JP6530987B2 - Power converter - Google Patents

Power converter Download PDF

Info

Publication number
JP6530987B2
JP6530987B2 JP2015137385A JP2015137385A JP6530987B2 JP 6530987 B2 JP6530987 B2 JP 6530987B2 JP 2015137385 A JP2015137385 A JP 2015137385A JP 2015137385 A JP2015137385 A JP 2015137385A JP 6530987 B2 JP6530987 B2 JP 6530987B2
Authority
JP
Japan
Prior art keywords
capacitor
wiring
conductor
positive electrode
parallel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015137385A
Other languages
Japanese (ja)
Other versions
JP2017022835A (en
Inventor
大介 五十嵐
大介 五十嵐
加藤 修治
修治 加藤
越智 健太郎
健太郎 越智
勉 小南
勉 小南
じゅん 鳴島
じゅん 鳴島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2015137385A priority Critical patent/JP6530987B2/en
Publication of JP2017022835A publication Critical patent/JP2017022835A/en
Application granted granted Critical
Publication of JP6530987B2 publication Critical patent/JP6530987B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Rectifiers (AREA)
  • Inverter Devices (AREA)

Description

本発明は、電力変換装置に係り、特に、直流部にコンデンサを複数並列接続するのに好適な電力変換装置に関する。   The present invention relates to a power converter, and more particularly to a power converter suitable for connecting a plurality of capacitors in parallel to a direct current unit.

電力変換装置は、電力用半導体素子を用いて、直流電力を交流電力に変換、或いは、交流電力を直流電力に変換する。すなわち、電力用半導体素子をオン・オフ動作させることで電力変換するものである。一般に電力変換装置では電力変換する過程で例えば平滑等のためにコンデンサで一時的に電力を蓄える。   The power conversion device converts direct current power into alternating current power or converts alternating current power into direct current power using a power semiconductor element. That is, power conversion is performed by turning on and off the power semiconductor element. Generally, in a power conversion apparatus, power is temporarily stored by a capacitor for the purpose of smoothing or the like in the process of power conversion.

高耐圧・大容量のコンデンサは、内部で複数のコンデンサ素子を直並列接続することで高耐圧・大容量化を図っている。   The high-withstand voltage and large-capacitance capacitors are internally connected with multiple capacitor elements in series and in parallel to achieve high-withstand voltage and large capacity.

高電圧・大容量の電力変換装置では、直流部に電圧を平滑化するための高耐圧・大容量のコンデンサを複数並列接続している。   In a high-voltage, large-capacity power converter, a plurality of high-breakdown-voltage, large-capacity capacitors for smoothing the voltage are connected in parallel in the direct current portion.

コンデンサを複数並列接続する場合、複数のコンデンサの静電容量とコンデンサ内部の配線インダクタンスとコンデンサを複数並列接続するための導体の配線インダクタンスによるLC並列共振経路が形成される。   When a plurality of capacitors are connected in parallel, an LC parallel resonance path is formed by the capacitances of the plurality of capacitors, the wiring inductance inside the capacitors, and the wiring inductance of the conductor for connecting the plurality of capacitors in parallel.

このような電力変換装置の技術は例えば特開2015‐002564号公報に記載されている。   The technology of such a power conversion device is described, for example, in Japanese Patent Laid-Open No. 2015-002564.

電力変換回路からコンデンサに流入する電流には、電力変換回路のスイッチング周波数成分の高調波が含まれており、前記の高調波周波数が、複数並列接続したコンデンサ間のLC並列共振経路の共振周波数に近い場合、複数並列接続したコンデンサ間に共振電流が流れ、コンデンサを流れる電流が過剰となる恐れがある。   The current flowing from the power conversion circuit to the capacitor includes harmonics of the switching frequency component of the power conversion circuit, and the above harmonic frequency is the resonance frequency of the LC parallel resonance path between the plurality of capacitors connected in parallel. If it is close, resonance current may flow between a plurality of capacitors connected in parallel, and the current flowing through the capacitors may become excessive.

本発明の目的は、複数並列接続したコンデンサ間の共振電流が流れるのを抑制することが可能な電力変換装置を提供することにある。   An object of the present invention is to provide a power converter capable of suppressing the flow of resonance current between a plurality of capacitors connected in parallel.

特開2015‐002564号公報JP, 2015-002564, A

上記従来技術では、電力用半導体素子の近くに導体板を配置して、電力用半導体素子とコンデンサ間の配線インダクタンス及び電力用半導体素子の配列方向の配線インダクタンスの低減することでサージ電圧を抑制する方法について開示されているが、前記複数並列接続したコンデンサ間の共振電流の発生防止方法については、開示されていない。   In the above-mentioned prior art, a conductor plate is disposed near the power semiconductor element to suppress the surge voltage by reducing the wiring inductance between the power semiconductor element and the capacitor and the wiring inductance in the arrangement direction of the power semiconductor element. Although the method is disclosed, the method for preventing the generation of the resonance current between the plurality of capacitors connected in parallel is not disclosed.

上記課題を解決するために、本発明では、半導体素子にコンデンサ素子を接続して構成され、前記コンデンサ素子は複数で構成されており、前記複数のコンデンサ素子の正極を接続する正極側の配線導体と、前記複数のコンデンサ素子の負極を接続する負極側の配線導体を有し、前記正極側の配線導体と前記負極側の配線導体のいずれか一方もしくは、両方に導体板を近接配置するように構成した。   In order to solve the above problems, according to the present invention, a capacitor element is connected to a semiconductor element, and the capacitor element is constituted by a plurality, and a wiring conductor on the positive electrode side connecting the positive electrodes of the plurality of capacitor elements. And a wiring conductor on the negative electrode side connecting the negative electrodes of the plurality of capacitor elements, and a conductor plate is disposed close to one or both of the wiring conductor on the positive electrode side and the wiring conductor on the negative electrode side. Configured.

具体的には、絶縁性のケースに複数のコンデンサ素子と複数のコンデンサ素子の正極を接続する正極側の配線導体と、複数のコンデンサ素子の負極を接続する負極側の配線導体を収納し、ケース外部に正極端子と負極端子を設けたコンデンサに導体板を近接配置する。   Specifically, the insulating case contains the wiring conductor on the positive electrode side connecting the plurality of capacitor elements and the positive electrodes of the plurality of capacitor elements and the wiring conductor on the negative side connecting the negative electrodes of the plurality of capacitor elements. A conductor plate is disposed close to a capacitor provided with a positive electrode terminal and a negative electrode terminal outside.

本発明によれば、前記並列コンデンサ間LC並列共振によりコンデンサ電流が過剰になることを防止できる。   According to the present invention, it is possible to prevent the capacitor current from becoming excessive due to the LC parallel resonance between the parallel capacitors.

