acid or alkyltetrahydronaphthalene sulfonic acid, and for example, it is mainly composed of monosulfonic acid as used in the examples, and disulfonic acid and trisulfonic acid are small. It may include.

【0012】テトラヒドロナフタレン(テトラリン)
は、ナフタレンが有する二つの芳香環のうちの一方が完
全に水素化されたシクロアルキル環が、ベンゼン環に付
加した構造を有しており、したがって、単環であるベン
ゼンや複員環であるナフタレンとは全く異なった化学的
性質を有している。
Tetrahydronaphthalene (tetralin)
Has a structure in which a cycloalkyl ring in which one of the two aromatic rings of naphthalene is completely hydrogenated is added to a benzene ring, and thus is a monocyclic benzene or a double-membered ring. It has a completely different chemical property from naphthalene.

【0013】テトラヒドロナフタレンスルホン酸は、上
記テトラヒドロナフタレンを濃硫酸と混合し、スルホン
化した後、苛性ソーダなどのアルカリ剤で中和し、晶析
分離などの精製処理をすることによって合成することが
できる。
Tetrahydronaphthalene sulfonic acid can be synthesized by mixing the above tetrahydronaphthalene with concentrated sulfuric acid, sulfonation, neutralization with an alkaline agent such as caustic soda, and purification treatment such as crystallization separation. .

【0014】また、アルキルテトラヒドロナフタレンス
ルホン酸は、例えば、ブタノールとテトラヒドロナフタ
レンと濃硫酸や発煙硫酸などを混合し、アルキル化およ
びスルホン化した後、苛性ソーダなどのアルカリ剤で中
和し、晶析分離などの精製処理をすることによって合成
することができる。
Alkyl tetrahydronaphthalene sulfonic acid is obtained by, for example, mixing butanol, tetrahydronaphthalene, concentrated sulfuric acid and fuming sulfuric acid, alkylating and sulfonation, neutralizing with an alkali agent such as caustic soda, and separating by crystallization. It can be synthesized by performing a purification treatment such as.

【0015】本発明において、導電性高分子合成用モノ
マーとしては、例えば、ピロール、チオフェン、アニリ
ンおよびそれらの誘導体から選ばれる少なくとも1種を
用いることができる。
In the present invention, as the conductive polymer synthesizing monomer, for example, at least one selected from pyrrole, thiophene, aniline and derivatives thereof can be used.

【0016】つぎに、本発明の導電性高分子の合成方法
について説明する。
Next, a method for synthesizing the conductive polymer of the present invention will be described.

【0017】本発明の導電性高分子の合成にあたって
は、まず、ピロール、チオフェン、アニリンおよびそれ
らの誘導体から選ばれる少なくとも1種の導電性高分子
合成用モノマーを、(アルキル)テトラヒドロナフタレ
ンスルホン酸をドーパントとして用いて、化学酸化重合
または電解酸化重合を行う。
In synthesizing the conductive polymer of the present invention, first, at least one kind of conductive polymer synthesizing monomer selected from pyrrole, thiophene, aniline and derivatives thereof is used as (alkyl) tetrahydronaphthalenesulfonic acid. It is used as a dopant for chemical oxidative polymerization or electrolytic oxidative polymerization.

【0018】化学酸化重合の場合、上記(アルキル)テ
トラヒドロナフタレンスルホン酸を遷移金属塩、例えば
第二鉄塩や第二銅塩とし、それらの金属塩と導電性高分
子合成用モノマーとを、有機溶媒で特定濃度となるよ
う、それぞれ別途あらかじめ希釈しておき、溶液同士を
混合して一定時間反応させた後、洗浄、乾燥して導電性
高分子を合成することができる(ここで用いているスル
ホン酸塩は、その遷移金属成分が導電性高分子合成用モ
ノマーの酸化重合剤として働き、残りのスルホン酸成分
は高分子マトリックス中に含有され、いわゆるドーパン
トの役割を果たす)。上記重合に際して用いる有機溶媒
としては、例えばメタノール、エタノール、n−プロパ
ノール、n−ブタノールなどが挙げられ、洗浄の際にも
上記溶媒のいずれかを用いればよい。
In the case of chemical oxidative polymerization, the above (alkyl) tetrahydronaphthalenesulfonic acid is used as a transition metal salt, for example, a ferric salt or a cupric salt, and the metal salt and the monomer for synthesizing the conductive polymer are mixed with an organic compound. Separately preliminarily diluted with a solvent to a specific concentration, the solutions are mixed and allowed to react for a certain period of time, then washed and dried to synthesize a conductive polymer (used here) In the sulfonic acid salt, the transition metal component acts as an oxidative polymerization agent for the monomer for synthesizing the conductive polymer, and the remaining sulfonic acid component is contained in the polymer matrix, which functions as a so-called dopant). Examples of the organic solvent used in the above polymerization include methanol, ethanol, n-propanol, and n-butanol, and any of the above solvents may be used in the washing.

【0019】電解酸化重合の場合、上記(アルキル)テ
トラヒドロナフタレンスルホン酸またはその塩(ナトリ
ウム、カリウム塩など)と、導電性高分子合成用モノマ
ーとを、溶媒に溶解しておき、定電位または定電流条件
下でモノマーの重合を進めて導電性高分子を合成する。
この電解酸化重合に際して用いる溶媒としては、例え
ば、水、メタノール、エタノール、n−プロパノール、
n−ブタノールなどが挙げられ、洗浄の際にも上記溶媒
のいずれかを用いればよい。
In the case of electrolytic oxidative polymerization, the above (alkyl) tetrahydronaphthalenesulfonic acid or a salt thereof (sodium, potassium salt, etc.) and the conductive polymer synthesizing monomer are dissolved in a solvent to obtain a constant potential or a constant potential. The polymerization of the monomer is advanced under the electric current condition to synthesize the conductive polymer.
Examples of the solvent used in this electrolytic oxidative polymerization include water, methanol, ethanol, n-propanol,
Examples of the solvent include n-butanol, and any of the above solvents may be used for washing.

【0020】このようにして合成された導電性高分子
は、導電性が優れ、しかも耐熱性が優れており、したが
って、コンデンサ、バッテリー、帯電防止シート、耐腐
食用塗料などの用途において有用である。
The electroconductive polymer thus synthesized has excellent electroconductivity and heat resistance, and therefore is useful in applications such as capacitors, batteries, antistatic sheets and anticorrosion paints. .

