JP2010014656A - Noncontact side-surface shape measuring apparatus - Google Patents

Noncontact side-surface shape measuring apparatus Download PDF

Info

Publication number
JP2010014656A
JP2010014656A JP2008176817A JP2008176817A JP2010014656A JP 2010014656 A JP2010014656 A JP 2010014656A JP 2008176817 A JP2008176817 A JP 2008176817A JP 2008176817 A JP2008176817 A JP 2008176817A JP 2010014656 A JP2010014656 A JP 2010014656A
Authority
JP
Japan
Prior art keywords
axis
lens means
axis direction
imaging
laser light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008176817A
Other languages
Japanese (ja)
Inventor
Katsuhiro Miura
勝弘 三浦
Hideo Kotajima
秀夫 古田島
Tadashi Matsuba
正 松葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitaka Kohki Co Ltd
Original Assignee
Mitaka Kohki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitaka Kohki Co Ltd filed Critical Mitaka Kohki Co Ltd
Priority to JP2008176817A priority Critical patent/JP2010014656A/en
Publication of JP2010014656A publication Critical patent/JP2010014656A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a noncontact side-surface shape measuring apparatus for measuring the side-surface shape of a measure workpiece. <P>SOLUTION: A laser beam L radiated downward is reflected on a prism 12 in the X-axis direction, so that the inner surface shape of the center hole 1a of a cylindrical member 1 can also be measured. Especially, the apparatus includes a structure where the prism 12 positioned at the lower end, an objective lens means 21, and a first image forming lens means 20 are fixed, so that a head 10 can be miniaturized. Auto-focus can be performed by a collimator lens means 18 moving in the Z-axis, so that a probe 9 can be formed to be long while having a narrow diameter. Therefore, the head 10 is deeply inserted into the center hole 1a of the cylindrical member 1, and the shape of its inner surface can be measured. By repeating circumferential measurement while changing the position of the Z-axis direction, the three-dimensional shape of the inner surface can be measured. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は非接触側面形状測定装置に関するものである。   The present invention relates to a non-contact side surface shape measuring apparatus.

レーザオートフォーカスを用いたレーザプローブ式の非接触形状測定装置は精密部品の形状や粗さを広範囲にわたりナノレベルの分解能で計測できることが知られている。すなわち、三次元直交座標軸XYZとして、測定対象である測定ワークの上面に対し、鉛直方向であるZ軸方向でレーザ光によるオートフォーカスをかけながら、測定ワークをXY方向に走査し、オートフォーカス光学系の対物レンズのZ軸方向での移動量から測定ワークの表面形状に関する測定データを取得する構造である(例えば、特許文献1参照)。   It is known that a laser probe type non-contact shape measuring apparatus using laser autofocus can measure the shape and roughness of precision parts over a wide range with nano-level resolution. That is, as the three-dimensional orthogonal coordinate axis XYZ, the measurement workpiece is scanned in the X and Y directions while autofocusing with a laser beam is applied to the upper surface of the measurement workpiece to be measured in the Z-axis direction, which is the vertical direction. It is a structure which acquires the measurement data regarding the surface shape of a measurement workpiece | work from the movement amount in the Z-axis direction of this objective lens (for example, refer patent document 1).

すなわち、プローブ光としてのレーザ光は対物レンズの光軸に平行かつ光軸からずれた位置に導入され、対物レンズの焦点面において光軸と交差する。この交差位置は対物レンズに対して位置固定されているため、対物レンズがZ軸方向に移動することにより測定ワーク表面へのX軸またはY軸方向の照射位置が移動する。測定ワーク表面の一点で反射されたレーザ光は対物レンズを介して光位置検出器で位置検出される。反射光の検出位置から測定ワーク表面と対物レンズの焦点面との位置ずれが測定されるので、これをフィードバック制御することによりオートフォーカスが実現する。その結果、対物レンズのZ軸方向の位置からワーク表面の形状を測定することができる。
特開2005−201656号公報
That is, the laser light as the probe light is introduced at a position parallel to the optical axis of the objective lens and shifted from the optical axis, and intersects the optical axis at the focal plane of the objective lens. Since the crossing position is fixed with respect to the objective lens, the irradiation position in the X-axis or Y-axis direction on the surface of the measurement workpiece moves when the objective lens moves in the Z-axis direction. The position of the laser beam reflected at one point on the surface of the measurement work is detected by the optical position detector via the objective lens. Since the positional deviation between the surface of the workpiece to be measured and the focal plane of the objective lens is measured from the detection position of the reflected light, autofocus is realized by feedback control of this. As a result, the shape of the workpiece surface can be measured from the position of the objective lens in the Z-axis direction.
JP 2005-201656 A