本発明による電力変換装置13の第1の実施形態の回路方式例。The circuit system example of 1st Embodiment of the power converter device 13 by this invention. 本発明による電力変換装置13の第1の実施形態の実装構造。The mounting structure of 1st Embodiment of the power converter device 13 by this invention. コンデンサ1の内部構造の正面図。The front view of the internal structure of the capacitor | condenser 1. FIG. コンデンサ1の内部構造の背面図。The back view of the internal structure of the capacitor | condenser 1. FIG. コンデンサ1を左側面からみた回路図。The circuit diagram which looked at the capacitor | condenser 1 from the left side. 導体板4によるコンデンサ1の内部の配線インダクタンス低減原理の説明図。Explanatory drawing of the wiring inductance reduction principle inside the capacitor | condenser 1 by the conductor board 4. FIG. 図2の導体板4を環状とした例。The example which made the conductor board 4 of FIG. 2 annular. 環状の導体板4によるコンデンサ1の内部の配線インダクタンス低減原理の説明図。Explanatory drawing of the wiring inductance reduction principle inside the capacitor | condenser 1 by the cyclic | annular conductor board 4. FIG. 図1の導体板4をコンデンサ1に近接配置し、且つ導体板4でコンデンサ1の周りを囲んだ例。An example in which the conductive plate 4 of FIG. 図2の導体板4を正極側の配線導体8のコンデンサ素子5からコンデンサ素子7を接続する部分と平行に近接配置した例。6 is an example in which the conductor plate 4 of FIG. 2 is disposed in proximity to and in parallel with a portion connecting the capacitor element 5 to the capacitor element 7 of the wiring conductor 8 on the positive electrode side. 図10における導体板4によるコンデンサ1内部の配線インダクタンス低減原理の説明図。Explanatory drawing of the wiring inductance reduction principle inside the capacitor | condenser 1 by the conductor board 4 in FIG. 本発明の第2の実施例。2nd Example of this invention.

以下、本発明の実施形態を図面ともに説明する。なお、以下の実施例は本発明の一形態を示すものであり、本発明は要旨を逸脱しない限り、他の形態を含むものである。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. The following examples show one embodiment of the present invention, and the present invention includes other embodiments unless they depart from the scope of the present invention.

実施例1では、図1〜図10を用いて本発明の実施形態を説明する。   In the first embodiment, an embodiment of the present invention will be described with reference to FIGS.

まず、本発明による電力変換装置13の第1の実施形態の回路方式例、実装構造例及びコンデンサの内部構造例、コンデンサ内部の回路について説明し、次に第1の実施形態の効果及び原理について説明し、最後に第1の実施形態の導体板4の形状及び配置方法の変更による効果及び原理について説明する。   First, an example of a circuit system of the first embodiment of the power conversion device 13 according to the present invention, an example of a mounting structure, an example of an internal structure of a capacitor, and a circuit inside the capacitor will be described. Finally, effects and principles of the change in the shape and arrangement method of the conductor plate 4 according to the first embodiment will be described.

図1は本実施例による電力変換装置13の第1の実施形態の回路方式例を表した図である。   FIG. 1 is a diagram showing an example of a circuit system of a first embodiment of a power conversion device 13 according to the present embodiment.

図1では、電力変換回路10を三相PWMコンバータとし、直流部(正極側の接続端子110と電力変換回路の負極側の接続端子111の間)にコンデンサを複数並列接続するための正極側の配線導体112とコンデンサを複数並列接続するための負極側の配線導体113でコンデンサ1とコンデンサ11を並列接続している。   In FIG. 1, the power conversion circuit 10 is a three-phase PWM converter, and a positive electrode side for connecting a plurality of capacitors in parallel to a direct current unit (between the connection terminal 110 on the positive electrode side and the connection terminal 111 on the negative electrode side of the power conversion circuit) The capacitor 1 and the capacitor 11 are connected in parallel by a wiring conductor 113 on the negative electrode side for connecting the wiring conductor 112 and a plurality of capacitors in parallel.

交流電源301(U相)は、交流端子114(U相)と交流リアクトル304(U相)を介して、電力用半導体素子12(上側、U相)と電力用半導体素子12(下側、U相)の接続点に接続される。交流電源301(V相)及び交流電源301(W相)も同様に接続される。   The alternating current power supply 301 (U phase) includes the power semiconductor element 12 (upper side, U phase) and the power semiconductor element 12 (lower side, U) through the AC terminal 114 (U phase) and the AC reactor 304 (U phase). Connected to the phase) connection point. AC power supply 301 (V phase) and AC power supply 301 (W phase) are similarly connected.

ここで、電力用半導体素子12(上側、U相)、電力用半導体素子12(下側、U相)、電力用半導体素子12(上側、V相)、電力用半導体素子12(下側、V相)、電力用半導体素子12(上側、W相)、電力用半導体素子12(下側、W相)、は各々図示されない制御装置から制御信号を受けてオン・オフ動作して、交流電源301の交流電力を電力変換する。   Here, the power semiconductor device 12 (upper side, U phase), the power semiconductor device 12 (lower side, U phase), the power semiconductor device 12 (upper side, V phase), the power semiconductor device 12 (lower side, V Phase), power semiconductor element 12 (upper side, W phase), and power semiconductor element 12 (lower side, W phase) respectively receive control signals from a control device (not shown) and perform on / off operation to Convert the AC power of the

電力用半導体素子12(上側、U相)と電力用半導体素子12(下側、U相)は直列され、正極側は、接続端子110と配線導体112を介して出力端子117に接続されると共に、負極側は、接続端子111と配線導体113を介して出力端子118に接続される。電力用半導体素子12(V相)と電力用半導体素子12(W相)も同様である、出力端子117と出力端子118は負荷307の両端に接続される。   Power semiconductor element 12 (upper side, U phase) and power semiconductor element 12 (lower side, U phase) are connected in series, and the positive electrode side is connected to output terminal 117 via connection terminal 110 and wiring conductor 112. The negative electrode side is connected to the output terminal 118 via the connection terminal 111 and the wiring conductor 113. The output terminal 117 and the output terminal 118 are connected to both ends of the load 307 in the same manner as the power semiconductor element 12 (V phase) and the power semiconductor element 12 (W phase).

正極側の配線導体112は、インダクタンス30と配線抵抗50(理論的な構成)、正極端子2(電力変換回路側)、インダクタンス31と配線抵抗51(理論的な構成)、正極端子2(負荷側)で構成される。負極側の配線導体113は、インダクタンス35と配線抵抗55(理論的な構成)、正極端子3(電力変換回路側)、インダクタンス34と配線抵抗54(理論的な構成)、正極端子3(負荷側)で構成される。   The wiring conductor 112 on the positive electrode side includes an inductance 30 and a wiring resistor 50 (theoretical configuration), a positive electrode terminal 2 (the power conversion circuit side), an inductance 31 and a wiring resistor 51 (theoretical configuration), and a positive electrode terminal 2 (the load side) It consists of). The wiring conductor 113 on the negative side includes an inductance 35 and a wiring resistance 55 (theoretical configuration), a positive terminal 3 (power conversion circuit side), an inductance 34 and a wiring resistance 54 (theoretical configuration), and a positive terminal 3 (load side) It consists of).

正極端子2(電力変換回路側)と負極端子3(電力変換回路側)の間にコンデンサ1が接続され、一方、正極端子2(負荷側)と負極端子3(負荷側)の間にコンデンサ11が接続される。   Capacitor 1 is connected between positive electrode terminal 2 (power conversion circuit side) and negative electrode terminal 3 (power conversion circuit side), while capacitor 11 is connected between positive electrode terminal 2 (load side) and negative electrode terminal 3 (load side). Is connected.

コンデンサ1は、理論的に、内部インダクタンス32、抵抗52、静電容量70で構成される。コンデンサ11は、理論的に、内部インダクタンス33、抵抗53、静電容量71で構成される
なお、図1では、電力変換回路10を三相PWMコンバータとしているが、これは電力変換装置13の回路方式の一例を示しており、本発明による電力変換装置の回路方式は図1に限ったものではない。
The capacitor 1 theoretically comprises an internal inductance 32, a resistor 52 and a capacitance 70. The capacitor 11 is theoretically composed of the internal inductance 33, the resistor 53, and the electrostatic capacitance 71. In FIG. 1, although the power conversion circuit 10 is a three-phase PWM converter, this is a circuit of the power conversion device 13. An example of the scheme is shown, and the circuit scheme of the power conversion device according to the present invention is not limited to FIG.

