JP2010017421A - 生体データモデル作成方法及びその装置並びに生体データモデルのデータ構造及び生体データモデルのデータ格納装置並びに三次元データモデルの負荷分散方法及びその装置 - Google Patents

生体データモデル作成方法及びその装置並びに生体データモデルのデータ構造及び生体データモデルのデータ格納装置並びに三次元データモデルの負荷分散方法及びその装置 Download PDF

Info

Publication number
JP2010017421A
JP2010017421A JP2008181991A JP2008181991A JP2010017421A JP 2010017421 A JP2010017421 A JP 2010017421A JP 2008181991 A JP2008181991 A JP 2008181991A JP 2008181991 A JP2008181991 A JP 2008181991A JP 2010017421 A JP2010017421 A JP 2010017421A
Authority
JP
Japan
Prior art keywords
image
data model
data
living body
physical property
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008181991A
Other languages
English (en)
Other versions
JP5241357B2 (ja
Inventor
Kentaro Takanami
健太郎 高波
Manabu Nagasaka
学 長坂
Hideo Sakamoto
英男 坂本
Masato Ogata
正人 緒方
Hideo Yokota
秀夫 横田
Hiroyuki Shimai
博行 島井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RIKEN Institute of Physical and Chemical Research
Mitsubishi Precision Co Ltd
Original Assignee
RIKEN Institute of Physical and Chemical Research
Mitsubishi Precision Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIKEN Institute of Physical and Chemical Research, Mitsubishi Precision Co Ltd filed Critical RIKEN Institute of Physical and Chemical Research
Priority to JP2008181991A priority Critical patent/JP5241357B2/ja
Priority to PCT/JP2009/062933 priority patent/WO2010005119A1/ja
Priority to US13/003,607 priority patent/US8532359B2/en
Publication of JP2010017421A publication Critical patent/JP2010017421A/ja
Application granted granted Critical
Publication of JP5241357B2 publication Critical patent/JP5241357B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/11Region-based segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • G06T17/20Finite element generation, e.g. wire-frame surface description, tesselation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/155Segmentation; Edge detection involving morphological operators
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B23/00Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes
    • G09B23/28Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes for medicine
    • G09B23/30Anatomical models
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/4808Multimodal MR, e.g. MR combined with positron emission tomography [PET], MR combined with ultrasound or MR combined with computed tomography [CT]
    • G01R33/4812MR combined with X-ray or computed tomography [CT]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2200/00Indexing scheme for image data processing or generation, in general
    • G06T2200/08Indexing scheme for image data processing or generation, in general involving all processing steps from image acquisition to 3D model generation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • G06T2207/10081Computed x-ray tomography [CT]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • G06T2207/10088Magnetic resonance imaging [MRI]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Algebra (AREA)
  • Mathematical Analysis (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Medicinal Chemistry (AREA)
  • Geometry (AREA)
  • Computational Mathematics (AREA)
  • Software Systems (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Physics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • Educational Administration (AREA)
  • Educational Technology (AREA)
  • Computer Graphics (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

【課題】手術シミュレータ開発に伴い、医療画像データの利用をし、画像情報による生体部分の物性値を付与し、対象臓器を画像データから分離した三次元生体データモデルを作成して、患者固有であり、内部構造を持ち、生体力学シミュレーション可能なデータモデルの作成実現を図る。
【解決手段】生体の同一対象をCT及びMRIにより撮像した医用画像のうち対になるCT/MRI画像の組を設定し、CT/MRI画像の組から同一個所を表示する特徴点を複数点選択設定し、CT/MRI画像間の変換係数を得て、この変換係数を用いてMRI画像を射影変換及び線形補間による再配置を実施してCT画像の輪郭に合わせるとともに輪郭内に位置して補正する。さらにこの画像を用いて三次元データモデルを作成することができる。
【選択図】 図1

