JP2012134339A - Resin seal type capacitor - Google Patents

Resin seal type capacitor Download PDF

Info

Publication number
JP2012134339A
JP2012134339A JP2010285595A JP2010285595A JP2012134339A JP 2012134339 A JP2012134339 A JP 2012134339A JP 2010285595 A JP2010285595 A JP 2010285595A JP 2010285595 A JP2010285595 A JP 2010285595A JP 2012134339 A JP2012134339 A JP 2012134339A
Authority
JP
Japan
Prior art keywords
capacitor
capacitors
resin
encapsulated
external terminals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010285595A
Other languages
Japanese (ja)
Other versions
JP5828119B2 (en
Inventor
Yusuke Hashiba
裕介 橋場
Hirotaka Hisamura
博隆 久村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2010285595A priority Critical patent/JP5828119B2/en
Publication of JP2012134339A publication Critical patent/JP2012134339A/en
Application granted granted Critical
Publication of JP5828119B2 publication Critical patent/JP5828119B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a highly reliable resin seal type capacitor that reduces the temperature in a region between capacitors which becomes a maximum temperature when charge and discharge currents flow.SOLUTION: Multiple film capacitors connecting with external terminals 16 to 19 are housed in a case 14, and the case 14 is filled with a sealing resin 15. As the multiple capacitors, two first capacitors 11, 12 are provided so as to be electrically connected in parallel through the external terminals 16 to 19. Further, a second capacitor 13, having impedance that is 10 times larger than impedance of the first capacitors 11, 12 for reducing heat generation compared to the first capacitors 11, 12, is provided. The second capacitor 13 is juxtaposed between the first capacitors 11, 12.

Description

本発明は、樹脂封止型コンデンサに関する。   The present invention relates to a resin-sealed capacitor.

通常、電気自動車やハイブリッド自動車等の車両において、電気エネルギーによる駆動力は、高電圧の電池から供給される直流電力をインバータによって3相交流電力に変換し、これにより3相交流モータを回転させることにより得ている。   Usually, in a vehicle such as an electric vehicle or a hybrid vehicle, the driving force by electric energy is to convert DC power supplied from a high-voltage battery into three-phase AC power by an inverter, thereby rotating the three-phase AC motor. Is gained by.

このようなインバータに用いる平滑用コンデンサとしてフィルムコンデンサ、電解コンデンサが知られている。特にフィルムコンデンサは損失が小さく耐リップル性に優れ、また誘電体のフィルムの耐圧が高いため450V以上の高い電圧のインバータ回路の使用に適している。   As a smoothing capacitor used for such an inverter, a film capacitor and an electrolytic capacitor are known. In particular, a film capacitor is suitable for use in an inverter circuit having a high voltage of 450 V or more because it has a small loss and excellent ripple resistance and the dielectric film has a high withstand voltage.

このフィルムコンデンサを用いた従来の樹脂封止型コンデンサは図7、図8に示されるように2つの平滑用コンデンサ31を隣接させて並置し、さらに一方の平滑用コンデンサ31の側面にノイズ吸収用コンデンサ33を配置してケース34内に収納して封止樹脂35を充填したものである。また図9に示すように平滑用コンデンサ31は夫々1対の外部端子36〜39に接続し、ノイズ吸収コンデンサ33は隣接する平滑用コンデンサ31に接続する外部端子38、39に接続している。   As shown in FIGS. 7 and 8, the conventional resin-encapsulated capacitor using this film capacitor has two smoothing capacitors 31 arranged adjacent to each other, and further has a side for one of the smoothing capacitors 31 for absorbing noise. A capacitor 33 is disposed and housed in a case 34 and filled with a sealing resin 35. As shown in FIG. 9, the smoothing capacitor 31 is connected to a pair of external terminals 36 to 39, and the noise absorbing capacitor 33 is connected to external terminals 38 and 39 connected to the adjacent smoothing capacitor 31.

なお、この出願の発明に関連する先行技術文献情報としては、例えば、特許文献1に示すものが知られている。   In addition, as prior art document information relevant to the invention of this application, for example, what is shown in Patent Document 1 is known.

特開2007−12769号公報JP 2007-12769 A

しかしながら、このような従来の樹脂封止型コンデンサでは、スイッチングによって頻繁に充放電の大電流がコンデンサに流れると、高温環境に置かれた樹脂封止型コンデンサが過度に温度上昇してコンデンサの許容温度を超えてしまい絶縁抵抗が劣化し信頼性が十分でないという課題があった。   However, in such a conventional resin-encapsulated capacitor, if a large charge / discharge current frequently flows through the capacitor due to switching, the resin-encapsulated capacitor placed in a high-temperature environment excessively rises in temperature. There was a problem that the temperature was exceeded and the insulation resistance deteriorated and the reliability was not sufficient.