図2に、本発明による電力変換装置13の第1の実施形態の実装構造を示す。図2では、直流部(正極側の接続端子110と電力変換回路の負極側の接続端子111の間)にコンデンサを複数並列接続するための正極側の配線導体112とコンデンサを複数並列接続するための負極側の配線導体113で並列接続したコンデンサ1とコンデンサ11に導体板4を近接配置した例を示している。すなわち、コンデンサ1とコンデンサ11の間に導体板4を配置する。さらに、コンデンサ11のおけるコンデンサ1とは反対側に導体板4を配置する。前記コンデンサを複数並列接続するための正極側の配線導体112及び前記コンデンサを複数並列接続するための負極側の配線導体113は、配線インダクタンス及び配線抵抗として機能してしまう。   FIG. 2 shows the mounting structure of the first embodiment of the power conversion device 13 according to the present invention. In FIG. 2, a plurality of positive-side wiring conductors 112 and a plurality of capacitors are connected in parallel for connecting a plurality of capacitors in parallel to the direct current portion (between the positive-side connection terminal 110 and the negative-side connection terminal 111 of the power conversion circuit). An example is shown in which the conductor plate 4 is disposed close to the capacitor 1 and the capacitor 11 which are connected in parallel by the wiring conductor 113 on the negative electrode side. That is, the conductor plate 4 is disposed between the capacitor 1 and the capacitor 11. Furthermore, the conductor plate 4 is disposed on the side opposite to the capacitor 1 in the capacitor 11. The wiring conductor 112 on the positive electrode side for connecting a plurality of capacitors in parallel and the wiring conductor 113 on the negative electrode side for connecting a plurality of capacitors in parallel function as wiring inductance and wiring resistance.

図1のコンデンサ1及びコンデンサ11の内部構造の正面図を図3に、背面図を図4に、左側面からみた回路図を図5に示す。なお、図3〜図5は大容量コンデンサの内部構造の一例を示しており、本発明が適用可能なコンデンサの内部構造は図3〜図5に限ったものではない。   A front view of the internal structure of the capacitor 1 and the capacitor 11 of FIG. 1 is shown in FIG. 3, a rear view is shown in FIG. 4, and a circuit diagram seen from the left side is shown in FIG. 3 to 5 show an example of the internal structure of the large-capacity capacitor, and the internal structure of the capacitor to which the present invention can be applied is not limited to FIGS.

図3に示すように、コンデンサ1及びコンデンサ11の内部の正面には、正極端子2が正極側の配線導体8を介して、コンデンサ素子5、6、7に接続されている。正極側の配線導体8も、配線インダクタンス及び配線抵抗として機能してしまう。また、前記コンデンサ素子5、6、7が収納されるコンデンサ1のケースは絶縁性である。   As shown in FIG. 3, the positive electrode terminal 2 is connected to the capacitor elements 5, 6, 7 via the wiring conductor 8 on the positive electrode side in the front of the inside of the capacitor 1 and the capacitor 11. The wiring conductor 8 on the positive electrode side also functions as a wiring inductance and a wiring resistance. Also, the case of the capacitor 1 in which the capacitor elements 5, 6, 7 are housed is insulating.

図4に示すように、コンデンサ1及びコンデンサ11の内部の背面には、負極端子3が負極側の配線導体9を介して、コンデンサ素子5、6、7に接続されている。負極側の配線導体9も、配線インダクタンス及び配線抵抗として機能してしまう。   As shown in FIG. 4, the negative electrode terminal 3 is connected to the capacitor elements 5, 6, 7 via the wiring conductor 9 on the negative electrode side on the back surface inside the capacitor 1 and the capacitor 11. The wiring conductor 9 on the negative electrode side also functions as a wiring inductance and a wiring resistance.

図5に示すように、コンデンサ1及びコンデンサ11の内部の回路は、正極端子2と負極端子3の間にコンデンサ素子5、6、7が並列に接続されている。内部で複数のコンデンサ素子を並列接続することで、コンデンサ1及びコンデンサ11の静電容量を大きくしている。また、前記コンデンサ素子5、6、7の内部にも配線インダクタンス及び配線抵抗が存在する。   As shown in FIG. 5, in the internal circuit of the capacitor 1 and the capacitor 11, capacitor elements 5, 6 and 7 are connected in parallel between the positive electrode terminal 2 and the negative electrode terminal 3. By connecting a plurality of capacitor elements in parallel internally, the capacitances of the capacitors 1 and 11 are increased. Further, the wiring inductance and the wiring resistance also exist inside the capacitor elements 5, 6, 7.

正極端子2は、インダクタンス36と配線抵抗56(理論的な構成)、正極端子(端子側)、インダクタンス37と配線抵抗57(理論的な構成)、正極端子(中間)、インダクタンス38と配線抵抗58(理論的な構成)、正極他端の順で接続される。負極端子3は、インダクタンス44と配線抵抗64(理論的な構成)、正極端子(端子側)、インダクタンス43と配線抵抗63(理論的な構成)、正極端子(中間)、インダクタンス42と配線抵抗62(理論的な構成)、負極他端の順で接続される。   The positive electrode terminal 2 includes an inductance 36 and a wiring resistance 56 (theoretical configuration), a positive electrode terminal (terminal side), an inductance 37 and a wiring resistance 57 (theoretical configuration), a positive electrode terminal (intermediate), an inductance 38 and the wiring resistance 58 (Theoretical configuration), connected in the order of the other end of the positive electrode. The negative terminal 3 includes an inductance 44 and a wiring resistance 64 (theoretical configuration), a positive terminal (terminal side), an inductance 43 and a wiring resistance 63 (theoretical configuration), a positive terminal (intermediate), an inductance 42 and the wiring resistance 62 (Theoretical configuration), it is connected in the order of the other end of the negative electrode.

この構成において、正極端子(端子側)と負極端子(端子側)の間にコンデンサ5が、正極端子(中間)と負極端子(中間)の間にコンデンサ6が、正極他端と負極他端の間にコンデンサ7が接続される。   In this configuration, the capacitor 5 is between the positive electrode terminal (terminal side) and the negative electrode terminal (terminal side), the capacitor 6 is between the positive electrode terminal (intermediate) and the negative electrode terminal (middle), The capacitor 7 is connected between them.

コンデンサ5は、理論的に、内部インダクタンス39、抵抗59、静電容量72で構成される。コンデンサ6は、理論的に、内部インダクタンス40、抵抗60、静電容量73で構成される。コンデンサ7は、理論的に、内部インダクタンス41、抵抗61、静電容量74で構成される。   The capacitor 5 is theoretically composed of an internal inductance 39, a resistor 59, and a capacitance 72. The capacitor 6 is theoretically composed of an internal inductance 40, a resistor 60, and a capacitance 73. The capacitor 7 is theoretically composed of an internal inductance 41, a resistor 61, and a capacitance 74.

以降より、本実施例の効果について説明する。図2では、電力変換装置の直流部(正極側の接続端子110と電力変換回路の負極側の接続端子111の間)にコンデンサ1とコンデンサ11を並列接続している。   The effects of this embodiment will be described below. In FIG. 2, the capacitor 1 and the capacitor 11 are connected in parallel to the DC portion of the power conversion device (between the connection terminal 110 on the positive electrode side and the connection terminal 111 on the negative electrode side of the power conversion circuit).