Description

本発明は、手術のシミュレーションをするために用いる生体データの作成及びその装置並びに当該生体データのデータ構造及びそのデータ格納装置並びに生体データモデルを処理するための三次元データモデルの負荷分散方法及びその装置に関するものである。
近年、医療と工学の融合が急速に深まり、先端的計算技術を活用する手術シミュレータが提案された。これらは手術対象の生体をポリゴンで構成し、基本的に臓器の表面のみを模擬するものであり、このため、内部構造を持つ複雑な臓器の力学的なシミュレーションが正確に行えない。3次元ボリュームデータでのモデル作成が急務であった。
解決しようとする問題点は、手術シミュレータ開発に伴い、患者固有であり、内部構造を持ち、生体力学シミュレーション可能なデータモデルの作成が必須であった。その実現への課題は以下の通りである。
・医療画像データの利用を図ること
・画像情報による生体部分の物性値の付与をすること
・対象臓器を画像データから分離すること
・三次元生体データモデルを作成すること
請求項1に係る生体データモデル作成方法は、医用画像データにより三次元データモデルを作成する方法において、生体の同一対象をCT及びMRIにより撮像した医用画像のうち対になるCT/MRI画像の組を設定する第1の過程と、前記CT/MRI画像の組から同一個所を表示する特徴点を複数点選択設定する第2の過程と、u,v:MRI画像の特徴点座標、x,y:CT画像の特徴点座標、a〜a:変換係数として
前記特徴点座標群を射影変換式
u=(ax+ay+a)/(ax+ay+1)
v=(ax+ay+a)/(ax+ay+1)
にコンピュータが備える多項式設定手段が特徴点座標u,v,x,yを当てはめる第3の過程と、コンピュータが備える変換係数計算手段が前記第3の過程で設定した多項式群を最小二乗法によって解き、変換係数a〜aを導出する第4の過程と、コンピュータが備える輪郭補正手段が第4の過程で導出した変換係数a〜aを用いてMRI画像を射影変換及び線形補間による再配置を実施してCT画像の輪郭に合わせるとともに輪郭内に位置して補正する第5の過程とからなること特徴とするものである。
請求項2に係る生体データモデル作成装置は、医用画像データにより三次元データモデルを作成する装置において、生体の同一対象をCT及びMRIにより撮像した医用画像のうち対になるCT/MRI画像のそれぞれを表示する第1の画像表示装置及び第2の画像表示装置と、前記第1の画像表示装置及び第2の画像表示装置に対し同一個所を表示する特徴点を複数点選択設定した特徴点を記憶する特徴点群記憶手段と、u,v:MRI画像の特徴点座標、x,y:CT画像の特徴点座標、a〜a:変換係数として
前記特徴点座標群を射影変換式
u=(ax+ay+a)/(ax+ay+1)
v=(ax+ay+a)/(ax+ay+1)
に当てはめる多項式群設定手段と、前記多項式群設定手段で設定した多項式群を最小二乗法によって解き、変換係数a〜aを導出する変換係数計算手段と、前記変換係数計算手段により導出した変換係数a〜aを用いてMRI画像を射影変換及び線形補間による再配置を実施してCT画像の輪郭に合わせるとともに輪郭内に位置して補正する輪郭補正手段とからなること特徴とするものである。
請求項3に係る生体データモデル作成方法は、生体を撮像した医用画像から生体の部位を抽出する際に、抽出対象領域内部の一点を注目点として指定し、その近傍画素に対し注目点との類似判定を行い、医用画像データにより三次元データモデルを作成する方法において、コンピュータ画面上で対話的処理により抽出開始点並びに開始点周辺の抽出対象点及び非抽出対象点を選択し、コンピュータが備える教師データ作成手段がこれらの情報により初期教師データを作成する第1の過程と、コンピュータが備える閾値決定手段が、初期位置は抽出開始点とする注目点を中心とする局所領域にて、局所領域としての抽出判定領域における抽出対象点データ集合のメディアン値と、抽出判定領域における非抽出対象点データ集合のメディアン値とからなる内部の教師データより閾値を決定する第2の過程と、コンピュータが備える注目点更新手段が、前記第2の過程において決定した閾値により注目点を対象か非対象かを判定する第3の過程と、コンピュータが備える教師データ作成手段が、前記第3の過程による判定結果を判定結果データ及び教師データに追加してメディアン値を更新する第4の過程と、コンピュータが備える注目点更新手段が、局所領域内で最後に対象領域と判定された点を新たな注目点とし、その点を中心とする局所領域にて第2から第4の過程の処理を実行し、局所領域内部で対象領域と判定される点がない場合、処理完了とする第5の過程とからなることを特徴とするものである。
請求項4に係る生体データモデル作成装置は、生体を撮像した医用画像から生体の部位を抽出する際に、抽出対象領域内部の一点を注目点として指定し、その近傍画素に対し注目点との類似判定を行い、医用画像データにより三次元データモデルを作成する装置において、コンピュータ画面上で対話的処理により選択された抽出開始点並びに開始点周辺の抽出対象点及び非抽出対象点の情報により初期教師データを作成するとともにメディアン値を更新する教師データ作成手段と、初期位置は抽出開始点とする注目点を中心とする局所領域にて、局所領域としての抽出判定領域における抽出対象点データ集合のメディアン値と、抽出判定領域における非抽出対象点データ集合のメディアン値とからなる内部の教師データより閾値を決定する閾値決定手段と、前記決定した閾値により注目点を対象か非対象かを判定してその結果を判定結果データ及び教師データに追加するとともに局所領域内で最後に対象領域と判定された点を新たな注目点とし、その点を中心とする局所領域にて処理を実行し、局所領域内部で対象領域と判定される点がない場合、処理完了とする注目点更新手段とからなることを特徴とするものである。
請求項5に係る生体データモデル作成方法は、生体を撮像した医用画像から生体の部位を抽出して生体の断面画像単位の医用画像データにより三次元データモデルを作成する方法において、操作者がコンピュータが備える画像合成手段を操作して、生体の断面画像単位で、部位を抽出した抽出画像と抽出元画像とを、色分けして合成する第1の過程と、操作者がコンピュータが備える画像修正手段を操作して、コンピュータ画面上の前記第1の過程により合成された表示画像について元画像を基準に追加箇所または削除箇所を指定し、その情報を抽出画像に反映した修正画像を出力する第2の過程と、操作者がコンピュータが備える3次元データ出力手段を操作して、前記第2の過程により作成した抽出部位の画像を模擬対象の手術内容に応じて選択し生体の断面画像単位で合成して得た合成画像を積層して3次元データとして出力する第3の過程とからなることを特徴とするものである。
請求項6に係る生体データモデル作成装置は、生体を撮像した医用画像から生体の部位を抽出して生体の断面画像単位の医用画像データにより三次元データモデルを作成する装置において、生体の断面画像単位で、部位を抽出した抽出画像と抽出元画像とを、色分けして合成する画像合成手段と、前記画像合成手段により合成されたコンピュータ画面上の表示画像について元画像を基準に追加箇所または削除箇所を指定され、その情報を抽出画像に反映した修正画像を出力する画像修正手段と、前記画像修正手段により作成した部位毎に抽出した生体の断面画像を模擬対象の手術内容に応じて選択し断面画像単位で合成して得た合成画像を積層して3次元データとして出力する3次元データ出力手段とからなることを特徴とするものである。
請求項7に係る生体データモデル作成方法は、医用画像データにより三次元データモデルを作成する方法において、生体の同一対象をCT画像とMRI画像として撮像した複数の医用画像を前記CT画像又はMRI画像の一方の輪郭を得、他方の画像を前記輪郭内に両画像の同一箇所を対応させて配置する第1の過程と、前記第1の過程で配置することで得られた画像について所定の生体部位を抽出する第2の過程と、前記第2の過程で抽出した生体部位を示し前記CT画像又はMRI画像が生体の各組織の材料特性に対する固有の値を示すCT値又はMRI値に対応する当該抽出部位の物性値を当該抽出生体の対象領域の画素と結びつけるため、前記部位の物性値を物性値テーブルとして構成することを特徴するものである。
請求項8に係る生体データモデル作成方法は、請求項7に記載の方法において、CT画像のCT値とMRI画像のMRI値に対応する物性値を物性値テーブルとして構成しておき、物性値に、想定する模擬に対応した事故内容を規定した情報を含ませたことを特徴とするものである。
請求項9に係る生体データモデル作成装置は、医用画像データにより三次元データモデルを作成する装置において、生体の同一対象をCT画像とMRI画像として撮像した複数の医用画像を前記CT画像又はMRI画像の一方の輪郭を得、他方の画像を前記輪郭内に両画像の同一箇所を対応させて配置する歪み補正手段と、前記歪み補正手段が配置することで得られた画像について生体部位を抽出するセグメンテーション部と、前記セグメンテーション部で抽出した生体部位を示し前記CT画像又はMRI画像が生体の各組織の材料特性に対する固有の値を示すCT値又はMRI値に対応する当該抽出部位の物性値を当該抽出生体の対象領域の画素と結びつけるため、前記部位の物性値を記憶する物性値テーブルとからなることを特徴とするものである。
請求項10に係る生体データモデル作成装置は、請求項9に記載の装置において、CT画像のCT値とMRI画像のMRI値に対応する物性値を物性値テーブルとして構成しておき、物性値テーブルは物性値に、想定する模擬に対応した事故内容を規定した情報を含ませたことを特徴とするものである。
請求項11に係る生体データモデル作成方法は、医用画像データにより三次元データモデルを作成する方法において、生体の同一対象を複数の画像センサにより撮像した医用画像のうち対になるセンサ画像データの組を設定する第1の過程と、前記センサ画像データの組から同一個所を表示する特徴点を複数点選択設定する第2の過程と、u,v:一方のセンサ画像の特徴点座標、x,y:他方のセンサ画像の特徴点座標、a〜a:変換係数として
前記特徴点座標群を射影変換式
u=(ax+ay+a)/(ax+ay+1)
v=(ax+ay+a)/(ax+ay+1)
にコンピュータが備える多項式設定手段が特徴点座標u,v,x,yを当てはめる第3の過程と、コンピュータが備える変換係数計算手段が前記第3の過程で設定した多項式群を最小二乗法によって解き、変換係数a〜aを導出する第4の過程と、コンピュータが備える輪郭補正手段が第4の過程で導出した変換係数a〜aを用いて一方のセンサ画像を射影変換及び線形補間による再配置を実施して他方のセンサ画像の輪郭に合わせるとともに輪郭内に位置して補正する第5の過程と、操作者がコンピュータを操作して、前記一方のセンサ画像が表示する生体の部位毎に与えられ当該部位を示す他方のセンサ値に対応する当該部位の物性値を物性値テーブルとして構成する第6の過程と、コンピュータが備える物性値付与手段が前記第6の過程により構成した画像の生体の部位毎に前記他方のセンサ値に対応する物性値テーブルから、当該部位を示す領域の画素に物性値を付与することを特徴とするものである。
