JP2010022131A - Capacitive component series circuit, power supply apparatus and power conversion apparatus - Google Patents

Capacitive component series circuit, power supply apparatus and power conversion apparatus Download PDF

Info

Publication number
JP2010022131A
JP2010022131A JP2008180213A JP2008180213A JP2010022131A JP 2010022131 A JP2010022131 A JP 2010022131A JP 2008180213 A JP2008180213 A JP 2008180213A JP 2008180213 A JP2008180213 A JP 2008180213A JP 2010022131 A JP2010022131 A JP 2010022131A
Authority
JP
Japan
Prior art keywords
wiring
electrode terminal
capacitive component
capacitor
terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008180213A
Other languages
Japanese (ja)
Inventor
Naoki Inoue
尚樹 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2008180213A priority Critical patent/JP2010022131A/en
Publication of JP2010022131A publication Critical patent/JP2010022131A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Inverter Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a capacitive component series circuit which efficiently reduces wiring inductance. <P>SOLUTION: An interval between a positive electrode terminal 1a and a negative electrode terminal 1b, which a capacitor 1 has, is equal to that between a positive electrode terminal 2a and a negative electrode terminal 2b, which a capacitor 2 has. Wiring 3 is connected to the negative electrode terminal 1b and the positive electrode terminal 2a. One end of wiring 4 is connected to the positive electrode terminal 1a and it extends toward the capacitor 2 in almost parallel to wiring 3. One end of wiring 5 is connected to the negative electrode terminal 2b and it extends toward the capacitor 1 in almost parallel to wiring 3. An angle θ1 which a straight line connecting the positive electrode terminal 1a and the negative electrode terminal 1b makes with respect to a segment where the negative electrode terminal 1b and the positive electrode terminal 1a are set to be both ends has the same value as an angle θ2 which a straight line connecting the positive electrode terminal 2a and the negative electrode terminal 2b makes with respect to the segment, and both angles are below 90 degrees. The segment is almost parallel to a segment where the negative electrode terminal 2b and the positive electrode terminal 1a are set to be both ends. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、容量性部品直列回路、電源装置及び電力変換装置に関し、特に配線インダクタンスを低減する技術に関する。   The present invention relates to a capacitive component series circuit, a power supply device, and a power conversion device, and more particularly to a technique for reducing wiring inductance.

電力変換装置において、インバータのスイッチング素子をオンからオフに切り替えたときに、平滑コンデンサとインバータとを接続する配線のインダクタンスに蓄えられたエネルギーによって、サージ電圧が生じる可能性があった。   In the power converter, when the switching element of the inverter is switched from on to off, a surge voltage may be generated due to energy stored in the inductance of the wiring connecting the smoothing capacitor and the inverter.

上記の問題に対しては、例えば配線に蓄えられるエネルギーをバイパスするバイバスコンデンサやスナバ回路を設けて、インバータのスイッチング素子を保護していた。   For example, a bypass capacitor or a snubber circuit that bypasses the energy stored in the wiring is provided to protect the switching element of the inverter.

なお、本発明に関連する技術が特許文献1に記載されている。   A technique related to the present invention is described in Patent Document 1.

特開2007−116861号公報JP 2007-116861 A

しかしながら、バイパスコンデンサやスナバ回路を設けると回路の規模が増大するという問題があった。   However, when a bypass capacitor or a snubber circuit is provided, there is a problem that the circuit scale increases.

また複数のコンデンサを直列に接続して各コンデンサの耐圧を低減するコンデンサ回路について、その配線インダクタンスを低減する技術が求められていた。   Further, a technique for reducing the wiring inductance of a capacitor circuit that reduces the withstand voltage of each capacitor by connecting a plurality of capacitors in series has been demanded.

そこで、本発明は効率的に配線インダクタンスを低減できる容量性部品直列回路を提供することを目的とする。   Accordingly, an object of the present invention is to provide a capacitive component series circuit that can efficiently reduce wiring inductance.

本発明に係る容量性部品直列回路の第1の態様は、第1正極端子(1a)と第1負極端子(1b)とを有する第1容量性部品(1)と、第2正極端子(2a)と第2負極端子(2b)とを有し、前記第2正極端子と前記第2負極端子との間の間隔が、前記第1正極端子と前記第1負極端子との間の間隔と等しい第2容量性部品(2)と、両端を有し、一端が前記第1負極端子に他端が前記第2正極端子にそれぞれ接続された第1配線(3)と、両端を有し、一端が前記第1正極端子と接続されて前記第1配線に略平行に前記第2容量性部品へ向かって延在する第2配線(4)と、両端を有し、一端が前記第2負極端子と接続されて前記第1配線に略平行に前記第1容量性部品へ向かって延在する第3配線(5)とを備え、前記第1負極端子と前記第2正極端子とを両端とする線分に対して、前記第1正極端子と前記第1負極端子とを繋ぐ直線がなす第1角度(θ1)と、前記線分に対して前記第2正極端子と前記第2負極端子とを繋ぐ直線がなす第2角度(θ2)とは同じ値であって何れも90度未満であり、前記線分と、前記第2負極端子と前記第1正極端子とを両端とする線分とは略平行であり、前記第2配線の両端間の長さたる配線長と、前記第3配線の配線長は相互に等しい。   A first aspect of the capacitive component series circuit according to the present invention includes a first capacitive component (1) having a first positive terminal (1a) and a first negative terminal (1b), and a second positive terminal (2a). ) And a second negative electrode terminal (2b), and an interval between the second positive electrode terminal and the second negative electrode terminal is equal to an interval between the first positive electrode terminal and the first negative electrode terminal. A second capacitive component (2), a first wiring (3) having both ends, one end connected to the first negative terminal and the other end to the second positive terminal, and both ends, one end Is connected to the first positive terminal and extends toward the second capacitive component substantially parallel to the first wiring, and has both ends, one end of the second negative terminal A third wiring (5) connected to the first wiring and extending substantially parallel to the first wiring toward the first capacitive component, and the first negative terminal; A first angle (θ1) formed by a straight line connecting the first positive electrode terminal and the first negative electrode terminal with respect to a line segment having both ends of the second positive electrode terminal; and the second angle with respect to the line segment. The second angle (θ2) formed by the straight line connecting the positive electrode terminal and the second negative electrode terminal is the same value and less than 90 degrees, and the line segment, the second negative electrode terminal, and the first positive electrode The line segment having the terminal as both ends is substantially parallel, and the wiring length that is the length between both ends of the second wiring and the wiring length of the third wiring are equal to each other.

