JP6790522B2 - 車両の制御装置 - Google Patents

車両の制御装置 Download PDF

Info

Publication number
JP6790522B2
JP6790522B2 JP2016136074A JP2016136074A JP6790522B2 JP 6790522 B2 JP6790522 B2 JP 6790522B2 JP 2016136074 A JP2016136074 A JP 2016136074A JP 2016136074 A JP2016136074 A JP 2016136074A JP 6790522 B2 JP6790522 B2 JP 6790522B2
Authority
JP
Japan
Prior art keywords
driving support
vehicle
driver
package
information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016136074A
Other languages
English (en)
Other versions
JP2018005830A (ja
Inventor
雄一 熊井
雄一 熊井
昌樹 松永
昌樹 松永
瑛貴 近藤
瑛貴 近藤
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to JP2016136074A priority Critical patent/JP6790522B2/ja
Publication of JP2018005830A publication Critical patent/JP2018005830A/ja
Application granted granted Critical
Publication of JP6790522B2 publication Critical patent/JP6790522B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は車両の制御装置に関する。
特許文献1には、従来の車両の制御装置として、ドライバのスイッチ操作によって手動運転モードから自動運転モードに切り替えられると、車間距離制御や車線追従制御などの各種の運転支援操作を自動的に行う自動運転を実施するものが開示されている。
米国特許第8670891号明細書
しかしながら前述した従来の車両の制御装置は、自動運転モードに切り替えられたことをもって、ドライバが全ての運転支援操作に対する実施許可を与えたと判断していた。そのためドライバは、自動運転を実施するにあたって手動運転モードから自動運転モードへの切り替え操作しか行うことができず、各運転支援操作の実施可否を任意に設定することができなかった。
ここで自動運転を実施するにあたっては、自動運転の開始前や実施中にその場の状況に応じてドライバが各運転支援操作の実施可否を設定できるようにした方が、例えばドライバにとって不要な運転支援操作が自動的に行われるのを防止できるので、望ましい場合もある。しかしながら、その場の状況は車両走行中に時々刻々と変化するので、ドライバが自ら各運転支援操作の実施可否の設定を行って、その場の状況に適した自動運転を実施させるのは難しいという問題点がある。
本発明はこのような問題点に着目してなされたものであり、その場の状況に適した自動運転をドライバによって簡便に実施させることができるようにすることを目的とする。
上記課題を解決するために、本発明のある態様によれば、自車両の周辺環境状態に関する周辺環境情報を取得するための周辺環境情報取得装置と、自車両の状態に関する自車両情報を取得するための自車両情報取得装置と、自車両のドライバの状態に関するドライバ情報を取得するためのドライバ情報取得装置と、を備える車両を制御するための車両の制御装置が、複数の運転支援操作の中からドライバによる実施許可を得た運転支援操作を自動的に行う自動運転制御部を備える。自動運転制御部は、複数の運転支援操作のそれぞれの実施可否をパッケージ化した運転支援パッケージを決定するパッケージ決定部と、運転支援パッケージで実施が許可されている運転支援操作の実施許可を得るために、当該運転支援パッケージへの切り替えをドライバに提案するパッケージ提案部と、を備える。パッケージ決定部は、周辺環境情報、自車両情報、及びドライバ情報の少なくとも1つに基づいて、少なくとも一部の運転支援操作に点数が付与された単位パッケージを複数選択し、選択された複数の単位パッケージをそれぞれ組みわせることにより運転支援パッケージを作成し、作成された運転支援パッケージで実施許可となっている運転支援操作の中で、複数の単位パッケージでそれぞれ付与されている点数を加算した合計点が所定の閾値以上となる運転支援操作があるときは、当該運転支援操作を実施許可から実施不許可に変更するように構成されている。
本発明のこの態様によれば、その場の状況に適した自動運転をドライバによって簡便に実施させることができる。
図1は、本発明の一実施形態による車両用の自動運転システムの概略構成図である。 図2は、本発明の一実施形態による自動運転システムを搭載した自車両の概略外観図である。 図3は、本発明の一実施形態による自動運転システムを搭載した自車両の概略内観図である。 図4は、自動運転モード中に実施される本発明の一実施形態による運転支援操作の一覧を示した図である。 図5は、本発明の一実施形態による気象条件に関するパッケージ群を示す図である。 図6は、本発明の一実施形態による日照条件に関するパッケージ群を示す図である。 図7は、本発明の一実施形態による道路種別に関するパッケージ群を示す図である。 図8は、本発明の一実施形態による道路状況に関するパッケージ群を示す図である。 図9は、本発明の一実施形態によるドライバ状態に関するパッケージ群を示す図である。 図10は、本発明の一実施形態による自車両状態に関するパッケージ群を示す図である。 図11は、本発明の一実施形態による自動運転制御について説明するフローチャートである。 図12は、本発明の一実施形態によるパッケージ決定処理の内容について説明するフローチャートである。 図13は、走行支援操作ごとの付与点数の合計点を算出すると共に、高難度走行支援操作については実施不許可に変更する理由について説明する図である。 図14は、走行支援操作ごとの付与点数の合計点を算出すると共に、高難度走行支援操作については実施不許可に変更する理由について説明する図である。 図15は、走行支援操作ごとの付与点数の合計点を算出すると共に、高難度走行支援操作については実施不許可に変更する理由について説明する図である。
以下、図面を参照して本発明の実施形態について詳細に説明する。なお、以下の説明では、同様な構成要素には同一の参照番号を付す。
図1は、本発明の一実施形態による車両用の自動運転システム100の概略構成図である。図2は、本実施形態による自動運転システム100を搭載した自車両1の概略外観図である。図3は、本実施形態による自動運転システム100を搭載した自車両1の概略内観図である。
図1に示すように、本実施形態による自動運転システム100は、周辺環境情報取得装置10と、自車両情報取得装置20と、ドライバ情報取得装置30と、地図データベース40と、記憶装置50と、ヒューマン・マシン・インターフェース(Human Machine Interface;以下「HMI」という。)60と、ナビゲーション装置70と、電子制御ユニット80と、を備える。
周辺環境情報取得装置10は、自車両周辺の障害物(例えば建物や、道路上の先行車や後続車、対向車といった走行車両、停止車両、縁石、落下物、歩行者等)や天候といった自車両1の周辺環境状態に関する情報(以下「周辺環境情報」という。)を取得するための装置である。図1から図3に示すように、本実施形態による周辺環境情報取得装置10は、ライダ(LIDAR;Laser Imaging Detection And Ranging)11と、ミリ波レーダーセンサ12と、外部カメラ13と、照度センサ14と、レインセンサ15と、外部情報受信装置16と、を備える。
ライダ11は、レーザー光を利用して自車両周辺の道路や障害物を検出する。図2に示すように、本実施形態ではライダ11は、自車両1のルーフ上に取り付けられている。ライダ11は、自車両1の全周囲に向けてレーザー光を順次照射し、その反射光から道路及び自車両周辺の障害物までの距離を計測する。そしてライダ11は、その計測結果に基づいて自車両1の全周囲における道路及び障害物の三次元画像を生成し、生成した三次元画像の情報を電子制御ユニット80に送信する。
なお、ライダ11の取り付け箇所は、三次元画像を生成するために必要な情報を取得できる箇所であれば特に限られるものではない。例えば、自車両1のグリルや、ヘッドライトやブレーキランプといったライト類の内部に取り付けても良いし、自車両1の車両本体部分(骨格)に取り付けても良い。