【0021】[0021]

【実施例】以下に実施例を挙げて本発明をより具体的に
説明する。ただし、本発明はそれらの実施例に例示のも
ののみに限定されることはない。また、実施例に先立
ち、実施例の導電性高分子のドーパントとなる一つ以上
のスルホン酸を含有するテトラヒドロナフタレンスルホ
ン酸や炭素数1〜18のアルキル基を含有し、かつ一つ
以上のスルホン酸含有するアルキルテトラヒドロナフタ
レンスルホン酸の合成を合成例1〜3として示す。な
お、以下において、溶液や分散液などの濃度を示す%は
質量基準によるものである。
EXAMPLES The present invention will be described in more detail with reference to the following examples. However, the present invention is not limited to only those illustrated in those examples. In addition, prior to the examples, tetrahydronaphthalene sulfonic acid containing one or more sulfonic acids serving as a dopant of the conductive polymer of the examples and one or more sulfones containing an alkyl group having 1 to 18 carbon atoms. Synthesis of acid-containing alkyltetrahydronaphthalenesulfonic acid is shown as Synthesis Examples 1 to 3. In the following,% indicating the concentration of a solution or dispersion is based on mass.

【0022】合成例1 温度80℃の条件下、攪拌しながら98%硫酸392g
をテトラヒドロナフタレン580gに滴下した。上記硫
酸の滴下後、反応液の温度を120℃に上げ、その温度
を保ちながら4時間攪拌した。反応終了後、300gの
蒸留水を加え、2層分離した下層部分のみを取り出し、
蒸留による濃縮と水の添加を繰り返して、完全に未反応
のテトラヒドロナフタレンを除去することにより、テト
ラヒドロナフタレンスルホン酸を得た。なお、このよう
にして得たテトラヒドロナフタレンスルホン酸は、モノ
スルホン酸が主体で、ジスルホン酸とトリスルホン酸を
少量含んでいた。
Synthesis Example 1 392 g of 98% sulfuric acid with stirring at a temperature of 80 ° C.
Was added dropwise to 580 g of tetrahydronaphthalene. After the dropwise addition of the sulfuric acid, the temperature of the reaction solution was raised to 120 ° C., and the temperature was maintained for 4 hours with stirring. After the reaction was completed, 300 g of distilled water was added, and only the lower layer part separated into two layers was taken out.
Tetrahydronaphthalenesulfonic acid was obtained by repeating concentration by distillation and addition of water to completely remove unreacted tetrahydronaphthalene. The tetrahydronaphthalenesulfonic acid thus obtained was mainly composed of monosulfonic acid and contained a small amount of disulfonic acid and trisulfonic acid.

【0023】合成例2 テトラヒドロナフタレン245gとメタノール110g
とを混合した。水冷下、この混合液を攪拌しながら、そ
の中に98%硫酸975gをゆっくり添加した。その
後、30分間攪拌した。さらに、28%発煙硫酸124
gをゆっくり添加した後、55℃の条件下、4時間攪拌
を続け反応させた。得られた反応液に、n−ブタノール
300gと蒸留水500gを添加した後、2層分離した
上層部分を取り出した。取り出した上層部分にさらにも
う一度蒸留水500gを添加し、2層分離した上層を取
り出すことにより、反応液から硫酸分を除去した。得ら
れた反応液を蒸留により濃縮し、水を添加する操作をさ
らに6回繰り返すことによって、反応液の溶媒をn−ブ
タノールから水に置換した。さらに、未反応のテトラヒ
ドロナフタレンおよびメチルテトラヒドロナフタレンを
取り除くため、石油エーテル500mlを添加し、充分
に攪拌した後、静置した。2層分離した下層を取り出
し、蒸留により濃縮し、水を添加する操作を繰り返して
非水溶性成分を取り除くことにより、メチルテトラヒド
ロナフタレンスルホン酸を得た。なお、このようにして
得たメチルテトラヒドロナフタレンスルホン酸は、モノ
スルホン酸が主体で、ジスルホン酸とトリスルホン酸を
少量含んでいた。
Synthesis Example 2 Tetrahydronaphthalene 245 g and methanol 110 g
And mixed. Under water cooling, 975 g of 98% sulfuric acid was slowly added thereto while stirring this mixed solution. Then, it stirred for 30 minutes. Furthermore, 28% fuming sulfuric acid 124
After slowly adding g, the reaction was continued under stirring at 55 ° C. for 4 hours. After adding 300 g of n-butanol and 500 g of distilled water to the obtained reaction liquid, the upper layer portion obtained by separating the two layers was taken out. The sulfuric acid content was removed from the reaction solution by adding 500 g of distilled water again to the upper layer portion taken out, and taking out the upper layer separated into two layers. The reaction solution obtained was concentrated by distillation, and the operation of adding water was repeated 6 times to replace the solvent of the reaction solution with water from n-butanol. Further, in order to remove unreacted tetrahydronaphthalene and methyltetrahydronaphthalene, 500 ml of petroleum ether was added, and after sufficiently stirring, the mixture was allowed to stand. The lower layer separated from the two layers was taken out, concentrated by distillation, and water-insoluble components were removed by repeating the operation of adding water to obtain methyltetrahydronaphthalenesulfonic acid. The methyltetrahydronaphthalenesulfonic acid thus obtained was mainly composed of monosulfonic acid and contained a small amount of disulfonic acid and trisulfonic acid.

【0024】合成例3 メタノールに代えてn−ブタノール263gを添加した
以外は、全て合成例2と同様の操作を行い、ブチルテト
ラヒドロナフタレンスルホン酸水溶液を得た。そして、
5mol/lの水酸化ナトリウム水溶液で中和すること
により、ブチルテトラヒドロナフタレンスルホン酸ナト
リウム水溶液を得た。なお、前記のようにして得たブチ
ルテトラヒドロナフタレンスルホン酸は、モノスルホン
酸が主体で、ジスルホン酸とトリスルホン酸を少量含ん
でいた。
Synthetic Example 3 The same operation as in Synthetic Example 2 was repeated except that 263 g of n-butanol was added instead of methanol to obtain an aqueous butyltetrahydronaphthalenesulfonic acid solution. And
By neutralizing with a 5 mol / l sodium hydroxide aqueous solution, a sodium butyl tetrahydronaphthalene sulfonate aqueous solution was obtained. The butyltetrahydronaphthalenesulfonic acid obtained as described above was mainly composed of monosulfonic acid and contained a small amount of disulfonic acid and trisulfonic acid.

【0025】実施例1 まず、上記合成例1で得たテトラヒドロナフタレンスル
ホン酸を水酸化第二鉄と反応させて、濃度50%のテト
ラヒドロナフタレンスルホン酸第二鉄塩水溶液を得た。
なお、使用した水酸化第二鉄は次に示すように合成し
た。
Example 1 First, the tetrahydronaphthalenesulfonic acid obtained in Synthesis Example 1 above was reacted with ferric hydroxide to obtain an aqueous ferric tetrahydronaphthalenesulfonic acid salt solution having a concentration of 50%.
The ferric hydroxide used was synthesized as follows.