本発明に係る容量性部品直列回路の第2の態様は、第1の態様に係る容量性部品直列回路であって、前記第1配線(3)と前記第2配線(4)とが縒り重ねられ、前記第1配線(3)と前記第3配線(5)とが縒り重ねられている。   A second aspect of the capacitive component series circuit according to the present invention is the capacitive component series circuit according to the first aspect, wherein the first wiring (3) and the second wiring (4) overlap each other. The first wiring (3) and the third wiring (5) are overlapped.

本発明に係る容量性部品直列回路の第3の態様は、第1又は第2の態様に係る容量性部品直列回路であって、前記第1配線(3)に介在する第3容量性部品を更に備える。   A third aspect of the capacitive component series circuit according to the present invention is the capacitive component series circuit according to the first or second aspect, wherein a third capacitive component interposed in the first wiring (3) is provided. In addition.

本発明に係る電源装置の第1の態様は、第1乃至第3の何れか一つの態様に係る容量性部品直列回路(10)と、交流電圧を直流電圧に変換して前記第2配線(4)と前記第3配線(5)との間に印加する変換部(20)とを備える。   A first aspect of the power supply device according to the present invention includes a capacitive component series circuit (10) according to any one of the first to third aspects, the alternating current voltage converted into a direct current voltage, and the second wiring ( 4) and a conversion unit (20) to be applied between the third wiring (5).

本発明に係る電力変換装置の第1の態様は、第1乃至第3の何れか一つの態様に係る容量性部品直列回路(10)と、交流電圧を直流電圧に変換して前記第2配線と前記第3配線との間に印加するコンバータ(20)と、前記第2配線(4)と前記第3配線(5)との間に印加される前記直流電圧を交流電圧に変換して出力するインバータ(30)とを備える。   A first aspect of the power conversion device according to the present invention includes a capacitive component series circuit (10) according to any one of the first to third aspects, and the second wiring by converting an AC voltage into a DC voltage. Converter (20) applied between the first wiring and the third wiring, and the DC voltage applied between the second wiring (4) and the third wiring (5) is converted into an AC voltage and output. And an inverter (30).

本発明に係る容量性部品直列回路の第1の態様によれば、第2正極端子と第2負極端子との間の間隔が、第1正極端子と第1負極端子との間の間隔と等しい。また第1負極端子と第2正極端子とを両端とする線分と、第2負極端子と第1正極端子とを両端とする線分とは平行である。更に第1角度と第2角度が相互に同じであって、第2配線及び第3配線の配線長が相互に等しい。よって第2配線の他端と第3配線の他端との間は第1配線のほぼ中央に位置し、第2配線の他端及び第3配線の他端の間の平衡を高めることができる。また第1配線を流れる電流と第2配線、第3配線を流れる電流とは相互に反対であって、第1角度及び第2角度が90度未満なので第1配線と第2配線との間の距離、第1配線と第3配線との間の距離を低減できる。よって、第1配線、第2配線、第3配線にかかる配線インダクタンスを低減できる。   According to the first aspect of the capacitive component series circuit according to the present invention, the distance between the second positive terminal and the second negative terminal is equal to the distance between the first positive terminal and the first negative terminal. . A line segment having both ends of the first negative electrode terminal and the second positive electrode terminal is parallel to a line segment having both ends of the second negative electrode terminal and the first positive electrode terminal. Further, the first angle and the second angle are the same, and the wiring lengths of the second wiring and the third wiring are equal to each other. Therefore, between the other end of the second wiring and the other end of the third wiring is located substantially at the center of the first wiring, and the balance between the other end of the second wiring and the other end of the third wiring can be enhanced. . In addition, the current flowing through the first wiring and the current flowing through the second wiring and the third wiring are opposite to each other, and the first angle and the second angle are less than 90 degrees. The distance between the first wiring and the third wiring can be reduced. Therefore, wiring inductance concerning the first wiring, the second wiring, and the third wiring can be reduced.

本発明に係る容量性部品直列回路の第2の態様によれば、外部からのノイズの影響を低減できる。   According to the second aspect of the capacitive component series circuit of the present invention, it is possible to reduce the influence of external noise.