本発明は、このような従来の課題を解決し、信頼性が優れた樹脂封止型コンデンサを提供することを目的とする。   An object of the present invention is to solve such a conventional problem and to provide a resin-encapsulated capacitor having excellent reliability.

上記目的を達成するために本発明は、外部端子に接続する複数のコンデンサをケース内に収納した樹脂封止型コンデンサにおいて、前記複数のコンデンサは前記外部端子を介して電気的に並列接続可能に設けられた2つの第1のコンデンサと、第1のコンデンサよりインピーダンスが大きい第2のコンデンサとを有し、第2のコンデンサを第1のコンデンサ間に並置した樹脂封止型コンデンサである。   To achieve the above object, the present invention provides a resin-sealed capacitor in which a plurality of capacitors connected to external terminals are housed in a case, wherein the plurality of capacitors can be electrically connected in parallel via the external terminals. A resin-sealed capacitor having two first capacitors provided and a second capacitor having a larger impedance than that of the first capacitor, the second capacitor being juxtaposed between the first capacitors.

以上のように本発明によれば、第1のコンデンサ間に第1のコンデンサよりインピーダンスが大きい第2のコンデンサを並置することにより、第1のコンデンサを隣接した場合に比較し各コンデンサ間の領域の発熱が抑制されるため、最大温度となるコンデンサ間の領域の温度を下げることができ樹脂封止型コンデンサの信頼性を向上することができる。   As described above, according to the present invention, the region between the capacitors is compared with the case where the first capacitors are adjacent to each other by placing the second capacitor having a larger impedance than the first capacitor between the first capacitors. Therefore, the temperature in the region between the capacitors, which is the maximum temperature, can be lowered, and the reliability of the resin-encapsulated capacitor can be improved.

本発明の実施の形態1における樹脂封止型コンデンサの平面透視図Plane perspective view of resin-encapsulated capacitor in Embodiment 1 of the present invention 図1の樹脂封止型コンデンサのA−A断面図AA sectional view of the resin-encapsulated capacitor of FIG. 本発明の実施の形態1における樹脂封止型コンデンサの斜視図1 is a perspective view of a resin-encapsulated capacitor according to Embodiment 1 of the present invention. 本発明の実施の形態1における樹脂封止型コンデンサの回路図Circuit diagram of resin-encapsulated capacitor in Embodiment 1 of the present invention 本発明の実施の形態2における樹脂封止型コンデンサの平面透視図Plane perspective view of resin-encapsulated capacitor in Embodiment 2 of the present invention 図5の樹脂封止型コンデンサのA−A断面図AA sectional view of the resin-encapsulated capacitor of FIG. 従来の樹脂封止型コンデンサの平面透視図Plane perspective view of a conventional resin-encapsulated capacitor 従来の樹脂封止型コンデンサの正面透視図Front perspective view of a conventional resin-encapsulated capacitor 従来の樹脂封止型コンデンサの回路図Circuit diagram of a conventional resin-encapsulated capacitor

(実施の形態1)
本発明の実施の形態1の樹脂封止型コンデンサについて説明する。
(Embodiment 1)
A resin-sealed capacitor according to Embodiment 1 of the present invention will be described.

図1は本発明の実施の形態1における樹脂封止型コンデンサの平面透視図で、図2は図1におけるA−A断面図、図3は実施の形態1の樹脂封止型コンデンサの斜視図、図4は同回路図である。   1 is a plan perspective view of a resin-encapsulated capacitor according to Embodiment 1 of the present invention, FIG. 2 is a cross-sectional view taken along line AA in FIG. 1, and FIG. 3 is a perspective view of the resin-encapsulated capacitor according to Embodiment 1. FIG. 4 is a circuit diagram of the same.

図1に示すように樹脂封止型コンデンサ10aは、複数のコンデンサが絶縁性樹脂のケース14内に収納され、図2、図3に示すように封止樹脂15により複数のコンデンサを被覆するように充填されている。   As shown in FIG. 1, in the resin-sealed capacitor 10a, a plurality of capacitors are housed in an insulating resin case 14, and the plurality of capacitors are covered with a sealing resin 15 as shown in FIGS. Is filled.

樹脂封止型コンデンサ10aには少なくとも1つの1対の外部端子が設けられ、1対の外部端子はP極とN極とからなりコンデンサと電気的に接続される。実施の形態1では1対の外部端子16、17と1対の外部端子18、19がケース14の開口部14aから突出して設けられている。   The resin-encapsulated capacitor 10a is provided with at least one pair of external terminals, and the pair of external terminals includes a P pole and an N pole and is electrically connected to the capacitor. In the first embodiment, a pair of external terminals 16 and 17 and a pair of external terminals 18 and 19 are provided so as to protrude from the opening 14 a of the case 14.