【0026】室温の条件下、1000mlの蒸留水にF
2 (SO4 3 ・8H2 Oを108.6g(0.2m
ol)溶解して調製した溶液を激しく攪拌しながら、そ
の中に5mol/lの水酸化ナトリウム水溶液をゆっく
りと添加してpH7に調整した後、遠心分離により上澄
みを取り除いて水酸化第二鉄の沈殿を得た。余分の水溶
性塩を取り除くため、4000mlの蒸留水に上記水酸
化第二鉄の沈殿を分散させた後、遠心分離で上清を取り
除く操作を2回繰り返した。得られた水酸化第二鉄の沈
殿を500gのノルマルブタノールに分散させた。
At room temperature, 1000 ml of distilled water was used to
e 2 (SO 4) 3 · 8H 2 O and 108.6 g (0.2 m
While the solution prepared by dissolution was vigorously stirred, a 5 mol / l sodium hydroxide aqueous solution was slowly added to the solution to adjust the pH to 7, and the supernatant was removed by centrifugation to remove ferric hydroxide. A precipitate was obtained. In order to remove excess water-soluble salt, the above ferric hydroxide precipitate was dispersed in 4000 ml of distilled water, and the operation of removing the supernatant by centrifugation was repeated twice. The obtained ferric hydroxide precipitate was dispersed in 500 g of normal butanol.

【0027】これとは別に、上記合成例1で得たテトラ
ヒドロナフタレンスルホン酸229gをあらかじめ50
0gのノルマルブタノールに溶解しておき、その溶液中
に上記方法で調製した水酸化第二鉄の分散液を添加し
た。室温下、12時間かきまぜて反応させた後、蒸留し
て濃度50%のテトラヒドロナフタレンスルホン酸第二
鉄塩のノルマルブタノール液を得た。
Separately, 229 g of tetrahydronaphthalene sulfonic acid obtained in Synthesis Example 1 was preliminarily added to 50
It was dissolved in 0 g of normal butanol, and the ferric hydroxide dispersion prepared by the above method was added to the solution. After stirring and reacting at room temperature for 12 hours, it was distilled to obtain a normal butanol solution of a ferric tetrahydronaphthalenesulfonic acid salt having a concentration of 50%.

【0028】上記テトラヒドロナフタレンスルホン酸第
二鉄塩を濃度が0.5mol/lになるようにn−ブタ
ノールを添加して濃度調整した後、その溶液に3,4−
エチレンジオキシチオフェンを濃度が0.5mol/l
になるように添加し、充分にかき混ぜ、上記テトラヒド
ロナフタレンスルホン酸第二鉄塩を酸化剤として、3,
4−エチレンジオキシチオフェンの化学酸化重合を開始
させ、それを直ちに、3cm×5cmのセラミックプレ
ート上に180μl滴下した。そして、そのセラミック
プレート上で湿度55%、温度25℃で12時間重合し
た後、エタノール中に上記プレートをその上に形成され
た重合物膜と共に入れ、洗浄し、130℃で30分間乾
燥した。乾燥後、上記プレートに1.5tの荷重をかけ
たまま5分間放置して、膜圧を均等にした後、その重合
物であるポリエチレンジオキシチオフェンの電導度を4
探針方式の電導度測定器(三菱化学社製のMCP−T6
00)により測定した。その結果を後記の表1に示す。
The concentration of the above-mentioned ferric tetrahydronaphthalenesulfonic acid salt was adjusted by adding n-butanol to a concentration of 0.5 mol / l, and then the solution was added with 3,4-
The concentration of ethylenedioxythiophene is 0.5 mol / l
The above-mentioned tetrahydronaphthalene sulfonic acid ferric salt is used as an oxidizing agent,
The chemical oxidative polymerization of 4-ethylenedioxythiophene was initiated, and 180 μl of it was immediately dropped on a 3 cm × 5 cm ceramic plate. Then, after polymerizing on the ceramic plate at a humidity of 55% and a temperature of 25 ° C. for 12 hours, the plate was put in ethanol together with a polymer film formed thereon, washed, and dried at 130 ° C. for 30 minutes. After drying, the plate was left for 5 minutes under a load of 1.5 t to make the membrane pressure uniform, and the conductivity of polyethylene dioxythiophene as a polymer was adjusted to 4
Probe-type conductivity meter (Mitsubishi Chemical Corporation MCP-T6
00). The results are shown in Table 1 below.

【0029】実施例2 合成例1で得たテトラヒドロナフタレンスルホン酸に代
えて、合成例2で得たメチルテトラヒドロナフタレンス
ルホン酸244gを用いた以外は、実施例1と同様に
3,4−エチレンジオキシチオフェンの化学酸化重合を
行い、得られたポリエチレンジオキシチオフェンについ
て電導度を測定した。その結果を後記の表1に示す。
Example 2 The same procedure as in Example 1 was repeated except that 244 g of methyltetrahydronaphthalenesulfonic acid obtained in Synthesis Example 2 was used in place of the tetrahydronaphthalenesulfonic acid obtained in Synthesis Example 1. The chemical oxidative polymerization of oxythiophene was performed, and the conductivity of the obtained polyethylenedioxythiophene was measured. The results are shown in Table 1 below.

【0030】比較例1 合成例1で得たテトラヒドロナフタレンスルホン酸に代
えて、p−トルエンスルホン酸186gを用いた以外
は、実施例1と同様に3,4−エチレンジオキシチオフ
ェンの化学酸化重合を行い、得られたポリエチレンジオ
キシチオフェンについて電導度を測定した。その結果を
後記の表1に示す。
Comparative Example 1 Chemical oxidative polymerization of 3,4-ethylenedioxythiophene was carried out in the same manner as in Example 1 except that 186 g of p-toluenesulfonic acid was used instead of the tetrahydronaphthalenesulfonic acid obtained in Synthesis Example 1. Then, the electrical conductivity of the obtained polyethylenedioxythiophene was measured. The results are shown in Table 1 below.

【0031】比較例2 合成例1で得たテトラヒドロナフタレンスルホン酸に代
えて、分岐型ドデシルベンゼンスルホン酸352gを用
いた以外は、実施例1と同様に3,4−エチレンジオキ
シチオフェンの化学酸化重合を行い、得られたポリエチ
レンジオキシチオフェンについて電導度を測定した。そ
の結果を後記の表1に示す。
Comparative Example 2 Chemical oxidation of 3,4-ethylenedioxythiophene was carried out in the same manner as in Example 1 except that 352 g of branched dodecylbenzenesulfonic acid was used in place of the tetrahydronaphthalenesulfonic acid obtained in Synthesis Example 1. Polymerization was performed, and the conductivity of the obtained polyethylenedioxythiophene was measured. The results are shown in Table 1 below.