本発明に係る容量性部品直列回路の第3の態様によれば、第1乃至第3容量性部品の耐圧を低減できる。   According to the third aspect of the capacitive component series circuit of the present invention, the breakdown voltage of the first to third capacitive components can be reduced.

本発明に係る電源装置の第1の態様によれば、容量性部品直列回路の配線インダクタンスを低減できるので、サージ電圧が生じにくい電源装置を提供できる。   According to the first aspect of the power supply device of the present invention, since the wiring inductance of the capacitive component series circuit can be reduced, it is possible to provide a power supply device in which a surge voltage hardly occurs.

本発明に係る電力変換装置の第1の態様によれば、容量性部品直列回路のインダクタンスを低減できるので、サージ電圧が生じにくい電力変換装置を提供できる。   According to the first aspect of the power conversion device of the present invention, since the inductance of the capacitive component series circuit can be reduced, it is possible to provide a power conversion device that is unlikely to generate a surge voltage.

第1の実施の形態.
図1は第1の実施の形態に係る容量性部品直列回路の概念的な構成の一例を示している。容量性部品直列回路10は、容量性部品1,2と、配線3,4,5とを備えている。
First embodiment.
FIG. 1 shows an example of a conceptual configuration of the capacitive component series circuit according to the first embodiment. The capacitive component series circuit 10 includes capacitive components 1 and 2 and wirings 3, 4 and 5.

容量性部品1,2はコンデンサ若しくは電池(バッテリー)である。ここでは容量性部品1,2としてコンデンサを採用して説明する。以下においては、容量性部品直列回路をコンデンサ回路と、容量性部品をコンデンサとそれぞれ呼称する。コンデンサ1,2は例えば電解コンデンサである。   The capacitive parts 1 and 2 are capacitors or batteries. Here, a description will be given using capacitors as the capacitive components 1 and 2. Hereinafter, the capacitive component series circuit is referred to as a capacitor circuit, and the capacitive component is referred to as a capacitor. The capacitors 1 and 2 are, for example, electrolytic capacitors.

コンデンサ1,2はそれぞれ正極端子1a,2aと負極端子1b,2bとを備えている。図1においては、円筒形状の電解コンデンサの上面に正極端子、負極端子が設けられた態様が例示されている。図1においては、電解コンデンサの上面の外形状が破線で示されている。つまり図1はコンデンサ1,2の電気記号を伴った、コンデンサ回路の上面図となっている。コンデンサ1の正極端子1aと負極端子1bとの間の間隔は、コンデンサ2の正極端子2aと負極端子2bとの間の間隔と等しい。   Capacitors 1 and 2 have positive terminals 1a and 2a and negative terminals 1b and 2b, respectively. In FIG. 1, the aspect by which the positive electrode terminal and the negative electrode terminal were provided in the upper surface of the cylindrical electrolytic capacitor is illustrated. In FIG. 1, the outer shape of the upper surface of the electrolytic capacitor is indicated by a broken line. That is, FIG. 1 is a top view of the capacitor circuit with the electrical symbols of capacitors 1 and 2. The interval between the positive electrode terminal 1 a and the negative electrode terminal 1 b of the capacitor 1 is equal to the interval between the positive electrode terminal 2 a and the negative electrode terminal 2 b of the capacitor 2.

配線3,4,5は例えばワイヤー・ハーネスである。配線3,4,5はインダクタンス成分を有している。図1においては、配線3,4,5がインダクタンス成分を有するリアクトルとして示されている。なお、配線3,4,5がワイヤー・ハーネスであれば、平行板配線(例えばブスバ)などに比べて軽量であるので、例えば自動車に本コンデンサ回路10を搭載する場合などに好適である。またコンデンサ1,2の配置を変更しやすい。   The wirings 3, 4, and 5 are, for example, wire harnesses. The wirings 3, 4 and 5 have an inductance component. In FIG. 1, wirings 3, 4, and 5 are shown as reactors having an inductance component. If the wirings 3, 4 and 5 are wire harnesses, they are lighter than parallel plate wirings (for example, bus bars), and thus are suitable when the capacitor circuit 10 is mounted on an automobile, for example. Moreover, it is easy to change the arrangement of the capacitors 1 and 2.

配線3は両端を有し、一端がコンデンサ1の負極端子1bに、他端がコンデンサ2の正極端子2aにそれぞれ接続されている。   The wiring 3 has both ends, one end connected to the negative terminal 1 b of the capacitor 1 and the other end connected to the positive terminal 2 a of the capacitor 2.

配線4は両端4a,4bを有し、一端4aがコンデンサ1の正極端子1aに接続されて配線3と略平行にコンデンサ2へと向かって延在している。   The wiring 4 has both ends 4 a and 4 b, and one end 4 a is connected to the positive terminal 1 a of the capacitor 1 and extends toward the capacitor 2 substantially parallel to the wiring 3.

配線5は両端5a,5bを有し、一端5aがコンデンサ2の負極端子2bに接続されて配線3と略平行にコンデンサ1へと向かって延在している。配線5の両端5a,5bの間の長さ(以下、配線長と呼ぶ)は配線4の配線長と等しい。   The wiring 5 has both ends 5 a and 5 b, and one end 5 a is connected to the negative terminal 2 b of the capacitor 2 and extends toward the capacitor 1 substantially parallel to the wiring 3. The length between both ends 5 a and 5 b of the wiring 5 (hereinafter referred to as wiring length) is equal to the wiring length of the wiring 4.