複数のコンデンサは外部端子16〜19を介して電気的に並列接続可能に設けられた第1のコンデンサ11、12と、第1のコンデンサ11、12よりインピーダンスが大きい第2のコンデンサ13と、を有し、さらに第2のコンデンサ13は第1のコンデンサ11、12間に並置され第1のコンデンサ11、12に隣接して配置されている。2つの第1のコンデンサ11、12のインピーダンスは互いに同じ方が量産上好ましいが、異なっていてもよい。ここでインピーダンスは周波数10kHzの値である。   The plurality of capacitors includes first capacitors 11 and 12 provided so as to be electrically connected in parallel via external terminals 16 to 19, and a second capacitor 13 having a larger impedance than the first capacitors 11 and 12. Furthermore, the second capacitor 13 is juxtaposed between the first capacitors 11 and 12 and is disposed adjacent to the first capacitors 11 and 12. The same impedance of the two first capacitors 11 and 12 is preferable for mass production, but they may be different. Here, the impedance is a value at a frequency of 10 kHz.

この第1のコンデンサ11、12と第2のコンデンサ13は金属化フィルムコンデンサであり、金属化フィルムコンデンサはポリプロピレン等からなる誘電体フィルムの少なくとも片面に金属蒸着膜よりなる蒸着電極が設けられた金属化フィルムを巻回して、この巻回した両端面に外部電極となるメタリコン部を形成したものである。   The first capacitors 11 and 12 and the second capacitor 13 are metallized film capacitors. The metallized film capacitor is a metal in which a vapor deposition electrode made of a metal vapor deposition film is provided on at least one surface of a dielectric film made of polypropylene or the like. The metallized part which becomes an external electrode is formed in the wound both end surfaces.

コンデンサを隣接して配置した樹脂封止型コンデンサにおいて最大温度となる領域は、熱がこもり易い隣接したコンデンサ間の領域であり、実施の形態1では図2に示すように第1のコンデンサ11、12の外周側面と第2のコンデンサ13の外周側面間の領域26であり、従来例では図8に示すように第1のコンデンサに相当する平滑用コンデンサ31間の領域40である。   In the resin-sealed capacitor in which the capacitors are arranged adjacent to each other, the region where the maximum temperature is reached is a region between the adjacent capacitors where heat is easily trapped. In the first embodiment, as shown in FIG. 12 is a region 26 between the outer peripheral side surface of 12 and the outer peripheral side surface of the second capacitor 13, and in the conventional example, is a region 40 between the smoothing capacitor 31 corresponding to the first capacitor as shown in FIG.

外部端子16〜19を介して第1のコンデンサ11、12と第2のコンデンサ13を電気的に並列接続させて第1のコンデンサ11、12と第2のコンデンサ13とを充放電させるとき、第2のコンデンサ13に流れる充放電電流が第1のコンデンサ11、12に比較し小さいため、第2のコンデンサ13の方が第1のコンデンサ11、12に比較し発熱が小さくなる。   When the first capacitors 11 and 12 and the second capacitor 13 are electrically connected in parallel via the external terminals 16 to 19 to charge and discharge the first capacitors 11 and 12 and the second capacitor 13, Since the charge / discharge current flowing through the second capacitor 13 is smaller than that of the first capacitors 11 and 12, the second capacitor 13 generates less heat than the first capacitors 11 and 12.

そのため第1のコンデンサ11、12間に第2のコンデンサ13を並置することにより、第1のコンデンサ11、12同士が隣接した場合に比較し、コンデンサ間の領域の温度の上昇を抑制することができる。またコンデンサ間の領域の温度が過度に上昇することを抑制するために、第2のコンデンサ13のインピーダンスを第1のコンデンサ11、12の10倍以上とすることが好ましい。   Therefore, by arranging the second capacitor 13 between the first capacitors 11 and 12, it is possible to suppress an increase in the temperature of the region between the capacitors as compared to the case where the first capacitors 11 and 12 are adjacent to each other. it can. In order to prevent the temperature in the region between the capacitors from rising excessively, it is preferable that the impedance of the second capacitor 13 is 10 times or more that of the first capacitors 11 and 12.