ミリ波レーダーセンサ12は、電波を利用してライダ11よりも遠距離に亘る自車両周辺の障害物を検出する。図2に示すように、本実施形態ではミリ波レーダーセンサ12は、自車両1のフロントバンパー及びリヤバンパーにそれぞれ取り付けられている。ミリ波レーダーセンサ12は、自車両1の周囲(本実施形態では自車両1の前方、後方及び側方)に電波を発射し、その反射波から自車両周辺の障害物までの距離や当該障害物との相対速度を計測する。そしてミリ波レーダーセンサ12は、その計測結果を自車両周辺情報として電子制御ユニット80に送信する。
なお、ミリ波レーダーセンサ12の取り付け箇所は、必要な自車両周辺情報を取得できる箇所であれば特に限られるものではない。例えば、自車両1のグリルや、ヘッドライトやブレーキランプといったライト類の内部に取り付けても良いし、自車両1の車両本体部分(骨格)に取り付けても良い。
外部カメラ13は、自車両1の前方を撮影する。図2に示すように、本実施形態では外部カメラ13は、自車両1のルーフ先端の中央部に取り付けられている。外部カメラ13は、撮影した自車両前方の映像の画像処理を行うことで、自車両前方の障害物情報や、走行レーンの車線幅や道路形状、道路標識、白線の有無、信号機の状態といった自車両前方の道路情報、ヨー角(走行レーンに対する車両の相対的な方向)や走行レーン中央からの車両オフセット位置といった自車両1の走行情報、雨や雪、霧といった自車両周辺の気象情報などを検出する。そして外部カメラ13は、検出したこれらの撮影情報を電子制御ユニット80に送信する。
なお、外部カメラ13の取り付け箇所は、自車両1の前方を撮影できる箇所であれば特に限られるものではない。例えば、自車両内のフロントガラス裏面の中央上部に取り付けても良い。
照度センサ14は、自車両周囲の照度を検出する。図2に示すように、本実施形態では、照度センサ14は自車両内のインストルメントパネルの上面に取り付けられている。照度センサ14は、検出した自車両周囲の照度情報を電子制御ユニット80に送信する。
レインセンサ15は、降水の有無及び降水量を検出する。図2に示すように、本実施形態では、レインセンサ15は自車両1のフロントガラス表面の中央上部に取り付けられている。レインセンサ15は、内蔵された発光素子によって生じさせた光をフロントガラス表面に向けて照射し、そのときの反射光の変化を計測することで、降水の有無や降水量といった降水情報を検出する。そしてレインセンサ15は、検出した降水情報を電子制御ユニット80に送信する。
外部情報受信装置16は、例えば道路交通情報通信システムセンタなどの外部の通信センタから送信されてくる渋滞情報や気象情報(雨や雪、霧、風速等の情報)などの外部情報を受信する。外部情報受信装置16は、受信した外部情報を電子制御ユニット80に送信する。
自車両情報取得装置20は、自車両1の速度や加速度、姿勢、現在位置といった自車両1の状態に関する情報(以下「自車両情報」という。)を取得するための装置である。図1に示すように、本実施形態による自車両情報取得装置20は、車速センサ21と、加速度センサ22と、ヨーレートセンサ23と、GPS受信機24と、を備える。
車速センサ21は、自車両1の速度を検出するためのセンサである。車速センサ21は、検出した自車両1の車速情報を電子制御ユニット80に送信する。
加速度センサ22は、加速時や制動時における自車両1の加速度を検出するためのセンサである。加速度センサ22は、検出した自車両1の加速度情報を電子制御ユニット80に送信する。
ヨーレートセンサ23は、自車両1の姿勢を検出するためのセンサであって、詳しくは自車両1の旋回時におけるヨー角の変化速度、すなわち自車両1の鉛直軸まわりの回転角速度(ヨーレート)を検出する。ヨーレートセンサ23は、検出した自車両1の姿勢情報を電子制御ユニット80に送信する。
GPS受信機24は、3個以上のGPS衛星からの信号を受信して自車両1の緯度及び経度を特定し、自車両1の現在位置を検出する。GPS受信機24は、検出した自車両1の現在位置情報を電子制御ユニット80に送信する。
ドライバ情報取得装置30は、自車両1のドライバの状態に関する情報(以下「ドライバ情報」という。)を取得するための装置である。図1及び図3に示すように、本実施形態によるドライバ情報取得装置30は、ドライバモニタカメラ31と、ステアリングタッチセンサ32と、を備える。
ドライバモニタカメラ31は、ステアリングコラムカバーの上面に取り付けられ、ドライバの外観を撮影する。ドライバモニタカメラ31は、撮影したドライバの映像を画像処理することで、ドライバの表情(ドライバの顔の向きや眼の開閉度など)や姿勢といったドライバの外観情報を検出する。そしてドライバモニタカメラ31は、検出したドライバの外観情報を電子制御ユニット80に送信する。
ステアリングタッチセンサ32は、ステアリングに取り付けられる。ステアリングタッチセンサ32は、ドライバがステアリングを把持しているか否かを検出し、検出したステアリングの把持情報を電子制御ユニット80に送信する。
地図データベース40は、地図情報に関するデータベースである。この地図データベース40は、例えば車両に搭載されたハードディスクドライブ(HDD;Hard Disk Drive)内に記憶されている。地図情報には、道路の位置情報や道路形状の情報(例えばカーブと直線部の種別、カーブの曲率など)、交差点及び分岐点の位置情報、道路種別などの情報などが含まれる。
記憶装置50は、自動運転専用の道路地図を記憶する。自動運転専用の道路地図は、ライダ11が生成した三次元画像に基づいて電子制御ユニット80が作成しており、電子制御ユニット80によって常時又は定期的に更新される。
HMI60は、ドライバ又は車両乗員と自動運転システム100との間で情報の入出力を行うためのインターフェイスである。本実施形態によるHMI60は、ドライバに各種の情報を提供するための情報提供装置61と、ドライバの音声を認識するためのマイク62と、ドライバが入力操作を行うためのタッチパネルや操作ボタンなど入力操作器63と、を備える。
情報提供装置61は、文字情報や画像情報を表示するためのディスプレイ611と、音を発生させるためのスピーカ612と、を備える。
ナビゲーション装置70は、HMI60を介してドライバによって設定された目的地まで自車両1を案内する装置である。ナビゲーション装置70は、GPS受信機24で検出した自車両1の現在位置情報と地図データベース40の地図情報とに基づいて、目的地までの目標ルートを演算し、演算した目標ルートに関する情報をナビゲーション情報として電子制御ユニット80に送信する。
電子制御ユニット80は、双方向性バスによって相互に接続された中央演算装置(CPU)、読み出し専用メモリ(ROM)、ランダムアクセスメモリ(RAM)、入力ポート、及び出力ポートを備えたマイク62ロコンピュータである。
電子制御ユニット80は、ドライバが手動運転モード(加速、操舵、及び制動に関する運転操作をドライバが行うモード)から自動運転モードに切り替えたときに、図4に示す各運転支援操作の中からドライバによる実施許可を得た運転支援操作を自動的に行う自動運転制御部90を備える。自動運転制御部90は、パッケージ決定部91と、パッケージ提案部92と、判定部93と、備えており、電子制御ユニット80に入力された周辺環境情報や自車両情報、ドライバ情報、ナビゲーション情報などの自動運転に必要な各種の情報に基づいて、各運転支援操作を行うために必要な各種の制御部品を制御し、車両の自動運転を実施する。
図4は、本実施形態において自動運転モード中に実施される運転支援操作の一覧を示した図である。
図4に示すように本実施形態では、運転支援操作を機能別に走行支援機能、視界支援機能、及び渋滞時支援機能の3つの機能群に大別している。
走行支援機能の欄に分別されている運転支援操作は、運転支援操作の中で、加速、操舵、及び制動の少なくとも1つを実施する機能(走行支援機能)を持つ運転支援操作である。本実施形態では、走行支援機能を持つ運転支援操作として、車間距離制御、車線追従制御、自動車線変更、自動追越、自動分流、及び自動合流を例示しているが、走行支援機能を持つ運転支援操作はこれらに限られるものではなく、必要に応じて図4に例示したものよりも多くしても良いし、少なくしても良い。
なお車間距離制御とは、車速に応じた適切な車間距離を保持しながら先行車の車速の変化に合わせて追従走行を行うことができるように、制限車速の範囲内で自動的に車速の調節を行う制御である。車線追従制御とは、走行レーンの車線幅に応じた適切な走行ラインを自車両1が走行するように、自動的に操舵量や車速の調節を行う制御である。
視界支援機能の欄に分別されている運転支援操作は、走行支援機能を持たない(すなわち加速、操舵、及び制動のいずれも実施しない)運転支援操作の中で、ドライバの視界、ひいては安全を確保する機能(視界支援機能)を持つ運転支援操作である。本実施形態では、視界支援機能を持つ運転支援操作として、車線逸脱警報やブラインドスポットモニタなどの11個の運転支援操作を例示しているが、視界支援機能を持つ運転支援操作はこれらに限られるものではなく、必要に応じて図4に例示したものよりも多くしても良いし、少なくしても良い。
