JP2010015386A - 車両の運転支援装置 - Google Patents

車両の運転支援装置 Download PDF

Info

Publication number
JP2010015386A
JP2010015386A JP2008174744A JP2008174744A JP2010015386A JP 2010015386 A JP2010015386 A JP 2010015386A JP 2008174744 A JP2008174744 A JP 2008174744A JP 2008174744 A JP2008174744 A JP 2008174744A JP 2010015386 A JP2010015386 A JP 2010015386A
Authority
JP
Japan
Prior art keywords
vehicle
rate
risk
recognition
recognition rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008174744A
Other languages
English (en)
Other versions
JP5261045B2 (ja
Inventor
Hisashi Kondo
尚志 近藤
Masaru Kogure
勝 小暮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Heavy Industries Ltd filed Critical Fuji Heavy Industries Ltd
Priority to JP2008174744A priority Critical patent/JP5261045B2/ja
Publication of JP2010015386A publication Critical patent/JP2010015386A/ja
Application granted granted Critical
Publication of JP5261045B2 publication Critical patent/JP5261045B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Traffic Control Systems (AREA)
  • Fittings On The Vehicle Exterior For Carrying Loads, And Devices For Holding Or Mounting Articles (AREA)

Abstract

【課題】走行環境に応じて適切に被認知率を設定し、自然な感覚で運転支援を行う。
【解決手段】制御ユニット3は、前方に存在する白線、ガードレール、側壁、及び、立体物のそれぞれを対象として、現在の危険度をリスク関数として設定する。この際、対象が車両のリスク関数に対しては、対象車両の車速と対象車両に対する自車両の方向と対象車両のドライバの視線方向とに応じ、対象車両の自車両に対する認知の度合いを被認知率として設定し、更に、今回設定した被認知率と前回設定した被認知率とを比較して被認知率を可変設定して、車両のリスク関数をこの被認知率で補正する。こうして設定したリスク関数から最終的な回避ルートを予測し、最終的な回避ルートの旋回制御量に基づいて自動操舵制御装置14に制御信号を出力して操舵制御を実行させ、また、自動ブレーキ制御装置15に信号を出力してブレーキ制御を実行させる。
【選択図】図4