また樹脂封止型コンデンサ10aをモータ駆動用のインバータに用いる場合、充放電電流は、主要な周波数領域が10kHz付近にある疑似正弦波となる。このとき第1のコンデンサ11、12を平滑用コンデンサとし第2のコンデンサ13をノイズ吸収等のXコンデンサ又はYコンデンサとして用いることにより、樹脂封止型コンデンサ10aのインピーダンス特性を向上させつつコンデンサ間の領域の温度を下げることができる。   When the resin-encapsulated capacitor 10a is used for an inverter for driving a motor, the charge / discharge current is a pseudo sine wave whose main frequency region is around 10 kHz. At this time, by using the first capacitors 11 and 12 as a smoothing capacitor and the second capacitor 13 as an X capacitor or a Y capacitor for noise absorption or the like, the impedance characteristics of the resin-encapsulated capacitor 10a are improved and the capacitors are connected. The temperature of the area can be lowered.

樹脂封止型コンデンサ10aのノイズ吸収の性能向上のために第2のコンデンサ13のインピーダンスは第1のコンデンサ11、12の50倍〜2500倍とすることが好ましい。   In order to improve the noise absorption performance of the resin-encapsulated capacitor 10a, the impedance of the second capacitor 13 is preferably 50 to 2500 times that of the first capacitors 11 and 12.

第2のコンデンサは第1のコンデンサ間に1つ以上設けることができ、2つ以上設ける場合は外部端子を介して電気的に並列接続するとき第2のコンデンサ同士は電気的に直列接続または並列接続とすることができる。   One or more second capacitors can be provided between the first capacitors. When two or more second capacitors are provided, the second capacitors are electrically connected in series or in parallel when electrically connected in parallel via an external terminal. It can be a connection.

また第2のコンデンサの発熱を小さくするために等価直列抵抗を小さくすることが好ましく、第1のコンデンサ11、12より蒸着電極の厚みを厚くしたりコンデンサ素子メタリコン間距離を短くしたりすることにより等価直列抵抗を小さくすることができる。   In order to reduce the heat generation of the second capacitor, it is preferable to reduce the equivalent series resistance. By increasing the thickness of the vapor deposition electrode or shortening the distance between the capacitor elements metallicons than the first capacitors 11 and 12. The equivalent series resistance can be reduced.

実施の形態1では第1のコンデンサ11、12と第2のコンデンサ13は扁平円筒形であり、図2に示すように第1のコンデンサ11、12は断面扁平の長径方向がケース14の底面14bに平行となるように横置され、第2のコンデンサ13は断面扁平の長径方向がケース14の底面14bに直交するように配設されている。   In the first embodiment, the first capacitors 11 and 12 and the second capacitor 13 have a flat cylindrical shape. As shown in FIG. 2, the first capacitors 11 and 12 have a flat cross section with the major axis direction being the bottom surface 14b of the case 14. The second capacitor 13 is disposed so that the major axis direction of the flat cross section is perpendicular to the bottom surface 14 b of the case 14.

このように第1のコンデンサ11、12と第2のコンデンサ13の断面扁平の長径が互いに直交するように配置することにより樹脂封止型コンデンサ10aのコンデンサ間の領域の温度を下げつつ小形化することができる。なお図2は第1のコンデンサを2つ設けたものであるが、第1のコンデンサを3つ以上設けて第1のコンデンサ間に第2のコンデンサを並置してもよい。   As described above, the first capacitors 11 and 12 and the second capacitor 13 are arranged so that the long diameters of the flat cross sections are orthogonal to each other, thereby reducing the size of the region between the capacitors of the resin-encapsulated capacitor 10a while reducing the temperature. be able to. In FIG. 2, two first capacitors are provided. However, three or more first capacitors may be provided, and the second capacitors may be juxtaposed between the first capacitors.

第1のコンデンサ11、12と第2のコンデンサ13とは間隔を設けて近接させている。この間隔の距離は0.1mm〜7mmに設けることが好ましく樹脂封止型コンデンサ10aを小形化させつつ過度の温度上昇を抑制することができる。更にこの間隔の空隙には封止樹脂が充填されることが好ましく放熱性を向上することができる。なお第1のコンデンサ11、12と第2のコンデンサ13とを接触させて並置してもよい。   The first capacitors 11 and 12 and the second capacitor 13 are close to each other with a gap therebetween. This distance is preferably set to 0.1 mm to 7 mm, and an excessive temperature rise can be suppressed while downsizing the resin-sealed capacitor 10a. Further, it is preferable that the gaps are filled with a sealing resin to improve heat dissipation. The first capacitors 11 and 12 and the second capacitor 13 may be in contact with each other.

図4は実施の形態1における樹脂封止型コンデンサの回路図であり、第1のコンデンサ11、12と第2のコンデンサ13を外部端子16〜19を介して並列接続可能に設けた回路図の例を示している。   FIG. 4 is a circuit diagram of the resin-encapsulated capacitor according to the first embodiment, in which the first capacitors 11 and 12 and the second capacitor 13 are provided so as to be connected in parallel via external terminals 16 to 19. An example is shown.