【0032】比較例3 合成例1で得たテトラヒドロナフタレンスルホン酸に代
えて、ナフタレンスルホン酸225gを用いた以外は、
実施例1と同様に3,4−エチレンジオキシチオフェン
の化学酸化重合を行い、得られたポリエチレンジオキシ
チオフェンについて電導度を測定した。その結果を後記
の表1に示す。
Comparative Example 3 The procedure of Example 3 was repeated except that 225 g of naphthalenesulfonic acid was used instead of the tetrahydronaphthalenesulfonic acid obtained in Synthesis Example 1.
The chemical oxidative polymerization of 3,4-ethylenedioxythiophene was carried out in the same manner as in Example 1, and the electrical conductivity of the obtained polyethylenedioxythiophene was measured. The results are shown in Table 1 below.

【0033】比較例4 合成例1で得たテトラヒドロナフタレンスルホン酸に代
えて、メチルナフタレンスルホン酸240gを用いた以
外は、実施例1と同様に3,4−エチレンジオキシチオ
フェンの化学酸化重合を行い、得られたポリエチレンジ
オキシチオフェンについて電導度を測定した。その結果
を後記の表1に示す。
Comparative Example 4 Chemical oxidation polymerization of 3,4-ethylenedioxythiophene was carried out in the same manner as in Example 1 except that 240 g of methylnaphthalenesulfonic acid was used instead of the tetrahydronaphthalenesulfonic acid obtained in Synthesis Example 1. Then, the conductivity of the obtained polyethylenedioxythiophene was measured. The results are shown in Table 1 below.

【0034】上記実施例1〜2および比較例1〜4で得
たポリエチレンジオキシチオフェンの電導度を表1にそ
のドーパントと共に示す。
The electrical conductivity of the polyethylenedioxythiophenes obtained in Examples 1 and 2 and Comparative Examples 1 to 4 is shown in Table 1 together with the dopant.

【0035】[0035]

【表1】 [Table 1]

【0036】表1に示すように、実施例1〜2のポリエ
チレンジオキシチオフェンは、比較例1〜4のポリエチ
レンジオキシチオフェンに比べて、電導度が高く、導電
性が優れていた。
As shown in Table 1, the polyethylenedioxythiophenes of Examples 1 and 2 were higher in electrical conductivity and excellent in conductivity than the polyethylenedioxythiophenes of Comparative Examples 1 to 4.

【0037】すなわち、テトラヒドロナフタレンスルホ
ン酸をドーパントとする実施例1のポリエチレンジオキ
シチオフェンおよびメチルテトラヒドロナフタレンスル
ホン酸をドーパントとする実施例2のポリエチレンジオ
キシチオフェンは、p−トルエンスルホン酸をドーパン
トとする比較例1のポリエチレンジオキシチオフェン、
分岐型ドデシルベンゼンスルホン酸をドーパントとする
比較例2のポリエチレンジオキシチオフェン、ナフタレ
ンスルホン酸をドーパントとする比較例3のポリエチレ
ンジオキシチオフェンおよびメチルナフタレンスルホン
酸をドーパントとする比較例4のポリエチレンジオキシ
チオフェンより、高い電導度を有していて、導電性が優
れていた。
That is, the polyethylenedioxythiophene of Example 1 having tetrahydronaphthalenesulfonic acid as a dopant and the polyethylenedioxythiophene of Example 2 having methyltetrahydronaphthalenesulfonic acid as a dopant have p-toluenesulfonic acid as a dopant. Polyethylenedioxythiophene of Comparative Example 1,
Polyethylenedioxythiophene of Comparative Example 2 with branched dodecylbenzenesulfonic acid as a dopant, Polyethylenedioxythiophene of Comparative Example 3 with naphthalenesulfonic acid as a dopant, and Polyethylenedioxy of Comparative Example 4 with methylnaphthalenesulfonic acid as a dopant It had higher conductivity than thiophene and was superior in conductivity.

【0038】つぎに、上記実施例1〜2および比較例1
〜4のポリエチレンジオキシチオフェンについて高温貯
蔵による電導度の低下率を調べた。その結果を表2に示
す。その高温貯蔵試験の方法は次の通りである。
Next, the above Examples 1 and 2 and Comparative Example 1
With respect to polyethylenedioxythiophene of Nos. 4 to 4, the rate of decrease in conductivity due to high temperature storage was examined. The results are shown in Table 2. The method of the high temperature storage test is as follows.

【0039】高温貯蔵試験:上記実施例1〜2および比
較例1〜4のポリエチレンジオキシチオフェンのシート
について、前記のように電導度を測定した後、各シート
を130℃の高温槽中に貯蔵し、経時的にシートを取り
出して電導度を測定して、高温貯蔵による電導度の低下
率を調べた。なお、電導度の低下率は、初期電導度値
(すなわち、貯蔵前に測定した電導度値)から貯蔵後の
電導度値を引いた時の差を初期電導度値で割り、パーセ
ント(%)で示した。これを式で表すと次の通りであ
る。
High temperature storage test: For the polyethylene dioxythiophene sheets of Examples 1 to 2 and Comparative Examples 1 to 4 above, the electrical conductivity was measured as described above, and then each sheet was stored in a high temperature tank at 130 ° C. Then, the sheet was taken out with time and the electrical conductivity was measured to examine the rate of decrease in electrical conductivity due to high temperature storage. Note that the rate of decrease in conductivity is the difference between the initial conductivity value (that is, the conductivity value measured before storage) minus the conductivity value after storage divided by the initial conductivity value, and the percentage (%). Indicated by. This is expressed by the following formula.

【0040】 [0040]

【0041】[0041]

【表2】 [Table 2]

【0042】表2に示す結果から明らかなように、実施
例1〜2のポリエチレンジオキシチオフェンは、比較例
1〜4のポリエチレンジオキシチオフェンに比べて、2
4時間貯蔵後、48時間貯蔵後とも、電導度の低下が少
なく、耐熱性が優れていた。
As is clear from the results shown in Table 2, the polyethylenedioxythiophenes of Examples 1 and 2 are 2% less than the polyethylenedioxythiophenes of Comparative Examples 1 to 4.
Even after storage for 4 hours and storage for 48 hours, there was little decrease in electric conductivity and heat resistance was excellent.