また、コンデンサ1,2は次に説明する位置関係を満たす。即ち角度θ1,θ2は相互に等しく、いずれも90度未満である。角度θ1は、コンデンサ1の負極端子1bとコンデンサ2の正極端子2aとを両端とする線分に対して、コンデンサ1の正極端子1aと負極端子1bとを繋ぐ直線が成す角度のうち小さい方の角度である。角度θ2は、上記線分に対して、コンデンサ2の正極端子2aと負極端子2bとを繋ぐ直線が成す角度のうち小さい方の角度である。   The capacitors 1 and 2 satisfy the positional relationship described below. That is, the angles θ1 and θ2 are equal to each other, and both are less than 90 degrees. The angle θ1 is the smaller of the angles formed by the straight line connecting the positive terminal 1a and the negative terminal 1b of the capacitor 1 with respect to the line segment having the negative terminal 1b of the capacitor 1 and the positive terminal 2a of the capacitor 2 as both ends. Is an angle. The angle θ2 is the smaller of the angles formed by a straight line connecting the positive electrode terminal 2a and the negative electrode terminal 2b of the capacitor 2 with respect to the line segment.

上記線分と、コンデンサ1の正極端子1a及びコンデンサ2の負極端子2bを両端とする線分とは、相互に略平行である。言い換えると、配線4,5は配線3に対して同じ側に配置されている。   The line segment and the line segment having both ends of the positive electrode terminal 1a of the capacitor 1 and the negative electrode terminal 2b of the capacitor 2 are substantially parallel to each other. In other words, the wirings 4 and 5 are arranged on the same side with respect to the wiring 3.

このような構成のコンデンサ回路10において、配線4の他端4bと、配線5の他端5bとは配線3のほぼ中央に位置する。コンデンサ回路10は、配線4の他端4b、配線5の他端5bの間と配線3の中央とを繋ぐ直線に対して略対称な形状を有するので、配線4の他端4bと配線5の他端5bとの間の平衡を高めることができる。   In the capacitor circuit 10 having such a configuration, the other end 4 b of the wiring 4 and the other end 5 b of the wiring 5 are located at substantially the center of the wiring 3. Since the capacitor circuit 10 has a shape substantially symmetrical with respect to a straight line connecting the other end 4b of the wiring 4 and the other end 5b of the wiring 5 and the center of the wiring 3, the other end 4b of the wiring 4 and the wiring 5 The balance with the other end 5b can be increased.

また、配線4の他端4bと配線5の他端5bとの間には、配線4の他端4bを高電位側とする直流電圧が印加される。よって、配線4を流れる電流と配線3を流れる電流とは相互に反対方向である。同じく配線5を流れる電流と配線3を流れる電流とは相互に反対方向である。従って、配線3,4の磁気的結合及び配線3,5の磁気的結合は配線インダクタンスを低減させる。   Further, a DC voltage is applied between the other end 4 b of the wiring 4 and the other end 5 b of the wiring 5 with the other end 4 b of the wiring 4 as a high potential side. Therefore, the current flowing through the wiring 4 and the current flowing through the wiring 3 are in opposite directions. Similarly, the current flowing through the wiring 5 and the current flowing through the wiring 3 are in opposite directions. Therefore, the magnetic coupling of the wirings 3 and 4 and the magnetic coupling of the wirings 3 and 5 reduce the wiring inductance.

しかも角度θ1,θ2が90度未満である。よって、角度θ1,θ2が90度を超えている場合に比べて、配線3の配線長を一定としたときに配線4,5の配線長を低減しつつも、配線3,4の間の距離及び配線4,5の間の距離を短縮できる。配線インダクタンスは配線長の低減によっても低減されるうえに、上記距離の短縮によって磁気的結合が強まるので配線インダクタンスを更に低減できる。   Moreover, the angles θ1 and θ2 are less than 90 degrees. Therefore, compared with the case where the angles θ1 and θ2 exceed 90 degrees, the distance between the wirings 3 and 4 is reduced while reducing the wiring length of the wirings 4 and 5 when the wiring length of the wiring 3 is constant. In addition, the distance between the wirings 4 and 5 can be shortened. The wiring inductance can be reduced by reducing the wiring length, and the magnetic coupling is strengthened by shortening the distance, so that the wiring inductance can be further reduced.

以上のように、配線4の他端4bと,配線5の他端5bとの平衡を高めつつ、配線インダクタンスを効率よく低減できる。   As described above, the wiring inductance can be efficiently reduced while improving the balance between the other end 4b of the wiring 4 and the other end 5b of the wiring 5.

なお、上述したように、配線インダクタンスの低減という観点では、配線4,5の配線長は短いほうが望ましく、角度θ1,θ2は小さいほうが望ましいが、コンデンサ回路10が設けられる装置の構造的な制約、耐熱的な制約や、電気的絶縁に関する制約をも鑑みて、配線3,4,5の配線長や角度θ1,θ2が決定される。   As described above, from the viewpoint of reducing the wiring inductance, it is preferable that the wiring lengths of the wirings 4 and 5 are short, and the angles θ1 and θ2 are preferably small, but structural limitations of the device in which the capacitor circuit 10 is provided, The wiring lengths and the angles θ1 and θ2 of the wirings 3, 4, and 5 are determined in consideration of heat-resisting restrictions and restrictions on electrical insulation.