Description

本発明は、対象車両の自車両に対する認知の度合いを被認知率として設定し、被認知率によりリスクを設定して該リスクを基に車両の運転を支援する車両の運転支援装置に関する。
近年、車両においては、ITS(Intelligent Transport Systems)、車車間通信システム、車載の画像処理システム、レーダ装置等から得られる情報を基に、前方環境を認識し、安全な走行ができるように運転を支援する様々な運転支援装置が提案され、実用化されている。
例えば、特開2007−241729号公報では、交差点における自車側車両と他車側車両との位置予測を行い、交差点において自車側車両と他車側車両とが最も接近したときの最小距離を算出し、算出された最小距離に基づいて、交差点における他車側車両との衝突の危険度を算出する。そして、他車側車両のドライバが自車を認知しているか否かを判定し、視線の方向に自車がなく、自車を認知していないと推定される場合には、予め定められた交差車衝突危険度閾値を所定値だけ下げるように変更する技術が開示されている。
特開2007−241729号広報
しかしながら、上述の特許文献1に開示されるような認知を考慮する場合、ドライバの視線の方向だけでは精度の良い認知の判定ができないという問題がある。例えば、同じ方向を向いていたとしても、車速が低い場合には認知できていたものが、車速が高い場合には認知できない場合があり、また、たとえ認知対象とは他の方向に視線が向いていたとしても、既にドライバが十分に記憶していれば、認知したものとみなすこともできる。こうした変化を考慮せず警報システムを構築すると、不必要な警報が行われたり、或いは、警報が行われ難いシステムとなり、ドライバにとって使い勝手の悪いものとなってしまう虞がある。
本発明は上記事情に鑑みてなされたもので、走行環境に応じて適切に被認知率を設定し、自然な感覚でドライバの運転支援を行うことができる車両の運転支援装置を提供することを目的としている。
本発明は、走行環境を認識して情報を取得する走行環境認識手段と、上記走行環境の情報から制御対象とする対象車両を抽出し、該対象車両に対してリスクを設定するリスク設定手段と、上記対象車両の車速と上記対象車両に対する自車両の方向と上記対象車両のドライバの向きとに応じ、上記対象車両の自車両に対する認知の度合いを被認知率として設定する被認知率設定手段と、上記被認知率に応じて上記各対象車両のリスクを補正するリスク補正手段とを備えたことを特徴としている。
本発明による車両の運転支援装置によれば、走行環境に応じて適切に被認知率を設定し、自然な感覚でドライバの運転支援を行うことが可能となる。
以下、図面に基づいて本発明の実施の形態を説明する。
図1乃至図9は本発明の実施の一形態を示し、図1は車両に搭載した運転支援装置の概略構成図、図2は運転支援制御プログラムのフローチャート、図3は図2から続くフローチャート、図4は被認知率補正ゲイン演算ルーチン、図5は前方に設定されるリスク関数の一例を示す説明図、図6は自車方向に対する視線方向角度の説明図、図7は被認知率の設定マップ、図8は被認知率の特性の説明図、図9は記憶による変化を予測して設定される被認知率の説明図、図10は生成される回避ルートと旋回制御量の一例を示す説明図である。
図1において、符号1は自動車等の車両(自車両)で、この車両1には、運転支援装置2が搭載されている。この運転支援装置2は、制御ユニット3に、前方環境を画像データを基に認識するステレオ画像認識装置4と、ドライバの視線方向(角度)を検出する視線方向検出装置5と、他車両と車車間通信を行って他車両の情報を取得する通信装置6と、測位装置7と、自車速Vを検出する車速センサ8と、ヨーレート(dψ/dt)を検出するヨーレートセンサ9とが接続され、構成されている。
ステレオ画像認識装置4は、車室内の天井前方に一定の間隔をもって取り付けられ、車外の対象を異なる視点からステレオ撮像する1組の(左右の)CCDカメラ10からの画像データを処理するものである。
ステレオ画像認識装置4における、CCDカメラ10からの画像の処理は、例えば以下のように行われる。まず、CCDカメラ10で撮像した自車両1の進行方向の1組のステレオ画像対に対し、対応する位置のずれ量から距離情報を求め、距離画像を生成する。そして、このデータを基に、周知のグルーピング処理を行い、予め記憶しておいた3次元的な道路形状データ、側壁データ、立体物データ等の枠(ウインドウ)と比較し、白線データ、道路に沿って存在するガードレール、縁石等の側壁データを抽出すると共に、立体物を、2輪車、普通車両、大型車両、歩行者、電柱等その他の立体物に分類して抽出する。
上述の認識した各データは、自車両1を原点とし、自車両1の前後方向をX軸、幅方向をY軸とする座標系におけるそれぞれの位置が演算され、特に、2輪車、普通車両、大型車両の車両データにおいては、その前後方向長さが、例えば、3m、4.5m、10m等と予め推定されて、また、幅方向は検出した幅の中心位置を用いて、その車両の現在存在する中心位置が(xobstacle,yobstacle)の座標で演算される。尚、車車間通信等により、車両の前後方向長さが精度良く得られる場合には、その長さデータを用いて、上述の中心位置を演算するようにしても良い。
更に、立体物データにおいては、自車両1からの距離のX軸方向変化及びY軸方向変化から自車両1に対する相対速度が演算され、この相対速度に自車両1の速度Vをベクトル量を考慮して演算することにより、それぞれの立体物のX軸方向速度、Y軸方向速度(vxobstacle,vyobstacle)が演算される。
こうして得られた各情報、すなわち、白線データ、道路に沿って存在するガードレール、縁石等の側壁データ、及び、立体物データ(種別、自車両1からの距離、中心位置(xobstacle,yobstacle)、速度(vxobstacle,vyobstacle)、自車位置に対する立体物の方向(角度)θvo等)の各データは制御ユニット3に入力される。このように、本実施の形態においては、ステレオ画像認識装置4は、走行環境認識手段として設けられている。