図4に示すように、2つの第1のコンデンサ11、12の夫々のP極、N極は異なる外部端子16〜19に接続し、第2のコンデンサ13のP極とN極は一方の第1のコンデンサ12のP極と他方の第1のコンデンサ11のN極に夫々電気的に接続している。外部端子16〜19のP極同士、N極同士を夫々互いに電気的に接続すると、第1のコンデンサ11、12と第2のコンデンサ13は並列接続される。   As shown in FIG. 4, the P and N poles of the two first capacitors 11 and 12 are connected to different external terminals 16 to 19, and the P and N poles of the second capacitor 13 are one of the first capacitors. The P pole of one capacitor 12 and the N pole of the other first capacitor 11 are electrically connected to each other. When the P poles and the N poles of the external terminals 16 to 19 are electrically connected to each other, the first capacitors 11 and 12 and the second capacitor 13 are connected in parallel.

また図4に示す回路構成とすることにより、樹脂封止後においても第1のコンデンサと第2のコンデンサの特性を個々に検査することが出来る。   Further, with the circuit configuration shown in FIG. 4, the characteristics of the first capacitor and the second capacitor can be individually inspected even after resin sealing.

図1に示すように外部端子16〜19はケース14の一方辺側に設けられ、第1のコンデンサ11、12のバスバー20、22は第1のコンデンサ11、12の端面に沿って導出され夫々外部端子16、18と接続し、他方のバスバー21、23は第1のコンデンサ11、12の上面に沿って一方のメタリコン部から外部端子17、19に向かって幅が小さくなるように略三角形状に設けられ夫々外部端子17、19に接続している。   As shown in FIG. 1, the external terminals 16 to 19 are provided on one side of the case 14, and the bus bars 20 and 22 of the first capacitors 11 and 12 are led out along the end surfaces of the first capacitors 11 and 12, respectively. The other bus bars 21, 23 are connected to the external terminals 16, 18, and the other bus bars 21, 23 are substantially triangular so that the width decreases from one metallicon part toward the external terminals 17, 19 along the upper surface of the first capacitors 11, 12. Are connected to the external terminals 17 and 19, respectively.

第2のコンデンサ13のバスバー25は一方の第1のコンデンサ11の側面に沿って略三角形状のバスバー21の底面側に接合し、第2のコンデンサ13の他方のバスバー24は第2のコンデンサ13の端面に沿って他方の第1のコンデンサ12のバスバー22に接合している。   The bus bar 25 of the second capacitor 13 is joined to the bottom surface side of the substantially triangular bus bar 21 along the side surface of the first capacitor 11, and the other bus bar 24 of the second capacitor 13 is connected to the second capacitor 13. Is joined to the bus bar 22 of the other first capacitor 12 along the end surface of the first capacitor 12.

封止樹脂15は、エポキシ樹脂等の絶縁性樹脂であり耐熱性、耐湿性、熱伝導性に優れることがより好ましい。   The sealing resin 15 is an insulating resin such as an epoxy resin, and more preferably has excellent heat resistance, moisture resistance, and thermal conductivity.

(実施の形態2)
本発明の実施の形態2の樹脂封止型コンデンサについて説明する。
(Embodiment 2)
A resin-encapsulated capacitor according to Embodiment 2 of the present invention will be described.

図5は本発明の実施の形態2における樹脂封止型コンデンサの平面透視図で、図6は図5におけるA−A断面図であり、実施の形態1と同一部分には同一符号を付与しその説明を省略し、異なる構成のみ図を参照しながら説明する。   5 is a plan perspective view of the resin-encapsulated capacitor according to the second embodiment of the present invention, and FIG. 6 is a cross-sectional view taken along the line AA in FIG. 5. The same reference numerals are given to the same parts as those of the first embodiment. The description will be omitted, and only different configurations will be described with reference to the drawings.

樹脂封止型コンデンサ10bは図5、図6に示すように板厚が所定厚さのケース板をケース27の内側に曲げ込むように形成された凹部28をケース27の底面27b側に設けたものである。凹部28は第1のコンデンサ11、12間に挿入されて凹部28におけるケース27内周側の側面には第1のコンデンサ11、12が近接して設けられ、凹部28におけるケース27外周側は開口し空隙を設けている。   As shown in FIGS. 5 and 6, the resin-encapsulated capacitor 10 b has a recess 28 formed on the bottom surface 27 b side of the case 27 formed so as to bend a case plate having a predetermined thickness inside the case 27. Is. The concave portion 28 is inserted between the first capacitors 11 and 12, and the first capacitors 11 and 12 are provided close to the side surface of the concave portion 28 on the inner peripheral side of the case 27, and the outer peripheral side of the case 27 in the concave portion 28 is opened. A gap is provided.