図2において、並列接続されたコンデンサ1とコンデンサ11の間のLC並列共振経路120の共振周波数f1-11は、

Figure 0006530987
となる。ここでL31はコンデンサを複数並列接続するための正極側の配線導体112のコンデンサ1とコンデンサ11を接続する部分の配線インダクタンス、L32はコンデンサ1の内部インダクタンス、L33はコンデンサ11の内部インダクタンス、L34は、コンデンサを複数並列接続するための負極側の配線導体113のコンデンサ1とコンデンサ11を接続する部分の配線インダクタンス、C70はコンデンサ1の静電容量、C71はコンデンサ11の静電容量を示す。 In FIG. 2, the resonant frequency f 1-11 of the LC parallel resonant path 120 between the capacitors 1 and 11 connected in parallel is
Figure 0006530987
It becomes. Here, L 31 is a wiring inductance of a portion of the positive side wiring conductor 112 for connecting a plurality of capacitors in parallel, connecting the capacitor 1 and the capacitor 11, L 32 is an internal inductance of the capacitor 1, and L 33 is an internal inductance of the capacitor 11. , L 34 is the wiring inductance of the portion of the wiring conductor 113 of the negative electrode side for connecting a plurality of capacitors in parallel, C 70 is the capacitance of the capacitor 1, C 71 is the capacitance of the capacitor 11 Indicates the capacitance.

図2に示すように、コンデンサ1とコンデンサ11に導体板4を近接配置することで、コンデンサ1の内部インダクタンスL32とコンデンサ11の内部インダクタンスL33を低減できるため、共振周波数f1-11を高周波側に調整でき、前記共振周波数f1-11を正極側の電力変換回路の接続端子110からコンデンサに流入する電流に含まれる電力変換回路のスイッチング周波数成分の高調波周波数から引き離すことができるため、コンデンサ1とコンデンサ11の間のLC並列共振によりコンデンサ1及びコンデンサ11の電流が過剰となることを防止できる。 As shown in FIG. 2, by close proximity the conductive plate 4 to the condenser 1 and the capacitor 11, it is possible to reduce the internal inductance L 33 of internal inductance L 32 and the capacitor 11 of the capacitor 1, the resonance frequency f 1-11 The resonance frequency f 1-11 can be adjusted to the high frequency side, and can be separated from the harmonic frequency of the switching frequency component of the power conversion circuit included in the current flowing into the capacitor from the connection terminal 110 of the power conversion circuit on the positive side. The LC parallel resonance between the capacitor 1 and the capacitor 11 can prevent the current of the capacitor 1 and the capacitor 11 from becoming excessive.

また、コンデンサ1及びコンデンサ11の内部インダクタンスを低減することで、電力用半導体素子12のスイッチング時のサージ電圧を低減できる。   Further, by reducing the internal inductance of the capacitor 1 and the capacitor 11, it is possible to reduce the surge voltage at the time of switching of the power semiconductor element 12.

以降より、図6を用いて導体板4でコンデンサ1及びコンデンサ11の内部の配線インダクタンスが低減できる原理について説明する。図6(1)は図1のコンデンサ1及び導体板4の正面図において、コンデンサ1の正極端子2から負極端子3に向かって電流が流れた際の電流の経路100とコンデンサ1の正極端子2から負極端子3に向かって流れる電流がつくる磁束が導体板4と鎖交する向き101(紙面の裏側から表側)を示している。コンデンサ1の正極端子2から負極端子3に向かって流れる電流がつくる磁束が導体板4に紙面の裏側から表側へ鎖交することにより、図6(2)に示すように導体板4には時計回りの誘導電流102が発生する。誘導電流102がつくる磁束の向き103は、コンデンサ1の正極端子2から負極端子3に向かって流れる電流がつくる磁束を打ち消す向き(紙面の表側から裏側)となるため、正極側の配線導体8の配線インダクタンスを低減できる。   Hereinafter, the principle by which the wiring inductance inside the capacitor 1 and the capacitor 11 can be reduced by the conductor plate 4 will be described with reference to FIG. 6 (1) is a front view of the capacitor 1 and the conductor plate 4 of FIG. 1, the current path 100 when the current flows from the positive electrode terminal 2 of the capacitor 1 to the negative electrode terminal 3 and the positive electrode terminal 2 of the capacitor 1 The magnetic flux generated by the current flowing from the lower electrode terminal 3 to the negative electrode terminal 3 shows a direction 101 (from the back side to the front side in the drawing) where the magnetic flux intersects with the conductor plate 4. The magnetic flux produced by the current flowing from the positive electrode terminal 2 to the negative electrode terminal 3 of the capacitor 1 links the conductor plate 4 from the back side to the front side of the drawing as shown in FIG. A surrounding induced current 102 is generated. The direction 103 of the magnetic flux generated by the induced current 102 is the direction to cancel the magnetic flux generated by the current flowing from the positive electrode terminal 2 to the negative electrode terminal 3 of the capacitor 1 (from the front side to the back side of the drawing) Wiring inductance can be reduced.

図6(2)に示した誘導電流102は大きいほど、正極側の配線導体8の配線インダクタンスを低減効果も大きい。誘導電流102の大きさは導体板4に鎖交する磁束の変化によって発生した誘導起電力と導体板4の抵抗値で決まる。そのため、導体板4は導電性に優れた銅やアルミ等が望ましい。また、コンデンサ1に流れる電流の電力変換回路のスイッチング周波数成分の高調波により導体板4に発生する誘導電流は、表皮効果により導体板4の表面にのみ流れることから、その厚みを薄くしても本実施例の効果への影響は小さい。   The larger the induced current 102 shown in FIG. 6 (2), the larger the effect of reducing the wiring inductance of the wiring conductor 8 on the positive electrode side. The magnitude of the induced current 102 is determined by the induced electromotive force generated by the change of the magnetic flux linked to the conductor plate 4 and the resistance value of the conductor plate 4. Therefore, the conductive plate 4 is desirably copper, aluminum or the like excellent in conductivity. Further, since the induced current generated in the conductor plate 4 by the harmonics of the switching frequency component of the current flowing through the capacitor 1 flows only to the surface of the conductor plate 4 by the skin effect, the thickness thereof can be reduced The influence on the effect of the present embodiment is small.

また、正極側の配線導体8と導体板4の間の距離は、近いほど正極側の配線導体8の配線インダクタンス低減効果は高い。   Further, the closer the distance between the wiring conductor 8 on the positive electrode side and the conductor plate 4 is, the higher the wiring inductance reduction effect of the wiring conductor 8 on the positive electrode side is.

なお、図示していないが、導体板4が浮遊電位となるため、導体もしくは抵抗体を介して基準電位に接続しておくことで導体板4に電荷が蓄積することを防ぐことができる。   Although not shown, since the conductor plate 4 has a floating potential, the charge can be prevented from being accumulated in the conductor plate 4 by connecting the conductor plate 4 to the reference potential through the conductor or the resistor.