渋滞時支援機能の欄に分別されている運転支援操作は、渋滞時におけるドライバ及び乗員の疲労を緩和させる機能(渋滞時支援機能)を持つ運転支援操作である。本実施形態では、渋滞時支援機能を持つ運転支援操作として、渋滞時における停止からの自動発進やハザードランプの一時点灯制御などの8個の運転支援操作を例示しているが、渋滞時支援機能を持つ運転支援操作はこれらに限られるものではなく、必要に応じて図4に例示したものよりも多くしても良いし、少なくしても良い。
ここで、前述したように、手動運転モードから自動運転モードに切り替えられると、各運転支援操作の中からドライバによる実施許可を得た運転支援操作を自動的に行う自動運転が実施されることになる。このような自動運転を実施するにあたっては、自動運転の開始前や実施中に、周辺環境状態や自車両状態、ドライバ状態に応じてドライバが各運転支援操作の実施可否を設定できるようにすることが望ましい。
しかしながら、自動運転を実施するにあたって各運転支援操作の実施可否を一つ一つドライバが設定しなければならないと、ドライバによる実施可否の設定操作が煩雑となり、結果として自動運転の利便性を失わせることになる。また周辺環境状態や自車両状態、ドライバ状態は、車両走行中に時々刻々と変化する。そのため、車両走行中にドライバが自ら各運転支援操作の実施可否の設定を行って、周辺環境状態等に適した自動運転を実施させるのは困難である。
そこで本実施形態では、周辺環境情報、自車両情報、及びドライバ情報に基づいて、各運転支援操作の実施可否を一括りにまとめてパッケージ化した運転支援パッケージを決定し、決定した運転支援パッケージをドライバに提案することとした。具体的には、図5から図10に示す各パッケージ群の中から気象条件、日照条件、道路種別、道路状況、ドライバ状態、及び自車両状態に応じた最適な単位パッケージを選択し、選択した各単位パッケージを組み合わせることで決定した運転支援パッケージをドライバに提案することとした。
以下、図5から図10を参照して各パッケージ群について説明した後、図11から図15を参照して本実施形態による自動運転制御について説明する。なお図5から図10において、マルが実施許可を表し、バツが実施不許可を表す。また各パッケージ群は、電子制御ユニット80のROMに記憶されている。
図5は、気象条件に関するパッケージ群を示す図である。気象条件に関するパッケージ群は、気象条件を「晴」、「雨」、「大雨」、「雪」、「大雪」、「霧」、「濃霧」、「風」、及び「強風」の9つに大別し、気象条件ごとに各運転支援操作の実施可否をパッケージ化すると共に、走行支援機能の欄に分別されている各運転支援操作のうち、実施許可となっている運転支援操作に対してそれぞれ点数を付与したものである。なお以下の説明では、走行支援機能の欄に分別されている各運転支援操作と、視界支援機能及び渋滞時支援機能の欄に分別された各運転支援操作とを区別するために、走行支援機能の欄に分別されている各運転支援操作のことを必要に応じて「走行支援操作」という。
本実施形態では、外部カメラ13で検出した自車両周辺の気象情報(雨や雪、霧などの情報)と、外部情報受信装置16で受信した外部情報に含まれる気象情報(雨や雪、霧、風速などの情報)とに基づいて、気象条件の判定を実施している。
気象条件に関するパッケージ群において、実施許可となっている各走行支援操作に対して付与されている点数は、気象条件が「晴」の場合を基準として、気象条件が「晴」以外のときに、その走行支援操作を自動で実施する際の難易度(以下「実施難易度」という。)、及び自車両1の周辺状況を確認して各走行支援操作が問題なく実施されているか否かをドライバが監視する際の難易度(以下「ドライバ監視難易度」という。)が、どの程度高くなるかを考慮して付与された点数である。本実施形態では、気象条件が「晴」のときと比較して、実施難易度が高くなるほど、またドライバ監視難易度が高くなるほど、各走行支援操作に対して高い点数を付与している。
気象条件が「晴」のときと比較して、気象条件が「雨」、「大雨」、「雪」、「大雪」、「霧」、又は「濃霧」のときは、ライダ11やミリ波レーダーセンサ12、外部カメラ13の検出精度が低下すると共に、ドライバの視界が悪化する。そのため、気象条件が「雨」、「大雨」、「雪」、「大雪」、「霧」、又は「濃霧」のときは、実施難易度、及びドライバ監視難易度が高くなる傾向にある。したがって本実施形態では、図5に示すように、気象条件が「雨」、「大雨」、「雪」、「大雪」、「霧」、又は「濃霧」のときには、実施許可となっている一部又は全部の各走行支援操作に対して付与されている点数が、気象条件が「晴」のときよりも高い値となっている。
また、気象条件が「晴」のときと比較して、気象条件が「風」、又は「強風」のときは、車両挙動が不安定になりやすい。そのため、気象条件が「風」、又は「強風」のときは、各走行支援操作の実施難易度が高くなる傾向にある。したがって本実施形態では、図6に示すように、気象条件が「風」、又は「強風」のときは、実施許可となっている一部又は全部の各走行支援操作に対して付与されている点数が、気象条件が「晴」のときよりも高い値となっている。なお、実施許可となっている各走行支援操作に対してこのような点数を付与した理由については、図13から図15を参照して後述する。
図6は、日照条件に関するパッケージ群を示す図である。日照条件に関するパッケージ群は、日照条件を「昼」と「夜と」に大別し、日照条件ごとに各運転支援操作の実施可否をパッケージ化すると共に、実施許可となっている各走行支援操作に対してそれぞれ点数を付与したものである。
本実施形態では、照度センサ14で検出した照度情報と、日時とに基づいて、日照条件の判定を実施している。
日照条件に関するパッケージ群において、実施許可となっている各走行支援操作に対して付与されている点数は、日照条件が「昼」の場合を基準として、日照条件が「夜」のときに、各走行支援操作の実施難易度、及び各走行支援操作が実施されているときのドライバ監視難易度がどの程度高くなるかを考慮して付与された点数である。本実施形態では、日照条件が「昼」のときと比較して、実施難易度が高くなるほど、またドライバの監視難易度が高くなるほど、各走行支援操作に対して高い点数を付与している。
日照条件が「昼」のときと比較して、日照条件が「夜」のときは、ドライバの視界が悪化する。そのため、日照条件が「夜」のときは、ドライバ監視難易度が高くなる傾向にある。したがって本実施形態では、図6に示すように、日照条件が「夜」のときは、実施許可となっている一部の各走行支援操作に対して付与されている点数が、日照条件が「昼」のときよりも高い値となっている。
図7は、道路種別に関するパッケージ群を示す図である。道路種別に関するパッケージ群は、道路種別を「一般道路」、「幹線道路」、東名高速道路や名神高速道路等の「都市間高速道路」、及び首都高速道路や阪神高速道路等の「都市高速道路」の4つに大別し、道路種別ごとに各運転支援操作の実施可否をパッケージ化すると共に、走行支援機能の欄に分別されている各運転支援操作のうち、実施許可となっている運転支援操作に対してそれぞれ点数を付与したものである。
本実施形態では、外部カメラ13で検出した自車両前方の道路情報と、地図データベース40の地図情報に含まれる道路種別情報とに基づいて、道路種別の判定を実施している。
道路種別に関するパッケージ群において、実施許可となっている各走行支援操作に対して付与されている点数は、道路種別が「都市間高速道路」の場合を基準として、道路種別が「都市間高速道路」以外のときに、各走行支援操作の実施難易度、及び各走行支援操作が実施されているときのドライバ監視難易度がどの程度高くなるかを考慮して付与された点数である。本実施形態では、道路種別が「都市間高速道路」のときと比較して、実施難易度が高くなるほど、またドライバ監視難易度が高くなるほど、各走行支援操作に対して高い点数を付与している。
道路種別が「都市間高速道路」のときと比較して、道路種別が「一般道路」、「幹線道路」、又は「都市高速道路」のときは、一般的に急カーブなどが多く、また道幅も狭い。さらに自車両の周囲に存在する他車両の数も多くなる傾向にある。そのため、道路種別が「一般道路」、「幹線道路」、又は「都市高速道路」のときは、実施難易度、及びドライバ監視難易度が高くなる傾向にある。したがって本実施形態では、図7に示すように、道路種別が「一般道路」、「幹線道路」、又は「都市高速道路」のときは、実施許可となっている一部又は全部の各走行支援操作に対して付与されている点数が、道路種別が「都市間高速道路」のときよりも高い値となっている。
図8は、道路状況に関するパッケージ群を示す図である。道路状況に関するパッケージ群は、道路状況を「渋滞」と「非渋滞」とに大別し、道路状況ごとに各運転支援操作の実施可否をパッケージ化すると共に、実施許可となっている各走行支援操作に対してそれぞれ点数を付与したものである。なお本実施形態において、「渋滞」とは、自車両周辺に他車両(先行車又は後続車)があり、かつ、自車両1及び自車両周辺の他車両の車速が継続的に一定速度(例えば一般道路や幹線道路では20[km/h]、都市間高速道路や都市高速走路では40[km/h])以下となっている状態をいう。一方で「非渋滞」とは、渋滞以外の状態をいう。