視線方向検出装置5は、ドライバの顔方向に向けて配設された視野カメラ11からドライバの眼の画像情報が入力される。この視線方向検出装置5は、ドライバの視線方向θeの検出を、所謂、瞳孔/角膜反射法により検出するものであり、角膜上の赤外線ランプ12による虚像が、角膜と眼球の回転中心の違いにより、眼球運動によって平行移動するのを視野カメラ11で瞳孔中心も同時に検出しながら瞳孔中心を基準として検出することで視線挙動の検出を行うようになっている。この視線方向θeの情報は、制御ユニット3に入力され、通信装置6により車車間通信によって他車両に対しても送信される。尚、視線方向θeの検出は、この検出法に限るものではなく、可能であれば、他の検出法(EOG(Electro-Oculography)法、強膜反射法、角膜反射法、サーチコイル法等)により検出するものであっても良い。
通信装置6は、例えばITS(Intelligent Transport Systems;高度道路交通システム)に対応した装置として、道路付帯設備からの光や電波ビーコンを受信して交通渋滞情報、天気情報、特定区域の交通規制情報等の各種情報を取得し、また、自車両1周辺を走行する他の車両との車車間通信を行い、車両情報を授受する機能を有している。本形態における車車間通信においては、所定の周波数帯でのキャリア信号を用いて通信可能エリア内に存在する車両との通信を行い、車両種別、車両位置、車両方向、ドライバの視線方向、車速、加減速状態、ブレーキ作動状態、ウィンカ状態等の情報を相互に交換し、取得した情報を制御ユニット3に入力する。従って、通信装置6は走行環境認識手段として設けられている。
測位装置7は、例えばナビゲーション装置によって構成されるものであり、自車両1の位置を測位し、この測位した自車両位置と地図情報とを演算・合成し、地図の縮尺変更、地名の詳細表示、地域情報の表示切換え等の操作入力に対応して、自車両1の現在位置及びその周辺の地図をディスプレイ13に表示し、また、通信装置6を介して受信した道路・交通情報等の各種情報を表示する。自車両1の位置は、GPS(Global Positioning System;全世界測位衛星システム)等の測位衛星からの電波に基づく自車両1の位置、地磁気センサ及び車輪速センサからの信号に基づく推測航法による自車両1の位置、通信装置6を介して取得した情報等に基づいて測位する。この測位情報は制御ユニット3に入力され、更には、通信装置6を介した車車間通信により、他の車両にも送信される。
制御ユニット3は、後述する運転支援制御プログラムに従って、上述の各入力信号に基づき、前方に存在する白線、ガードレール、側壁、及び、立体物のそれぞれを対象として、現在の危険度をリスク関数Rline、Robstacleとして設定する。この際、対象が車両のリスク関数に対しては、対象車両の車速と対象車両に対する自車両の方向と対象車両のドライバの視線方向とに応じ、対象車両の自車両に対する認知の度合いを被認知率として設定し、更に、今回設定した被認知率と前回設定した被認知率とを比較して被認知率を可変設定して、車両のリスク関数をこの被認知率で補正する。こうして設定したリスク関数Rline、Robstacleから現在のトータルリスク関数Rを設定し、トータルリスク関数Rを設定した各対象の位置の時間的変化を予測してトータルリスク関数Rの時間的変化を予測し、これを基に最終的な回避ルートR(t)fを予測して、最終的な回避ルートR(t)fの旋回制御量u(t)に基づいて自動操舵制御装置14に制御信号を出力して操舵制御を実行させ、また、最終的な回避ルートR(t)fの値に基づいて自動ブレーキ制御装置15に信号を出力してブレーキ制御を実行させる。尚、自動ブレーキ制御装置15、自動操舵制御装置14に信号出力された場合は、ディスプレイ13によりその信号を視覚的に表示させ、ドライバに報知する。すなわち、制御ユニット3は、リスク設定手段、被認知率設定手段、リスク補正手段としての機能を有して構成されている。
次に、運転支援装置2で実行される運転支援制御プログラムを図2、図3のフローチャートで説明する。
まず、ステップ(以下、「S」と略称)101で必要パラメータを読み込み、S102に進み、白線(ガードレール、側壁も白線と同等に扱うものとする)を対象とする現在のリスク関数Rlineを、以下の(1)式により、演算する。
Rline=Kline・(y−ylinec) …(1)
ここで、Klineは、予め設定したゲイン、ylinecは白線中央座標である。すなわち、白線を対象とする現在のリスク関数Rlineは、図5に示すように、左右の白線(ガードレール、側壁も白線と同等に扱う)で認識される走行路の中心を、中心軸とする2次関数で与えられる。尚、本実施の形態では、リスク関数Rlineを2次の関数としているが、リスク関数Rlineは、走行路の中心から白線に近いほど、より大きなリスク値を導く関数であれば良く、例えば、4次或いは6次の関数とすることもできる。また、本実施の形態では、ガードレール、側壁も白線と同等に扱って2次関数のリスク関数Rlineを与えるようにしているが、ガードレール、側壁の場合は、白線に対するリスク関数Rlineとは異なる関数に変更し、白線の場合よりも大きなリスク値を導くようにしても良い。例えば、左右の白線に対するリスク関数Rlineを2次関数で与えた場合、カードレール、側壁に対しては4次或いは6次の関数に変更する。また、同じ2次関数であっても、ゲインKlineの値を大きな値に変更するようにしても良い。さらに、白線に対するリスク関数Rlineは、走行路の中心を中心軸とする例に限らず、中心軸をオフセットさせて、左側と右側の白線とでリスク値を互いに異ならせるようにしても良い。
次に、S103に進み、被認知率補正ゲインGrの演算を行う。この被認知率補正ゲインGrは、対象が車両の場合に演算されるもので、具体的には、図4のフローチャートにより演算される。