しかしながら、このような関連技術にあっては、対物レンズを透過したレーザプローブとしてのレーザ光を、Z軸方向で測定ワークの上面に当てる構造のため、測定ワークの上面形状しか測定することができず、測定ワークの側面形状は測定することができなかった。特に、筒形状をした測定ワークの孔の中の深い部分の内面形状を測定することができなかった。   However, in such a related technique, since the laser beam as the laser probe that has passed through the objective lens is applied to the upper surface of the measurement workpiece in the Z-axis direction, only the upper surface shape of the measurement workpiece can be measured. In addition, the side shape of the measurement workpiece could not be measured. In particular, it was not possible to measure the inner surface shape of a deep portion in the hole of the measurement workpiece having a cylindrical shape.

本発明は、このような従来の技術に着目してなされたものであり、測定ワークの側面形状も測定することができる非接触側面形状測定装置を提供するものである。   The present invention has been made paying attention to such a conventional technique, and provides a non-contact side surface shape measuring apparatus capable of measuring a side surface shape of a measurement workpiece.

請求項1記載の発明は、三次元直交座標軸XYZとして、鉛直なZ軸と平行にレーザー光を下向きに照射するレーザー光照射手段と、Z軸の下方に固定され且つ下向きのレーザー光をX軸方向へ反射すると共にX軸上に位置する測定ワークの側面で反射されたレーザー光を上方向へ反射する反射手段と、X軸上に固定され且つ反射手段で反射されたレーザー光を透過して焦点に向かわせると共に測定ワークの側面で反射されたレーザ光を透過して反射手段へ向かわせる対物レンズ手段と、反射手段の上方のZ軸上に固定され反射手段から上方向へ反射されたレーザー光をZ軸上の第1結像点に結像させる第1結像レンズ手段と、Z軸方向に移動自在で且つ第1結像点を通過したレーザー光を透過してその光路をZ軸と平行にするコリメータレンズ手段と、コリメータレンズ手段を透過したレーザー光を光軸の第2結像点に結像させる第2結像レンズ手段と、第2結像レンズ手段を透過したレーザー光を受光する光位置検出手段と、光位置検出手段からの位置信号に基づいてレーザ光の焦点を測定ワークの側面に合致せしめるべく前記コリメータレンズ手段をZ軸方向で移動させるフォーカス手段とを備えたことを特徴とする。   According to the first aspect of the present invention, the three-dimensional orthogonal coordinate axis XYZ is a laser beam irradiation means for irradiating a laser beam downward in parallel with the vertical Z axis, and a downward laser beam fixed below the Z axis and the X axis Reflecting means for reflecting the laser light reflected on the side surface of the measurement workpiece located on the X axis and reflecting upward, and transmitting the laser light fixed on the X axis and reflected by the reflecting means. An objective lens unit that transmits the laser beam reflected on the side of the measurement work and transmits the laser beam to the reflecting unit, and a laser beam that is fixed on the Z axis above the reflecting unit and reflected upward from the reflecting unit. First imaging lens means for imaging light at a first imaging point on the Z axis; and laser light that is movable in the Z axis direction and that has passed through the first imaging point, and passes the optical path along the Z axis. Collimator parallel Means, a second imaging lens means for forming an image of the laser light transmitted through the collimator lens means at a second imaging point of the optical axis, and an optical position detection for receiving the laser light transmitted through the second imaging lens means And a focusing means for moving the collimator lens means in the Z-axis direction so as to make the focal point of the laser beam coincide with the side surface of the measurement workpiece based on the position signal from the optical position detection means.