凹部28は第2のコンデンサ13と並置されるように第2のコンデンサ13の扁平円筒形の軸方向に配置され、凹部28の頂点28aは、ケース27の開口部27a側における第1のコンデンサ11、12の上面間を結ぶ直線に重なるか又は超えるように設けられている。   The recess 28 is arranged in the axial direction of the flat cylindrical shape of the second capacitor 13 so as to be juxtaposed with the second capacitor 13, and the apex 28 a of the recess 28 is the first capacitor 11 on the opening 27 a side of the case 27. , 12 are provided so as to overlap or exceed a straight line connecting the upper surfaces of the two.

このように凹部28を設けることより、コンデンサ間の高温領域の放熱性を高めることができると共に、封止樹脂量を減らすことができ軽量化することができる。   By providing the recess 28 in this manner, the heat dissipation in the high temperature region between the capacitors can be enhanced, and the amount of the sealing resin can be reduced and the weight can be reduced.

図5では凹部28をケース27の一辺側に設けたものであるが、凹部を対向する両辺側に2つ設けて、この2つの凹部間に第2のコンデンサ13を並置してもよく、放熱性を更に高めることができる。また凹部28におけるケース27の内周側と夫々第1のコンデンサ11、12及び第2のコンデンサ13との間には隙間を設け、この隙間には封止樹脂15が充填されることが好ましく放熱性を向上することができる。   In FIG. 5, the recess 28 is provided on one side of the case 27. However, two recesses may be provided on both sides facing each other, and the second capacitor 13 may be juxtaposed between the two recesses. The sex can be further enhanced. Further, a gap is provided between the inner peripheral side of the case 27 in the recess 28 and the first capacitor 11, 12 and the second capacitor 13, respectively, and it is preferable that the gap is filled with the sealing resin 15. Can be improved.

(実施例)
実施例1、実施例2、比較例の樹脂封止型コンデンサについて説明する。
(Example)
The resin-encapsulated capacitors of Example 1, Example 2, and Comparative Example will be described.

実施例1の樹脂封止型コンデンサは図1に示す実施の形態1の構造であり、実施例2は図5に示す実施の形態2の構造であり、比較例は図7に示す従来の構造のものである。   The resin-encapsulated capacitor of Example 1 has the structure of Embodiment 1 shown in FIG. 1, Example 2 has the structure of Embodiment 2 shown in FIG. 5, and the comparative example has the conventional structure shown in FIG. belongs to.

実施例1では第1のコンデンサと第2のコンデンサの誘電体フィルムとして同じポリプロピレンを用い、第2のコンデンサは10kHzのインピーダンスが第1のコンデンサの300倍、等価直列抵抗を第1のコンデンサの2〜5倍として、コンデンサの発熱を調整した。また第1のコンデンサと第2のコンデンサの許容温度は105℃である。   In Example 1, the same polypropylene is used as the dielectric film of the first capacitor and the second capacitor. The second capacitor has an impedance of 10 kHz that is 300 times that of the first capacitor and an equivalent series resistance of 2 of the first capacitor. The heat generation of the capacitor was adjusted by ˜5 times. The allowable temperature of the first capacitor and the second capacitor is 105 ° C.

実施例2の樹脂封止型コンデンサはケースの底面側に凹部を設けた以外は実施例1と同様とした。   The resin-encapsulated capacitor of Example 2 was the same as Example 1 except that a recess was provided on the bottom side of the case.

比較例については、平滑用コンデンサとノイズ吸収用コンデンサは夫々実施例1の第1のコンデンサと第2のコンデンサを用い、2つの第1のコンデンサ、第2のコンデンサが順次並置するように設けた。   For the comparative example, the smoothing capacitor and the noise absorbing capacitor are the first capacitor and the second capacitor of the first embodiment, respectively, and the two first capacitors and the second capacitor are provided in parallel. .

実施例1、2における第1のコンデンサと第2のコンデンサ間の隙間は0.5mm〜1mmとし第1のコンデンサ同士間の距離は20mm〜22mmとした。比較例における第1のコンデンサ同士間の距離は3mm〜4mmとなるように配置した。   In the first and second embodiments, the gap between the first capacitor and the second capacitor was 0.5 mm to 1 mm, and the distance between the first capacitors was 20 mm to 22 mm. The distance between the first capacitors in the comparative example was arranged to be 3 mm to 4 mm.

次に、実施例1、実施例2、比較例の第1のコンデンサと第2のコンデンサとを外部端子を介して並列接続した。次に樹脂封止型コンデンサの周囲の環境温度を70℃〜90℃とし、最大電流値が60Aとなるように10kHzのリプル電流を印加して樹脂封止型コンデンサの温度の最大値を測定した。   Next, the 1st capacitor | condenser of Example 1, Example 2, and the comparative example and the 2nd capacitor | condenser were connected in parallel via the external terminal. Next, the ambient temperature around the resin-encapsulated capacitor was set to 70 ° C. to 90 ° C., and a ripple current of 10 kHz was applied so that the maximum current value was 60 A, and the maximum value of the temperature of the resin-encapsulated capacitor was measured. .