請求項12に係る生体データモデル作成方法は、請求項11に記載の方法において、他方のセンサ値に対応する物性値を物性値テーブルとして構成しておき、物性値に、想定する模擬に対応した事故内容を規定した情報を含ませたことを特徴とするものである。
請求項13に係る生体データモデル作成装置は、医用画像データにより三次元データモデルを作成する装置において、生体の同一対象を複数の画像センサにより撮像した医用画像のうち対になるセンサ画像のそれぞれを表示する第1の画像表示装置及び第2の画像表示装置と、前記第1の画像表示装置及び第2の画像表示装置に対し同一個所を表示する特徴点を複数点選択設定した特徴点を記憶する特徴点群記憶手段と、u,v:一方のセンサ画像の特徴点座標、x,y:他方のセンサ画像の特徴点座標、a〜a:変換係数として
前記特徴点座標群を射影変換式
u=(ax+ay+a)/(ax+ay+1)
v=(ax+ay+a)/(ax+ay+1)
に当てはめる多項式群設定手段と、前記多項式群設定手段で設定した多項式群を最小二乗法によって解き、変換係数a〜aを導出する変換係数計算手段と、前記変換係数計算手段により導出した変換係数a〜aを用いて一方のセンサ画像を射影変換及び線形補間による再配置を実施して他方のセンサ画像の輪郭に合わせるとともに輪郭内に位置して補正する輪郭補正手段と、前記一方のセンサ画像が表示する生体の部位毎に与えられ当該部位を示す他方のセンサ値に対応する当該部位の物性値を記憶する物性値テーブルと、画像の生体の部位毎に前記他方のセンサ値に対応する物性値テーブルから、当該部位を示す領域の画素に物性値を付与する物性値付与手段とからなることを特徴とするものである。
請求項14に係る生体データモデル作成装置は、請求項13に記載の装置において、他方のセンサ値に対応する物性値を物性値テーブルとして構成しておき、物性値テーブルは物性値に、想定する模擬に対応した事故内容を規定した情報を含ませたことを特徴とするものである。
請求項15に係る生体データモデル作成方法は、医用画像データにより三次元データモデルを作成する方法において、ボリュームデータから生体データモデルを生成する際に、コンピュータが備えるサンプリング手段が、ボリュームデータを構成する格子点を所定のサンプリング間隔で離散的にサンプリングする第1の過程と、コンピュータが備える境界検索手段が、前記第1の過程においてサンプリングした格子点の情報が示す生体内外の情報が異なるときに離散的にサンプリングして飛ばされた格子点の生体内外の情報を検索し、最初に変わる位置を生体内外の境界の交点とする第2の過程とからなることを特徴とするものである。
請求項16に係る生体データモデル作成装置は、医用画像データにより三次元データモデルを作成する装置において、ボリュームデータから生体データモデルを生成する際に、ボリュームデータを構成する格子点を所定のサンプリング間隔で離散的にサンプリングするサンプリング手段と、前記サンプリング手段においてサンプリングした格子点の情報が示す生体内外の情報が異なるときに離散的にサンプリングして飛ばされた格子点の生体内外の情報を検索し、最初に変わる位置を生体内外の境界の交点とする境界検索手段とからなることを特徴とするものである。
請求項17に係る生体データモデル作成方法は、医用画像データにより三次元データモデルを作成する方法において、ボリュームデータから有限要素が形成するように生体データモデルを生成する際に、コンピュータが備える平滑化手段が、前記有限要素のi番目のノードに対し所定範囲の近傍のj番目のノードについて、λを補正係数として、
new=x+λΣ(x−x
の式によりx newへ移動させる処理を順次全てのノードiについて行い、生体モデルの表面を示す等値面データの頂点位置を周辺の頂点の位置により平滑化することを特徴とするものである。
請求項18に係る生体データモデル作成装置は、医用画像データにより三次元データモデルを作成する装置において、ボリュームデータから有限要素が形成するように生体データモデルを生成する際に、i番目のノードに対し所定範囲の近傍のj番目のノードについて、λを補正係数として、
new=x+λΣ(x−x
の式によりx newへ移動させる処理を全てのノードiについて行い、生体モデルの表面を示す等値面データの頂点位置を周辺の頂点の位置により平滑化する平滑化手段を有することを特徴とするものである。
請求項19に係る生体データモデルのデータ構造は、医用画像データにより三次元データモデルを構築するデータ構造において、所定範囲の生体を構成する各部位としての臓器と当該臓器を包む単純幾何形状とを備え、各臓器の位置関係を規定する節によりツリー状に構築したことを特徴とするものである。
請求項20に係る生体データモデルのデータ格納装置は、医用画像データにより三次元データモデルを構築する生体データモデルのデータを格納する装置であって、所定範囲の生体を構成する各部位としての臓器と当該臓器を包む単純幾何形状とを備え、各臓器の位置関係を規定する節によりツリー状に構築して格納したことを特徴とするものである。
請求項21に係る負荷分散方法は、医用画像データにより作成した三次元データモデルについて模擬運動を模擬するに際し、模擬処理を並列処理する処理装置の数Pに対して、三次元データモデルの有限要素の頂点数がほぼ均一になり、分割面が三次元データモデル内で交差しないように数Pに分割して前記処理装置に負荷分散することを特徴とするものである。
請求項22に係る負荷分散方式は、医用画像データにより作成した三次元データモデルについて模擬運動を模擬するに際し、模擬処理を並列処理する複数Pの処理装置であって三次元データモデルの有限要素の頂点数がほぼ均一になり、分割面が三次元データモデル内で交差しないように数Pに分割して負荷とする複数の処理装置と、前記複数の処理装置のうち隣り合う処理装置間を通信回線により接続したことを特徴とするものである。
請求項1に係る生体データモデル作成方法によると、導出した変換係数a〜aを用いて、歪みの生じているMRI画像の幾何形状を、射影変換及び線形補間による再配置を実施してCT画像の輪郭に合わせるとともに輪郭内に位置して補正することができる。
請求項2に係る生体データモデル作成装置によると、変換係数計算手段により導出した変換係数a〜aを用いて輪郭補正手段は、歪みの生じているMRI画像を、射影変換及び線形補間による再配置を実施してCT画像の輪郭に合わせるとともに輪郭内に位置して補正することができる。
請求項3に係る生体データモデル作成方法によると、第2の過程において、初期位置は抽出開始点とする注目点を中心とする局所領域にて、局所領域としての抽出判定領域における抽出対象点データ集合のメディアン値と、抽出判定領域における非抽出対象点データ集合のメディアン値とからなる内部の教師データより閾値を決定し、第3の過程において、前記第2の過程において決定した閾値により注目点を対象か非対象かを判定し、第4の過程において、前記第3の過程による判定結果を判定結果データ及び教師データに追加してメディアン値を更新する。これらの各過程を局所領域の情報を使用して評価基準生成しているから、対象領域抽出において局所的な閾値を持つことができ、実際の生体の特徴分布に近づけて対象か非対象かを判定することができる。
請求項4に係る生体データモデル作成装置によると、閾値決定手段が、初期位置は抽出開始点とする注目点を中心とする局所領域にて、局所領域としての抽出判定領域における抽出対象点データ集合のメディアン値と、抽出判定領域における非抽出対象点データ集合のメディアン値とからなる内部の教師データより閾値を決定し、注目点更新手段が、前記決定した閾値により注目点を対象か非対象かを判定してその結果を判定結果データ及び教師データに追加するとともに局所領域内で最後に対象領域と判定された点を新たな注目点とし、その点を中心とする局所領域にて処理を実行し、局所領域内部で対象領域と判定される点がない場合、処理完了とする。これら閾値決定手段と注目点更新手段とは、局所領域の情報を使用して評価基準生成しているから、対象領域抽出において局所的な閾値を持つことができ、実際の生体の特徴分布に近づけて対象か非対象かを判定することができる。
請求項5に係る生体データモデル作成方法によると、対象部位を抽出後の三次元データモデルを、生体の断面画像単位で、抽出部位の追加又は削除、及び生体の断面画像単位で選択した部位の合成を行うから、所望する模擬に沿った三次元画像データを得ることができる。
請求項6に係る生体データモデル作成装置によると、対象部位を抽出後の三次元データモデルを、画像修正手段が、生体の断面画像単位で、部位を抽出した抽出画像と抽出元画像とを、コンピュータ画面上の画像合成手段により合成された表示画像について元画像を基準に追加箇所または削除箇所を指定し、その情報を抽出画像に反映した修正画像を出力し、3次元データ出力手段が前記画像修正手段により作成した部位毎に抽出した生体の断面画像を模擬対象の手術内容に応じて選択し断面画像単位で合成して得た合成画像を積層して3次元データとして出力するから、所望する模擬に沿った三次元画像データを得ることができる。
請求項7に係る生体データモデル作成方法によると、生成した画像の生体の部位毎にCT値又はMRI値に対応する物性値テーブルから、画像の生体の部位毎に当該部位を示す領域の画素に物性値を付与することが出来る。模擬運動の際には各部位に対して与えられた物性値に従った運動をさせることができる。
請求項8に係る生体データモデル作成方法によると、生成した画像の生体の部位毎にCT値又はMRI値に対応する物性値テーブルの物性値に想定する模擬に対応した事故内容を規定した情報を含ませる。模擬運動の際には生体の当該事故を設定した部位に例えば一部壊死の状態による運動を実現することができる。
請求項9に係る生体データモデル作成装置によると、生成した画像の生体の部位毎にCT値又はMRI値に対応する物性値テーブルから、物性値付与手段が画像の生体の部位毎に当該部位を示す領域の画素に物性値を付与する。模擬運動の際には各部位に対して与えられた物性値に従った運動をさせることができる。
請求項10に係る生体データモデル作成装置によると、生成した画像の生体の部位毎にCT値又はMRI値に対応する物性値テーブルの物性値に想定する模擬に対応した事故内容を規定した情報を含ませる。模擬運動の際には生体の当該事故を設定した部位に例えば一部壊死の状態による運動を実現することができる。
請求項11に係る生体データモデル作成方法によると、複数の医用画像を複合して、画像の生体の部位毎に前記複数の医用画像のいずれか一方を基準として他方の医用画像の対応画素の当該部位のセンサ値に対応する物性値テーブルから、画像の生体部位毎の物性値を付与することができる。シミュレーションに適用した場合、部位毎に力学的に物性値に応じて振るまいが異なるようにすることができる。
請求項12に係る生体データモデル作成方法によると、生成した画像の生体の部位毎にセンサ値に対応する物性値テーブルの物性値に想定する模擬に対応した事故内容を規定した情報を含ませるから、模擬運動の際には生体の当該事故を設定した部位に例えば一部壊死の状態による運動を実現することができる。