まず、S201では、対象車両のドライバについて車車間通信により取得された視線方向θeから、対象車両からの自車方向θv0を減算することにより、自車方向に対する視線方向θdが検出される。例えば、図6に示すような走行環境では、車両1における自車方向に対する視線方向θd1は、視線方向の角度をθe1、自車方向の角度をθv01として、θe1−θv01にて演算される。また、車両2における自車方向に対する視線方向θd2は、視線方向の角度をθe2、自車方向の角度をθv02として、θe2−θv02にて演算される。尚、ドライバの視線方向θeと自車方向θvはそれぞれ、対象車両の前方方向を基準(角度ゼロ)に左側を負の角度、右側を正の角度として検出される。
次いで、S202に進み、それぞれ対象車両の車速と自車方向に対する視線方向θdを基に、予め設定しておいたマップ(図7)を参照して、被認知率rを設定する。被認知率rのマップは、図7に示すように、対象車両の車速と自車方向に対する視線方向θdを変数として予め設定されている。
図7に示す被認知率rのマップは、本実施の形態では、以下のように形成している。
図8(a)に示すように、まず、対象車両の自車方向に対する視線方向θdが0°となる点、すなわち、自車両が対象車両のドライバの中心視となる点では最も高い被認知率が期待でき、このときの被認知率を1.0に設定する。
更に、注視点における視力に対し、視力が次第に低下すると考えられる0°<θd≦10°、−10°≦θd<0の領域では、被認知率を1.0よりも次第に低くなるように設定する。
そして、両目で色彩まで認知できる領域(−35°≦θd≦35°)、両目で認知できる領域(−60°≦θd≦60°)、視野限界(θd=±100°)まで、次第に被認知率を減少させて設定し、視野外となる領域(100°<θd、θd<−100°)では被認知率が0となるように設定する。
また、図8(b)に示すように、動体視力は車速が高くなるほど低下することが知られている。従って、この動体視力と車速の関係を、図8(a)の被認知率と自車方向に対する視線方向の関係の縦軸方向に反映させて、同じ自車方向に対する視線方向θdであっても対象車両の車速が高くなるほど被認知率が低下するように設定する。
更に、図8(c)に示すように、視野角は車速が高くなるほど狭くなることが知られている。従って、この視野角と車速の関係を、図8(a)の被認知率と自車方向に対する視線方向の関係の横軸方向に反映させて、同じ自車方向に対する視線方向θdであっても対象車両の車速が高くなるほど被認知率が低下するように設定する。
上述のS202で被認知率rを設定した後は、S203以降に進み、S203〜S206の処理は、記憶による変化を予測して被認知率を設定する処理となっている。すなわち、S203では、前回の処理で設定した被認知率r_flt(z)を、今回の処理の前回値r_flt(z-1)として置き換える(r_flt(z-1)=r_flt(z))。
そして、S204に進み、S202で設定した被認知率rと前回値r_flt(z-1)とを比較して、被認知率rが前回値r_flt(z-1)より低い場合はS205に進んで、被認知率の今回値r_flt(z)をD・r_flt(z-1)(但し、Dは、0<D<1で予め設定した値)とし、前回値より所定に低下させて設定する。
逆に、被認知率rが前回値r_flt(z-1)以上の場合はS206に進んで、被認知率の今回値r_flt(z)を被認知率rに設定する。
このS203〜S206の処理により、被認知率の今回値r_flt(z)は、例えば、図9のタイムチャートのように設定されることになる。
すなわち、被認知率r_flt(z)を、対象車両の車速、自車方向に対する視線方向θdだけに基づいて設定すると、対象車両のドライバが安全確認を行っている最中に、自車両の情報が対象車両のドライバの記憶にとどまっているにも関わらず、被認知率r_flt(z)が低くなり、不必要な警報若しくは不必要な制御が実行されてしまう虞がある。
従って、対象車両の車速、自車方向に対する視線方向θdに基づく被認知率rが低下した場合であっても、これを直ぐに反映させることはせずに、人間の記憶が、時間の経過と共に曖昧になることを考慮して、被認知率r_flt(z)を、時間の経過と共に徐々に低下して設定することを基本とする。
この際、十分に自車両を認識した場合と、十分に自車両を認識できなかった場合(視野の片隅で捉えた場合等)とでは、記憶にとどめられる時間にも差異が生じると考えられる。従って、被認知率r_flt(z)が0になるまでの時間は、その値の大きさに比例して変化させる。すなわち、r_flt(z)=D・r_flt(z-1)として設定されるので、当初の被認知率の値が大きいほど、0になるまでの時間も長くなる。
また、自車両から視線をそらした後、再度、自車両を認識した場合は、上述のS204からS206へ進む処理となり、改めて大きな被認知率が設定されることになる。
上述のS205、或いは、S206で被認知率の今回値r_flt(z)を設定した後は、S207に進み、例えば、以下の(2)式により、被認知率補正ゲインGrを演算し、ルーチンを抜ける。
Gr=1/(1+r_flt(z)) …(2)
尚、この被認知率補正ゲインGrは、被認知率の今回値r_flt(z)が大きくなるほど、被認知率補正ゲインGrは小さな値となり、車両のリスク関数についてのみ適用されるものであり、車両以外の立体物については、Gr=1とする。
図2のフローチャートに戻り、S103で被認知率補正ゲインGrを演算した後は、S104に進み、立体物(2輪車、普通車両、大型車両、歩行者、電柱等その他の立体物)を対象とする現在のリスク関数Robstacleを、以下の(3)式により、演算する。
Robstacle=Gr・Kobstacle・exp(−((xobstacle−x)
/(2・σxobstacle))−((yobstacle−y)
/(2・σyobstacle))) …(3)