図1の導体板4は、図7のように環状でもよく、その理由について図8を用いて、以降より説明する。図8(1)は図1のコンデンサ1及び導体板4の正面図において、コンデンサ1の正極端子2から負極端子3に向かって電流が流れた際の電流の経路100とコンデンサ1の正極端子2から負極端子3に向かって流れる電流がつくる磁束が環状の導体板4の輪の中を通過する向き140(紙面の表側から裏側)を示している。コンデンサ1の正極端子2から負極端子3に向かって流れる電流がつくる磁束が環状の導体板4の輪の中を紙面の表側から裏側に通過することにより、図8(2)に示すように環状の導体板4には反時計回りの誘導電流141が発生する。誘導電流141がつくる磁束が環状の導体板4の輪の中を通過する向き142は、コンデンサ1の正極端子2から負極端子3に向かって流れる電流がつくる磁束が環状の導体板4の輪の中を通過する向き140と反対(紙面の表側から裏側)になるため、コンデンサ1の正極端子2から負極端子3に向かって流れる電流がつくる磁束を打ち消し、正極側の配線導体8の配線インダクタンスを低減できる。   The conductor plate 4 of FIG. 1 may be annular as shown in FIG. 7, and the reason will be described below with reference to FIG. FIG. 8 (1) is a front view of the capacitor 1 and the conductor plate 4 of FIG. 1, the current path 100 when the current flows from the positive terminal 2 of the capacitor 1 to the negative terminal 3 and the positive terminal 2 of the capacitor 1. The magnetic flux produced by the current flowing from the lower electrode terminal 3 to the negative electrode terminal 3 is directed in the direction 140 (from the front side to the rear side of the drawing) through the inside of the ring of the annular conductor plate 4. The magnetic flux generated by the current flowing from the positive electrode terminal 2 to the negative electrode terminal 3 of the capacitor 1 passes through the inside of the ring of the annular conductor plate 4 from the front side to the back side of the paper surface, as shown in FIG. A counterclockwise induced current 141 is generated on the conductor plate 4 of FIG. The direction 142 in which the magnetic flux generated by the induced current 141 passes through the ring of the annular conductor plate 4 is the same as that of the ring of the annular conductor plate 4 generated by the current flowing from the positive electrode terminal 2 to the negative electrode terminal 3 of the capacitor 1. Since it is opposite to the passing direction 140 (inside of the paper from the front side to the back side), the magnetic flux generated by the current flowing from the positive electrode terminal 2 to the negative electrode terminal 3 of the capacitor 1 is canceled and the wiring inductance of the wiring conductor 8 on the positive electrode side It can be reduced.

図9に示すようにコンデンサ1に近接配置し、且つコンデンサ1の周りを囲うことで、正極側の配線導体8の配線インダクタンスだけでなく、負極側の配線導体9の配線インダクタンスも低減できるため、導体板4によるコンデンサ1の内部インダクタンス低減効果を高めることができる。当然、導体板4をコンデンサ11に近接配置し、且つコンデンサ11の周りを囲うことで、コンデンサ11に対しても、同様の効果がある。   By arranging the capacitor 1 close to the capacitor 1 and surrounding the capacitor 1 as shown in FIG. 9, not only the wiring inductance of the wiring conductor 8 on the positive electrode side but also the wiring inductance of the wiring conductor 9 on the negative electrode side can be reduced. The internal inductance reduction effect of the capacitor 1 by the conductor plate 4 can be enhanced. Of course, by arranging the conductor plate 4 close to the capacitor 11 and surrounding the capacitor 11, the same effect can be obtained for the capacitor 11.

図1の導体板4を、図10に示すように、正極側の配線導体8のコンデンサ素子5からコンデンサ素子7を接続する部分と平行に近接配置することで、高周波電流がコンデンサ1に流れた際の、コンデンサ素子5への電流集中を緩和することができる。その理由について、以降より説明する。   The high frequency current flows to the capacitor 1 by arranging the conductor plate 4 of FIG. 1 in parallel with the portion connecting the capacitor element 5 of the wiring conductor 8 on the positive electrode side to the capacitor element 7 as shown in FIG. In this case, current concentration on the capacitor element 5 can be alleviated. The reason will be described later.

図5において、高周波電流がコンデンサ1に流れた際には、(コンデンサ素子5、6、7のインピーダンスが全て等しいと仮定すると)正極端子2からコンデンサ素子5を介して負極端子3に至る電流経路が最もインピーダンスが小さくなるため、コンデンサ素子5に高周波電流が集中する。   In FIG. 5, when the high frequency current flows to capacitor 1, the current path from positive electrode terminal 2 to negative electrode terminal 3 via capacitor element 5 (assuming that the impedances of capacitor elements 5, 6, 7 are all equal) Since the impedance is the smallest, the high frequency current is concentrated on the capacitor element 5.

コンデンサ素子5への高周波電流の集中を緩和する対策としては、正極端子2からコンデンサ素子6を介して負極端子3に至る電流経路及び正極端子2からコンデンサ素子7を介して負極端子3に至る電流経路のインピーダンスを正極端子2からコンデンサ素子5を介して負極端子3に至る電流経路のインピーダンスに近づけることが考えられる。   As a measure for alleviating the concentration of the high frequency current to the capacitor element 5, the current path from the positive electrode terminal 2 to the negative electrode terminal 3 via the capacitor element 6 and the current from the positive electrode terminal 2 to the negative electrode terminal 3 via the capacitor element 7 It is conceivable that the impedance of the path approaches the impedance of the current path from the positive electrode terminal 2 to the negative electrode terminal 3 via the capacitor element 5.

図10では、正極端子2からコンデンサ素子6を介して負極端子3に至る電流経路及び正極端子2からコンデンサ素子7を介して負極端子3に至る電流経路のインピーダンスを正極端子2からコンデンサ素子5を介して負極端子3に至る電流経路のインピーダンスに近づけ、コンデンサ素子5への高周波電流の集中を緩和するために、正極側の配線導体8のコンデンサ素子5からコンデンサ素子6を接続する部分の配線インダクタンス37(図5参照)とコンデンサ素子6からコンデンサ素子7を接続する部分の配線インダクタンス38(図5参照)を低減している。   In FIG. 10, the impedance of the current path from the positive electrode terminal 2 through the capacitor element 6 to the negative electrode terminal 3 and the impedance of the current path from the positive electrode terminal 2 through the capacitor element 7 to the negative electrode terminal 3 Wiring inductance of the part connecting capacitor element 6 from capacitor element 5 of wiring conductor 8 on the positive electrode side to approximate the impedance of the current path leading to negative electrode terminal 3 and reduce the concentration of high frequency current to capacitor element 5 37 (see FIG. 5) and the wiring inductance 38 (see FIG. 5) in the portion connecting the capacitor element 6 to the capacitor element 7 are reduced.

以降より、図11を用いて、図10において正極側の配線導体8のコンデンサ素子5からコンデンサ素子6を接続する部分の配線インダクタンス37とコンデンサ素子6からコンデンサ素子7を接続する部分の配線インダクタンス38を低減できる原理について説明する。図11(1)に示すように、導体板4を正極側の配線導体8のコンデンサ素子5からコンデンサ素子7を接続する部分と平行に近接配置することで、導体板4に正極側の配線導体8のコンデンサ素子5からコンデンサ素子7を接続する部分を流れる電流がつくる磁束が紙面の裏側から表側に向かって導体板4に鎖交し、図11(2)に示すように、導体板4には誘導電流102がそれを打ち消す向き(紙面の表側から裏側)の磁束が発生するため、正極側の配線導体8のコンデンサ素子5からコンデンサ素子6を接続する部分の配線インダクタンス37(図5参照)とコンデンサ素子6からコンデンサ素子7を接続する部分の配線インダクタンス38(図5参照)を低減できる。当然、導体板4を、コンデンサ11の正極側の配線導体8のコンデンサ素子5からコンデンサ素子7を接続する部分と平行に近接配置することで、高周波電流がコンデンサ11に流れた際の、コンデンサ素子5への電流集中を緩和することができる。   From the following, using FIG. 11, the wiring inductance 37 of the portion connecting the capacitor element 5 to the capacitor element 6 of the wiring conductor 8 on the positive side in FIG. 10 and the wiring inductance 38 of the portion connecting the capacitor element 7 to the capacitor element 6 in FIG. The principle that can reduce As shown in FIG. 11 (1), by arranging the conductor plate 4 in proximity to and in parallel with the portion connecting the capacitor element 5 of the wiring conductor 8 on the positive electrode side to the capacitor element 7, the wiring conductor on the positive electrode side on the conductor plate 4 The magnetic flux produced by the current flowing in the portion connecting the capacitor element 5 to the capacitor element 7 of 8 interlinks with the conductor plate 4 from the back side to the front side of the drawing, as shown in FIG. Because a magnetic flux is generated in the direction in which the induced current 102 cancels it (from the front side to the back side of the drawing), the wiring inductance 37 of the portion connecting the capacitor element 5 to the capacitor element 6 of the positive side wiring conductor 8 (see FIG. 5) And the wiring inductance 38 (see FIG. 5) of the portion connecting the capacitor element 6 to the capacitor element 7 can be reduced. Naturally, the capacitor element when the high frequency current flows to the capacitor 11 by closely arranging the conductor plate 4 in parallel with the portion connecting the capacitor element 5 from the capacitor element 5 of the wiring conductor 8 on the positive electrode side of the capacitor 11 The current concentration to 5 can be alleviated.