請求項13に係る生体データモデル作成装置によると、物性値付与手段は、第2の画像表示装置に表示させた画像のセンサ値を索引として第2の画像表示装置に表示させた臓器の物性値を当該臓器位置に対応する第1の画像表示装置の表示位置の物性値として付与するから、生体部位毎の物性値索引情報を付与することができる。シミュレーションに適用した場合、部位毎に力学的に物性値に応じて振るまいが異なるようにすることができる。
請求項14に係る生体データモデル作成装置によると、生成した画像の生体の部位毎に他方のセンサ値に対応する物性値テーブルの物性値に想定する模擬に対応した事故内容を規定した情報を含ませるから、模擬運動の際には生体の当該事故を設定した部位に例えば一部壊死の状態による運動を実現することができる。
請求項15に係る生体データモデル作成方法によると、処理負荷を考慮し、ボリュームデータを構成する格子点を所定のサンプリング間隔で離散的にサンプリングするから、モデルデータの規模を制御することができ、その際、サンプリングした格子点の情報が示す生体内外の情報が異なるときに離散的にサンプリングして飛ばされた格子点の生体内外の情報を検索し、最初に変わる位置を生体内外の境界の交点として、飛ばした格子点を境界の交点の決定に用いるから形状精度を保つことができる。
請求項16に係る生体データモデル作成装置によると、処理負荷を考慮し、サンプリング手段がボリュームデータを構成する格子点を所定のサンプリング間隔で離散的にサンプリングするから、モデルデータの規模を制御することができ、さらに、境界検索手段がサンプリング手段においてサンプリングした格子点の情報が示す生体内外の情報が異なるときに離散的にサンプリングして飛ばされた格子点の生体内外の情報を検索し、最初に変わる位置を生体内外の境界の交点として、飛ばした格子点を境界の交点の決定に用いるから形状精度を保つことができる。
請求項17に係る生体データモデル作成方法によると、ボリュームデータから有限要素が形成するように生体データモデルを生成する際に、i番目のノードに対し所定範囲の近傍のj番目のノードについて、所定の式によりx newへ移動させる処理を全てのノードiについて行い、生体モデルの表面を示す等値面データの頂点位置を周辺の頂点の位置により平滑化することができる。生体モデルを表示した場合滑らかな状態の臓器を見ることが出来る。
請求項18に係る生体データモデル作成装置によると、ボリュームデータから有限要素が形成するように生体データモデルを生成する際に、平滑化手段がi番目のノードに対し所定範囲の近傍のj番目のノードについて、所定の式によりx newへ移動させる処理を全てのノードiについて行い、生体モデルの表面を示す等値面データの頂点位置を周辺の頂点の位置により平滑化することができる。生体モデルを表示した場合滑らかな状態の臓器を見ることが出来る。
請求項19に係る生体データモデルのデータ構造によると、各生体部位を節によりツリー状に構築し、節に所定範囲の生体を構成する各部位としての臓器と当該臓器を包む単純幾何形状とを備え、節が各臓器の位置関係を規定するから、各臓器のような複雑な形状に比べ、単純幾何形状を臓器の形状として互いの接触判定を行うことができ、非常に早く処理できる。また、節を位置関係を規定してツリー状に構築しているから、ツリーを辿りつつ、単純形状により接触判定を用いることで、各々の部位が接触する可能性のある臓器を早い段階で絞ることができる。
請求項20に係る生体データモデルのデータ格納装置によると、各生体部位を節によりツリー状に構築し、節に所定範囲の生体を構成する各部位としての臓器と当該臓器を包む単純幾何形状とを備え、節が各臓器の位置関係を規定するから、各臓器のような複雑な形状に比べ、単純幾何形状を臓器の形状として互いの接触判定を行うことができ、非常に早く処理できる。また、節を位置関係を規定してツリー状に構築しているから、ツリーを辿りつつ、単純形状により接触判定を用いることで、各々の部位が接触する可能性のある臓器を早い段階で絞ることができる。
請求項21に係る負荷分散方法によると、模擬処理を並列処理する処理装置の数Pに対して、三次元データモデルの有限要素の頂点数がほぼ均一になるように数Pに分割して前記処理装置に負荷分散するから、並列処理を効率よく行うことができ、分割面が三次元データモデル内で交差しないように数Pに分割するから、通信回数を少なくすることができる。
請求項22に係る負荷分散方式によると、複数の処理装置は模擬処理を並列処理する複数Pの処理装置であって三次元データモデルの有限要素の頂点数がほぼ均一になるように数Pに分割して負荷とするから、並列処理を効率よく行うことができ、分割面が三次元データモデル内で交差しないように数Pに分割するから、通信回線は複数の処理装置のうち隣り合う処理装置間を接続して、通信回数を少なくすることができる。
図1は、生体データモデル作成装置を説明する機能ブロック図である。図1において、101はCT画像データファイル、102はMRI画像データファイル、103はPET画像データファイル、104は歪み補正部、105はセグメンテーション部、106は物性値付与部、107は物性値テーブル、108は有限要素分割部、109は前処理部、110は四面体分割部、111は後処理部、112は構造化ファイルである。歪み補正部104から後処理部111全体をコンピュータで構成し、各ブロックの機能を実現する。さらに、CT画像データファイル101、MRI画像データファイル102及びPET画像データファイル103は、医用画像データであり、生体の断面を背の高さ方向に所定の範囲について順次撮影した画像すなわちスライス画像の複数を格納している。CT、MRI、PETはそれぞれ画像センサを構成し、それぞれの画像はセンサ画像を与え、センサ画像にはそれぞれCT値又はMRI値又はPET値と呼ばれるセンサ値を有し、各組織の材料特性に対する固有の値が色の濃淡として写っている。
図2、図3は、異なる2種の画像センサデータからの生体断面画像に基づいて、より好ましい生体断面画像を得る技術を説明するブロック図及びフロー図であり、図2は図1における歪み補正部104を含む。
操作者は、例えば手術対象者のCT画像データファイル101、MRI画像データファイル102又はPET画像データファイル103中から、対になる例えばCT画像データファイル101、MRI画像データファイル102を選択し(図3の過程P301)、第1の画像表示装置201の画面上にCT画像、第2の画像表示装置202の画面上にMRI画像を組として表示する。このとき、表示する画像は、同一人の体について同一断面であり、順次断面箇所を替えて表示することができる。また、CT画像は、MRI画像よりも空間解像度が高く、撮像時にも歪みも生じないため組織の形状をより正確に捉えられる特徴がある。また、MRI画像は、軟部組織の分解能が高いためCT画像よりも情報量が多く、そのゆえCT画像よりも多くの組織の物性値が取得可能であり、撮像装置によっては撮像時に歪みが生じる場合もあり、形状が正確に写っていない場合がある。各画像に特徴が異なり、それぞれの利点を活かすため、CT画像の輪郭を含む形状に、MRI画像による組織画像を再配置する。なお、PETはコンピュータ断層撮影技術の一種であり、癌診断等に利用されており、CT/MRI画像と併用して癌化した臓器のモデル生成が可能となる。
実施例では、CT/MRI画像を選択し、CT画像の輪郭にMRI画像による組織画像を再配置しているが、これに限らずCT/MRI/PET画像いずれかを対として組み合わせ一方を輪郭、他方をそれに再配置する組織画像用としてもよく、本発明の技術範囲に属する。
操作者は、表示されたCT画像、MRI画像から同一箇所を指している特徴点を複数個設定する(図3の過程P302)。コンピュータはこの特徴点の設定により、両画像画面上のその特徴点に指定番号を付して表示する。この特徴点は、医師としての専門家の知識と経験に基づき、画像を観察することにより、骨や体組織の鋭角部を特徴点として両画面上で1点ずつの組として対応付ける(図4(a),(b))。特徴点群記憶手段203は、操作者が指定した特徴点の番号に対応して、それぞれの画面の特徴点座標を記憶する。
多項式群設定手段204は、各特徴点について例えば前記指定番号ごとに、特徴点群記憶手段203からCT画像における特徴点座標x,yと、MRI画像における特徴点座標u,vを読み出し、射影変換式
u=(ax+ay+a)/(ax+ay+1)
v=(ax+ay+a)/(ax+ay+1)
に当てはめる(図3の過程P303)。変換係数計算手段205は前記多項式群設定手段204で設定した多項式群を最小二乗法によって解き、変換係数a〜aを導出する(図3の過程P304)。変換係数a〜aは、8であるので、8個以上の方程式を連立させてとき、変換係数a〜aを導出する。特徴点1組で2つの方程式が成立するので、特徴点は最低4組必要である。
輪郭補正手段206は、前記変換係数計算手段205が導出した変換係数a〜aを第2の画像表示装置202に表示されているMRI画像について前記射影変換式に当てはめ、対応するCT画像の座標を求めるとともに線形補間による再配置を実施して画像の歪みを補正する(図3の過程P305)。再配置により、MRI画像をCRT画像に対応した位置が計算され、配置される。この処理により、生体の断面例えば胴部分の輪郭がCT画像による輪郭と一致した画像を得ることができる(図4(c))。この輪郭補正した画像を歪み補正画像格納部207に記憶する。
次に、人体の臓器を抽出(セグメンテーション)するため、以下のような技術について説明する。すなわち、抽出対象領域内部の一点(注目点)を指定し、その近傍画素に対し注目点との類似判定を行い、類似と判定された画素を取り込むことで注目点との類似領域を拡張してゆき対象領域を抽出するリージョングローイング法(領域成長法)と呼ばれる画像領域抽出法を改良し、その類似度判定において、(1)抽出対象領域及び非抽出領域の位置及び画素値である既得情報を判定の教師データとして使用、(2)注目点付近の局所領域の情報のみを判定に使用、及び(3)判定基準にメディアンを用いて、3次元人体データより対象領域を抽出するものである。
ここで局所領域の情報のみを使用することの理由を説明する。リージョングローイング処理は全領域の特徴分布が正規分布と仮定した上で領域拡張の評価基準(閾値)を生成している。生体ボリュームデータは画像の特徴分布が正規分布に倣うという仮定は必ずしも成立しないため、対象領域抽出においては局所的な評価基準をもつ必要があり、その評価基準生成のため、局所領域の情報のみを使用する。
図5、図6は、セグメンテーション部105の動作機能を説明する機能ブロック図及びフロー図である。
前記輪郭補正手段206で歪み補正されたMRI画像すなわち抽出対象部位を含む人体3次元データである医用画像データは入力され、第2の画像表示装置202に表示される。操作者は当該画面を観察し、抽出しようとする部位としての臓器の局所領域(=抽出判定領域)を画面上で指定するとともにその局所領域のサイズ(局所領域の幅、高さ、奥行きのピクセルサイズ)を局所領域サイズ格納部501に入力する(図6の過程P601)。局所領域のサイズは抽出処理ごとに設定変更可能である。