請求項2記載の発明は、第1結像レンズ手段とコリメータレンズ手段との間に中間結像点を形成するリレーレンズ手段を固定したことを特徴とする。   The invention according to claim 2 is characterized in that relay lens means for forming an intermediate image forming point is fixed between the first image forming lens means and the collimator lens means.

請求項3記載の発明は、測定ワークを所定の回転中心を中心に水平方向でθ方向へ相対的に回転させるθ方向移動手段を設けたことを特徴とする。   According to a third aspect of the present invention, there is provided a θ-direction moving means for rotating the measurement workpiece relative to the θ direction in the horizontal direction around a predetermined rotation center.

請求項4記載の発明は、測定ワークをX軸方向へ相対的に平行移動させるX軸方向移動手段を設けたことを特徴とする。   According to a fourth aspect of the present invention, there is provided an X-axis direction moving means for relatively translating the measurement workpiece in the X-axis direction.

請求項5記載の発明は、測定ワークをY軸方向へ相対的に平行移動させるY軸方向移動手段を設けたことを特徴とする。   According to a fifth aspect of the present invention, there is provided a Y-axis direction moving means for relatively translating the measurement workpiece in the Y-axis direction.

請求項6記載の発明は、測定ワークに対して全体をZ軸方向へ相対的に移動させるZ軸方向移動手段を設けたことを特徴とする。   The invention described in claim 6 is characterized in that there is provided a Z-axis direction moving means for moving the entire workpiece relative to the Z-axis direction.

請求項7記載の発明は、コリメータレンズ手段より上方のZ軸上にレーザー光を水平方向に分岐する光分岐手段を設け、第2結像レンズ手段及び光位置検出手段を光分岐手段と水平な位置に固定したことを特徴とする。   According to a seventh aspect of the present invention, there is provided a light branching means for horizontally branching the laser beam on the Z-axis above the collimator lens means, and the second imaging lens means and the light position detecting means are parallel to the light branching means. The position is fixed.

請求項1記載の発明によれば、反射手段により、下向きに照射されたレーザー光をX軸方向へ反射するため、測定ワークの側面形状も測定できる。特に、下端に位置する反射手段、対物レンズ手段、第1結像レンズ手段がそれぞれ固定された構造のため、それらの小型化が可能で、狭い溝や小径の孔内にも容易に挿入して、溝や孔の内面形状を測定することができる。Z軸で移動するコリメータレンズ手段によりオートフォーカスするため、コリメータレンズ手段よりも下側の部分のZ軸方向長さを拡大することができ、溝や孔の深い部位の測定も可能となる。また、Z軸方向での第1結像レンズ手段の焦点距離を、X軸方向での対物レンズ手段よりも大きくし、X軸方向での変位に対してZ軸方向での変位を大きく取得することも可能で、そうすることにより、光位置検出手段の位置決め精度以上の変位計測が可能となる。   According to the first aspect of the present invention, the laser beam irradiated downward is reflected by the reflecting means in the X-axis direction, so that the side shape of the measurement workpiece can also be measured. In particular, the reflecting means, the objective lens means, and the first imaging lens means located at the lower end are fixed, so that they can be miniaturized and can be easily inserted into narrow grooves or small diameter holes. The inner surface shape of grooves and holes can be measured. Since auto-focusing is performed by the collimator lens means that moves in the Z axis, the length in the Z-axis direction of the portion below the collimator lens means can be enlarged, and the measurement of a deep part of the groove or hole is also possible. Further, the focal length of the first imaging lens unit in the Z-axis direction is made larger than that of the objective lens unit in the X-axis direction, and the displacement in the Z-axis direction is acquired larger than the displacement in the X-axis direction. It is possible to measure the displacement more than the positioning accuracy of the optical position detecting means.

請求項2記載の発明によれば、第1結像レンズ手段とコリメータレンズ手段の間にリレーレンズ手段を固定することにより、コリメータレンズ手段より下側の部分のZ軸方向の長さを更に拡大することができる。   According to the second aspect of the present invention, by fixing the relay lens means between the first imaging lens means and the collimator lens means, the length in the Z-axis direction of the portion below the collimator lens means is further enlarged. can do.