【0043】すなわち、テトラヒドロナフタレンスルホ
ン酸をドーパントとする実施例1のポリエチレンジオキ
シチオフェンおよびメチルテトラヒドロナフタレンスル
ホン酸をドーパントとする実施例2のポリエチレンジオ
キシチオフェンは、p−トルエンスルホン酸をドーパン
トとする比較例1のポリエチレンジオキシチオフェン、
分岐型ドデシルベンゼンスルホン酸をドーパントとする
比較例2のポリエチレンジオキシチオフェン、ナフタレ
ンスルホン酸をドーパントとする比較例3のポリエチレ
ンジオキシチオフェンおよびメチルナフタレンスルホン
酸をドーパントとする比較例4のポリエチレンジオキシ
チオフェンに比べて、高温貯蔵による電導度の低下が少
なく、耐熱性が優れていた。
That is, the polyethylenedioxythiophene of Example 1 having tetrahydronaphthalenesulfonic acid as a dopant and the polyethylenedioxythiophene of Example 2 having methyltetrahydronaphthalenesulfonic acid as a dopant have p-toluenesulfonic acid as a dopant. Polyethylenedioxythiophene of Comparative Example 1,
Polyethylenedioxythiophene of Comparative Example 2 with branched dodecylbenzenesulfonic acid as a dopant, Polyethylenedioxythiophene of Comparative Example 3 with naphthalenesulfonic acid as a dopant, and Polyethylenedioxy of Comparative Example 4 with methylnaphthalenesulfonic acid as a dopant Compared to thiophene, the decrease in conductivity due to high temperature storage was small and the heat resistance was excellent.

【0044】実施例3 この実施例3では、電解酸化重合により導電性高分子を
合成し、その評価をする。まず、電解酸化重合の陽極と
して用いる導電性高分子でコートしたセラミックプレー
トの作製を行った。すなわち、酸化剤としてp−トルエ
ンスルホン酸第二鉄塩を水溶液状で用い、実施例1と同
様の操作で化学酸化重合を行うことにより、ポリエチレ
ンジオキシチオフェンでコートしたセラミックプレート
を作製した。得られたセラミックプレート(すなわち、
ポリエチレンジオキシチオフェンでコートしたセラミッ
クプレート)を陽極とし、ステンレス鋼(SUS30
4)を陰極として以下に示すようにピロールの電解酸化
重合を行った。
Example 3 In this example 3, a conductive polymer is synthesized by electrolytic oxidative polymerization and its evaluation is performed. First, a ceramic plate coated with a conductive polymer used as an anode for electrolytic oxidation polymerization was prepared. That is, a ferric p-toluenesulfonic acid salt was used as an oxidizing agent in the form of an aqueous solution, and chemical oxidative polymerization was performed in the same manner as in Example 1 to produce a ceramic plate coated with polyethylenedioxythiophene. The resulting ceramic plate (ie,
Ceramic plate coated with polyethylenedioxythiophene) is used as the anode, and stainless steel (SUS30)
4) was used as a cathode to carry out electrolytic oxidative polymerization of pyrrole as shown below.

【0045】前記合成例3で得たブチルテトラヒドロナ
フタレンスルホン酸ナトリウム塩をあらかじめ濃度が
0.04mol/lになるように純水で濃度調整した溶
液に、ピロールを濃度が0.04mol/lになるよう
に添加した。そして、上記に示した電極を用い、1mA
/cmの定電流を70分かけて電解酸化重合することに
より、ブチルテトラヒドロナフタレンスルホン酸を取り
込んだポリピロールを合成した。得られたポリピロール
をエタノールにより充分に洗浄し、150℃で1時間乾
燥した後、4探針方式の電導度測定器(三菱化学社製の
MCP−T600)により表面抵抗を測定した。その結
果を後記の表3に示す。
The butyl tetrahydronaphthalene sulfonic acid sodium salt obtained in Synthesis Example 3 was adjusted in advance to a concentration of 0.04 mol / l with pure water, and pyrrole was adjusted to a concentration of 0.04 mol / l. So added. Then, using the electrode shown above, 1 mA
A polypyrrole incorporating butyltetrahydronaphthalenesulfonic acid was synthesized by electrolytically oxidatively polymerizing a constant current of / cm for 70 minutes. The obtained polypyrrole was thoroughly washed with ethanol and dried at 150 ° C. for 1 hour, and then the surface resistance was measured with a four-probe method conductivity meter (MCP-T600 manufactured by Mitsubishi Chemical Corporation). The results are shown in Table 3 below.

【0046】比較例5 合成例3で得たブチルテトラヒドロナフタレンスルホン
酸ナトリウム塩に代えて、p−トルエンスルホン酸ナト
リウム塩を用いた以外は、実施例3と同様にピロールを
電解酸化重合し、得られたポリピロールの表面抵抗を測
定した。その結果を後記の表3に示す。
Comparative Example 5 Pyrrole was electrolytically oxidatively polymerized in the same manner as in Example 3 except that p-toluenesulfonic acid sodium salt was used in place of the butyltetrahydronaphthalenesulfonic acid sodium salt obtained in Synthesis Example 3. The surface resistance of the obtained polypyrrole was measured. The results are shown in Table 3 below.

【0047】比較例6 合成例3で得たブチルテトラヒドロナフタレンスルホン
酸ナトリウム塩に代えて、分岐型ドデシルベンゼンスル
ホン酸ナトリウム塩を用いた以外は、実施例3と同様に
ピロールを電解酸化重合し、得られたポリピロールの表
面抵抗を測定した。その結果を後記の表3に示す。
Comparative Example 6 Pyrrole was electrolytically oxidatively polymerized in the same manner as in Example 3 except that a branched dodecylbenzenesulfonic acid sodium salt was used in place of the butyltetrahydronaphthalenesulfonic acid sodium salt obtained in Synthesis Example 3. The surface resistance of the obtained polypyrrole was measured. The results are shown in Table 3 below.

【0048】比較例7 合成例3で得たブチルテトラヒドロナフタレンスルホン
酸ナトリウム塩に代えて、ブチルナフタレンスルホン酸
ナトリウム塩を用いた以外は、実施例3と同様にピロー
ルを電解酸化重合し、得られたポリピロールの表面抵抗
を測定した。その結果を後記の表3に示す。
Comparative Example 7 Pyrrole was obtained by electrolytically oxidatively polymerizing pyrrole in the same manner as in Example 3 except that butylnaphthalenesulfonic acid sodium salt was used in place of butyltetrahydronaphthalenesulfonic acid sodium salt obtained in Synthesis Example 3. The surface resistance of the polypyrrole was measured. The results are shown in Table 3 below.

【0049】上記実施例3および比較例5〜7で得たポ
リピロールの表面抵抗の測定結果を表3にそのドーパン
トと共に示す。
The results of measuring the surface resistance of the polypyrrole obtained in Example 3 and Comparative Examples 5 to 7 are shown in Table 3 together with the dopant.