教師データ作成手段502は、コンピュータ画面すなわち第2の画像表示装置202上で対話的処理により抽出開始点並びに開始点周辺の抽出対象点及び非抽出対象点を選択するとともに、これらの情報を、抽出結果を書き込むデータ配列に「1:領域内、−1:領域外、0:未処理」という形式で書き込み、初期教師データとする(図6の過程P602)。このデータは教師データ格納部503に記憶される。
閾値決定手段504は、前記抽出開始点を初期位置としてその注目点を中心とする局所領域にて、局所領域としての抽出判定領域における抽出対象点データ集合のメディアン値と、抽出判定領域における非抽出対象点データ集合のメディアン値とからなる内部の教師データより閾値を決定する(図6の過程P603)。このときの閾値は以下の式により決定する。
閾値=((medT+medF)/2)・(1−α)
ここで、α:シフト値、
medT:抽出判定領域における抽出対象点データ(画素値)集合のメディアン値
medF:抽出判定領域における非抽出対象点データ(画素値)集合のメディアン値
シフト値α(0≦α≦1)は抽出強度を示しており、α=0をデフォルト値としてαを大きく設定すると抽出条件が緩くなり抽出が素数がデフォルト値の時よりも増え、小さいほど抽出条件が厳しくなり、抽出画素数が減ることとなる。メディアン値を用いることにより、抽出判定において、画像の特徴(画素値の差)の急激な変化及び近隣の既抽出領域に影響を受けない。
注目点更新手段505は、前記閾値決定手段504が決定した閾値により注目点を対象か非対象か(抽出すべき臓器であるか、臓器でないか)を判定する(図6の過程P604)。さらに注目点更新手段505は、その結果を判定結果データ格納部506及び教師データ格納部503に追加し(図6の過程P605)て、閾値決定手段504によるさらなる閾値決定に供する。また、注目点更新手段505は、局所領域内で最後に対象領域と判定された点を新たな注目点とする(図6の過程P606)。
その点を中心とする局所領域にて、図6の過程P603から過程P605の処理を局所領域内部で対象領域と判定される点がなくなるまで実行する(図6の過程P607)。抽出すべき1つの臓器について、局所領域内部で対象領域と判定される点がない場合、1枚の画像について処理完了とする。この処理を前記背の高さ方向に所定の範囲について順次撮影した複数のスライス画像について行う。他の臓器を抽出するときは同様の処理を行う。
次に、前記セグメンテーション部105の注目点更新手段505により得た対象部位を抽出した3次元画像データを、スライス画像単位でGUIを用いて手動による抽出部位の追加又は削除、及びスライス単位で選択した部位の重ね合わせを行い、模擬状況に沿った3次元画像データを出力する技術について説明する。
図7は機能ブロック図、図8はフロー図、図9は手動設定により抽出画像修理処理を説明する図、図10はスライス画像単位での抽出部位の統合を説明する図である。図7の機能ブロックは、セグメンテーション部105に含まれる。
操作者は、所定の範囲のスライス画像を指定して、画像合成手段701により、前記生体の背の高さ方向について同一位置のスライス画像すなわち前記注目点更新手段505から出力された抽出画像データによるスライス画像と歪み補正画像格納部206から得た抽出前の抽出元画像すなわち輪郭補正したスライス画像とを、両者が視覚的に区別できるように色分けして合成する(図8の過程P801)。この合成画像は例えば、第1の画像表示装置201に表示される。操作者はこの画面を見ることになる。
画像修正手段702は、前記画像合成手段701により合成され第1の画像表示装置201に表示された画像について元画像を基準に追加箇所を例えば赤でまたは削除箇所を例えば緑でそれぞれマウスで指定し、その追加、削除情報を抽出画像に反映した修正画像を出力する(図8の過程P802)。この追加は、前記過程P601〜過程P607の処理において抽出漏れがあったとき抽出を補完するためである。この追加処理は、前記過程P601〜過程P607の処理と同様に行う。また、削除箇所の指定とその修正は、余分な抽出が行われた場合を補完するためである。削除は、削除すべき箇所について、前記注目点について判定結果データ格納部506に記録されている抽出対象であることを示す結果情報を非抽出対象であることを示す情報に書きかえることにより行う。
図8の過程P802の処理をシミュレーションに必要な臓器の数だけ繰り返して実行する(図8の過程P803)。
3次元データ出力手段703は、前記画像修正手段702が作成した抽出部位の画像を模擬対象の手術内容に応じて複数選択し生体の断面画像単位で合成して得た合成画像を積層して出力する(図8の過程P804、図10)。模擬に必要な臓器のみを合成し、積層することにより、3次元データとして得られる。前述したように抽出処理は、1種類の臓器、組織について行っており、シミュレータに適用するモデルは通常複数の部位が存在するため、別個に抽出した部位を重ね合わせるものである。モデルには例えば、腎臓付近のモデル構築を考えた場合に腎臓、腎動脈、腎静脈及び腎臓周辺に存在する膜を考える。これらをそれぞれ抽出し、整形(画素の追加、削除)した後に合成してデータモデル作成用の3次元データとする。他にも、病院の各診療科(脳外科、心臓外科、…等)の要求に対応したモデル構築が可能である。
次に、センサ値例えばCT値、MRI値に基づき、これに対応する既存の物理情報(Young率、Poisson比等)を生体データモデルに組み込む技術について説明する。
図11は動作機能を説明する機能ブロック図、図12は動作機能を説明するフロー図である。図13は構成を説明する図である。
歪み補正部104では、上述のように、生体の同一対象をCT画像とMRI画像として撮像した複数の医用画像を前記CT画像又はMRI画像の一方の輪郭を得、他方の画像を前記輪郭内に両画像の同一箇所を対応させて配置する(図12の過程P1201)。セグメンテーション部105では前記歪み補正部104が配置することで得られたCT画像又はMRI画像について生体部位を抽出する(図12の過程P1202)。CT/MRI画像にはそれぞれCT値又はMRI値と呼ばれる各組織の材料特性に対する固有の値が色の濃淡として写っている。物性値付与部106は、前記セグメンテーション部105で抽出した生体部位を示すCT値又はMRI値に対応する当該抽出部位の物性値を当該抽出生体の対象領域の画素と結びつけるため、物性値テーブル107に前記部位の物性値を記憶させて、用意する(図12の過程P1203、図13)。
このとき、物性値テーブルは物性値に、想定する模擬に対応した事故内容を規定した情報を含ませる(図12の過程P1203a)。例えば、腎臓モデルを考えた場合腎臓の一部が壊死したことを想定し、前述した図5、図6により説明した生体抽出の技術を当該壊死箇所に適用し、その領域に壊死に対応した物性値を付与する。なお、同一腎臓について壊死の部分と、壊死のない部分とは図7および図8により説明した重ね合わせの技術により1つの腎臓を再現する。
有限要素分割部108で、CT/MRI画像から生体モデルを生成する際に、CT値/MRI値に対応する物性値テーブル107から生体モデルを構成する要素毎に物性値を付与する。
次に、ボリュームデータから生体データモデルを生成する際、処理負荷を考慮し、モデルデータの規模を制御し、且つ形状精度を保つ技術について説明する。
図14は機能ブロック図、図15はフロー図、図16はマーチンキューブ法を説明する図、図17は本発明の等値面決定則を従来法との違いとともに説明する図である。
前処理部109は、マーチングキューブ法で生体モデルの表面を生成し、八分木法等の既存手法で、内部の四面体メッシュを生成する。
ボリュームデータは、CT画像及びMRI画像から生成される3Dデータであり、画像のピクセルのように、格子状に規則正しく並んで情報を持っている。これに対し、生体部分を四面体要素の集まりで表したデータが生体モデルである。
ここでマーチングキューブ法の概略を図16を参照して説明する。セグメンテーションで生成されるボリュームデータに対し、ある閾値に対する境界を求めてポリゴンで表示する手法である。ボリュームデータは前述のように格子状に規則正しく並んでいる点(図16の丸印で示す点で内部が塗りつぶされているもの(●)は、生体の領域外の点を示し、丸印で示す点で内部が塗られていないもの(○)は、生体の領域内の点を示す。)の情報であり、隣り合う点の情報から、境界線(三次元を考えるから境界面)を生成する(図16の(×)印を結んだ線で形成される。)。出力であるこの境界線がすなわち生体領域の輪郭となる表面のポリゴンとなる。
図17に示すように、丸印で示す点で内部が塗りつぶされているもの(●)は、生体の領域外の点を示し、丸印で示す点で内部が塗られていないもの(○)は、生体の領域内の点を示し、(×)を等値面すなわち境界線上にある点を示す。図17(a)の元データを、図17(b)(従来の場合)、同図(c)(本発明手法の場合)のように隣り合う格子点が領域の内外が異なる場合に後述する手法で交点(×)を生成する。図17(b)では、サンプリング間隔の中点に交点を生成し、図17(c)では、異符号の現れる位置よって交点を決めている。
サンプリング手段1401は、セグメンテーション部105で生成した抽出画像データを入力し、ボリュームデータを構成する格子点を所定のサンプリング間隔で離散的にサンプリングする(図15の過程P1501)。このサンプリング間隔はメッシュサイズ調整のため変更することができる。
メッシュサイズは生体モデルの四面体要素の数である。同じデータに対し、メッシュサイズが大きいほど、詳細なモデルとなるが、それだけ処理量が増える。マーチングキューブ法では、入力であるボリュームデータの解像度と出力である生体データモデルのメッシュサイズすなわち四面体要素の数の大きさは基本的に比例する。ボリュームデータのサイズが大きい(解像度が高い)とそれを元に、四面体を生成するので、より詳細な四面体(メッシュ)が生成される(つまりメッシュサイズが大きくなる)。逆にボリュームデータのサイズが小さければ(解像度が低ければ)、メッシュサイズは小さくなる。できるだけ詳細なモデルがよいが、メッシュサイズが大きすぎると、実時間で処理できなくなるため、解像度の高いボリュームデータを使う場合、ある程度、解像度を落としたものを入力データとする必要がある。例えば、512×512のデータについて、サンプリング間隔を2にすると、データを一つずつ飛ばして解像度を落としたデータが生成される。このように、入力となるボリュームデータの解像度を予め落とすことで、メッシュサイズを調整する。
境界検索手段1402は、前記サンプリング手段1401においてサンプリングした格子点の情報が示す生体内外の情報が異なるときに離散的にサンプリングして飛ばされた格子点の生体内外の情報を検索し、最初に変わる位置を生体内外の境界の交点とする(図15の過程P1502)。