その結果、環境温度を基準とした樹脂封止型コンデンサの温度の最大値との差を過熱温度ΔTとすると、実施例1、実施例2は第1のコンデンサと第2のコンデンサ間の領域で最大温度となりΔTはそれぞれ4.7℃、4.2℃であった。一方、比較例は第1のコンデンサ間の領域で最大温度となりΔTは7℃であった。   As a result, when the difference from the maximum value of the temperature of the resin-encapsulated capacitor based on the environmental temperature is the overheating temperature ΔT, the first and second embodiments are in the region between the first capacitor and the second capacitor. The maximum temperature was reached, and ΔT was 4.7 ° C. and 4.2 ° C., respectively. On the other hand, the comparative example had a maximum temperature in the region between the first capacitors, and ΔT was 7 ° C.

以上のように、実施例1、実施例2のように発熱の大きい第1のコンデンサ間に温度の小さい第2のコンデンサを並置することにより比較例に比べ最大温度となる領域の温度を下げることができる。   As described above, the temperature of the region where the maximum temperature is reached is lowered by placing the second capacitor having a low temperature between the first capacitors having large heat generation as in the first and second embodiments, as compared with the comparative example. Can do.

本発明の樹脂封止型コンデンサは最大温度となる領域の温度を下げ信頼性を高める効果を有し、複数のコンデンサを有するコンデンサユニットに有用である。   The resin-encapsulated capacitor of the present invention has the effect of lowering the temperature in the region where the maximum temperature is reached and increasing the reliability, and is useful for a capacitor unit having a plurality of capacitors.

10a、10b 樹脂封止型コンデンサ
11、12 第1のコンデンサ
13 第2のコンデンサ
14、27 ケース
14a、27a 開口部
14b、27b 底面
15 封止樹脂
16、17、18、19 外部端子
20、21、22、23、24、25 バスバー
26 領域
10a, 10b Resin-sealed capacitor 11, 12 First capacitor 13 Second capacitor 14, 27 Case 14a, 27a Opening 14b, 27b Bottom 15 Sealing resin 16, 17, 18, 19 External terminals 20, 21, 22, 23, 24, 25 Busbar 26 area

Claims (4)

外部端子に接続する複数のコンデンサをケース内に収納した樹脂封止型コンデンサにおいて、前記複数のコンデンサは前記外部端子を介して電気的に並列接続可能に設けられた2つの第1のコンデンサと、第1のコンデンサよりインピーダンスが大きい第2のコンデンサとを有し、第2のコンデンサを第1のコンデンサ間に並置した樹脂封止型コンデンサ。 In a resin-encapsulated capacitor in which a plurality of capacitors connected to external terminals are housed in a case, the plurality of capacitors are provided with two first capacitors that can be electrically connected in parallel via the external terminals; A resin-encapsulated capacitor having a second capacitor having a larger impedance than the first capacitor, the second capacitor being juxtaposed between the first capacitors. 第2のコンデンサのインピーダンスは、第1のコンデンサの10倍以上である請求項1に記載の樹脂封止型コンデンサ。 The resin-encapsulated capacitor according to claim 1, wherein the impedance of the second capacitor is 10 times or more that of the first capacitor. 第1、第2のコンデンサは扁平円筒形であり、第1のコンデンサと第2のコンデンサの断面扁平の長径が互いに直交するように設けた請求項1に記載の樹脂封止型コンデンサ。 2. The resin-encapsulated capacitor according to claim 1, wherein the first and second capacitors have a flat cylindrical shape, and are provided so that the long diameters of the flat cross sections of the first capacitor and the second capacitor are perpendicular to each other. 前記ケースに凹部が設けられ、前記凹部は第1のコンデンサ間に挿入され第2のコンデンサに並置された請求項1に記載の樹脂封止型コンデンサ。 The resin-encapsulated capacitor according to claim 1, wherein a concave portion is provided in the case, and the concave portion is inserted between the first capacitors and juxtaposed with the second capacitor.
JP2010285595A 2010-12-22 2010-12-22 Resin-sealed capacitor Active JP5828119B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010285595A JP5828119B2 (en) 2010-12-22 2010-12-22 Resin-sealed capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010285595A JP5828119B2 (en) 2010-12-22 2010-12-22 Resin-sealed capacitor

Publications (2)