ここで、Kobstacleは、予め設定したゲインである。また、σxobstacleは予め設定しておいた対象のX軸方向の分散を示し、σyobstacleは、予め設定しておいた対象のY軸方向の分散を示し、これら分散σxobstacle、σyobstacleは、例えば、CCDカメラ10による認識精度が低いほど大きく設定するようにしても良い。また、分散σxobstacle、σyobstacleは、対象の種別が、普通車両及び大型車両の場合を基準として、歩行者、2輪車である場合は大きく設定し、それ以外の立体物の場合は小さく設定するようにしても良い。更に、自車両1と対象となる立体物の幅方向のラップ率に応じて設定するようにしても良い。図5中、立体物A1及び立体物A2は、上述の(3)式により演算した立体物を対象とする現在のリスク関数Robstacleの一例である。
次に、S105に進み、現在のトータルリスク関数Rを、以下の(4)式により、演算する。
R=Rline+Robstacle …(4)
次いで、S106に進み、t秒後の立体物位置(xobstacle(t),yobstacle(t))を、以下の(5)式により推定する。
(xobstacle(t),yobstacle(t))
=(xobstacle+vxobstacle・t,yobstacle+vyobstacle・t) …(5)
次に、S107に進み、上述のS106で推定したt秒後の立体物位置(xobstacle(t),yobstacle(t))を、上述のS105で演算したトータルリスク関数Rのx及びyにそれぞれ代入し、t秒後のトータルリスク関数R(xobstacle(t),yobstacle(t))を設定する。
次いで、S108に進み、上述のS107で設定したt秒後のトータルリスク関数R(xobstacle(t),yobstacle(t))を、幅方向(y方向)で偏微分して、その値が0となる点から幅方向(y方向)の極小点ymin(x,t)を演算する。すなわち、
∂R(xobstacle(t),yobstacle(t))/∂y=0 …(6)
となる点が極小点である。
次に、S109に進み、t秒後の自車位置(X(t),Y(t))を、以下の(7)式により推定する。
(X(t),Y(t))=(V・t,V・∫sinψ(τ)dτ;積分範囲は0≦τ≦t)
…(7)
ここで、ψ(t)は、自車両1のヨー角であり、以下の(8)式により、演算される。
ψ(t)=(dψ/dt)・t
+(1/2)・((dψ/dt)+(u(t)/Iz))・t …(8)
ここで、Izは、ヨー慣性モーメントである。また、u(t)は前述の如く旋回制御量であり、付加ヨーモーメントである。
次いで、S110に進み、上述のS108で演算したy方向の極小点ymin(x,t)に、上述のS110で推定した自車位置を代入し、自車位置X(t)における極小点ymin(X(t),t)を演算する。
次に、S111に進み、各時間毎の自車の横位置Y(t)と極小点ymin(X(t),t)の偏差と旋回制御量u(t)で各目的関数Jを作成し、それぞれの目的関数Jについて目的関数Jを最少とする各時間毎の旋回制御量u(t)を求める。
例えば、図10に示すように、自車両1が時刻0(現在)〜Δtまで移動する範囲を制御対象領域と考え、この間を、dtで分割し、1dt、2dt、3dt、…、mdt、…、(n−2)dt、(n−1)dt、ndt(=Δt)とする例を考える。
時刻0〜1dtの間には、例えば、以下(9)式の目的関数J0~1dtを設定し、この目的関数J0~1dtを最少とする旋回制御量u(0)を周知の最適化計算により求める。
J0~1dt=Wy・(ymin(X(1dt),1dt)−Y(1dt))+Wu・u(0) …(9)
ここで、Wy、Wuは予め設定する重み値である。
また、時刻1dt〜2dtの間には、例えば、以下(10)式の目的関数J1dt~2dtを設定し、この目的関数J1dt~2dtを最少とする旋回制御量u(1dt)を周知の最適化計算により求める。
J1dt~2dt=Wy・(ymin(X(2dt),2dt)−Y(2dt))+Wu・u(1dt) …(10)
更に、時刻2dt〜3dtの間には、例えば、以下(11)式の目的関数J2dt~3dtを設定し、この目的関数J2dt~3dtを最少とする旋回制御量u(2dt)を周知の最適化計算により求める。
J2dt~3dt=Wy・(ymin(X(3dt),3dt)−Y(3dt))+Wu・u(2dt) …(11)
尚、時刻3dtには極小点が2つ存在するため、旋回制御量u(2dt)も2つの値が得られる。
以下、時刻3dt以降も同様の目的関数を設定し、旋回制御量を求め、時刻(n−1)dt〜ndtの間には、例えば、以下(12)式の目的関数J(n-1)dt~ndtを設定し、この目的関数J(n-1)dt~ndtを最少とする旋回制御量u((n-1)dt)を周知の最適化計算により求める。
J(n-1)dt~ndt=Wy・(ymin(X(ndt),ndt)−Y(ndt))
+Wu・u((n-1)dt) …(12)
次いで、S112に進み、以下の(13)式により、自車両1が各時間毎の旋回制御量u(t)で移動したときの各ルート毎のリスク関数R(t)を設定する。
R(t)=Rline+Robstacle …(13)
ここで、Rline、及び、Robstacleは、前述の(1)式、及び、(3)式に、自車両1が各時間毎の旋回制御量u(t)で移動したときの値で与えられるものであり、
Rline=Kline・(Y(t)−ylinec) …(14)
Robstacle=Gr・Kobstacle・exp(−((xobstacle(t)−X(t))
/(2・σxobstacle))−((yobstacle(t)−Y(t))
/(2・σyobstacle))) …(15)
次いで、S113に進み、S112で設定した各ルート毎のリスク関数R(t)から最終的な回避ルートをR(t)fとして選択する。
具体的には、S112で設定した各ルート毎にその最大値Rmaxを求める。すなわち、
Rmax=max(R(t))(0≦t≦Δt) …(16)
そして、最大値Rmaxの最も小さなルートを最終的な回避ルートR(t)fとして選択する。
尚、各ルート毎にリスクの累積値Rsum(=∫R(t)dt;積分範囲は0≦t≦Δt)を求め、その値が最も小さなルートを最終的な回避ルートR(t)fとして選択するようにしても良い。
また、上述のS113において、S112で設定されたルートが1つのみしか存在しない場合は、そのルートが最終的な回避ルートR(t)fとして設定される。