例えば、図18において、サンプリングを1と4で取り、生体内外の判定をし、2,3のデータを落とす場合を考える。1と4とが共に内もしくは外ならば何もしない(図18(a))。もし、1と4が異符号の場合(図18(b))は、その間に境界(生体表面)があるはずであるから、辺(サンプリング方向に格子点を結ぶ仮想の線)と境界との交点を求める。なお、このようにして求めた交点を繋ぎ合わせれば、生体表面のポリゴンデータが出来上がる。従来の手法では、1と4の間ということで、単純に中点を使用していた(図18(c))。本発明では、交点を作る際、サンプリングで飛ばした2と3の情報を用いて、交点を計算する。飛ばした2と3の組み合わせで図18(d)〜(g)に示すような4ケースが考えられる。4から順次それに隣り合う格子点の情報と比較し、異符号かを見て、最初に異符号である格子点間に交点があると判定する。ケース4である図18(g)の場合は交点が3箇所あるが、サンプリングを落とした意味がないから、検索方向(4から1に向かう方向)から最初に見つけた交点(4と3の間)を採用する。すべての格子点についてサンプリング間隔を一定にするのでなく、隣り合うサンプリング間で異符号の場合に飛ばした格子点について内外が最初に変わるところを見つけることで、交点の精度を上げることができる。
なお、通常のマーチングキューブ法では、単純な2値化ではなく、格子点には様々な値が入っている。例えば、白10、黒20のときに、『閾値13の等値面』を形成する場合、『白−黒間を3:7に分割する点を交点』として結び、線(面)を形成する。
次に、境界検索手段1402が得た生体領域の輪郭となる表面についてポリゴン化する際に、等値面データの頂点位置を周辺の頂点の位置により平滑化することで、モデルデータの幾何学的形状を修正する技術について説明する。
その前提として、八分木法の手法で生体表面及び内部の四面体メッシュを生成する。生成された四面体メッシュを備える生体は、そのままでは実際の生体とは異なる印象を与えるほど生体表面に凹凸があった。そこで、等値面データの頂点位置を周辺の頂点の位置により平滑化して、映像化したときにその臓器の形状を見た目上そのものらしく滑らかにする。
図19は機能ブロック図、図20はフロー図、図21は平滑を説明する図である。平滑化手段1901は、図14の境界検索手段1402により処理作成された等値面データであるボリュームデータを入力し、有限要素分割した四面体メッシュを生成する。その際、平滑化手段1901は、データモデルの有限要素の拡張点について以下のような処理を行う。すなわち、ノードのi番目とその近傍のノードjとの相対位置(x−x)から、その位置xを次式で修正する(図20の過程P2001)。
すなわち、i番目のノードの位置xを、x newへ移動させるための式は、
new=x+λΣ(x−x
ここで、jはiの近傍のノード(図21ではj=1,2)、λは補正係数であり、臓器がそれらしく滑らかになるように適当に定める。
この式では、近傍のノードに対し、大きく離れている場合は修正量が大きく、それほど離れていない場合は、修正量が小さい。
全てのノードiに対して、上記処理を行う(図20の過程P2002)と、平均的な位置に配置され、結果として、全体的に滑らかな形状となる。
次に、臓器間の接触計算を迅速に行わせるために、生体データモデルに対し、ツリー構造を構築したデータ構造について説明する。
生体モデルの力学計算の中で、臓器間の接触計算は、時間が掛かる処理のうちの一つである。臓器間の接触計算を網羅的に行うと時間が掛かりすぎる。例えば、図22のように、構造化されていないモデルの接触計算の場合、右腎臓と肝臓間、左腎臓と肝臓間、及び、右腎臓と左腎臓間というように、すべての臓器の組み合わせに対し、接触判定が必要であった。
そこで、生体データモデルに対し、図23のようなツリー構造を構築する。図23のツリーには、節(ノード)を有する。当該節は末端の節231a,231b,231cと、これら節を統合する接続節232a,232bとを有する。末端の節231a,231b,231cは、補助データとして、所定範囲の生体を構成する各部位として各節に固有の臓器モデル、各々の臓器を包む幾何モデル(例えば、単純な直方体、球等)の情報を持つ。各末端の節231a,231b,231cには、各節の運動処理を担当するノードコンピュータが割り当てられ、また、接続節232a,232bには、前記各末端の節231a,231b,231cを担当するノードコンピュータ処理を統合するホストコンピュータが割り当てられる。節231a,231b,231cは、それぞれ右腎臓モデル、肝臓モデル、左腎臓モデルの情報を有する。節231aと231bとは、実際の臓器の位置関係からそれらを近くに配置し、接続節232aで接続される。各節231a,231bを担当する各ノードコンピュータは、右腎臓モデル及び肝臓モデルを取り囲む境界モデルの情報を接続節232aに割り当てられるホストコンピュータへ渡し、ホストコンピュータから接触しそうな臓器モデルの情報を受ける。また、末端の節231cを担当するノードコンピュータは、左腎臓モデルを取り囲む境界モデルの情報を接続節232bを担当するホストコンピュータに渡し、接続節232aを介して受けた右腎臓、肝臓のモデルの情報を受ける。このとき、接続節232aには接続される末端の節231a,231bの右腎臓と肝臓モデルとを統合した状態で、末端の節が有する補助データと同様にして、備え、各節はツリー状に構築される(図24の過程P2401)。このようにツリー状に構築したデータは図25のように構造化データ格納部2501に格納される。
各臓器を包む幾何モデルを単純な幾何形状として、接触判定の際に、実際の臓器のような複雑な形状に比べ、非常に早く処理することができる。ツリーを辿りつつ、単純形状による接触判定を用いることで、各々が接触する可能性のある臓器を早い段階で絞ることができ、衝突計算の軽減をすることができる。
ホストコンピュータ、ノードコンピュータは並列に処理される。ホストコンピュータがツリー構造を用いて、どの臓器とどの臓器が接触しそうなのか、大まかな判定を行う。その情報を末端の節231a,231b,231cに接続するコンピュータに送信する。これらノードコンピュータは受け取ったノードコンピュータの臓器と衝突判定を行う(図26)。ホストコンピュータはノードコンピュータが変形処理や描画処理を行っているときに、これらの計算を行うため、総合処理時間は軽減される。
次に、指定した処理プロセッサ数に応じて負荷分散する技術について説明する。
生体データモデル処理はデータを構成する有限要素の頂点数に依存し、頂点数が多いデータを処理するには、複数の処理プロセッサを負荷分散して処理する。負荷分散のために、生体データモデルを任意に分割すると、処理プロセッサ間の互いの通信回数が増えることとなる。
そこで、並列処理を効率よく行わせるためには、生体データモデルの頂点数を出来るだけ均一にして、分割する。また、通信回数を少なくするために、生体モデルをモニタ画面に表示したとき、分割面が生体モデル内で交差しないようにする。図27に分割例を、図28に機能ブロック図を示す。これにより、互いに通信するのは両隣の分割モデルに限定される。図28において、2801a,2801b,2801c…は処理プロセッサ、2802は通信装置、2803は通信回線である。
分割するアルゴリズムは、以下の3手法から選択され、コンピュータプログラムにより図29に示すようにコンピュータの分割処理手段2901が処理する。
手法1.分割数が2の場合、図30のように、2分割を再帰的に行う手法
手法2.ある一端を出発点とし、境界を決めていく。各境界に挟まれたノード数(分割モデルのノード数)をn、生体データモデルの全ノード数をN、分割数をPとする。一端からi番目の境界bまでのノード数を数える(すなわちノード数の和Σn)。これが、分割したノード数に比例するように、境界biを修正していく。以降、順に行う。(図31)
総ノード数が16個。3分割する場合を説明する。
各分割モデルのノード数は5.3なので、大体5個前後になるように分割モデルを構築する。分割モデルは端から決めていく。図32(b)のように、境界内のノード数を数えると、図に例示されたものは2である。境界を少しずらして再度ノード数を数える。5個前後になるまで繰り返す。条件を満たしたならば、図32(c)のように次の境界を与え同様の処理を行う。
手法3.分割数に合わせて、すべての境界を設定する。各境界に挟まれたノード数(分割モデルのノード数)nを数え、隣り合うノードの差(|n−n|)から、境界の位置を修正する。ノードの差がある閾値以下になった(|n−n|<ε)とき、処理を終了する。(図33)
総ノード数が16個。3分割する場合を説明する。
各分割モデルのノード数は5.3なので、大体5個前後になるように分割モデルを構築する。3分割のための境界をモデルの両端から少しの距離の位置に設定する(図34(b))。このとき、左側の境界について、その隣り合う領域のノード数の差から境界を調整する。境界の左側は2に対し右側は10であるから右側に境界を移動させる。左側の境界について、その隣り合う領域のノード数の差から境界を調整する。境界の左側は10に対し右側は4であるから左側に境界を移動させる。これを繰り返す。(図34(c))のように、左側の境界について、境界の左側は5に対し右側は6で、ほぼ同数となったので目的を達したとする。右側の境界について、境界の左側は6に対し右側は5で、ほぼ同数となったので目的を達したとする。
生体データモデル作成装置を説明する機能ブロック図である。 歪み補正部の機能ブロック図である。 生体断面画像を得る技術を説明するフロー図である。 MRI画像の組織画像をCT画像による輪郭に再配置を説明する図である。 セグメンテーション部の一部を示す機能ブロック図である。 セグメンテーション部の動作機能を説明するフロー図である。 セグメンテーション部の一部を示す機能ブロック図である。 セグメンテーション部の動作機能を説明するフロー図である。 手動設定により抽出画像修理処理を説明する図である。 スライス画像単位での抽出部位の統合を説明する図である。 センサ値に基づき、物理情報付与を説明する機能ブロック図である。 センサ値に基づき、物理情報付与を説明するフロー図である。 センサ値に基づき、物理情報付与を説明する構成図である。 前処理部の一部の機能ブロック図である。 前処理部のサンプリング動作を説明するフロー図である。 マーチンキューブ法を説明する図である。 等値面決定則を従来法との違いとともに説明する図である。 格子点内外の決定を説明する図である。 前処理部の一部の機能ブロック図である。 前処理部の平滑化を説明するフロー図である。 平滑化を説明する図である。 構造化されていないモデルの接触計算を説明する図ある。 構築されたツリー構造を説明する図である。 ツリー構造の構築を説明するフロー図である。 ツリー状に構築したデータを格納する構造化データ格納部の図である。 ツリー構造による接触判定処理を説明する図である。 生体データモデルを分割した一例の図である。 処理の負荷分散の接続を説明する機能ブロック図である。 分割処理の機能ブロック図である。 分割処理を説明する図である。 分割処理を説明する図である。 分割処理を説明する図である。 分割処理を説明する図である。 分割処理を説明する図である。
符号の説明
101…CT画像データファイル、102…MRI画像データファイル、103…PET画像データファイル、104…歪み補正部、105…セグメンテーション部、106…物性値付与部、107…物性値テーブル、108…有限要素分割部、109…前処理部、110…四面体分割部、111…後処理部、112…構造化ファイル。