請求項3記載の発明によれば、測定ワークをθ方向へ相対的に回転させるθ方向移動手段が設けられているため、測定ワークの側面のθ方向に走査した二次元形状を測定することができる。   According to the third aspect of the invention, since the θ-direction moving means for rotating the measurement workpiece in the θ direction is provided, it is possible to measure the two-dimensional shape scanned in the θ direction on the side surface of the measurement workpiece. it can.

請求項4記載の発明によれば、測定ワークをX軸方向へ相対的に平行移動させるX軸方向移動手段が設けられているため、対物レンズ手段を測定ワークの側面に対して測定に最適な距離にセットすることができる。   According to the fourth aspect of the present invention, since the X-axis direction moving means for moving the measurement workpiece relatively in the X-axis direction is provided, the objective lens means is optimal for measurement with respect to the side surface of the measurement workpiece. Can be set to distance.

請求項5記載の発明によれば、測定ワークをY軸方向へ相対的に平行移動させるY軸方向移動手段が設けられているため、測定ワークの側面のY軸方向に走査した二次元形状を測定することができる。   According to the fifth aspect of the present invention, since the Y-axis direction moving means for relatively translating the measurement workpiece in the Y-axis direction is provided, the two-dimensional shape scanned in the Y-axis direction on the side surface of the measurement workpiece is obtained. Can be measured.

請求項6記載の発明によれば、測定ワークをZ軸方向へ相対的に平行移動させるZ軸方向移動手段が設けられているため、測定ワークの側面のZ軸方向に走査した二次元形状を測定することができると共に、θ軸又はY軸方向での走査と組み合わせることにより、側面の三次元形状を測定することができる。   According to the sixth aspect of the invention, since the Z-axis direction moving means for moving the measurement workpiece relatively in the Z-axis direction is provided, the two-dimensional shape scanned in the Z-axis direction on the side surface of the measurement workpiece is obtained. In addition to being able to measure, the three-dimensional shape of the side surface can be measured by combining with scanning in the θ-axis or Y-axis direction.

請求項7記載の発明によれば、コリメータレンズ手段より上方のZ軸上にレーザー光を水平方向に分岐する光分岐手段を設け、第2結像レンズ手段及び光位置検出手段を、該光分岐手段と水平な位置に固定したため、光分岐手段の上方のZ軸上にカメラ等の他の構成要素を設置することが可能となる。   According to the seventh aspect of the present invention, the light branching means for horizontally branching the laser beam is provided on the Z axis above the collimator lens means, and the second imaging lens means and the light position detecting means are provided with the light branching. Since it is fixed at a position horizontal to the means, it is possible to install other components such as a camera on the Z axis above the light branching means.

図1〜図7は、本発明の第1実施形態を示す図である。まず、図1に基づいて全体構造を説明する。図1において、XYは水平面上で直交する二方向で、ZはXYに垂直な鉛直方向である。θは回転方向である。   1-7 is a figure which shows 1st Embodiment of this invention. First, the overall structure will be described with reference to FIG. In FIG. 1, XY is two directions orthogonal to each other on the horizontal plane, and Z is a vertical direction perpendicular to XY. θ is the direction of rotation.

本実施形態における測定対象としての測定ワークは円筒部材1で、中心に円形の中心孔1aを有している。この円筒部材1は、円盤状の回転ステージ(θ方向移動手段)2の上に載置されている。回転ステージ2は、X軸方向にスライド自在なX軸ステージ(X軸方向移動手段)3の上に組み付けられている。X軸ステージ3は、Y軸方向へスライド自在なY軸ステージ(Y軸方向移動手段)4の上に組み付けられている。Y軸ステージ4はベース台5の上に載置されている。ベース台5には支柱6が立設され、支柱6に対してZ軸方向にスライド自在なZ軸ステージ(Z軸方向移動手段)7が支持されている。   A measurement workpiece as a measurement target in the present embodiment is a cylindrical member 1 and has a circular center hole 1a at the center. The cylindrical member 1 is placed on a disk-shaped rotary stage (θ direction moving means) 2. The rotary stage 2 is assembled on an X-axis stage (X-axis direction moving means) 3 that is slidable in the X-axis direction. The X-axis stage 3 is assembled on a Y-axis stage (Y-axis direction moving means) 4 that is slidable in the Y-axis direction. The Y-axis stage 4 is placed on the base table 5. A support 6 is erected on the base 5, and a Z-axis stage (Z-axis moving means) 7 that is slidable in the Z-axis direction with respect to the support 6 is supported.