本実施形態では、ライダ11で生成した三次元画像の情報と、ミリ波レーダーセンサ12で検出した自車両周辺情報と、外部カメラ13で検出した自車両前方の障害物情報及び道路情報と、外部情報受信装置16で受信した外部情報に含まれる渋滞情報と、車速センサ21で検出した車速情報とに基づいて、道路状況の判定を実施している。
道路状況に関するパッケージ群において、実施許可となっている各走行支援操作に対して付与されている点数は、道路状況が「非渋滞」の場合を基準として、道路状況が「渋滞」のときに、各走行支援操作の実施難易度、及び各走行支援操作が実施されているときのドライバ監視難易度がどの程度高くなるかを考慮して付与された点数である。本実施形態では、道路状況が「非渋滞」のときと比較して、実施難易度が高くなるほど、またドライバ監視難易度が高くなるほど、高い点数を付与している。
道路状況が「非渋滞」のときと比較して、道路状況が「渋滞」のときは、二輪車などのすり抜け等に注意を払いながら各走行支援操作を行う必要があるため、実施難易度が高くなる傾向にある。したがって本実施形態では、図8に示すように、道路状況が「渋滞」のときは、実施許可となっている一部の各走行支援操作に対して付与されている点数が、道路状況が「非渋滞」のときよりも高い値となっている。
図9は、ドライバ状態に関するパッケージ群を示す図である。ドライバ状態に関するパッケージ群は、ドライバ状態を眠気、疲労、過労、漫然、及び平常の5つに大別し、ドライバ状態ごとに各運転支援操作の実施可否をパッケージ化すると共に、実施許可となっている各走行支援操作に対してそれぞれ点数を付与したものである。
なお本実施形態において、「眠気」とは、すぐには運転をやめなければならない程ではないが、眠気を原因として運転操作に対するドライバの集中力が低下している状態をいう。「疲労」とは、すぐには運転をやめなければならない程ではないが、疲労を原因として運転操作に対するドライバの集中力が低下している状態をいう。「漫然」とは、例えばドライバが携帯電話やタブレットパソコン等の携帯機器の操作や動画の視聴等といった運転操作以外のセカンドタスクを実施している場合や、脇見をしている場合など、眠気や疲労以外の要因によって運転操作に対するドライバの集中力が低下している状態をいう。「過労」とは、すぐに運転をやめなければならない程、眠気や疲労、漫然によって運転操作に対するドライバの集中力が低下している状態をいう。「平常」とは、眠気、疲労、過労、及び漫然以外の状態をいう。
本実施形態では、ドライバモニタカメラ31で検出したドライバの外観情報と、ステアリングタッチセンサ32で検出したステアリングの把持情報とに基づいて、ドライバ状態の判定を実施している。具体的には、ステアリングの把持情報を参照しつつ、ドライバの外観情報からドライバの表情(顔の向きや眼の開閉度など)を検出し、検出したドライバの表情を予めROMに記憶させたドライバ状態に応じた表情と比較することで、ドライバ状態の判定を実施している。
なお、ドライバ状態を判定するための指標となるのはドライバの外観情報やステアリングの把持情報に限られるものではなく、例えばドライバの心拍数や脈拍数、脳波などを検出し、これらを予めROMに記憶させたドライバ状態に応じた心拍数や脈拍数、脳波などと比較して、ドライバ状態の判定をしても良い。
ドライバ状態に関するパッケージ群において、実施許可となっている各走行支援操作に対して付与されている点数は、ドライバ状態が「平常」の場合を基準として、ドライバ状態が「平常」以外のときに、各走行支援操作の実施難易度、及び各走行支援操作が実施されているときのドライバ監視難易度がどの程度高くなるかを考慮して付与された点数である。本実施形態では、ドライバ状態が「平常」のときと比較して、実施難易度が高くなるほど、またドライバ監視難易度が高くなるほど、高い点数を付与している。
ドライバ状態が「平常」のときと比較して、ドライバ状態が「眠気」、「疲労」、「過労」又は「漫然」のときは、ドライバによる周辺状況の確認能力が低下するため、ドライバ監視難易度が高くなる傾向にある。したがって本実施形態では、図9に示すように、ドライバ状態が「眠気」、「疲労」、「過労」又は「漫然」のときは、実施許可となっている全部の各走行支援操作に対して付与されている点数が、ドライバ状態が「平常」のときよりも高い値となっている。
図10は、自車両状態に関するパッケージ群を示す図である。自車両状態に関するパッケージ群は、自車両状態を不安定と安定とに大別し、自車両状態ごとに各運転支援操作の実施可否をパッケージ化すると共に、実施許可となっている各走行支援操作に対してそれぞれ点数を付与したものである。
なお本実施形態において、自車両状態が「不安定」とは、ピッチングやローリング、ヨーイングなどが継続して起こっており、自車両1の挙動が乱れている状態をいう。ピッチングとは、車両の重心を通る左右方向の水平軸を中心にして車両が前後に揺動している状態のことをいう。ローリングとは、車両の重心を通る前後方向の水平軸を中心にして車両が左右に揺動している状態のことをいう。ヨーイングとは、車両の重心を通る鉛直軸を中心にして車両が左右に揺動している状態のことをいう。一方で自車両状態が「安定」とは、不安定以外の状態、すなわち自車両1の挙動が乱れている状態をいう。
本実施形態では、加速度センサ22で検出した加速度情報と、ヨーレートセンサ23で検出した自車両1の姿勢情報と、に基づいて、自車両状態の判定を実施している。
自車両状態に関するパッケージ群において、実施許可となっている各走行支援操作に対して付与されている点数は、自車両状態が「安定」の場合を基準として、自車両状態が「不安定」のときに、各走行支援操作の実施難易度、及び各走行支援操作が実施されているときのドライバ監視難易度がどの程度高くなるかを考慮して付与された点数である。本実施形態では、自車両状態が「安定」のときと比較して、実施難易度が高くなるほど、またドライバ監視難易度が高くなるほど、高い点数を付与している。
自車両状態が「安定」のときと比較して、自車両状態が「不安定」のときは、車両の挙動が乱れているため、実施難易度が高くなる傾向にある。したがって本実施形態では、図10に示すように、自車両状態が「不安定」のときは、実施許可となっている全部の各走行支援操作に対して付与されている点数が、自車両状態が「安定」のときよりも高い値となっている。
図11は、電子制御ユニット80が実施する本実施形態による自動運転制御について説明するフローチャートである。電子制御ユニット80は、本ルーチンを所定の演算周期で繰り返し実施する。
ステップS1において、電子制御ユニット80は、車両の運転モードが自動運転モードか否かを判定する。電子制御ユニット80は、車両の運転モードが自動運転モードであれば、ステップS2の処理に進む。一方で電子制御ユニット80は、運転モードが手動運転モードであれば、ステップS9の処理に進む。
ステップS2において、電子制御ユニット80は、運転支援パッケージを決定するための運転支援パッケージ決定処理を実施する。運転支援パッケージ決定処理の詳細な内容については、図12を参照して後述する。
ステップS3において、電子制御ユニット80は、ステップS2で決定した運転支援パッケージをドライバに提案する必要があるか否かを判定する。具体的には電子制御ユニット80は、ステップS2で決定した運転支援パッケージが、現在選択されている運転支援パッケージと異なるものであるか否かを判定する。電子制御ユニット80は、ステップS2で決定した運転支援パッケージが現在選択されている運転支援パッケージと異なるものであれば、ステップS4の処理に進む。一方で電子制御ユニット80は、ステップS2で決定した運転支援パッケージが、現在選択されている運転支援パッケージと同じものであれば、ステップS7の処理に進む。
ステップS4において、電子制御ユニット80は、ステップS2で決定した運転支援パッケージへの切り替えを、HMI60を介してドライバに提案する。本実施形態では電子制御ユニット80は、ステップS2で決定した運転支援パッケージをディスプレイに表示すると共に、スピーカによって当該運転支援パッケージへの切り替えを提案する。
ここで運転支援パッケージは、各運転支援操作の実施可否を予め一括りにまとめてパッケージ化したものである。そのため、ドライバに運転支援パッケージを提案する際には、例えばタッチパネル上に1つの承認ボタンを表示するなどして、ドライバが一度の操作で運転支援パッケージの切り替えを実行することができるような形態で運転支援パッケージを提案することができる。したがって、ドライバは容易に運転支援パッケージの切り替えを実行することができる。