このように、コンデンサ内部の配線インダクタンスを低減できるため、コンデンサ内部の配線インダクタンスを調整し、コンデンサを複数並列接続した際の並列コンデンサ間のLC並列共振経路の共振周波数を電力変換回路からコンデンサに流入する電流に含まれる電力変換回路のスイッチング周波数成分の高調波周波数から引き離すことができるため、前記並列コンデンサ間LC並列共振によりコンデンサ電流が過剰になることを防止できる。   Thus, since the wiring inductance inside the capacitor can be reduced, the wiring inductance inside the capacitor is adjusted, and the resonance frequency of the LC parallel resonance path between parallel capacitors when multiple capacitors are connected in parallel flows from the power conversion circuit to the capacitor Since the capacitor can be separated from the harmonic frequency of the switching frequency component of the power conversion circuit included in the current, it is possible to prevent the capacitor current from becoming excessive due to the LC parallel resonance between the parallel capacitors.

実施例2では、図1、図12を用いて本発明の実施形態を説明する。 In the second embodiment, an embodiment of the present invention will be described using FIGS. 1 and 12.

図12は本発明による電力変換装置13の第2の実施形態の実装構造例を示す。   FIG. 12 shows an example of the mounting structure of the second embodiment of the power conversion device 13 according to the present invention.

図12は、電力変換回路10とコンデンサ1とコンデンサ11をコンデンサを複数並列接続するための正極側の配線導体112とコンデンサを複数並列接続するための負極側の配線導体113で並列接続し、コンデンサを複数並列接続するための正極側の配線導体112とコンデンサを複数並列接続するための負極側の配線導体113に導体板4を近接配置した例を示している。   In FIG. 12, the power conversion circuit 10, the capacitor 1 and the capacitor 11 are connected in parallel by the wiring conductor 112 on the positive side for connecting a plurality of capacitors in parallel and the wiring conductor 113 on the negative side for connecting a plurality of capacitors in parallel An example is shown in which the conductor plate 4 is disposed close to the wiring conductor 112 on the positive electrode side for connecting a plurality of capacitors in parallel and the wiring conductor 113 on the negative electrode side for connecting a plurality of capacitors in parallel.

第2の実施形態の効果は、図12に示すように、コンデンサを複数並列接続するための正極側の配線導体112とコンデンサを複数並列接続するための負極側の配線導体113に導体板4を近接配置することで、コンデンサを複数並列接続するための正極側の配線導体112のコンデンサ1とコンデンサ11を接続する部分の配線インダクタンスL31(図1参照)とコンデンサを複数並列接続するための負極側の配線導体113のコンデンサ1とコンデンサ11を接続する部分の配線インダクタンスL34(図1参照)を低減できるため、共振周波数f1-11を高周波側に調整でき、前記共振周波数f1-11を正極側の電力変換回路の接続端子110からコンデンサに流入する電流に含まれる電力変換回路のスイッチング周波数成分の高調波周波数から引き離すことができるため、コンデンサ1とコンデンサ11の間のLC並列共振によりコンデンサ1及びコンデンサ11の電流が過剰となることを防止できることである。 The effect of the second embodiment is that, as shown in FIG. 12, the conductor plate 4 is connected to the wiring conductor 112 on the positive electrode side for connecting a plurality of capacitors in parallel and the wiring conductor 113 on the negative electrode side for connecting a plurality of capacitors in parallel. By arranging them in close proximity, wiring inductance L 31 (see FIG. 1) of the portion connecting capacitor 1 and capacitor 11 of wiring conductor 112 of the positive electrode side for parallel connection of a plurality of capacitors and a negative electrode for parallel connection of a plurality of capacitors it is possible to reduce the wiring inductance L 34 of the portion connecting the capacitor 1 and the capacitor 11 of the wiring conductor 113 side (see FIG. 1), to adjust the resonant frequency f 1-11 to the high frequency side, the resonance frequency f 1-11 Is drawn from the harmonic frequency of the switching frequency component of the power conversion circuit included in the current flowing into the capacitor from the connection terminal 110 of the power conversion circuit on the positive electrode side. Since it is Succoth, it is that it can prevent the current of the capacitor 1 and the capacitor 11 becomes excessive by LC parallel resonance between the capacitor 1 and a capacitor 11.

また、コンデンサを複数並列接続するための正極側の配線導体112のコンデンサ1とコンデンサ11を接続する部分の配線インダクタンスとコンデンサを複数並列接続するための負極側の配線導体113のコンデンサ1とコンデンサ11を接続する部分の配線インダクタンスを低減できるため、電力用半導体素子12のスイッチング時のサージ電圧を低減できる。   The capacitor 1 and the capacitor 11 of the wiring conductor 113 of the negative side wiring conductor 113 for parallel connection of a plurality of capacitors and the wiring inductance of the portion connecting the capacitor 1 and the capacitor 11 of the positive side wiring conductor 112 for parallel connection of a plurality of capacitors. Since the wiring inductance of the part which connects these can be reduced, the surge voltage at the time of switching of the semiconductor element 12 for electric power can be reduced.

図12では、コンデンサを複数並列接続するための正極側の配線導体112とコンデンサを複数並列接続するための負極側の配線導体113及び導体板4の間に絶縁体130を挿入し、その間の絶縁性を保っている。   In FIG. 12, the insulator 130 is inserted between the wiring conductor 112 on the positive electrode side for parallel connection of a plurality of capacitors and the wiring conductor 113 on the negative side for parallel connection of a plurality of capacitors and the conductor plate 4 and insulation therebetween I keep the sex.