Z軸ステージ7には、駆動部8が固定されており、駆動部8から下方へ向けて筒状のプローブ9が形成されている(図2参照)。プローブ9の下端にはヘッド10が形成されている。プローブ9は細く、ヘッド10も小さいボックス形状をしている。ヘッド10のX軸方向の側面には窓11が形成されている。   A drive unit 8 is fixed to the Z-axis stage 7, and a cylindrical probe 9 is formed downward from the drive unit 8 (see FIG. 2). A head 10 is formed at the lower end of the probe 9. The probe 9 is thin and the head 10 has a small box shape. A window 11 is formed on the side surface of the head 10 in the X-axis direction.

次に、オートフォーカス光学系の構造を図3に基づいて説明する。尚、図3及びその相当図において、鉛直光軸をZ軸と合致させ、Z軸方向での光路は短縮して示している。   Next, the structure of the autofocus optical system will be described with reference to FIG. In FIG. 3 and its equivalent diagrams, the vertical optical axis is made coincident with the Z-axis, and the optical path in the Z-axis direction is shortened.

測定光としての半導体レーザであるレーザー光Lはレーザー光照射手段13から照射される。レーザー光照射手段13は、水平方向にレーザー光Lを照射するレーザー光発生器14と、Z軸上に固定されレーザー光LをZ軸と平行で且つオフセットした位置より下向きに反射するビームスプリッタ15とから構成されている。レーザー光Lの光路は、図中において、照射光は実線で、反射光は点線で示されている。   Laser light L, which is a semiconductor laser as measurement light, is emitted from the laser light irradiation means 13. The laser beam irradiation means 13 includes a laser beam generator 14 that irradiates the laser beam L in the horizontal direction, and a beam splitter 15 that is fixed on the Z axis and reflects the laser beam L downward from a position parallel to the Z axis and offset. It consists of and. In the drawing, the optical path of the laser light L is indicated by a solid line and the reflected light is indicated by a dotted line.

ビームスプリッタ15の上方にはZ軸上に第2結像レンズ手段16が固定され、第2結像レンズ手段16の上方にはZ軸上に光位置検出手段17が設置されている。光位置検出手段17は分割フォトセンサーで、中心部17Sが第2結像レンズ手段16の結像点と一致しており、この中心部17Sにレーザー光Lのスポット重心(光学的重心)が合致することにより、二分割された各フォトセンサーの出力が釣り合うようになっている。   Above the beam splitter 15, second imaging lens means 16 is fixed on the Z axis, and above the second imaging lens means 16, optical position detection means 17 is installed on the Z axis. The optical position detection means 17 is a split photosensor, and the center portion 17S coincides with the image forming point of the second imaging lens means 16, and the spot centroid (optical centroid) of the laser light L coincides with the center portion 17S. By doing so, the output of each of the divided photosensors is balanced.

ビームスプリッタ15の下方には、コリメータレンズ手段18が設けられている。このコリメータレンズ手段18はサーボ機構であるフォーカス手段19によりZ軸方向で移動することができる。フォーカス手段19は前記光位置検出手段17からの信号に基づいてコリメータレンズ手段18を移動させる。このコリメータレンズ手段18よりも上方の構造が全て駆動部8内に収納されている。   A collimator lens unit 18 is provided below the beam splitter 15. The collimator lens means 18 can be moved in the Z-axis direction by a focus means 19 which is a servo mechanism. The focus unit 19 moves the collimator lens unit 18 based on the signal from the light position detection unit 17. All structures above the collimator lens means 18 are accommodated in the drive unit 8.