ステップS5において、電子制御ユニット80は、提案した運転支援パッケージへの切り替えをドライバが承認したか否かを判定する。具体的には電子制御ユニット80は、運転支援パッケージを提案してから所定時間が経過するまでの間に、ドライバがHMI60を介して承認の意思を示したときに、提案した運転支援パッケージへの切り替えをドライバが承認したと判定する。電子制御ユニット80は、提案した運転支援パッケージへの切り替えをドライバが承認したと判定したときは、ステップS6の処理に進む。一方で電子制御ユニット80は、提案した運転支援パッケージへの切り替えをドライバが承認しなかったと判定したときは、ステップS7の処理に進む。
ステップS6において、電子制御ユニット80は、運転支援パッケージをステップS2で決定した運転支援パッケージに切り替える。
ステップS7において、電子制御ユニット80は、現在の運転支援パッケージを維持する。
ステップS8において、電子制御ユニット80は、ドライバの承認が得られている運転支援パッケージに基づいて、自動的に車両を制御する。具体的には、運転支援パッケージの中で実施が許可されている運転支援操作が自動的に行われるように、車両を制御する。
ステップS9において、電子制御ユニット80は、運転モードが自動運転モードに切り替えられるまで、全ての運転支援操作の自動実施を停止する。
図12は、運転支援パッケージ決定処理の内容について説明するフローチャートである。
ステップS21において、電子制御ユニット80は、周辺環境情報と、自車両情報と、ドライバ情報とに基づいて、周辺環境状態(本実施形態では気象条件、日照条件、道路種別、及び道路状況)、自車両状態、及びドライバ状態を特定する。
ステップS22において、電子制御ユニット80は、ステップS21で特定した周辺環境状態、自車両状態、及びドライバ状態に合致する単位パッケージを、各パッケージ群の中から選択する。
具体的には電子制御ユニット80は、気象条件に関するパッケージ群の中から現在の気象条件として特定された気象条件の単位パッケージを選択する。例えばステップS21において現在の気象条件が「晴」であると特定されたときは、電子制御ユニット80は気象条件に関するパッケージ群の中から「晴」の単位パッケージを選択する。同様にして電子制御ユニット80は、日照条件に関するパッケージ群の中から現在の日照条件として特定された日照条件の単位パッケージを選択する。また電子制御ユニット80は、道路種別に関するパッケージ群の中から現在走行中の道路種別として特定された道路種別の単位パッケージを選択する。また電子制御ユニット80は、道路状況に関するパッケージ群の中から現在の道路状況として特定された道路状況の単位パッケージを選択する。また電子制御ユニット80は、ドライバ状態に関するパッケージ群の中から現在のドライバ状態として特定されたドライバ状態の単位パッケージを選択する。さらに電子制御ユニット80は、自車両状態に関するパッケージ群の中から現在の自車両状態として特定された自車両状態の単位パッケージを選択する。
ステップS23において、電子制御ユニット80は、ステップS22で選択された各単位パッケージを組み合わせることで、運転支援パッケージを作成する。このとき本実施形態では、走行支援機能についてはAND条件で組み合わせ、視界支援機能及び渋滞時支援機能についてはOR条件で組み合わせている。
したがって、走行支援機能の欄の各運転支援操作については、全ての単位パッケージで実施許可(マル)となっている運転支援操作が、運転支援パッケージにおいて実施許可となる。一方で、少なくとも1つの単位パッケージで実施不許可(バツ)となっている運転支援操作が、運転支援パッケージにおいて実施不許可となる。
また、視界支援機能及び渋滞時支援機能の欄の各運転支援操作については、少なくとも1つの単位パッケージで実施許可となっている運転支援操作が、運転支援パッケージにおいて実施許可となる。また、全ての単位パッケージで実施許可となっている運転支援操作も、運転支援パッケージにおいて実施許可となる。一方で、全ての単位パッケージで実施不許可となっている運転支援操作が、運転支援パッケージにおいて実施不許可となる。
このように本実施形態では、走行支援機能についてはAND条件で組み合わせ、視界支援機能及び渋滞時支援機能についてはOR条件で組み合わせているが、その組み合わせ方法は限られるものではなく、必要に応じてAND条件又はOR条件で組み合わせれば良い。また、各機能を全てAND条件で組み合わせても、またOR条件で組み合わせても良い。
ステップS24において、電子制御ユニット80は、ステップS22で選択された各単位パッケージで、実施許可となっている各走行支援操作に対してそれぞれ付与されている点数を、走行支援操作ごとに全単位パッケージ分加算して、走行支援操作ごとに付与点数の合計点を算出する。
ここで、各単位パッケージで実施許可となっている走行支援操作に対して付与されている点数は、その走行支援操作の実施難易度が高くなるほど、またその走行支援操作が実施されているときのドライバ監視難易度が高くなるほど高い点数となっている。そのため、ステップS24で算出される各走行支援操作の付与点数の合計点が高いときほど、その走行支援操作の実施難易度、及びその走行支援操作が実施されているときのドライバ監視難易度の一方又は双方が高くなっているということができる。
ステップS25において、電子制御ユニット80は、ステップS23で作成された運転支援パッケージの各走行支援操作の中で、実施許可となっており、かつ付与点数の合計点が所定の閾値以上となっている走行支援操作(以下「高難度走行支援操作」という。)があるか否かを判定する。電子制御ユニット80は、高難度走行支援操作があればステップS26の処理に進む。一方で電子制御ユニット80は、高難度走行支援操作がなければステップS27の処理に進む。
ステップS26において、電子制御ユニット80は、ステップS23で作成された運転支援パッケージに対し、高難度走行支援操作を実施不許可(バツ)に変更したものを、運転支援パッケージとする。
ステップS27において、電子制御ユニット80は、ステップS23で作成された運転支援パッケージを、そのまま運転支援パッケージとする。
以下、各単位パッケージで実施許可となっている走行支援操作に点数を付与し、このように走行支援操作ごとの付与点数の合計点を算出すると共に、高難度走行支援操作については実施不許可に変更する理由について、図13から図15を参照して説明する。
図13は、ステップS21において、気象条件が「晴」、日照条件が「昼」、道路種別が「都市間高速道路」、道路状況が「非渋滞」、ドライバ状態が「平常」、自車両状態が「安定」であると特定されたときに、ステップS23で作成される運転支援パッケージと、ステップS24で算出される各走行支援操作の付与点数の合計点と、を示した図である。なお以下の説明では簡単のため、気象条件が「晴」、日照条件が「昼」、道路種別が「都市間高速道路」、道路状況が「非渋滞」、ドライバ状態が「平常」、自車両状態が「安定」であるときを、必要に応じて「周辺環境状態等が基準状態にある」という。
図14は、ステップS21において、気象条件が「晴」、日照条件が「夜」、道路種別が「幹線道路」、道路状況が「非渋滞」、ドライバ状態が「疲労」、自車両状態が「安定」であると特定されたときに、ステップS23で作成される運転支援パッケージと、ステップS24で算出される各走行支援操作の付与点数の合計点と、を示した図である。
図5から図10を参照して前述した通り、気象条件が「晴」のときと比較して、気象条件が「晴」以外のときには、各走行支援操作の実施難易度、及び各走行支援操作が実施されているときのドライバの監視難易度が高くなる。また日照条件が「昼」のときと比較して、気象条件が「夜」のときには、各走行支援操作が実施されているときのドライバの監視難易度が高くなる。また気道路種別が「都市間高速道路」」のときと比較して、道路種別が「都市間高速道路」以外のときには、各走行支援操作の実施難易度、及びドライバの監視難易度が高くなる。また道路状況が「非渋滞」のときと比較して、道路状況が「渋滞」のときには、各走行支援操作の実施難易度が高くなる。またドライバ状態が「平常」のときと比較して、ドライバ状態が「平常」以外のときには、各走行支援操作が実施されているときのドライバの監視難易度が高くなる。さらに自車両状態が「安定」のときと比較して、自車両状態が「不安定」のときには、各走行支援操作の実施難易度が高くなる。
すなわち、各走行支援操作の実施難易度、及び各走行支援操作が実施されているときのドライバの監視難易度は、周辺環境状態等が基準状態にあるときに最も低くなる。そのため、図13に示すように、周辺環境状態等が基準状態にあるときは、ステップS24で算出される各走行支援操作の付与点数が、それぞれ0点となっている。またステップS23で作成される運転支援パッケージは、全ての走行支援操作が実施許可とされたパッケージとなっている。