Claims (22)

  1. 医用画像データにより三次元データモデルを作成する生体データモデル作成方法において、
    生体の同一対象をCT及びMRIにより撮像した医用画像のうち対になるCT/MRI画像の組を設定する第1の過程と、
    前記CT/MRI画像の組から同一個所を表示する特徴点を複数点選択設定する第2の過程と、
    u,v:MRI画像の特徴点座標、x,y:CT画像の特徴点座標、a〜a:変換係数として
    前記特徴点座標群を射影変換式
    u=(ax+ay+a)/(ax+ay+1)
    v=(ax+ay+a)/(ax+ay+1)
    にコンピュータが備える多項式設定手段が特徴点座標u,v,x,yを当てはめる第3の過程と、
    コンピュータが備える変換係数計算手段が前記第3の過程で設定した多項式群を最小二乗法によって解き、変換係数a〜aを導出する第4の過程と、
    コンピュータが備える輪郭補正手段が第4の過程で導出した変換係数a〜aを用いてMRI画像を射影変換及び線形補間による再配置を実施してCT画像の輪郭に合わせるとともに輪郭内に位置して補正する第5の過程とからなること特徴とする生体データモデル作成方法。
  2. 医用画像データにより三次元データモデルを作成する生体データモデル作成装置において、
    生体の同一対象をCT及びMRIにより撮像した医用画像のうち対になるCT/MRI画像のそれぞれを表示する第1の画像表示装置及び第2の画像表示装置と、
    前記第1の画像表示装置及び第2の画像表示装置に対し同一個所を表示する特徴点を複数点選択設定した特徴点を記憶する特徴点群記憶手段と、
    u,v:MRI画像の特徴点座標、x,y:CT画像の特徴点座標、a〜a:変換係数として
    前記特徴点座標群を射影変換式
    u=(ax+ay+a)/(ax+ay+1)
    v=(ax+ay+a)/(ax+ay+1)
    に当てはめる多項式群設定手段と、
    前記多項式群設定手段で設定した多項式群を最小二乗法によって解き、変換係数a〜aを導出する変換係数計算手段と、
    前記変換係数計算手段により導出した変換係数a〜aを用いてMRI画像を射影変換及び線形補間による再配置を実施してCT画像の輪郭に合わせるとともに輪郭内に位置して補正する輪郭補正手段とからなること特徴とする生体データモデル作成装置。
  3. 生体を撮像した医用画像から生体の部位を抽出する際に、抽出対象領域内部の一点を注目点として指定し、その近傍画素に対し注目点との類似判定を行い、医用画像データにより三次元データモデルを作成する生体データモデル作成方法において、
    コンピュータ画面上で対話的処理により抽出開始点並びに開始点周辺の抽出対象点及び非抽出対象点を選択し、コンピュータが備える教師データ作成手段がこれらの情報により初期教師データを作成する第1の過程と、
    コンピュータが備える閾値決定手段が、初期位置は抽出開始点とする注目点を中心とする局所領域にて、局所領域としての抽出判定領域における抽出対象点データ集合のメディアン値と、抽出判定領域における非抽出対象点データ集合のメディアン値とからなる内部の教師データより閾値を決定する第2の過程と、
    コンピュータが備える注目点更新手段が、前記第2の過程において決定した閾値により注目点を対象か非対象かを判定する第3の過程と、
    コンピュータが備える教師データ作成手段が、前記第3の過程による判定結果を判定結果データ及び教師データに追加してメディアン値を更新する第4の過程と、
    コンピュータが備える注目点更新手段が、局所領域内で最後に対象領域と判定された点を新たな注目点とし、その点を中心とする局所領域にて第2から第4の過程の処理を実行し、局所領域内部で対象領域と判定される点がない場合、処理完了とする第5の過程とからなることを特徴とする生体データモデル作成方法。
  4. 生体を撮像した医用画像から生体の部位を抽出する際に、抽出対象領域内部の一点を注目点として指定し、その近傍画素に対し注目点との類似判定を行い、医用画像データにより三次元データモデルを作成する生体データモデル作成装置において、
    コンピュータ画面上で対話的処理により選択された抽出開始点並びに開始点周辺の抽出対象点及び非抽出対象点の情報により初期教師データを作成するとともにメディアン値を更新する教師データ作成手段と、
    初期位置は抽出開始点とする注目点を中心とする局所領域にて、局所領域としての抽出判定領域における抽出対象点データ集合のメディアン値と、抽出判定領域における非抽出対象点データ集合のメディアン値とからなる内部の教師データより閾値を決定する閾値決定手段と、
    前記決定した閾値により注目点を対象か非対象かを判定してその結果を判定結果データ及び教師データに追加するとともに局所領域内で最後に対象領域と判定された点を新たな注目点とし、その点を中心とする局所領域にて処理を実行し、局所領域内部で対象領域と判定される点がない場合、処理完了とする注目点更新手段とからなることを特徴とする生体データモデル作成装置。
  5. 生体を撮像した医用画像から生体の部位を抽出して生体の断面画像単位の医用画像データにより三次元データモデルを作成する生体データモデル作成方法において、
    操作者がコンピュータが備える画像合成手段を操作して、生体の断面画像単位で、部位を抽出した抽出画像と抽出元画像とを、色分けして合成する第1の過程と、
    操作者がコンピュータが備える画像修正手段を操作して、コンピュータ画面上の前記第1の過程により合成された表示画像について元画像を基準に追加箇所または削除箇所を指定し、その情報を抽出画像に反映した修正画像を出力する第2の過程と、
    操作者がコンピュータが備える3次元データ出力手段を操作して、前記第2の過程により作成した抽出部位の画像を模擬対象の手術内容に応じて選択し生体の断面画像単位で合成して得た合成画像を積層して3次元データとして出力する第3の過程とからなることを特徴とする生体データモデル作成方法。
  6. 生体を撮像した医用画像から生体の部位を抽出して生体の断面画像単位の医用画像データにより三次元データモデルを作成する生体データモデル作成装置において、
    生体の断面画像単位で、部位を抽出した抽出画像と抽出元画像とを、色分けして合成する画像合成手段と、
    前記画像合成手段により合成されたコンピュータ画面上の表示画像について元画像を基準に追加箇所または削除箇所を指定され、その情報を抽出画像に反映した修正画像を出力する画像修正手段と、
    前記画像修正手段により作成した部位毎に抽出した生体の断面画像を模擬対象の手術内容に応じて選択し断面画像単位で合成して得た合成画像を積層して3次元データとして出力する3次元データ出力手段とからなることを特徴とする生体データモデル作成装置。
  7. 医用画像データにより三次元データモデルを作成する生体データモデル作成方法において、
    生体の同一対象をCT画像とMRI画像として撮像した複数の医用画像を前記CT画像又はMRI画像の一方の輪郭を得、他方の画像を前記輪郭内に両画像の同一箇所を対応させて配置する第1の過程と、
    前記第1の過程で配置することで得られた画像について所定の生体部位を抽出する第2の過程と、
    前記第2の過程で抽出した生体部位を示し前記CT画像又はMRI画像が生体の各組織の材料特性に対する固有の値を示すCT値又はMRI値に対応する当該抽出部位の物性値を当該抽出生体の対象領域の画素と結びつけるため、前記部位の物性値を物性値テーブルとして構成することを特徴する生体データモデル作成方法。
  8. CT画像のCT値とMRI画像のMRI値に対応する物性値を物性値テーブルとして構成しておき、物性値に、想定する模擬に対応した事故内容を規定した情報を含ませたことを特徴とする請求項7に記載の生体データモデル作成方法。
  9. 医用画像データにより三次元データモデルを作成する生体データモデル作成装置において、
    生体の同一対象をCT画像とMRI画像として撮像した複数の医用画像を前記CT画像又はMRI画像の一方の輪郭を得、他方の画像を前記輪郭内に両画像の同一箇所を対応させて配置する歪み補正手段と、
    前記歪み補正手段が配置することで得られた画像について生体部位を抽出するセグメンテーション部と、
    前記セグメンテーション部で抽出した生体部位を示し前記CT画像又はMRI画像が生体の各組織の材料特性に対する固有の値を示すCT値又はMRI値に対応する当該抽出部位の物性値を当該抽出生体の対象領域の画素と結びつけるため、前記部位の物性値を記憶する物性値テーブルとからなることを特徴とする生体データモデル作成装置。
  10. CT画像のCT値とMRI画像のMRI値に対応する物性値を物性値テーブルとして構成しておき、物性値テーブルは物性値に、想定する模擬に対応した事故内容を規定した情報を含ませたことを特徴とする請求項9に記載の生体データモデル作成装置。
  11. 医用画像データにより三次元データモデルを作成する生体データモデル作成方法において、
    生体の同一対象を複数の画像センサにより撮像した医用画像のうち対になるセンサ画像データの組を設定する第1の過程と、
    前記センサ画像データの組から同一個所を表示する特徴点を複数点選択設定する第2の過程と、
    u,v:一方のセンサ画像の特徴点座標、x,y:他方のセンサ画像の特徴点座標、a〜a:変換係数として
    前記特徴点座標群を射影変換式
    u=(ax+ay+a)/(ax+ay+1)
    v=(ax+ay+a)/(ax+ay+1)
    にコンピュータが備える多項式設定手段が特徴点座標u,v,x,yを当てはめる第3の過程と、
    コンピュータが備える変換係数計算手段が前記第3の過程で設定した多項式群を最小二乗法によって解き、変換係数a〜aを導出する第4の過程と、
    コンピュータが備える輪郭補正手段が第4の過程で導出した変換係数a〜aを用いて一方のセンサ画像を射影変換及び線形補間による再配置を実施して他方のセンサ画像の輪郭に合わせるとともに輪郭内に位置して補正する第5の過程と、
    操作者がコンピュータを操作して、前記一方のセンサ画像が表示する生体の部位毎に与えられ当該部位を示す他方のセンサ値に対応する当該部位の物性値を物性値テーブルとして構成する第6の過程と、
    コンピュータが備える物性値付与手段が前記第6の過程により構成した画像の生体の部位毎に前記他方のセンサ値に対応する物性値テーブルから、当該部位を示す領域の画素に物性値を付与することを特徴とする生体データモデル作成方法。
  12. 他方のセンサ値に対応する物性値を物性値テーブルとして構成しておき、物性値に、想定する模擬に対応した事故内容を規定した情報を含ませたことを特徴とする請求項11に記載の生体データモデル作成方法。
  13. 医用画像データにより三次元データモデルを作成する生体データモデル作成装置において、
    生体の同一対象を複数の画像センサにより撮像した医用画像のうち対になるセンサ画像のそれぞれを表示する第1の画像表示装置及び第2の画像表示装置と、
    前記第1の画像表示装置及び第2の画像表示装置に対し同一個所を表示する特徴点を複数点選択設定した特徴点を記憶する特徴点群記憶手段と、
    u,v:一方のセンサ画像の特徴点座標、x,y:他方のセンサ画像の特徴点座標、a〜a:変換係数として
    前記特徴点座標群を射影変換式
    u=(ax+ay+a)/(ax+ay+1)
    v=(ax+ay+a)/(ax+ay+1)
    に当てはめる多項式群設定手段と、
    前記多項式群設定手段で設定した多項式群を最小二乗法によって解き、変換係数a〜aを導出する変換係数計算手段と、
    前記変換係数計算手段により導出した変換係数a〜aを用いて一方のセンサ画像を射影変換及び線形補間による再配置を実施して他方のセンサ画像の輪郭に合わせるとともに輪郭内に位置して補正する輪郭補正手段と、
    前記一方のセンサ画像が表示する生体の部位毎に与えられ当該部位を示す他方のセンサ値に対応する当該部位の物性値を記憶する物性値テーブルと、
    画像の生体の部位毎に前記他方のセンサ値に対応する物性値テーブルから、当該部位を示す領域の画素に物性値を付与する物性値付与手段とからなることを特徴とする生体データモデル作成装置。
  14. 他方のセンサ値に対応する物性値を物性値テーブルとして構成しておき、物性値テーブルは物性値に、想定する模擬に対応した事故内容を規定した情報を含ませたことを特徴とする請求項13に記載の生体データモデル作成装置。
  15. 医用画像データにより三次元データモデルを作成する生体データモデル作成方法において、
    ボリュームデータから生体データモデルを生成する際に、
    コンピュータが備えるサンプリング手段が、ボリュームデータを構成する格子点を所定のサンプリング間隔で離散的にサンプリングする第1の過程と、
    コンピュータが備える境界検索手段が、前記第1の過程においてサンプリングした格子点の情報が示す生体内外の情報が異なるときに離散的にサンプリングして飛ばされた格子点の生体内外の情報を検索し、最初に変わる位置を生体内外の境界の交点とする第2の過程とからなることを特徴とする生体データモデル作成方法。
  16. 医用画像データにより三次元データモデルを作成する生体データモデル作成装置において、
    ボリュームデータから生体データモデルを生成する際に、
    ボリュームデータを構成する格子点を所定のサンプリング間隔で離散的にサンプリングするサンプリング手段と、
    前記サンプリング手段においてサンプリングした格子点の情報が示す生体内外の情報が異なるときに離散的にサンプリングして飛ばされた格子点の生体内外の情報を検索し、最初に変わる位置を生体内外の境界の交点とする境界検索手段とからなることを特徴とする生体データモデル作成装置。
  17. 医用画像データにより三次元データモデルを作成する生体データモデル作成方法において、
    ボリュームデータから有限要素が形成するように生体データモデルを生成する際に、
    コンピュータが備える平滑化手段が、前記有限要素のi番目のノードに対し所定範囲の近傍のj番目のノードについて、λを補正係数として、
    new=x+λΣ(x−x
    の式によりx newへ移動させる処理を順次全てのノードiについて行い、生体モデルの表面を示す等値面データの頂点位置を周辺の頂点の位置により平滑化することを特徴とする生体データモデル生成方法。
  18. 医用画像データにより三次元データモデルを作成する生体データモデル作成装置において、
    ボリュームデータから有限要素が形成するように生体データモデルを生成する際に、
    i番目のノードに対し所定範囲の近傍のj番目のノードについて、λを補正係数として、
    new=x+λΣ(x−x
    の式によりx newへ移動させる処理を全てのノードiについて行い、生体モデルの表面を示す等値面データの頂点位置を周辺の頂点の位置により平滑化する平滑化手段を有することを特徴とする生体データモデル生成装置。
  19. 医用画像データにより三次元データモデルを構築する生体データモデルのデータ構造において、
    所定範囲の生体を構成する各部位としての臓器と当該臓器を包む単純幾何形状とを備え、各臓器の位置関係を規定する節によりツリー状に構築したことを特徴とする生体データモデルのデータ構造。
  20. 医用画像データにより三次元データモデルを構築する生体データモデルのデータを格納する生体データモデルデータ格納装置であって、
    所定範囲の生体を構成する各部位としての臓器と当該臓器を包む単純幾何形状とを備え、各臓器の位置関係を規定する節によりツリー状に構築して格納したことを特徴とする生体データモデルのデータ格納装置。
  21. 医用画像データにより作成した三次元データモデルについて模擬運動を模擬するに際し、
    模擬処理を並列処理する処理装置の数Pに対して、三次元データモデルの有限要素の頂点数がほぼ均一になり、分割面が三次元データモデル内で交差しないように数Pに分割して前記処理装置に負荷分散することを特徴とする三次元データモデルの負荷分散方法。
  22. 医用画像データにより作成した三次元データモデルについて模擬運動を模擬するに際し、
    模擬処理を並列処理する複数Pの処理装置であって三次元データモデルの有限要素の頂点数がほぼ均一になり、分割面が三次元データモデル内で交差しないように数Pに分割して負荷とする複数の処理装置と、前記複数の処理装置のうち隣り合う処理装置間を通信回線により接続したことを特徴とする三次元データモデルの負荷分散方式。
JP2008181991A 2008-07-11 2008-07-11 生体データモデル作成方法及びその装置 Active JP5241357B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008181991A JP5241357B2 (ja) 2008-07-11 2008-07-11 生体データモデル作成方法及びその装置
PCT/JP2009/062933 WO2010005119A1 (ja) 2008-07-11 2009-07-10 生体データモデル作成方法及びその装置並びに生体データモデルのデータ構造及び生体データモデルのデータ格納装置並びに三次元データモデルの負荷分散方法及びその装置
US13/003,607 US8532359B2 (en) 2008-07-11 2009-07-10 Biodata model preparation method and apparatus, data structure of biodata model and data storage device of biodata model, and load dispersion method and apparatus of 3D data model