例えば、図10に示す例では、S112の処理により、実線で示すルート1と破線で示すルート2とが設定され、S113の処理により、これらルート1,2から最大値Rmaxが小さなルート、或いは、リスクの累積値Rsumが小さなルートが最終的な回避ルートR(t)fとして選択される。尚、ルート1,2のそれぞれの旋回制御量u(t)は、図10(b)に示す通りである。
そして、S114に進み、最終的な回避ルートR(t)fに予め定めておいた最大許容リスク値Rlim以上(R(t)f≧Rlim)となる領域が有るか否か判定し、R(t)f≧Rlimとなる領域がない場合は、S117に進んで、自動操舵制御装置14に対して最終的な回避ルートR(t)fの旋回制御量u(t)を基に操舵制御指令を出力してプログラムを抜ける。
また、S114の判定の結果、R(t)f≧Rlimとなる領域があると判定した場合は、S115に進み、R(t)f≧Rlimとなる最も早い時間を基に制動開始地点Xbrake、制動開始時間Tbrakeを演算する。
R(t)f≧Rlimとなる最も早い時間をTmとすると、制動開始地点Xbrakeは、以下の(17)式により、演算される。
Xbrake=X(Tm)−Bx …(17)
ここで、Bxは予め設定しておいた減速度Gによる制動距離であり、以下の(18)式により演算される。
Bx=(V/(2・G))+Bx0 …(18)
ここで、Bx0は、予め設定しておいた停止時における障害物までの距離であり、例えば、2m程度の値である。
また、制動開始時間Tbrakeは、上述の制動開始地点Xbrakeから逆算することにより演算される。
次いで、S116に進み、自動ブレーキ制御装置15に対し、制動開始地点Xbrake、制動開始時間Tbrakeに基づく制動制御指令を出力する。
そして、S117に進み、自動操舵制御装置14に対して最終的な回避ルートR(t)fの旋回制御量u(t)を基に操舵制御指令を出力してプログラムを抜ける。
このように本発明の実施の形態によれば、前方に存在する白線、ガードレール、側壁、及び、立体物のそれぞれを対象として、現在のトータルリスク関数Rを設定し、各対象の位置の時間的変化を予測してトータルリスク関数Rの時間的変化を予測して、このトータルリスク関数Rの時間的変化を基に、各時間毎の自車位置におけるY軸方向の極小点ymin(x,t)を演算する。そして、各時間毎の目的関数Jを作成し、該目的関数Jを最小とする各時間毎の旋回制御量u(t)を自車両1の旋回制御量u(t)として演算して、自車両1が各時間毎の旋回制御量u(t)で移動したときの各ルート毎のリスク関数R(t)を設定し、各ルート毎のリスク関数R(t)から最終的な回避ルートR(t)fを選択し、最終的な回避ルートR(t)fの旋回制御量u(t)に基づいて操舵制御を実行させ、また、最終的な回避ルートR(t)fの値に基づいてブレーキ制御を実行させる。このため、目前の危険性だけではなく、その先に訪れる危険性をも考慮して衝突回避制御を実現することができる。
また、車両のリスク関数においては、対象車両の車速と対象車両に対する自車両の方向と対象車両のドライバの視線方向とに応じ、対象車両の自車両に対する認知の度合いを被認知率として設定し、更に、今回設定した被認知率と前回設定した被認知率とを比較して被認知率を可変設定して、車両のリスク関数をこの被認知率で補正する。従って、対象車両の自車両に対する認知の度合いが正確にリスク関数に反映されるので、自然な感覚でドライバの運転支援を行うことが可能となる。
尚、本実施の形態では、最終的な回避ルートR(t)fを基にブレーキ制御と操舵制御の2つが行える例を説明しているが、どちらか1つを行うものであっても良い。
また、ブレーキ制御或いは操舵制御を行わずに、例えば最終的な回避ルートR(t)fにおいて予め設定された閾値を上回る時間を警報開始時刻として設定することで、警報制御を行うものであっても良い。
更に、本実施の形態で説明したブレーキ制御は、あくまでもその一例であり、他の周知のブレーキ制御、例えば、スロットル開度の閉鎖や自動変速機におけるシフトダウンと併用するようにしても良い。
また、本実施の形態では、自車両1の前方における白線や立体物等を対象として、現在のトータルリスク関数Rを設定し、その時間的変化を予測する構成について述べたが、これに限らず、自車両1の側方や側後方の立体物をも対象として、トータルリスク関数Rの設定やその時間的変化を予測するようにしても良い。
更に、本実施の形態では、自車両1の前進時において回避ルートを生成する構成について述べたが、これに限らず、自車両1の後方環境を認識して自車両1の後退時に回避ルートを生成するようにしても良い。
また、本実施の形態で説明した被認知率は、他のリスクを求めて制御するシステムの形態(例えば、衝突余裕時間や車間時間等からリスクを求める形態)においても適用できることは云うまでもない。
更に、本実施の形態では、被認知率を(2)式に示す被認知率補正ゲインGrで反映させているが、他の演算式により求められるゲインで反映するようにしても良い。
また、本実施形態の被認知率は、対象車両の視線方向を視線方向検出装置5で検出して用いるようにしているが、顔向き方向を検出し、該顔向き方向を視線方向と仮定して演算するようにしても良い。
車両に搭載した運転支援装置の概略構成図 運転支援制御プログラムのフローチャート 図2から続くフローチャート 被認知率補正ゲイン演算ルーチン 前方に設定されるリスク関数の一例を示す説明図 自車方向に対する視線方向角度の説明図 被認知率の設定マップ 被認知率の特性の説明図 記憶による変化を予測して設定される被認知率の説明図 生成される回避ルートと旋回制御量の一例を示す説明図
符号の説明
1 自車両
2 運転支援装置
3 制御ユニット(リスク設定手段、被認知率設定手段、リスク補正手段)
4 ステレオ画像認識装置(走行環境認識手段)
5 視線方向検出装置
6 通信装置(走行環境認識手段)
7 測位装置
8 車速センサ
9 ヨーレートセンサ
10 CCDカメラ
11 視野カメラ
12 赤外線ランプ
13 ディスプレイ
14 自動操舵制御装置
15 自動ブレーキ制御装置