【0050】[0050]

【表3】 [Table 3]

【0051】表3に示すように、実施例3のポリピロー
ルは、比較例5〜7のポリピロールに比べて、表面抵抗
が小さく、高い電導度を有することが明らかであった。
すなわち、ブチルテトラヒドロナフタレンスルホン酸を
ドーパントとする実施例3のポリピロールは、p−トル
エンスルホン酸をドーパントとする比較例5のポリピロ
ール、分岐型ドデシルベンゼンスルホン酸をドーパント
とする比較例6のポリピロールおよびブチルナフタレン
スルホン酸をドーパントとする比較例7のポリピロール
に比べて、表面抵抗が小さく、導電性が優れていた。特
に実施例3のポリピロールは、ブチルナフタレンスルホ
ン酸をドーパントとする比較例7のポリピロールに比べ
て、表面抵抗が小さく、導電性が優れていた。
As shown in Table 3, it was apparent that the polypyrrole of Example 3 had a smaller surface resistance and a higher electric conductivity than the polypyrroles of Comparative Examples 5 to 7.
That is, the polypyrrole of Example 3 having butyl tetrahydronaphthalene sulfonic acid as a dopant is the polypyrrole of Comparative Example 5 having p-toluene sulfonic acid as a dopant, and the polypyrrole of Comparative Example 6 having a branched dodecylbenzene sulfonic acid as a dopant and butyl. Compared to the polypyrrole of Comparative Example 7 using naphthalene sulfonic acid as a dopant, the surface resistance was small and the conductivity was excellent. In particular, the polypyrrole of Example 3 had smaller surface resistance and excellent conductivity than the polypyrrole of Comparative Example 7 using butylnaphthalenesulfonic acid as a dopant.

【0052】つぎに、上記実施例3および比較例5〜7
のポリピロールについて、上記のように表面抵抗を測定
した後、前記実施例1のポリエチレンジオキシチオフェ
ンなどと同様に高温貯蔵試験を行い、高温貯蔵による表
面抵抗の増加を調べた。その結果を表4に示す。
Next, the above-mentioned Example 3 and Comparative Examples 5-7
After measuring the surface resistance of the polypyrrole of No. 1 as described above, a high temperature storage test was conducted in the same manner as the polyethylene dioxythiophene of Example 1 and the like, and an increase in surface resistance due to high temperature storage was investigated. The results are shown in Table 4.

【0053】[0053]

【表4】 [Table 4]

【0054】表4に示すように、実施例3のポリピロー
ルは、比較例5〜6のポリピロールに比べて、24時間
貯蔵後、48時間貯蔵後とも、表面抵抗が小さく、耐熱
性が優れていた。
As shown in Table 4, the polypyrrole of Example 3 had smaller surface resistance and excellent heat resistance than those of Comparative Examples 5 to 6 after 24 hours storage and 48 hours storage. .

【0055】すなわち、p−トルエンスルホン酸をドー
パントとする比較例5のポリピロールと分岐型ドデシル
ベンゼンスルホン酸をドーパントとする比較例6のポリ
ピロールは、前記表3に示すように、貯蔵前には、ブチ
ルテトラヒドロナフタレンスルホン酸をドーパントとす
る実施例3のポリピロールに比べて、それほど表面抵抗
が大きくなかったけれど、高温で貯蔵した場合には、実
施例3のポリピロールに比べて、表面抵抗が大きく増加
して、耐熱性が劣っていた。また、ブチルナフタレンス
ルホン酸をドーパントとする比較例7のポリピロール
は、高温貯蔵による表面抵抗の増加はそれほど大きくな
かったが、前記表3に示したように、貯蔵前の表面抵抗
が実施例3のポリピロールに比べて大きく、実施例3の
ポリピロールのように、優れた導電性および優れた耐熱
性を兼備することができなかった。
That is, the polypyrrole of Comparative Example 5 containing p-toluenesulfonic acid as a dopant and the polypyrrole of Comparative Example 6 containing branched dodecylbenzenesulfonic acid as a dopant were, as shown in Table 3 above, The surface resistance was not so large as compared with the polypyrrole of Example 3 using butyl tetrahydronaphthalene sulfonic acid as a dopant, but when it was stored at high temperature, the surface resistance was significantly increased as compared with the polypyrrole of Example 3. The heat resistance was poor. Further, the polypyrrole of Comparative Example 7 using butylnaphthalenesulfonic acid as a dopant did not show a significant increase in surface resistance due to high temperature storage, but as shown in Table 3 above, the surface resistance before storage was that of Example 3. It is larger than polypyrrole, and unlike the polypyrrole of Example 3, it was not possible to combine excellent conductivity and excellent heat resistance.

【0056】実施例4〜5および比較例8〜11 アルミニウム箔の表面をエッチング処理した後、化成処
理を行い、誘電体皮膜を形成した陽極箔と陰極箔として
のアルミニウム箔とをセパレータを介して巻回してコン
デンサ素子を作製した。そして、このコンデンサ素子の
セパレータ部分に3,4−エチレンジオキシチオフェン
を含浸させ、さらに実施例1〜2および比較例1〜4の
過程で得られたそれぞれのスルホン酸第二鉄塩をそれぞ
れ別々に含浸させ、60℃で2時間加熱することにより
ポリエチレンジオキシチオフェンからなる固体電解質層
を形成した。そして、それを外装材で外装して、固体電
解コンデンサを得た。
Examples 4 to 5 and Comparative Examples 8 to 11 After the surface of the aluminum foil was subjected to etching treatment, chemical conversion treatment was carried out, and the anode foil having the dielectric film formed thereon and the aluminum foil serving as the cathode foil were interposed via a separator. It wound and produced the capacitor element. Then, the separator portion of this capacitor element was impregnated with 3,4-ethylenedioxythiophene, and the respective ferric sulfonic acid salts obtained in the processes of Examples 1-2 and Comparative Examples 1-4 were separately separated. Was impregnated in the solution and heated at 60 ° C. for 2 hours to form a solid electrolyte layer made of polyethylenedioxythiophene. Then, it was packaged with a packaging material to obtain a solid electrolytic capacitor.

【0057】このようにして作製した実施例4〜5およ
び比較例8〜11の固体電解コンデンサの等価直列抵抗
(ESR)の測定した。その結果をドーパントの種類と
共に表5に示す。
The equivalent series resistance (ESR) of the solid electrolytic capacitors of Examples 4 to 5 and Comparative Examples 8 to 11 thus produced were measured. The results are shown in Table 5 together with the type of dopant.

【0058】[0058]

【表5】 [Table 5]

【0059】表5に示すように、実施例4〜5の固体電
解コンデンサは、比較例8〜11の固体電解コンデンサ
に比べて、ESR値が小さかった。
As shown in Table 5, the solid electrolytic capacitors of Examples 4 to 5 had a smaller ESR value than the solid electrolytic capacitors of Comparative Examples 8 to 11.