図2は、図1において角度θ1,θ2として小さい値を採用した場合の一のコンデンサに相当する部分の概念的な構成を示している。但し、配線3,4はコンデンサの上面内にほぼ収まる寸法のみを取り出している。なお、図1におけるコンデンサ回路10の対称性に鑑みて、図2に示すコンデンサはコンデンサ1,2のいずれとも把握できる。その場合、配線4を配線5と読み替えることになる。以下においては、代表的にコンデンサ1として説明する。   FIG. 2 shows a conceptual configuration of a portion corresponding to one capacitor when small values are adopted as the angles θ1 and θ2 in FIG. However, the wirings 3 and 4 are taken out only in dimensions that are almost within the upper surface of the capacitor. In view of the symmetry of the capacitor circuit 10 in FIG. 1, the capacitor shown in FIG. In that case, the wiring 4 is read as the wiring 5. In the following description, the capacitor 1 will be representatively described.

図3は、従来例として、角度θ1,θ2として90度を採用した場合のコンデンサの概念的な一例を示している。図2と同様に、コンデンサ回路が有する2つのコンデンサのうちの一つを示し、配線3,4はコンデンサの上面内にほぼ収まる寸法のみを取り出している。図3においては、角度θ1,θ2として90度を採用しつつも、配線3,4の形状をそれぞれ略L字形状とすることで両者間の距離が小さくなる領域を長くし、配線インダクタンスを低減している。配線3は、負極端子1bから正極端子1aへと向かって延在し、正極端子1aと負極端子1bとの間のほぼ中央で90度屈曲している。同じく配線4は、正極端子1aから負極端子1bへと向かって延在し、正極端子1aと負極端子1bとの間のほぼ中央で屈曲し、配線3に沿って延在している。   FIG. 3 shows a conceptual example of a capacitor when 90 degrees is adopted as the angles θ1 and θ2 as a conventional example. As in FIG. 2, one of the two capacitors included in the capacitor circuit is shown, and the wirings 3 and 4 are taken out only with dimensions that are substantially within the upper surface of the capacitor. In FIG. 3, while adopting 90 degrees as the angles θ1 and θ2, by making the shapes of the wirings 3 and 4 substantially L-shaped, the area where the distance between the two becomes small is lengthened and the wiring inductance is reduced. is doing. The wiring 3 extends from the negative electrode terminal 1b toward the positive electrode terminal 1a, and is bent by 90 degrees at substantially the center between the positive electrode terminal 1a and the negative electrode terminal 1b. Similarly, the wiring 4 extends from the positive terminal 1 a toward the negative terminal 1 b, bends at substantially the center between the positive terminal 1 a and the negative terminal 1 b, and extends along the wiring 3.

以下、図2,3に示す態様に係る配線インダクタンスを算出する。図2,3に示す態様において、配線インダクタンスを次の条件で計算した。即ち図2,3において配線3,4の幅Wをいずれも10mm、紙面上下方向の配線3,4の間の間隔を1mm、配線3,4の紙面垂直な方向の厚みを35μm、配線3,4に流れる電流の周波数を3MHzとした。また図2,3における配線3の長さL1を90mm、図3における配線4の長さL2を90mmとした。   Hereinafter, the wiring inductance according to the embodiment shown in FIGS. In the embodiment shown in FIGS. 2 and 3, the wiring inductance was calculated under the following conditions. That is, in FIGS. 2 and 3, the widths W of the wirings 3 and 4 are both 10 mm, the interval between the wirings 3 and 4 in the vertical direction on the paper is 1 mm, the thickness of the wirings 3 and 4 in the direction perpendicular to the paper is 35 μm, The frequency of the current flowing through 4 was 3 MHz. The length L1 of the wiring 3 in FIGS. 2 and 3 is 90 mm, and the length L2 of the wiring 4 in FIG. 3 is 90 mm.

その結果、図3に示す配線3の自己インダクタンスは56.393nH、配線4の自己インダクタンスは55.299nHであった。また、配線3,4の相互インダクタンスは8.1179nHであった。よって、図3に示す配線3,4にかかる配線インダクタンスは、56.393+55.299−2×8.1179=95.4562nHであった。   As a result, the self-inductance of the wiring 3 shown in FIG. 3 was 56.393 nH, and the self-inductance of the wiring 4 was 55.299 nH. The mutual inductance of the wirings 3 and 4 was 8.1179 nH. Therefore, the wiring inductance concerning the wiring 3 and 4 shown in FIG. 3 was 56.393 + 55.299-2 × 8.1179 = 95.4562 nH.

一方、図2に示す配線3の自己インダクタンスは67.248nH、配線4の自己インダクタンスは3.0974nHであった。また、配線3,4の相互インダクタンスは3.2571nHであった。よって、図2に示す配線3,4にかかる配線インダクタンスは67.248+3.0974−2×3.2571=63.8312nHであった。   On the other hand, the self-inductance of the wiring 3 shown in FIG. 2 was 67.248 nH, and the self-inductance of the wiring 4 was 3.0974 nH. Moreover, the mutual inductance of the wirings 3 and 4 was 3.2571nH. Therefore, the wiring inductance concerning wiring 3 and 4 shown in FIG. 2 was 67.248 + 3.0974-2 × 3.2571 = 63.8312 nH.