Claims (6)

  1. 走行環境を認識して情報を取得する走行環境認識手段と、
    上記走行環境の情報から制御対象とする対象車両を抽出し、該対象車両に対してリスクを設定するリスク設定手段と、
    上記対象車両の車速と上記対象車両に対する自車両の方向と上記対象車両のドライバの向きとに応じ、上記対象車両の自車両に対する認知の度合いを被認知率として設定する被認知率設定手段と、
    上記被認知率に応じて上記各対象車両のリスクを補正するリスク補正手段と、
    を備えたことを特徴とする車両の運転支援装置。
  2. 上記被認知率は、車速が高くなると視力が低下する関係を含んで設定されることを特徴とする請求項1記載の車両の運転支援装置。
  3. 上記被認知率は、車速が高くなると視野角が狭くなる関係を含んで設定されることを特徴とする請求項1又は請求項2記載の車両の運転支援装置。
  4. 上記被認知率は、記憶による変化を予測して設定されることを特徴とする請求項1乃至請求項3の何れか一つに記載の車両の運転支援装置。
  5. 上記被認知率設定手段は、今回設定した被認知率と前回設定した被認知率とを比較し、上記今回設定した被認知率が上記前回設定した被認知率より小さい場合は、予め設定した割合で上記前回設定した被認知率を低下させて出力し、上記今回設定した被認知率が上記前回設定した被認知率以上の場合は、上記今回設定した被認知率をそのまま出力することを特徴とする請求項4記載の車両の運転支援装置。
  6. 上記リスク補正手段は、上記被認知率の値が大きいほど上記リスクを小さく補正することを特徴とする請求項1乃至請求項5の何れか一つに記載の車両の運転支援装置。
JP2008174744A 2008-07-03 2008-07-03 車両の運転支援装置 Active JP5261045B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008174744A JP5261045B2 (ja) 2008-07-03 2008-07-03 車両の運転支援装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008174744A JP5261045B2 (ja) 2008-07-03 2008-07-03 車両の運転支援装置