一方、周辺環境状態等が基準状態から変化するほど、各走行支援操作の実施難易度、及び各走行支援操作が実施されているときのドライバの監視難易度が基本的に高くなっていく。そのため、例えば図14に示すように、日照条件、道路種別、及びドライバ状態が基準状態からそれぞれ「夜」、「幹線道路」、「疲労」に変化したときは、ステップS24で算出される各走行支援操作の付与点数の合計点が、上から順に1点、3点、10点、9点、6点、6点となっている。またステップS23で作成される運転支援パッケージは、車間距離制御、車線追従制御、及び自動車線変更が実施許可とされ、自動追越、自動分流、及び自動合流が実施不許可とされたパッケージとなっている。
このとき、付与点数の合計点が10点となっている自動車線変更については、実施許可となっているものの、周辺環境状態が基準状態にあるときと比べて、自動車線変更を自動で実施する実施難易度、及び自動車線変更が実施されているときのドライバ監視難易度の一方又は双方が非常に高くなっていると言える。
このように、各パッケージ群の中から選択した各単位パッケージを組み合わせることで運転支援パッケージを作成した場合には、その作成した運転支援パッケージで実施許可となっているものの、実施難易度、及びドライバ監視難易度の一方又は双方が、周辺環境状態等が基準状態にあるときと比べて高くなる走行支援操作が生じてしまうことがある。そして、実施難易度、及びドライバ監視難易度の一方又は双方が、周辺環境状態等が基準状態にあるときと比べて非常に高くなっている走行支援操作に関しては、実施不許可とした方が、安全を考慮すると、より望ましいと言える。すなわち、各パッケージ群の中から選択した各単位パッケージを組み合わせることで作成された運転支援パッケージにおいて、実施難易度、及びドライバ監視難易度の一方又は双方が或る一定以上高くなっている走行支援操作がある場合には、その走行支援操作については実施不許可に変更したほうが、周辺環境状態、自車両状態、及びドライバ状態により適した運転支援パッケージになると言える。
そこで本実施形態では、ステップS23で作成された運転支援パッケージの各走行支援操作の中で、実施許可となっており、かつ付与点数の合計点が所定の閾値以上となっている走行支援操作(高難度走行支援操作)については、実施不許可に変更することとしたのである。
図15は、ステップS21において、図14と同様に気象条件が「晴」、日照条件が「夜」、道路種別が「幹線道路」、道路状況が「非渋滞」、ドライバ状態が「疲労」、自車両状態が「安定」であると特定されたときに、ステップS24で算出される各走行支援操作の付与点数の合計点と、ステップS26で最終的に作成される運転支援パッケージと、を示した図である。
図15に示すように、例えば閾値を10点とした場合は、自動車線変更が高難度走行支援操作となり、自走車線変更が実施許可から実施不許可に変更される。これにより、周辺環境状態、自車両状態、及びドライバ状態に一層適した運転支援パッケージを作成することができる。特に本実施形態では、各走行支援操作の実施難易度、及び各走行支援操作が実施されているときのドライバの監視難易度がどの程度高くなるかを考慮して、各単位パッケージの走行支援操作に点数を付与しているので、より安全を考慮した運転支援パッケージを作成することができる。
なお、本実施形態では、周辺環境情報、自車両情報、及びドライバ情報の3つの情報に基づいて運転支援パッケージを作成していたが、必ずしもこれら3つの情報が必要なわけでない。例えば気象条件に関するパッケージ群しか有していない場合であれば、周辺環境情報のみに基づいて運転支援パッケージを作成すればよい。また自車両状態に関するパッケージ群しか有していない場合であれば、自車両情報のみに基づいて運転支援パッケージを決定すればよい。なお、この場合は自車両状態に関するパッケージ群が少なくとも2つ必要となる。またドライバ状態に関するパッケージ群しか有していない場合であれば、ドライバ情報のみに基づいて運転支援パッケージを決定すればよい。なお、この場合はドライバ状態に関するパッケージ群が少なくとも2つ必要となる。
このように運転支援パッケージは、ROMに記憶されたパッケージ群の種類に応じて、必要な情報に基づき決定すればよいものである。すなわち運転支援パッケージは、ROMに記憶されたパッケージ群の種類に応じて、周辺環境情報、自車両情報、及びドライバ情報の少なくとも1つに基づき決定すればよいものである。
以上説明した本実施形態によれば、自車両1の周辺環境状態に関する周辺環境情報を取得するための周辺環境情報取得装置10と、自車両1の状態に関する自車両情報を取得するための自車両情報取得装置20と、自車両1のドライバの状態に関するドライバ情報を取得するためのドライバ情報取得装置30と、を備える車両を制御する電子制御ユニット80(制御装置)が、複数の運転支援操作の中からドライバによる実施許可を得た運転支援操作を自動的に行う自動運転制御部90を備える。自動運転制御部90は、複数の運転支援操作のそれぞれの実施可否をパッケージ化した運転支援パッケージを決定するパッケージ決定部91と、運転支援パッケージで実施が許可されている運転支援操作の実施許可を得るために、当該運転支援パッケージへの切り替えをドライバに提案するパッケージ提案部92と、を備える。
そしてパッケージ決定部91が、周辺環境情報、自車両情報、及びドライバ情報の少なくとも1つに基づいて、少なくとも一部の運転支援操作に点数が付与された単位パッケージを複数選択し、選択された複数の単位パッケージをそれぞれ組みわせることにより運転支援パッケージを作成し、作成された運転支援パッケージで実施許可となっている運転支援操作の中で、前記複数の単位パッケージでそれぞれ付与されている点数を加算した合計点が所定の閾値以上となる運転支援操作があるときは、当該運転支援操作を実施許可から実施不許可に変更するように構成されている。
これにより、複数の運転支援操作の中からドライバによる実施許可を得た運転支援操作を自動的に行う自動運転を実施する場合において、周辺環境状態、自車両状態、及びドライバ状態が変化したときには、変化した各状態に適した運転支援パッケージをその都度ドライバに提案することができる。ドライバに提案される運転支援パッケージは、各運転支援操作の実施可否が予めパッケージ化されたものなので、ドライバは各運転支援操作の実施可否の設定を行う必要がなくなる。そのため、周辺環境状態、自車両状態、及びドライバ状態に適した自動運転を、ドライバによって簡便に実施させることができる。
特に本実施形態では、運転支援パッケージを作成する際に選択された複数の単位パッケージでそれぞれ付与されている点数を加算した合計点が所定の閾値以上となる運転支援操作があるときは、当該運転支援操作を実施許可から実施不許可に変更している。そのため、各単位パッケージの少なくとも一部の運転支援操作に対して付与した点数を適切な点数とすることで、ある特定の単位パッケージが組み合わされたときに作成される運転支援パッケージにおいて、実施許可とすることが適当でない運転支援操作を実施不許可にすることができる。よって、周辺環境状態、自車両状態、及びドライバ状態が変化したときに、変化した各状態に一層適した運転支援パッケージをその都度ドライバに提案することができる。
また自動運転制御部90は、パッケージ提案部92によって提案された運転支援パッケージへの切り替えを、ドライバが承認したか否かを判定する判定部93をさらに備え、判定部93の判定結果に応じて運転支援操作を自動的に行うように構成されている。具体的には、判定部93が運転支援パッケージへの切り替えをドライバが承認したと判定したときに、当該運転支援パッケージで実施が許可されている運転支援操作を自動的に行うように構成されている。
これにより、提案された運転支援パッケージに基づいて自動運転が実施されるようにするか否か、すなわち、提案された運転支援パッケージの中で実施が許可されている運転支援操作のみが行われるようにするか否かを、ドライバの意思で決定することができる。そのため、ドライバの意思を反映させた自動運転を実施することができ、ドライバにとって好ましくない運転支援操作が実施されるのを抑制できる。
またパッケージ提案部92は、ドライバが一度の操作で運転支援パッケージの切り替えを実行できるような形態で、当該運転支援パッケージへの切り替えをドライバに提案するように構成されている。
これにより、ドライバは容易に運転支援パッケージの切り替えを実行することができるので、周辺環境状態、自車両状態、及びドライバ状態に適した自動運転を、より一層簡便に実施させることができる。
以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。
例えば上記の実施形態では、各単位パッケージの走行支援機能の欄に分別された運転支援操作に対してのみ点数を付与していたが、視界支援機能及び渋滞時支援機能の欄に分別された運転支援操作に対しても、種々の観点から点数を付与し、付与点数の合計点が閾値以上となった運転支援操作に関しては実施不許可にするようにしても良い。
1 自車両
10 周辺環境情報取得装置
20 自車両情報取得装置
30 ドライバ情報取得装置
80 電子制御ユニット(制御装置)
90 自動運転制御部
91 パッケージ決定部
92 パッケージ提案部