以上のように、図2に示す態様によれば、図3に示す態様に比べて配線インダクタンスを低減できる。   As described above, according to the embodiment shown in FIG. 2, the wiring inductance can be reduced as compared with the embodiment shown in FIG.

図2に示す態様でも、図3に示す態様でも、コンデンサの上面からはみ出た配線3,4,5の構成は、相互に同一形状とできる。いずれの態様においてもコンデンサの上面のほぼ中央から同程度に近接して、配線3,4(あるいは配線3,5)がコンデンサの上面から外へと延在することになるからである。この場合、コンデンサ回路としての配線インダクタンスの大小関係は、図2,3に示す1つのコンデンサに相当する部分に係る配線インダクタンスの大小に依存する。従って、図2に示すコンデンサ1,2をそれぞれ採用したコンデンサ回路10における配線インダクタンスは、図3に示すコンデンサ1,2をそれぞれ採用したコンデンサ回路10における配線インダクタンスに比べて小さい。   In both the embodiment shown in FIG. 2 and the embodiment shown in FIG. 3, the configurations of the wirings 3, 4, 5 protruding from the upper surface of the capacitor can be the same shape. This is because, in any aspect, the wirings 3 and 4 (or the wirings 3 and 5) extend from the upper surface of the capacitor to the same extent from substantially the center of the upper surface of the capacitor. In this case, the magnitude relation of the wiring inductance as the capacitor circuit depends on the magnitude of the wiring inductance related to a portion corresponding to one capacitor shown in FIGS. Therefore, the wiring inductance in the capacitor circuit 10 employing the capacitors 1 and 2 shown in FIG. 2 is smaller than the wiring inductance in the capacitor circuit 10 employing the capacitors 1 and 2 shown in FIG.

また図1を参照して、角度θ1,θ2として小さい値を採用した場合では、周波数の高い電流にとってはコンデンサ回路10がダイポールアンテナとほぼ等価と見なせるので、ノーマルモードのノイズを低減することができる。   Further, referring to FIG. 1, when small values are adopted as the angles θ1 and θ2, the capacitor circuit 10 can be regarded as almost equivalent to a dipole antenna for a high-frequency current, so that noise in the normal mode can be reduced. .

また配線3,4,5の配線長、断面積を調整することで、配線3のインダクタンスと配線4,5のインダクタンスを略同等にすることが望ましい。より具体的には、配線3の断面積をS1、配線4,5の断面積をそれぞれ同一のS2、配線3,4,5の配線長をそれぞれD1,D2,D3とすると、
D1/(D2+D3)=S1/S2 ・・・(1)
を満たすことが望ましい。これによって、平衡を高めることができ、以って例えばノーマルモードのノイズを低減できる。
Further, it is desirable that the inductance of the wiring 3 and the inductance of the wirings 4 and 5 are made substantially equal by adjusting the wiring length and the cross-sectional area of the wirings 3, 4 and 5. More specifically, assuming that the cross-sectional area of the wiring 3 is S1, the cross-sectional areas of the wirings 4 and 5 are the same S2, and the wiring lengths of the wirings 3, 4, and 5 are D1, D2, and D3, respectively.
D1 / (D2 + D3) = S1 / S2 (1)
It is desirable to satisfy. As a result, the balance can be increased and, for example, noise in the normal mode can be reduced.

なお、コモンモードのノイズの影響が懸念される場合には、配線4,5にかかるインピーダンスと、配線3にかかるインピーダンスとを整合させるとよい。   When there is a concern about the influence of common mode noise, the impedance applied to the wirings 4 and 5 may be matched with the impedance applied to the wiring 3.

また配線3,4及び配線3,5はそれぞれ交互に縒り重ねられていてもよい。これによって配線インダクタンスを更に低減できるとともに、電流経路の閉ループ面積をより小さくできるので、ノイズの影響を低減できる。   The wirings 3 and 4 and the wirings 3 and 5 may be alternately stacked. As a result, the wiring inductance can be further reduced, and the closed loop area of the current path can be further reduced, so that the influence of noise can be reduced.

なお、角度θ1,θ2は実質的にゼロ度であってもよい。図4は角度θ1,θ2が実質的にゼロ度の場合のコンデンサ回路10の概念的な構成の一例を示している。コンデンサ1,2の正極端子1a,2a、負極端子1b,2bが設けられた面に対して垂直な高さ方向(紙面上下方向)において、配線3は配線4,5と重なっている。このような重なりは、例えば配線3の両端に設けられる接続部3a,3bが高さ方向に屈曲することで実現されてもよい。また配線3が湾曲していてもよい。   The angles θ1 and θ2 may be substantially zero degrees. FIG. 4 shows an example of a conceptual configuration of the capacitor circuit 10 when the angles θ1 and θ2 are substantially zero degrees. The wiring 3 overlaps the wirings 4 and 5 in a height direction (vertical direction in the drawing) perpendicular to the surface of the capacitors 1 and 2 on which the positive terminals 1a and 2a and the negative terminals 1b and 2b are provided. Such an overlap may be realized, for example, by bending the connection portions 3a and 3b provided at both ends of the wiring 3 in the height direction. Moreover, the wiring 3 may be curved.