Publications (2)

Publication Number Publication Date
JP2010015386A true JP2010015386A (ja) 2010-01-21
JP5261045B2 JP5261045B2 (ja) 2013-08-14

Family

ID=41701449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008174744A Active JP5261045B2 (ja) 2008-07-03 2008-07-03 車両の運転支援装置

Country Status (1)

Country Link
JP (1) JP5261045B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011002869A (ja) * 2009-06-16 2011-01-06 Honda Motor Co Ltd 車両用衝突可能性判定装置
JP2015203972A (ja) * 2014-04-14 2015-11-16 株式会社日本自動車部品総合研究所 走行経路生成装置
JP2016009251A (ja) * 2014-06-23 2016-01-18 エイディシーテクノロジー株式会社 車両用制御装置
JP2022516379A (ja) * 2019-01-31 2022-02-25 モルガン スタンレー サービシーズ グループ,インコーポレイテッド 人工知能によるエクスポージャ最小化応答

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001357498A (ja) * 2000-06-15 2001-12-26 Mazda Motor Corp 車両用情報提供装置
JP2004210213A (ja) * 2003-01-08 2004-07-29 Toyota Central Res & Dev Lab Inc 情報提供装置
JP2006327319A (ja) * 2005-05-24 2006-12-07 Honda Motor Co Ltd 車両用画像表示装置
JP2007241729A (ja) * 2006-03-09 2007-09-20 Toyota Central Res & Dev Lab Inc 運転支援装置及び運転支援システム
WO2008029802A1 (fr) * 2006-09-04 2008-03-13 Panasonic Corporation Dispositif fournissant des informations de voyage

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001357498A (ja) * 2000-06-15 2001-12-26 Mazda Motor Corp 車両用情報提供装置
JP2004210213A (ja) * 2003-01-08 2004-07-29 Toyota Central Res & Dev Lab Inc 情報提供装置
JP2006327319A (ja) * 2005-05-24 2006-12-07 Honda Motor Co Ltd 車両用画像表示装置
JP2007241729A (ja) * 2006-03-09 2007-09-20 Toyota Central Res & Dev Lab Inc 運転支援装置及び運転支援システム
WO2008029802A1 (fr) * 2006-09-04 2008-03-13 Panasonic Corporation Dispositif fournissant des informations de voyage

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011002869A (ja) * 2009-06-16 2011-01-06 Honda Motor Co Ltd 車両用衝突可能性判定装置
JP2015203972A (ja) * 2014-04-14 2015-11-16 株式会社日本自動車部品総合研究所 走行経路生成装置
JP2016009251A (ja) * 2014-06-23 2016-01-18 エイディシーテクノロジー株式会社 車両用制御装置
JP2022516379A (ja) * 2019-01-31 2022-02-25 モルガン スタンレー サービシーズ グループ,インコーポレイテッド 人工知能によるエクスポージャ最小化応答
US11360442B2 (en) 2019-01-31 2022-06-14 Morgan Stanley Services Group Inc. Exposure minimization response by artificial intelligence
JP7149430B2 (ja) 2019-01-31 2022-10-06 モルガン スタンレー サービシーズ グループ,インコーポレイテッド 人工知能によるエクスポージャ最小化応答

Also Published As

Publication number Publication date
JP5261045B2 (ja) 2013-08-14

Similar Documents

Publication Publication Date Title
JP4970156B2 (ja) 車両の運転支援装置
JP4949063B2 (ja) 車両の運転支援装置
JP5453048B2 (ja) 車両の運転支援制御装置
KR101231510B1 (ko) 운전자 주시방향 연동 전방충돌 위험경보 시스템, 그 방법 및 그를 이용한 차량
US8630793B2 (en) Vehicle controller
KR102051142B1 (ko) 차량용 운전자 위험 지수 관리 시스템 및 그 방법
JP5167051B2 (ja) 車両の運転支援装置
JP7416176B2 (ja) 表示装置
JP5066478B2 (ja) 車両の運転支援装置
EP3075618A2 (en) Vehicle control apparatus
US10232772B2 (en) Driver assistance system
JP2017159827A (ja) 車両の制御装置
EP3686864A1 (en) Information processing device, autonomous moving apparatus, method, and program
CN108604413B (zh) 显示装置的控制方法及显示装置
JP2010030513A (ja) 車両の運転支援装置
JP6720732B2 (ja) 車両の制御装置
KR102184598B1 (ko) 자율주행차량의 운전자 응급상황발생판단에 기반한 주행예측 및 안전주행시스템
JP2009301123A (ja) 車両の運転支援装置
JP5261045B2 (ja) 車両の運転支援装置
JP6790522B2 (ja) 車両の制御装置
JP5249696B2 (ja) 車両の運転支援装置
JP5336800B2 (ja) 車両の運転支援装置
JP4754305B2 (ja) 運転状態推定装置
JP5083959B2 (ja) 車両の運転支援装置
JP6701913B2 (ja) 車両の制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130426

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160502

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5261045

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250