Publication Number Publication Date
JP2012134339A true JP2012134339A (en) 2012-07-12
JP5828119B2 JP5828119B2 (en) 2015-12-02

Family

ID=46649592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010285595A Active JP5828119B2 (en) 2010-12-22 2010-12-22 Resin-sealed capacitor

Country Status (1)

Country Link
JP (1) JP5828119B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014078549A (en) * 2012-10-09 2014-05-01 Toyota Motor Corp Capacitor unit
CN103794360A (en) * 2014-02-19 2014-05-14 铜陵市佳龙飞电容器有限公司 Method for mounting double-value capacitance shell
KR20160005683A (en) * 2013-02-27 2016-01-15 이옥서스, 인크. Energy storage device assembly
US9892868B2 (en) 2013-06-21 2018-02-13 Ioxus, Inc. Energy storage device assembly
US9899643B2 (en) 2013-02-27 2018-02-20 Ioxus, Inc. Energy storage device assembly
US20190198246A1 (en) * 2017-12-27 2019-06-27 Denso Corporation Capacitor module
JP2020087566A (en) * 2018-11-19 2020-06-04 パナソニックIpマネジメント株式会社 Coating, switch device, and method of manufacturing coating

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3163594A1 (en) * 2015-10-26 2017-05-03 ABB Schweiz AG Vacuum interrupter with one movable contact

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5640642U (en) * 1979-09-03 1981-04-15
JPH0267626U (en) * 1988-05-30 1990-05-22
JP2001326131A (en) * 2000-05-18 2001-11-22 Matsushita Electric Ind Co Ltd Capacitor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5640642U (en) * 1979-09-03 1981-04-15
JPH0267626U (en) * 1988-05-30 1990-05-22
JP2001326131A (en) * 2000-05-18 2001-11-22 Matsushita Electric Ind Co Ltd Capacitor

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014078549A (en) * 2012-10-09 2014-05-01 Toyota Motor Corp Capacitor unit
KR20160005683A (en) * 2013-02-27 2016-01-15 이옥서스, 인크. Energy storage device assembly
JP2016516289A (en) * 2013-02-27 2016-06-02 アイオクサス, インコーポレイテッドIoxus,Inc. Energy storage device assembly
US9899643B2 (en) 2013-02-27 2018-02-20 Ioxus, Inc. Energy storage device assembly
KR102218844B1 (en) * 2013-02-27 2021-02-23 이옥서스, 인크. Energy storage device assembly
US9892868B2 (en) 2013-06-21 2018-02-13 Ioxus, Inc. Energy storage device assembly
CN103794360A (en) * 2014-02-19 2014-05-14 铜陵市佳龙飞电容器有限公司 Method for mounting double-value capacitance shell
US20190198246A1 (en) * 2017-12-27 2019-06-27 Denso Corporation Capacitor module
US10964480B2 (en) * 2017-12-27 2021-03-30 Denso Corporation Capacitor module having intervening inward facing portion
JP2020087566A (en) * 2018-11-19 2020-06-04 パナソニックIpマネジメント株式会社 Coating, switch device, and method of manufacturing coating

Also Published As

Publication number Publication date
JP5828119B2 (en) 2015-12-02

Similar Documents

Publication Publication Date Title
JP5828119B2 (en) Resin-sealed capacitor
US10153089B2 (en) Thin-film capacitor for electric vehicle
JP5953246B2 (en) Power converter
KR102326063B1 (en) Film capacitor module of inverter for vehicle
JP2014090538A (en) Power conversion device
JP5646726B2 (en) Battery comprising an individual cell and a plurality of individual cells
JP2013146179A (en) Electric power conversion apparatus
JP2019195250A (en) Power conversion device
JP6581323B1 (en) In-wheel electric system
JP2013251351A (en) Capacitor
CN109313983B (en) Power capacitor module with cooling arrangement
JP6439483B2 (en) Power converter
JP4770083B2 (en) Power converter
US20140084447A1 (en) Power module package
JP2012222313A (en) Case mold type capacitor
JP5672216B2 (en) Connector
JP2009200378A (en) Composite metallized-film capacitor
CN204270881U (en) Low inductance multicore group power capacitor
JP5985606B2 (en) Capacitor-carrying bus bar and power device including the same
JP2011091250A (en) Capacitor and power conversion apparatus
JP2009071129A (en) Insulated semiconductor power module having built-in capacitor
JP6293913B2 (en) Apparatus and method for contacting electrical components
JP6471951B2 (en) Capacitor block and power converter
CN211297213U (en) Motor controller, power assembly and electric vehicle with same
JP2019062739A (en) Electric power conversion system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131004

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20131113

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20140108

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20140418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140819

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141015

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20141106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150512

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150525

R151 Written notification of patent or utility model registration

Ref document number: 5828119

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151