なお、上述したコンデンサ回路10は2つのコンデンサを有していたが、3つ以上あってもよい。この場合、配線3上に複数のコンデンサが介在する。この場合であれば、1つのコンデンサに印加される電圧が低下するので、耐圧の低いコンデンサを用いることができる。   In addition, although the capacitor circuit 10 described above has two capacitors, there may be three or more. In this case, a plurality of capacitors are interposed on the wiring 3. In this case, since the voltage applied to one capacitor decreases, a capacitor having a low withstand voltage can be used.

第2の実施の形態.
図5は、第1の実施の形態にかかるコンデンサ回路を有する電力変換装置の概念的な構成の一例を示す。電力変換装置は、例えばコンバータ20と、コンデンサ回路10と、インバータ30とを備えている。コンバータ20は電源E1からの交流電圧を直流電圧に変換してコンデンサ回路10に出力する。コンデンサ回路10は当該直流電圧を平滑する。インバータ30は複数のスイッチ素子(図示せず)を有し、当該スイッチ素子のスイッチング動作によって当該直流電圧を交流電圧に変換して負荷M1に出力する。
Second embodiment.
FIG. 5 shows an example of a conceptual configuration of the power conversion device having the capacitor circuit according to the first embodiment. The power conversion device includes, for example, a converter 20, a capacitor circuit 10, and an inverter 30. The converter 20 converts the AC voltage from the power source E1 into a DC voltage and outputs it to the capacitor circuit 10. The capacitor circuit 10 smoothes the DC voltage. The inverter 30 has a plurality of switch elements (not shown), converts the DC voltage into an AC voltage by a switching operation of the switch elements, and outputs the AC voltage to the load M1.

このようなスイッチング動作に起因して配線に誘導エネルギーが蓄積されるが、コンデンサ回路10によれば、配線インダクタンスを低減できるので、当該誘導エネルギーによるサージ電圧を抑制できる。   Inductive energy is accumulated in the wiring due to such a switching operation. However, according to the capacitor circuit 10, since the wiring inductance can be reduced, a surge voltage due to the inductive energy can be suppressed.

また、コンバータ20もスイッチ素子を有し、当該スイッチ素子のスイッチング動作によって交流電圧を直流電圧に変換してもよい。この場合であっても、当該スイッチング動作によるサージ電圧を抑制できる。なお、コンバータ20とコンデンサ回路10から成る部分を電源装置とも把握できる。   Moreover, the converter 20 also has a switch element, and an alternating voltage may be converted into a direct voltage by the switching operation of the switch element. Even in this case, the surge voltage due to the switching operation can be suppressed. Note that the portion composed of the converter 20 and the capacitor circuit 10 can also be grasped as a power supply device.

以上のように、サージ電圧の抑制を目的としたバイパスコンデンサやスナバ回路等を設けることなく、サージ電圧に対応できる。よって、回路の簡素化及び省資源に効果的である。   As described above, it is possible to cope with the surge voltage without providing a bypass capacitor or a snubber circuit for the purpose of suppressing the surge voltage. Therefore, it is effective in simplifying the circuit and saving resources.

コンデンサ回路の概念的な構成の一例を示す図である。It is a figure which shows an example of a notional structure of a capacitor circuit. 一のコンデンサに相当する部分を示す図である。It is a figure which shows the part corresponded to one capacitor | condenser. 一のコンデンサに相当する部分を示す図である。It is a figure which shows the part corresponded to one capacitor | condenser. コンデンサ回路の概念的な構成の他の一例を示す図である。It is a figure which shows another example of a notional structure of a capacitor circuit. コンデンサ回路を用いた電力変換装置の概念的な構成の一例を示す図である。It is a figure which shows an example of a notional structure of the power converter device using a capacitor circuit.

符号の説明Explanation of symbols

1,2 コンデンサ
10 コンデンサ回路
20 コンバータ
30 インバータ
1a,2a 正極端子
1b,2b 負極端子
3,4,5 配線
θ1,θ2 角度
1, 2 Capacitor 10 Capacitor circuit 20 Converter 30 Inverter 1a, 2a Positive terminal 1b, 2b Negative terminal 3, 4, 5 Wiring θ1, θ2 Angle

Claims (5)