【0060】すなわち、テトラヒドロナフタレンスルホ
ン酸をドーパントとする導電性高分子を固体電解質とし
て用いた実施例4の固体電解コンデンサおよびメチルテ
トラヒドロナフタレンスルホン酸をドーパントとする導
電性高分子を固体電解質として用いた実施例5の固体電
解コンデンサは、p−トルエンスルホン酸をドーパント
とする導電性高分子を固体電解質として用いた比較例8
の固体電解コンデンサ、分岐型ドデシルベンゼンスルホ
ン酸をドーパントとする導電性高分子を固体電解質とし
て用いた比較例9の固体電解コンデンサ、ナフタレンス
ルホン酸をドーパントとする導電性高分子を固体電解質
として用いた比較例10の固体電解コンデンサおよびメ
チルナフタレンスルホン酸をドーパントとする導電性高
分子を固体電解質として用いた比較例11の固体電解コ
ンデンサに比べて、ESRが小さく、高温・高湿条件下
における特性の信頼性が高かった。
That is, the solid electrolytic capacitor of Example 4 using a conductive polymer having tetrahydronaphthalene sulfonic acid as a dopant and the conductive polymer having methyl tetrahydronaphthalene sulfonic acid as a dopant was used as a solid electrolyte. The solid electrolytic capacitor of Example 5 is a comparative example 8 in which a conductive polymer having p-toluenesulfonic acid as a dopant is used as a solid electrolyte.
Of the solid electrolytic capacitor of Comparative Example 9 in which a conductive polymer having branched dodecylbenzenesulfonic acid as a dopant was used as a solid electrolyte, and a conductive polymer having naphthalenesulfonic acid as a dopant was used as a solid electrolyte. Compared with the solid electrolytic capacitor of Comparative Example 10 and the solid electrolytic capacitor of Comparative Example 11 using a conductive polymer having methylnaphthalenesulfonic acid as a dopant as a solid electrolyte, the ESR was small and the characteristics under high temperature and high humidity conditions It was reliable.

【0061】[0061]

【発明の効果】以上説明したように、本発明では、導電
性が優れ、かつ耐熱性が優れた導電性高分子を提供する
ことができ、また、その導電性高分子を固体電解質とし
て用いて高温・高湿条件下における信頼性の高い固体電
解コンデンサを提供することができた。
As described above, according to the present invention, it is possible to provide a conductive polymer having excellent conductivity and heat resistance, and using the conductive polymer as a solid electrolyte. It was possible to provide a solid electrolytic capacitor with high reliability under high temperature and high humidity conditions.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 都築 隆生 大阪市大正区船町1丁目3番47号 テイカ 株式会社内 Fターム(参考) 4J032 BA13 BD02 CG01 4J043 QB02 RA08 SA05 UA121 YB05 YB38 ZA44 ZB49    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Takao Tsuzuki             Takeka, 1-3-4, Funamachi, Taisho-ku, Osaka             Within the corporation F-term (reference) 4J032 BA13 BD02 CG01                 4J043 QB02 RA08 SA05 UA121                       YB05 YB38 ZA44 ZB49

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 一つ以上のスルホン基を含有するテトラ
ヒドロナフタレンスルホン酸、または炭素数が1〜18
のアルキル基を一つ以上含有し、かつ一つ以上のスルホ
ン基を含有するアルキルテトラヒドロナフタレンスルホ
ン酸から選ばれる、少なくとも一つ以上のスルホン酸を
ドーパントとして含む導電性高分子。
1. Tetrahydronaphthalene sulfonic acid containing at least one sulfone group, or having 1 to 18 carbon atoms.
A conductive polymer containing at least one or more sulfonic acid selected from alkyltetrahydronaphthalene sulfonic acids containing at least one alkyl group and containing at least one sulfone group as a dopant.
【請求項2】 導電性高分子合成用のモノマーが、ピロ
ール、チオフェン、アニリンおよびそれらの誘導体から
選ばれる少なくとも一つ以上である請求項1記載の導電
性高分子。
2. The conductive polymer according to claim 1, wherein the monomer for synthesizing the conductive polymer is at least one selected from pyrrole, thiophene, aniline and derivatives thereof.
【請求項3】 請求項1または2記載の導電性高分子を
固体電解質として用いたことを特徴とする固体電解コン
デンサ。
3. A solid electrolytic capacitor using the conductive polymer according to claim 1 as a solid electrolyte.
JP2001346853A 2001-09-10 2001-11-13 Conductive polymer and solid electrolytic capacitor using the same Expired - Lifetime JP3909666B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001346853A JP3909666B2 (en) 2001-09-10 2001-11-13 Conductive polymer and solid electrolytic capacitor using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001272842 2001-09-10
JP2001-272842 2001-09-10
JP2001346853A JP3909666B2 (en) 2001-09-10 2001-11-13 Conductive polymer and solid electrolytic capacitor using the same

Publications (2)

Publication Number Publication Date
JP2003158043A true JP2003158043A (en) 2003-05-30
JP3909666B2 JP3909666B2 (en) 2007-04-25

Family

ID=26621880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001346853A Expired - Lifetime JP3909666B2 (en) 2001-09-10 2001-11-13 Conductive polymer and solid electrolytic capacitor using the same

Country Status (1)

Country Link
JP (1) JP3909666B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005014692A1 (en) * 2003-08-11 2005-02-17 Tayca Corporation Conductive polymer and solid electrolytic capacitor using same
JP2005116777A (en) * 2003-10-08 2005-04-28 Sanyo Electric Co Ltd Solid electrolytic capacitor
WO2006085601A1 (en) * 2005-02-08 2006-08-17 Tayca Corporation Dopant solution for electrocondctive polymer, oxidizing agent and concurrently dopant solution for electrocondctive polymer, electrocondctive composition and solid electrolytic capacitor
US7248461B2 (en) 2004-03-29 2007-07-24 Matsushita Electric Industrial Co., Ltd. Conducting polymer composite and solid electrolytic capacitor using the same
WO2007142051A1 (en) * 2006-06-07 2007-12-13 Tayca Corporation Reaction accelerator for conductive polymer synthesis, conductive polymer and solid electrolytic capacitor
US7580246B2 (en) 2005-01-11 2009-08-25 Panasonic Corporation Solid electrolytic capacitor and method for manufacturing same
JP2010037466A (en) * 2008-08-06 2010-02-18 Japan Carlit Co Ltd:The Electrolytic solution for electropolymerization for forming electroconductive polymer, electroconductive polymer, solid electrolytic capacitor using the same, and method for manufacturing the capacitor
US7722785B2 (en) * 2005-06-27 2010-05-25 E.I. Du Pont De Nemours And Company Electrically conductive polymer compositions
US8057708B2 (en) 2006-06-30 2011-11-15 E. I. Du Pont De Nemours And Company Stabilized compositions of conductive polymers and partially fluorinated acid polymers
US8491819B2 (en) 2006-12-29 2013-07-23 E I Du Pont De Nemours And Company High work-function and high conductivity compositions of electrically conducting polymers
US8658061B2 (en) 2007-04-13 2014-02-25 E I Du Pont De Nemours And Company Electrically conductive polymer compositions
US8765022B2 (en) 2004-03-17 2014-07-01 E I Du Pont De Nemours And Company Water dispersible polypyrroles made with polymeric acid colloids for electronics applications