上下方向に長いプローブ9内は中空で、その下端のヘッド10には、反射手段としてのプリズム12が、角度45度の四角い反射平面をX軸方向の窓11へ向けた状態で設置されている。プリズム12から水平光軸と合致したX軸が形成される。   The probe 9 which is long in the vertical direction is hollow, and a prism 12 as a reflection means is installed in a head 10 at the lower end thereof with a square reflection plane of 45 degrees facing the window 11 in the X-axis direction. . An X axis that matches the horizontal optical axis is formed from the prism 12.

プリズム12の上方には第1結像レンズ手段20が固定されている。第1結像レンズ手段20はプローブ9の途中位置においてZ軸上に第1結像点P1を形成する。   A first imaging lens means 20 is fixed above the prism 12. The first imaging lens means 20 forms a first imaging point P1 on the Z axis at an intermediate position of the probe 9.

プリズム12の窓11側には対物レンズ手段21が固定されている。対物レンズ手段21はX軸上に焦点Fを形成する。この実施形態では、この対物レンズ手段21のX軸での焦点距離より、第1結像レンズ手段20のZ軸での焦点距離の方を十分に大きく設定している。   Objective lens means 21 is fixed on the window 11 side of the prism 12. The objective lens means 21 forms a focal point F on the X axis. In this embodiment, the focal length of the first imaging lens unit 20 on the Z axis is set to be sufficiently larger than the focal length of the objective lens unit 21 on the X axis.

次に、作用を説明する。   Next, the operation will be described.

図1に示すように、円筒部材1は中心孔1aの内面の形状を円周方向に沿って計測するため回転ステージ2上に載置される。次に、Z軸ステージ7を下降させ、プローブ9のヘッド10を円筒部材1の中心孔1a内に挿入する。ヘッド10を挿入後、X軸ステージ3をスライドさせて、対物レンズ手段21を中心孔1aの内面に対して測定に最適な距離にセットする。   As shown in FIG. 1, the cylindrical member 1 is placed on a rotary stage 2 in order to measure the shape of the inner surface of the center hole 1a along the circumferential direction. Next, the Z-axis stage 7 is lowered, and the head 10 of the probe 9 is inserted into the center hole 1 a of the cylindrical member 1. After inserting the head 10, the X-axis stage 3 is slid to set the objective lens means 21 at an optimum distance for measurement with respect to the inner surface of the center hole 1a.

次に、図3を用いて基本光路を説明する。円筒部材1に対するヘッド10のセットが終了した後、レーザー光発生器14からレーザー光Lを水平に照射する。水平に照射されたレーザー光Lは一部がビームスプリッタ15により下向きに反射される。下向きに照射されたレーザー光Lの光路は、Z軸と平行で且つオフセットした状態で、コリメータレンズ手段18を透過し、プローブ9内を通過して第1結像レンズ手段20に至る。   Next, the basic optical path will be described with reference to FIG. After the setting of the head 10 with respect to the cylindrical member 1 is completed, the laser light L is irradiated horizontally from the laser light generator 14. Part of the horizontally irradiated laser beam L is reflected downward by the beam splitter 15. The optical path of the laser beam L irradiated downward passes through the collimator lens unit 18 in a state parallel to and offset from the Z axis, passes through the probe 9 and reaches the first imaging lens unit 20.

第1結像レンズ手段20を透過してZ軸と平行になったレーザー光Lは、プリズム12で水平方向に反射され、対物レンズ手段21を透過して、ヘッド10の窓11より中心孔1aの内面に対して照射される。   The laser light L transmitted through the first imaging lens means 20 and parallel to the Z axis is reflected by the prism 12 in the horizontal direction, passes through the objective lens means 21, and passes through the window 11 of the head 10 through the center hole 1 a. Irradiated to the inner surface of.

中心孔1aの内面で反射されたレーザー光Lは、再び対物レンズ手段21を透過して、プリズム12にて上向きに反射され、第1結像レンズ手段20を透過して、Z軸上に第1結像点P1を結ぶ。その第1結像点P1をコリメータレンズ手段18で捉える。   The laser beam L reflected by the inner surface of the center hole 1a is transmitted again through the objective lens means 21, reflected upward by the prism 12, transmitted through the first imaging lens means 20, and is reflected on the Z axis. Connect one imaging point P1. The first image point P1 is captured by the collimator lens means 18.