Claims (1)

  1. 自車両の周辺環境状態に関する周辺環境情報を取得するための周辺環境情報取得装置と、
    自車両の状態に関する自車両情報を取得するための自車両情報取得装置と、
    自車両のドライバの状態に関するドライバ情報を取得するためのドライバ情報取得装置と、
    を備える車両を制御するための車両の制御装置であって、
    複数の運転支援操作の中からドライバによる実施許可を得た運転支援操作を自動的に行う自動運転制御部を備え、
    前記自動運転制御部は、
    前記複数の運転支援操作のそれぞれの実施可否をパッケージ化した運転支援パッケージを決定するパッケージ決定部と、
    前記運転支援パッケージで実施が許可されている運転支援操作の実施許可を得るために、当該運転支援パッケージへの切り替えをドライバに提案するパッケージ提案部と、
    を備え、
    前記パッケージ決定部は、
    前記周辺環境情報、前記自車両情報、及び前記ドライバ情報の少なくとも1つに基づいて、少なくとも一部の運転支援操作に難易度に応じた点数が付与された単位パッケージを複数選択し、
    選択された複数の単位パッケージをそれぞれ組みわせることにより前記運転支援パッケージを作成し、
    作成された前記運転支援パッケージで実施許可となっている運転支援操作の中で、前記複数の単位パッケージでそれぞれ付与されている点数を加算した合計点が所定の閾値以上となる運転支援操作があるときは、当該運転支援操作を実施許可から実施不許可に変更する、
    車両の制御装置。
JP2016136074A 2016-07-08 2016-07-08 車両の制御装置 Active JP6790522B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016136074A JP6790522B2 (ja) 2016-07-08 2016-07-08 車両の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016136074A JP6790522B2 (ja) 2016-07-08 2016-07-08 車両の制御装置