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008181991A JP5241357B2 (ja) 2008-07-11 2008-07-11 生体データモデル作成方法及びその装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012196834A Division JP5487264B2 (ja) 2012-09-07 2012-09-07 生体データモデル作成方法及びその装置

Publications (2)

Publication Number Publication Date
JP2010017421A true JP2010017421A (ja) 2010-01-28
JP5241357B2 JP5241357B2 (ja) 2013-07-17

Family

ID=41507220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008181991A Active JP5241357B2 (ja) 2008-07-11 2008-07-11 生体データモデル作成方法及びその装置

Country Status (3)

Country Link
US (1) US8532359B2 (ja)
JP (1) JP5241357B2 (ja)
WO (1) WO2010005119A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011200549A (ja) * 2010-03-26 2011-10-13 Fujitsu Ltd 3次元テンプレート変形方法、装置及びプログラム
JP2013022086A (ja) * 2011-07-15 2013-02-04 Aze Ltd 医用画像生成装置および医用画像生成プログラム
WO2013161910A1 (ja) * 2012-04-24 2013-10-31 株式会社東芝 Pet-mri装置
JP2013252395A (ja) * 2012-06-08 2013-12-19 Fujitsu Ltd 描画プログラム、描画方法、および、描画装置
JP2015205110A (ja) * 2014-04-23 2015-11-19 三菱電機株式会社 患者位置決めシステム、および位置ずれ量算出方法
KR101805624B1 (ko) 2011-08-29 2017-12-08 삼성전자주식회사 장기 모델 영상 생성 방법 및 장치
US10085707B2 (en) 2014-04-24 2018-10-02 Hitachi, Ltd. Medical image information system, medical image information processing method, and program
JP2019534732A (ja) * 2016-09-23 2019-12-05 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 注入点の位置を計画するための体積呈示
JP2021171483A (ja) * 2020-04-28 2021-11-01 キヤノンメディカルシステムズ株式会社 治療支援装置及び治療支援プログラム
WO2022168925A1 (ja) * 2021-02-04 2022-08-11 株式会社Kompath 情報処理システム、プログラムおよび情報処理方法

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8861828B2 (en) * 2009-11-26 2014-10-14 Brainlab Ag Shift compensation in medical image processing
DE102010004384B4 (de) * 2010-01-12 2012-03-08 Siemens Aktiengesellschaft Verfahren zur Ermittlung von der Berechnung eines Bestrahlungsplans zugrunde zu legenden Informationen und kombinierte Magnetresonanz-PET-Vorrichtung
EP2745273B1 (en) * 2011-09-19 2020-03-25 Koninklijke Philips N.V. Status-indicator for sub-volumes of multi-dimensional images in guis used in image processing
KR102070427B1 (ko) * 2012-08-08 2020-01-28 삼성전자주식회사 종양의 위치를 추적하는 방법 및 장치
CN104102805A (zh) * 2013-04-15 2014-10-15 上海联影医疗科技有限公司 医疗图像信息处理方法和装置
US9058692B1 (en) 2014-04-16 2015-06-16 Heartflow, Inc. Systems and methods for image-based object modeling using multiple image acquisitions or reconstructions
US9514530B2 (en) 2014-04-16 2016-12-06 Heartflow, Inc. Systems and methods for image-based object modeling using multiple image acquisitions or reconstructions
CN104224218B (zh) * 2014-08-06 2016-10-05 沈阳东软医疗系统有限公司 一种提供扫描协议的参考信息的方法及装置
US10162908B1 (en) 2014-11-04 2018-12-25 The Boeing Company Systems and methods for extracting bounding planes of solid models
CN104574292B (zh) * 2014-11-26 2018-06-26 沈阳东软医疗系统有限公司 一种ct图像的校正方法和装置
WO2017013019A1 (en) * 2015-07-17 2017-01-26 Koninklijke Philips N.V. Guidance for lung cancer radiation
WO2017086774A1 (en) * 2015-11-18 2017-05-26 Universiti Malaya Bio-model comprising a sensor and method of manufacturing a bio-model comprising a sensor
CA3027819A1 (en) * 2016-06-17 2017-12-21 Misumi Corporation Design assistance system
CN108310677B (zh) 2017-01-11 2020-02-28 南京中硼联康医疗科技有限公司 基于医学影像数据的平滑几何模型建立方法
CN106780728B (zh) * 2017-02-28 2020-05-01 成都金盘电子科大多媒体技术有限公司 一种基于医学影像的单个器官拆分方法及系统
JP2018163408A (ja) * 2017-03-24 2018-10-18 コニカミノルタ株式会社 医療画像装置解析システム
CN109885411A (zh) * 2019-01-17 2019-06-14 广州城投发展研究院有限公司 一种三维模型动态数据加载方法及其装置
CN113808178A (zh) * 2020-06-11 2021-12-17 通用电气精准医疗有限责任公司 图像配准方法及其模型训练方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59183461A (ja) * 1983-04-01 1984-10-18 Hitachi Ltd 複合画像設定方法
JP2006506153A (ja) * 2002-11-18 2006-02-23 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 画像レジストレーション方法及び装置
JP2007167374A (ja) * 2005-12-22 2007-07-05 Hitachi Medical Corp 医用画像処理装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0195375A (ja) 1987-10-07 1989-04-13 Fujitsu Ltd 並列図形表示処理方式
JPH04183446A (ja) 1990-11-19 1992-06-30 Res Dev Corp Of Japan 画像合成による手術支援システム
JPH1011593A (ja) 1996-06-21 1998-01-16 Fuji Xerox Co Ltd 画像形成装置
JPWO2005111944A1 (ja) 2004-05-19 2008-03-27 国立大学法人京都大学 データ表示方法、データ表示装置、データ表示プログラム及びそれを記録したコンピュータ読み取り可能な記録媒体
JP4337987B2 (ja) * 2004-08-02 2009-09-30 国立大学法人京都大学 情報処理装置およびプログラム
US7604601B2 (en) * 2005-04-26 2009-10-20 Biosense Webster, Inc. Display of catheter tip with beam direction for ultrasound system
JP5130529B2 (ja) 2005-08-01 2013-01-30 国立大学法人 奈良先端科学技術大学院大学 情報処理装置およびプログラム
US7611452B2 (en) * 2005-09-30 2009-11-03 Accuray Incorporated Wizard and template for treatment planning
US8331699B2 (en) * 2009-03-16 2012-12-11 Siemens Medical Solutions Usa, Inc. Hierarchical classifier for data classification
US8311791B1 (en) * 2009-10-19 2012-11-13 Surgical Theater LLC Method and system for simulating surgical procedures

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59183461A (ja) * 1983-04-01 1984-10-18 Hitachi Ltd 複合画像設定方法
JP2006506153A (ja) * 2002-11-18 2006-02-23 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 画像レジストレーション方法及び装置
JP2007167374A (ja) * 2005-12-22 2007-07-05 Hitachi Medical Corp 医用画像処理装置

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011200549A (ja) * 2010-03-26 2011-10-13 Fujitsu Ltd 3次元テンプレート変形方法、装置及びプログラム
JP2013022086A (ja) * 2011-07-15 2013-02-04 Aze Ltd 医用画像生成装置および医用画像生成プログラム
KR101805624B1 (ko) 2011-08-29 2017-12-08 삼성전자주식회사 장기 모델 영상 생성 방법 및 장치
JP2013240585A (ja) * 2012-04-24 2013-12-05 Toshiba Corp Pet−mri装置
WO2013161910A1 (ja) * 2012-04-24 2013-10-31 株式会社東芝 Pet-mri装置
US10197654B2 (en) 2012-04-24 2019-02-05 Toshiba Medical Systems Corporation PET-MRI device
JP2013252395A (ja) * 2012-06-08 2013-12-19 Fujitsu Ltd 描画プログラム、描画方法、および、描画装置
JP2015205110A (ja) * 2014-04-23 2015-11-19 三菱電機株式会社 患者位置決めシステム、および位置ずれ量算出方法
US10085707B2 (en) 2014-04-24 2018-10-02 Hitachi, Ltd. Medical image information system, medical image information processing method, and program
JP2019534732A (ja) * 2016-09-23 2019-12-05 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 注入点の位置を計画するための体積呈示
JP2021171483A (ja) * 2020-04-28 2021-11-01 キヤノンメディカルシステムズ株式会社 治療支援装置及び治療支援プログラム
JP7432437B2 (ja) 2020-04-28 2024-02-16 キヤノンメディカルシステムズ株式会社 治療支援装置及び治療支援プログラム
WO2022168925A1 (ja) * 2021-02-04 2022-08-11 株式会社Kompath 情報処理システム、プログラムおよび情報処理方法

Also Published As

Publication number Publication date
WO2010005119A1 (ja) 2010-01-14
US8532359B2 (en) 2013-09-10
JP5241357B2 (ja) 2013-07-17
US20110150312A1 (en) 2011-06-23

Similar Documents

Publication Publication Date Title
JP5241357B2 (ja) 生体データモデル作成方法及びその装置
JP5800039B2 (ja) 生体データモデル作成方法及びその装置
CN101765864B (zh) 用于图像配准的交互式图集
TWI535423B (zh) 胸部四維電腦斷層掃描的模擬方法
CN107822690B (zh) 具有不用手的控制的混合图像/场景再现器
US8817332B2 (en) Single-action three-dimensional model printing methods
US20170035517A1 (en) Dynamic and interactive navigation in a surgical environment
JP4337987B2 (ja) 情報処理装置およびプログラム
Lee et al. Reconstruction and exploration of virtual middle-ear models derived from micro-CT datasets
JP5487264B2 (ja) 生体データモデル作成方法及びその装置
CN109285225A (zh) 一种基于医学影像的虚拟现实辅助手术的建立方法
JP6009598B2 (ja) 生体データモデル作成方法及びその装置
CN102663818A (zh) 颅颌面三维形貌模型的构建方法及其装置
JP2008173167A (ja) 領域修正方法
KR101275938B1 (ko) 가상 수술 시뮬레이션 방법 및 장치
JP6081001B2 (ja) 生体データモデル作成方法及びその装置
WO2021030995A1 (zh) 基于vrds ai下腔静脉影像的分析方法及产品
JP6080999B2 (ja) 生体データモデル作成方法及びその装置
JP6081000B2 (ja) 生体データモデル作成方法及びその装置
JP6131361B2 (ja) 三次元データモデルの負荷分散方法及びその装置
JP6243948B2 (ja) 生体データモデルの作成方法及び生体データモデルのデータ格納装置
CN108573514B (zh) 一种图像的三维融合方法及装置、计算机存储介质
CN108573532B (zh) 一种混合模型的展示方法及装置、计算机存储介质
TWI760835B (zh) 骨科手術輔助規劃方法及系統
Drakopoulos et al. Tetrahedral image-to-mesh conversion for anatomical modeling and surgical simulations

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120709

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130402

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160412

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5241357

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250