第1正極端子(1a)と第1負極端子(1b)とを有する第1容量性部品(1)と、
第2正極端子(2a)と第2負極端子(2b)とを有し、前記第2正極端子と前記第2負極端子との間の間隔が、前記第1正極端子と前記第1負極端子との間の間隔と等しい第2容量性部品(2)と、
両端を有し、一端が前記第1負極端子に他端が前記第2正極端子にそれぞれ接続された第1配線(3)と、
両端を有し、一端が前記第1正極端子と接続されて前記第1配線に略平行に前記第2容量性部品へ向かって延在する第2配線(4)と、
両端を有し、一端が前記第2負極端子と接続されて前記第1配線に略平行に前記第1容量性部品へ向かって延在する第3配線(5)と
を備え、
前記第1負極端子と前記第2正極端子とを両端とする線分に対して、前記第1正極端子と前記第1負極端子とを繋ぐ直線がなす第1角度(θ1)と、前記線分に対して前記第2正極端子と前記第2負極端子とを繋ぐ直線がなす第2角度(θ2)とは同じ値であって何れも90度未満であり、
前記線分と、前記第2負極端子と前記第1正極端子とを両端とする線分とは略平行であり、
前記第2配線の両端間の長さたる配線長と、前記第3配線の配線長は相互に等しい、容量性部品直列回路(10)。
A first capacitive component (1) having a first positive terminal (1a) and a first negative terminal (1b);
A second positive electrode terminal (2a) and a second negative electrode terminal (2b) are provided, and an interval between the second positive electrode terminal and the second negative electrode terminal is set between the first positive electrode terminal and the first negative electrode terminal. A second capacitive component (2) equal to the spacing between
A first wiring (3) having both ends, one end connected to the first negative terminal and the other end connected to the second positive terminal;
A second wiring (4) having both ends, one end connected to the first positive electrode terminal and extending substantially parallel to the first wiring toward the second capacitive component;
A third wiring (5) having both ends, one end connected to the second negative terminal and extending toward the first capacitive component substantially parallel to the first wiring;
A first angle (θ1) formed by a straight line connecting the first positive electrode terminal and the first negative electrode terminal with respect to a line segment having both ends of the first negative electrode terminal and the second positive electrode terminal; The second angle (θ2) formed by the straight line connecting the second positive terminal and the second negative terminal is the same value, and both are less than 90 degrees,
The line segment and the line segment having both ends of the second negative electrode terminal and the first positive electrode terminal are substantially parallel;
The capacitive component series circuit (10), wherein the wiring length between both ends of the second wiring and the wiring length of the third wiring are equal to each other.
前記第1配線(3)と前記第2配線(4)とが縒り重ねられ、前記第1配線(3)と前記第3配線(5)とが縒り重ねられている、請求項1に記載の容量性部品直列回路。   The said 1st wiring (3) and the said 2nd wiring (4) are rolled up, and the said 1st wiring (3) and the said 3rd wiring (5) are rolled up and overlapped. Capacitive component series circuit. 前記第1配線(3)に介在する第3容量性部品を更に備える、請求項1又は2に記載の容量性部品直列回路。   The capacitive component series circuit according to claim 1 or 2, further comprising a third capacitive component interposed in the first wiring (3). 請求項1乃至3の何れか一つに記載の容量性部品直列回路(10)と、
交流電圧を直流電圧に変換して前記第2配線(4)と前記第3配線(5)との間に印加する変換部(20)と
を備える、電源装置。
Capacitive component series circuit (10) according to any one of claims 1 to 3,
A power supply apparatus comprising: a converter (20) that converts an alternating voltage into a direct voltage and applies the voltage between the second wiring (4) and the third wiring (5).
請求項1乃至3の何れか一つに記載の容量性部品直列回路(10)と、
交流電圧を直流電圧に変換して前記第2配線と前記第3配線との間に印加するコンバータ(20)と、
前記第2配線(4)と前記第3配線(5)との間に印加される前記直流電圧を交流電圧に変換して出力するインバータ(30)と
を備える、電力変換装置。
Capacitive component series circuit (10) according to any one of claims 1 to 3,
A converter (20) for converting an AC voltage into a DC voltage and applying the voltage between the second wiring and the third wiring;
A power converter comprising: an inverter (30) that converts the DC voltage applied between the second wiring (4) and the third wiring (5) into an AC voltage and outputs the AC voltage.
JP2008180213A 2008-07-10 2008-07-10 Capacitive component series circuit, power supply apparatus and power conversion apparatus Pending JP2010022131A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008180213A JP2010022131A (en) 2008-07-10 2008-07-10 Capacitive component series circuit, power supply apparatus and power conversion apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008180213A JP2010022131A (en) 2008-07-10 2008-07-10 Capacitive component series circuit, power supply apparatus and power conversion apparatus

Publications (1)

Publication Number Publication Date
JP2010022131A true JP2010022131A (en) 2010-01-28

Family

ID=41706482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008180213A Pending JP2010022131A (en) 2008-07-10 2008-07-10 Capacitive component series circuit, power supply apparatus and power conversion apparatus

Country Status (1)

Country Link
JP (1) JP2010022131A (en)

Similar Documents

Publication Publication Date Title
EP2670035B1 (en) Multilayer substrate and dc-dc convertor module
JP5338639B2 (en) Power converter
JP6332002B2 (en) Power transmission device, vehicle equipped with power transmission device and wireless power transmission system
JP6399351B2 (en) Power transmission device, vehicle equipped with power transmission device and wireless power transmission system
JP2020102913A (en) Power conversion device and high-voltage noise filter
JPWO2018012059A1 (en) Composite smoothing inductor and smoothing circuit
CN111630616A (en) Very low inductance buss bar for capacitor assembly
CN111865100A (en) Power conversion device
JP6530987B2 (en) Power converter
JP6946971B2 (en) Power converter
JP2015073376A (en) Power conversion device
JP6022062B2 (en) Power converter
JP2010022131A (en) Capacitive component series circuit, power supply apparatus and power conversion apparatus
JP2019179904A (en) Coil unit, wireless power transmission device, wireless power reception device, and wireless power transmission system
WO2016103918A1 (en) Capacitor module and power conversion system
JP2010213480A (en) Power converter of fuel cell
CN107946046B (en) Dual-phase coupling inductor and power supply
JP7098025B1 (en) Power converter
JP7294289B2 (en) power converter
JP6167963B2 (en) Power converter
JP2018182880A (en) Power conversion device
EP3240178B1 (en) Power conversion device
JP6264212B2 (en) Power converter
JP2024073676A (en) Power conversion device
CN117716456A (en) Bus bar device and intermediate circuit capacitor device with buffer effect and motor vehicle