Publications (2)

Publication Number Publication Date
JP2018005830A JP2018005830A (ja) 2018-01-11
JP6790522B2 true JP6790522B2 (ja) 2020-11-25

Family

ID=60946602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016136074A Active JP6790522B2 (ja) 2016-07-08 2016-07-08 車両の制御装置

Country Status (1)

Country Link
JP (1) JP6790522B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111391868A (zh) * 2018-12-27 2020-07-10 观致汽车有限公司 用于交通工具的安全驾驶的方法、装置和计算机可读介质
CN112114541A (zh) * 2019-06-21 2020-12-22 华为技术有限公司 传感器的控制方法、装置和传感器

Also Published As

Publication number Publication date
JP2018005830A (ja) 2018-01-11

Similar Documents

Publication Publication Date Title
JP6354776B2 (ja) 車両の制御装置
US10688993B2 (en) Vehicle control system with traffic driving control
JP6418199B2 (ja) 車両の自動運転システム
JP6460058B2 (ja) 車両の制御装置
JP2017185946A (ja) 車両の自動運転システム
JP6460019B2 (ja) 車両の制御装置
JP6930383B2 (ja) 車両の制御装置
US20180237008A1 (en) Control device for vehicle
JP6790522B2 (ja) 車両の制御装置
JP6720732B2 (ja) 車両の制御装置
JP2020064402A (ja) 表示装置
JP6772527B2 (ja) 車両の制御装置
JP6658358B2 (ja) 車両の制御装置
JP6701913B2 (ja) 車両の制御装置
JP2018086874A (ja) 車両の追従発進制御装置
WO2018168099A1 (ja) 集中度判定装置、集中度判定方法及び集中度判定のためのプログラム
JP2019096117A (ja) 車両の制御装置
JP2018185555A (ja) 車両の制御装置
JP2019188867A (ja) 車両の制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201019

R151 Written notification of patent or utility model registration

Ref document number: 6790522

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151