1 コンデンサ
2 正極端子
3 負極端子
4 導体板
5 コンデンサ素子
6 コンデンサ素子
7 コンデンサ素子
8 正極側の配線導体
9 負極側の配線導体
10 電力変換回路
11 コンデンサ
12 電力用半導体素子
30 コンデンサを複数並列接続するための正極側の配線導体112の電力変換回路の正極側の接続端子110とコンデンサ1を接続する部分の配線インダクタンス
31 コンデンサを複数並列接続するための正極側の配線導体112のコンデンサ1とコンデンサ11を接続する部分の配線インダクタンス
32 コンデンサ1の内部インダクタンス
33 コンデンサ11の内部インダクタンス
34 コンデンサを複数並列接続するための負極側の配線導体113のコンデンサ1とコンデンサ11を接続する部分の配線インダクタンス
35 コンデンサを複数並列接続するための負極側の配線導体113の電力変換回路の負極側の接続端子111とコンデンサ1を接続する部分の配線インダクタンス
36 正極側の配線導体8の正極端子2とコンデンサ素子5を接続する部分の配線インダクタンス
37 正極側の配線導体8のコンデンサ素子5とコンデンサ素子6を接続する部分の配線インダクタンス
38 正極側の配線導体8のコンデンサ素子6とコンデンサ素子7を接続する部分の配線インダクタンス
39 コンデンサ素子5の配線インダクタンス
40 コンデンサ素子6の配線インダクタンス
41 コンデンサ素子7の配線インダクタンス
42 負極側の配線導体9のコンデンサ素子6とコンデンサ素子7を接続する部分の配線インダクタンス
43 負極側の配線導体9のコンデンサ素子5とコンデンサ素子6を接続する部分の配線インダクタンス
44 負極側の配線導体9の負極端子3とコンデンサ素子5を接続する部分の配線インダクタンス
50 コンデンサを複数並列接続するための正極側の配線導体112の電力変換回路の正極側の接続端子110とコンデンサ1を接続する部分の配線抵抗
51 コンデンサを複数並列接続するための正極側の配線導体112のコンデンサ1とコンデンサ11を接続する部分の配線抵抗
52 コンデンサ1の抵抗
53 コンデンサ11の抵抗
54 コンデンサを複数並列接続するための負極側の配線導体113のコンデンサ1とコンデンサ11を接続する部分の配線抵抗
55 コンデンサを複数並列接続するための負極側の配線導体113の電力変換回路の負極側の接続端子111とコンデンサ1を接続する部分の配線抵抗
56 正極側の配線導体8の正極端子2とコンデンサ素子5を接続する部分の配線抵抗
57 正極側の配線導体8のコンデンサ素子5とコンデンサ素子6を接続する部分の配線抵抗
58 正極側の配線導体8のコンデンサ素子6とコンデンサ素子7を接続する部分の配線抵抗
59 コンデンサ素子5の抵抗
60 コンデンサ素子6の抵抗
61 コンデンサ素子7の抵抗
62 負極側の配線導体9のコンデンサ素子6とコンデンサ素子7を接続する部分の配線抵抗
63 負極側の配線導体9のコンデンサ素子5とコンデンサ素子6を接続する部分の配線抵抗
64 負極側の配線導体9の負極端子3とコンデンサ素子5を接続する部分の配線抵抗
70 コンデンサ1の静電容量
71 コンデンサ11の静電容量
72 コンデンサ素子5の静電容量
73 コンデンサ素子6の静電容量
74 コンデンサ素子7の静電容量
100 コンデンサ1の正極端子2から負極端子3に向かって電流が流れた際の電流の経路
101 コンデンサ1の正極端子2から負極端子3に向かって流れる電流がつくる磁束が導体板4と鎖交する向き
102 誘導電流
103 誘導電流102がつくる磁束の向き
110 電力変換回路の正極側の接続端子
111 電力変換回路の負極側の接続端子
112 コンデンサを複数並列接続するための正極側の配線導体
113 コンデンサを複数並列接続するための負極側の配線導体
114 電力変換回路10の交流端子
115 電力変換回路10の交流端子
116 電力変換回路10の交流端子
117 正極側の出力端子
118 負極側の出力端子
120 コンデンサ1とコンデンサ11の間のLC並列共振経路
130 絶縁体
140 コンデンサ1の正極端子2から負極端子3に向かって流れる電流がつくる磁束が環状の導体板4の輪の中を通過する向き
141 誘導電流
142 誘導電流141がつくる磁束が環状の導体板4の輪の中を通過する向き
301 交流電源
302 交流電源
303 交流電源
304 交流リアクトル
305 交流リアクトル
306 交流リアクトル
307 負荷
Reference Signs List 1 capacitor 2 positive terminal 3 negative terminal 4 conductor plate 5 capacitor element 6 capacitor element 7 capacitor element 8 positive side wiring conductor 9 negative side wiring conductor 10 power conversion circuit 11 capacitor 12 power semiconductor element 30 connecting a plurality of capacitors in parallel Wiring inductance 31 of a portion connecting the capacitor 1 and the connection terminal 110 on the positive electrode side of the power conversion circuit of the wiring conductor 112 on the positive electrode side 31 Capacitor 11 and capacitor 11 of the wiring conductor 112 on the positive side for connecting a plurality of capacitors in parallel Inductance of the part connecting
32 Internal inductance 33 of capacitor 1 Internal inductance 34 of capacitor 11 Wiring inductance of the portion of connecting conductor 113 of the negative side wiring conductor 113 for connecting a plurality of capacitors in parallel Wiring inductance 35 of a portion connecting capacitor 11 A negative electrode for connecting a plurality of capacitors in parallel Wiring inductance 36 in the portion connecting the negative side connection terminal 111 of the side wiring conductor 113 to the power conversion circuit of the power conversion circuit and the capacitor 1 Wiring inductance 37 in the portion connecting the positive electrode terminal 2 of the wiring conductor 8 on the positive side and the capacitor element 5 Wiring inductance 38 of the part connecting the capacitor element 5 and the capacitor element 6 of the side wiring conductor 8 Wiring inductance 39 of the part connecting the capacitor element 6 and the capacitor element 7 of the wiring conductor 8 on the positive side Wiring inductance 40 of the capacitor element 5 The Wiring inductance 41 of the capacitor element 6 Wiring inductance 42 of the capacitor element 7 Wiring inductance 43 of the portion of the wiring conductor 9 on the negative electrode side connecting the capacitor element 6 and the capacitor element 7 Capacitor element 5 and the capacitor element 6 of the wiring conductor 9 on the negative side The wiring inductance 44 of the portion connecting the wiring 50 The wiring inductance 50 of the portion connecting the negative terminal 3 of the wiring conductor 9 on the negative side and the capacitor element 50 The positive electrode of the power conversion circuit of the wiring conductor 112 on the positive side for connecting a plurality of capacitors in parallel Wiring resistance 51 of the portion connecting the connection terminal 110 on the side and the capacitor 1 Wiring resistance of the portion connecting the capacitor 1 and the capacitor 11 of the wiring conductor 112 of the positive electrode side for connecting a plurality of capacitors in parallel
52 Resistor 53 of capacitor 1 Resistor 54 of capacitor 11 Wire resistance of the portion of the wiring conductor 113 of the negative electrode side for connecting a plurality of capacitors in parallel The wiring resistor 55 of a portion connecting the capacitor 11 11 Wiring resistance 56 of the part connecting the connection terminal 111 on the negative electrode side of the power conversion circuit of the wiring conductor 113 and the capacitor 1 56 Wiring resistance 57 of the part connecting the positive electrode terminal 2 of the wiring conductor 8 on the positive side and the capacitor 5 Wiring resistor 58 in the portion connecting the capacitor element 5 of the wiring conductor 8 and the capacitor element 6 Wiring resistor 59 in the portion connecting the capacitor element 6 and the capacitor element 7 of the wiring conductor 8 on the positive side Resistance 60 of the capacitor element 5 Capacitor element 6 Resistor 61 capacitor element 7 resistor 62 negative pole side wiring conductor 9 capacitor element 6 Wiring resistor 63 in the portion connecting the capacitor element 7 Wiring resistor 64 in the portion connecting the capacitor element 5 and the capacitor element 6 of the wiring conductor 9 on the negative side connect the negative terminal 3 of the wiring conductor 9 on the negative side and the capacitor element 5 Part wiring resistance 70 Capacitance 1 Capacitance of capacitor 1 Capacitance of capacitor 11 Capacitance of capacitor element 5 Capacitance of capacitor element 6 Capacitance of capacitor element 6 Capacitance of capacitor element 7 100 From positive terminal 2 of capacitor 1 Current path 101 when current flows toward the negative electrode terminal 3 Direction in which magnetic flux generated by current flowing from the positive electrode terminal 2 to the negative electrode terminal 3 of the capacitor 1 links the conductor plate 4 102 induced current 103 induced current 102 Direction 110 of the magnetic flux generated by the connection terminal 111 connection terminal on the positive side of the power conversion circuit Connection terminal 112 on the negative side of the power conversion circuit Conden Wiring conductor 113 on the positive electrode side for parallel connection of a plurality of wires Conductor 114 on the negative electrode side for parallel connection of a plurality of capacitors AC terminal 115 of power conversion circuit 10 AC terminal 116 of power conversion circuit 10 AC terminal of power conversion circuit 10 117 Output terminal 118 on the positive electrode side Output terminal 120 on the negative electrode side LC parallel resonant path 130 between the capacitor 1 and the capacitor 11 Insulator 140 Direction 141 passing in the ring of the conductor plate 4 Induction current 142 Direction in which magnetic flux generated by the induction current 141 passes inside the ring of the annular conductor plate 4 AC power supply 302 AC power supply 303 AC power supply 304 AC reactor 305 306 AC reactor 307 load