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005014692A1 (en) * 2003-08-11 2005-02-17 Tayca Corporation Conductive polymer and solid electrolytic capacitor using same
CN100412104C (en) * 2003-08-11 2008-08-20 帝化株式会社 Conductive polymer and solid electrolytic capacitor using same
US7651639B2 (en) 2003-08-11 2010-01-26 Tayca Corporation Conductive polymer and solid electrolytic capacitor using the same
JP4632651B2 (en) * 2003-10-08 2011-02-16 三洋電機株式会社 Solid electrolytic capacitor
JP2005116777A (en) * 2003-10-08 2005-04-28 Sanyo Electric Co Ltd Solid electrolytic capacitor
US6982865B2 (en) 2003-10-08 2006-01-03 Sanyo Electric Co., Ltd. Solid electrolytic capacitor
US8765022B2 (en) 2004-03-17 2014-07-01 E I Du Pont De Nemours And Company Water dispersible polypyrroles made with polymeric acid colloids for electronics applications
US7248461B2 (en) 2004-03-29 2007-07-24 Matsushita Electric Industrial Co., Ltd. Conducting polymer composite and solid electrolytic capacitor using the same
CN100446139C (en) * 2004-03-29 2008-12-24 松下电器产业株式会社 Conducting polymer composite and solid electrolytic capacitor using the same
US7580246B2 (en) 2005-01-11 2009-08-25 Panasonic Corporation Solid electrolytic capacitor and method for manufacturing same
KR101144526B1 (en) 2005-02-08 2012-05-11 엔이씨 도낀 가부시끼가이샤 Dopant solution for electroconductive polymer, oxidizing agent and concurrently dopant solution for electroconductive polymer, electroconductive composition and solid electrolytic capacitor
US7651637B2 (en) 2005-02-08 2010-01-26 Tayca Corporation Dopant solution for an electroconductive polymer, an oxidant and dopant solution for an electroconductive polymer, an electroconductive composition and a solid electrolytic capacitor
TWI425528B (en) * 2005-02-08 2014-02-01 Tayca Corp Dopant solution for conductive polymer, oxidant-and-dopant solution for conductive polymer, conductive composition, and solid electrolytic capacitor
WO2006085601A1 (en) * 2005-02-08 2006-08-17 Tayca Corporation Dopant solution for electrocondctive polymer, oxidizing agent and concurrently dopant solution for electrocondctive polymer, electrocondctive composition and solid electrolytic capacitor
US7722785B2 (en) * 2005-06-27 2010-05-25 E.I. Du Pont De Nemours And Company Electrically conductive polymer compositions
WO2007142051A1 (en) * 2006-06-07 2007-12-13 Tayca Corporation Reaction accelerator for conductive polymer synthesis, conductive polymer and solid electrolytic capacitor
US8262941B2 (en) 2006-06-07 2012-09-11 Tayca Corporation Reaction accelerator for synthesizing a conductive polymer, a conductive polymer, and a solid electrolytic capacitor
US8057708B2 (en) 2006-06-30 2011-11-15 E. I. Du Pont De Nemours And Company Stabilized compositions of conductive polymers and partially fluorinated acid polymers
US8383009B2 (en) 2006-06-30 2013-02-26 E I Du Pont De Nemours And Company Stabilized compositions of conductive polymers and partially fluorinated acid polymers
US8491819B2 (en) 2006-12-29 2013-07-23 E I Du Pont De Nemours And Company High work-function and high conductivity compositions of electrically conducting polymers
US8658061B2 (en) 2007-04-13 2014-02-25 E I Du Pont De Nemours And Company Electrically conductive polymer compositions
JP2010037466A (en) * 2008-08-06 2010-02-18 Japan Carlit Co Ltd:The Electrolytic solution for electropolymerization for forming electroconductive polymer, electroconductive polymer, solid electrolytic capacitor using the same, and method for manufacturing the capacitor

Also Published As

Publication number Publication date
JP3909666B2 (en) 2007-04-25

Similar Documents

Publication Publication Date Title
JP4688125B2 (en) Conductive polymer and solid electrolytic capacitor using the same
JP5191171B2 (en) Dispersant and dopant for conductive polymer synthesis, conductive polymer synthesized using the same, conductive composition containing the conductive polymer, dispersion of the conductive polymer or conductive composition, and the above Application of conductive polymer or conductive composition
JP4454041B2 (en) Dispersion liquid of conductive composition, conductive composition and use thereof
EP1979393B1 (en) Process for preparing polythiophenes
JP5093915B2 (en) Solid electrolytic capacitor
JP4342607B2 (en) Oxidizing agent and dopant for conductive polymer synthesis, alcohol solution thereof, conductive polymer and solid electrolytic capacitor
JP2003158043A (en) Conductive polymer and solid electrolytic capacitor using the same
TWI362997B (en) Solid electrolytic condenser
JP4573363B1 (en) Process for producing organic solvent-based conductive polymer dispersion and its application
JP4330160B2 (en) Oxidizing agent / dopant for conductive polymer synthesis, alcohol solution thereof, conductive polymer synthesized using them, and solid electrolytic capacitor using the conductive polymer as solid electrolyte
JP5763960B2 (en) Conductive polymer suspension and method for producing the same, conductive organic material, solid electrolytic capacitor and method for producing the same
JP4338181B2 (en) Solid electrolytic capacitor
CN102876201B (en) Electronic component, conductive polymer composition and preparation method thereof
JP4565522B2 (en) Method for producing conductive polymer dispersion, conductive polymer dispersion, conductive polymer and use thereof
JP4204061B2 (en) Oxidizing agent and dopant for conductive polymer synthesis
JP4129961B2 (en) Oxidizing agent for producing conductive polymer and method for producing the same
TWI309237B (en) Fluorinated alkyl substituted-thieno[3,4-b]thiophene monomers and polymers therefrom
JP5289212B2 (en) Oxidizing agent for producing conductive polymer, solid electrolytic capacitor using the same, and method for producing the same
JP5062694B2 (en) Oxidizing agent for producing conductive polymer, solid electrolytic capacitor using the same, and method for producing the same
JP4443207B2 (en) Conductive polymer and solid electrolytic capacitor
JP2002138136A (en) Oxidizer for producing electroconductive polymer
JPH11209461A (en) Polymer having thiophene structure, composition comprising same, preparation of same and electroconductive material
JP2017216282A (en) Oxidizing agent also serving as dopant agent for producing conductive polymer, method of producing the same, and method of producing conductive polymer
JP2001210560A (en) Conductive polymer and solid electrolytic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040430

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061031

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070118

R150 Certificate of patent or registration of utility model

Ref document number: 3909666

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110202

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130202

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130202

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140202

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term