Claims (10)

半導体素子にコンデンサ素子を接続して構成される電力変換装置において、前記コンデンサ素子は複数で構成されており、前記複数のコンデンサ素子の正極を接続する正極側の配線導体と、前記複数のコンデンサ素子の負極を接続する負極側の配線導体を有し、前記正極側の配線導体と前記負極側の配線導体のいずれか一方もしくは、両方に導体板を近接配置し、
前記コンデンサ素子と前記正極側の配線導体と前記負極側の配線導体を絶縁性のケースに収納し、ケース外部に正極端子と負極端子を設けたコンデンサの前記ケースの外に前記導体板を配置することを特徴とする電力変換装置。
In a power conversion device configured by connecting a capacitor element to a semiconductor element, the capacitor element is constituted by a plurality, and a wiring conductor on a positive electrode side connecting the positive electrode of the plurality of capacitor elements, and the plurality of capacitor elements A wiring conductor on the negative electrode side connecting the negative electrodes of the above, and a conductor plate is disposed close to either one or both of the wiring conductor on the positive electrode side and the wiring conductor on the negative electrode side,
The conductive element is disposed outside the case of a capacitor in which the capacitor element, the wiring conductor on the positive electrode side, and the wiring conductor on the negative electrode side are housed in an insulating case, and the positive electrode terminal and the negative electrode terminal are provided outside the case. Power converter characterized in that.
請求項1おいて、前記導体板は複数であり、前記複数の導体板を近接配置することを特徴とする電力変換装置。   The power conversion device according to claim 1, wherein a plurality of the conductor plates are provided, and the plurality of conductor plates are disposed close to each other. 請求項1において、前記導体板で前記コンデンサの周りを囲ったことを特徴とする電力変換装置。   The power converter according to claim 1, wherein the conductor plate surrounds the capacitor. 請求項1において、前記コンデンサは複数並列接続されていることを特徴とする電力変換装置。   The power converter according to claim 1, wherein a plurality of the capacitors are connected in parallel. 請求項4において、前記複数並列接続したコンデンサの一部もしくは、全てに対して前記導体板を複数近接配置することを特徴とする電力変換装置。5. The power conversion device according to claim 4, wherein a plurality of the conductor plates are disposed in proximity to a part or all of the plurality of capacitors connected in parallel. 請求項4において、前記複数並列接続したコンデンサの一部もしくは、全ての周りを導体板で囲ったことを特徴とする電力変換装置。The power converter according to claim 4, wherein a part or all of the plurality of capacitors connected in parallel are surrounded by a conductor plate. 請求項1から請求項6のうちいずれか1項において、前記導体板が環状であることを特徴とする電力変換装置。The power converter according to any one of claims 1 to 6, wherein the conductor plate is annular. 請求項1から請求項7のうちいずれか1項において、前記導体板を絶縁物で覆ったことを特徴とする電力変換装置。 The power converter according to any one of claims 1 to 7, wherein the conductor plate is covered with an insulator. 請求項1から請求項8のうちいずれか1項において、前記導体板を基準電位に接地したことを特徴とする電力変換装置。  The power conversion device according to any one of claims 1 to 8, wherein the conductor plate is grounded to a reference potential. 請求項1から請求項9のうちいずれか1項において、前記導体板を基準電位に抵抗接地したことを特徴とする電力変換装置。  The power converter according to any one of claims 1 to 9, wherein the conductor plate is resistively grounded to a reference potential.
JP2015137385A 2015-07-09 2015-07-09 Power converter Active JP6530987B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015137385A JP6530987B2 (en) 2015-07-09 2015-07-09 Power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015137385A JP6530987B2 (en) 2015-07-09 2015-07-09 Power converter

Publications (2)

Publication Number Publication Date
JP2017022835A JP2017022835A (en) 2017-01-26
JP6530987B2 true JP6530987B2 (en) 2019-06-12

Family

ID=57888457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015137385A Active JP6530987B2 (en) 2015-07-09 2015-07-09 Power converter

Country Status (1)

Country Link
JP (1) JP6530987B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6957120B2 (en) * 2018-11-28 2021-11-02 東芝三菱電機産業システム株式会社 Power converter
JP6995448B2 (en) * 2018-12-21 2022-01-14 東芝三菱電機産業システム株式会社 Power converter, manufacturing method of power converter and resonance current suppression method of power converter
CN112701878B (en) * 2020-12-08 2022-07-08 日立电梯(中国)有限公司 Bus capacitor structure and elevator frequency converter

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3247197B2 (en) * 1993-05-13 2002-01-15 株式会社東芝 Semiconductor power converter
JP3366192B2 (en) * 1995-09-08 2003-01-14 株式会社日立製作所 Wiring board and power conversion device using the same
JP3225847B2 (en) * 1996-08-30 2001-11-05 株式会社日立製作所 Semiconductor module
JPH11274001A (en) * 1998-01-19 1999-10-08 Hitachi Ltd Electric power storage device and electric power conversion device using the same
WO2009037782A1 (en) * 2007-09-21 2009-03-26 Mitsubishi Electric Corporation Power converting device for electric vehicle
JP5557891B2 (en) * 2012-11-30 2014-07-23 株式会社日立製作所 Three-phase power converter
JP6186183B2 (en) * 2013-06-13 2017-08-23 株式会社日立製作所 Power converter

Also Published As

Publication number Publication date
JP2017022835A (en) 2017-01-26

Similar Documents

Publication Publication Date Title
AU2013231056B2 (en) Laminated busbar for power converter and the converter thereof
JP5533068B2 (en) Semiconductor device
US10979014B2 (en) Voltage filter and power conversion device
JP2013219919A (en) Noise reduction filter and electric power conversion device using the same
JP6530987B2 (en) Power converter
US11398772B2 (en) Circuit device for reducing common-mode interference of a power converter
JP2014050260A (en) Power conversion device
JP6378126B2 (en) Charge / discharge device
JP6254779B2 (en) Power converter
JP2009273355A (en) Apparatus for transmitting electric power
JP6980630B2 (en) High voltage filter and power converter
JP2012196113A (en) Power-supply device
JP5826024B2 (en) Noise reduction circuit
US10090753B1 (en) Power conversion device and power conversion system
JP5235820B2 (en) Power converter
JP2005176555A (en) Power converter
CN107624216B (en) Power electronic device
JP6528385B2 (en) Power converter
JP6946971B2 (en) Power converter
JPH10309073A (en) Power converter and its manufacture
CN109565944B (en) Phase module for high-power converter
JP2018182880A (en) Power conversion device
JP7433924B2 (en) Power converters and substation power supplies
JP6961111B2 (en) Power supply and capacitors
JP6492992B2 (en) Power converter

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170111

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170113

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190423

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190520

R150 Certificate of patent or registration of utility model

Ref document number: 6530987

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350