コリメータレンズ手段18にてZ軸と平行になったレーザー光Lはビームスプリッタ15を透過し、第2結像レンズ手段16を透過して光位置検出手段17の中心部17Sに第2結像点P2を形成する。レーザー光Lの第2結像点P2が光位置検出手段17の中心部17Sに合致した状態では、フォーカス手段19は駆動せず、コリメータレンズ手段18の位置はそのままである。   The laser light L parallel to the Z axis by the collimator lens means 18 passes through the beam splitter 15, passes through the second imaging lens means 16, and passes through the second imaging point at the central portion 17S of the optical position detection means 17. P2 is formed. In a state where the second image formation point P2 of the laser light L coincides with the central portion 17S of the light position detection means 17, the focus means 19 is not driven and the position of the collimator lens means 18 remains unchanged.

レーザー光Lが対物レンズ手段21やコリメータレンズ手段18等における非中心部を透過するため、図3の状態から、例えば、中心孔1aの内面が、ヘッド10に対して、−方向に変位(図4)したり、+方向に変位(図6)したりすると、光位置検出手段17上でのレーザー光Lの第2結像点P2も中心部17Sから変位する(図4、図6)。   Since the laser light L is transmitted through the non-center portion of the objective lens means 21 and the collimator lens means 18 etc., for example, the inner surface of the center hole 1a is displaced in the − direction with respect to the head 10 from the state of FIG. 4) or displacement in the + direction (FIG. 6), the second imaging point P2 of the laser light L on the optical position detection means 17 is also displaced from the central portion 17S (FIGS. 4 and 6).

例えば、図4に示すように、中心孔1aの内面がヘッド10に対して−dだけ離れる方向に変位すると、中心孔1aの内面で反射されたレーザー光Lは、対物レンズ手段21の端部側を通過し、X軸及びZ軸と非平行なまま、プリズム12及び第1結像レンズ手段20を通過し、Z軸上に形成される第1結像点P1が下方へ変位する。そして、コリメータレンズ手段18、ビームスプリッタ15、第2結像レンズ手段16を経たレーザー光Lの第2結像点P2は光位置検出手段17において中心部17Sから−Dだけ変位する。   For example, as shown in FIG. 4, when the inner surface of the center hole 1 a is displaced in the direction away from the head 10 by −d, the laser light L reflected by the inner surface of the center hole 1 a is the end of the objective lens means 21. The first image forming point P1 formed on the Z axis is displaced downward through the prism 12 and the first image forming lens means 20 while passing through the side and not parallel to the X axis and the Z axis. Then, the second imaging point P2 of the laser light L that has passed through the collimator lens means 18, the beam splitter 15, and the second imaging lens means 16 is displaced by -D from the central portion 17S in the optical position detection means 17.

その第2結像点P2が中心部17Sからずれると、ずれた方のフォトセンサーからの出力が大きくなり、2つのフォトセンサーの出力バランスがくずれるため、それを是正するため、光位置検出手段17からフォーカス手段19に信号が出力され、第2結像点P2が中心部17Sに合致するまで、サーボ式のフォーカス手段19がコリメータレンズ手段18を下方へ移動させる。そして、第2結像点P2が中心部17Sに合致すると、対物レンズ21を透過したレーザー光Lの結像点も焦点距離よりも先のX軸軸上に位置し、合焦状態となって、コリメータレンズ手段18の移動が停止する。これがオートフォーカス動作である。   When the second imaging point P2 is shifted from the central portion 17S, the output from the shifted photosensor becomes larger, and the output balance between the two photosensors is lost. The servo-type focusing unit 19 moves the collimator lens unit 18 downward until a signal is output from the focusing unit 19 to the focusing unit 19 and the second imaging point P2 matches the central portion 17S. When the second image formation point P2 coincides with the central portion 17S, the image formation point of the laser light L transmitted through the objective lens 21 is also located on the X-axis axis before the focal length, and is in a focused state. The movement of the collimator lens means 18 is stopped. This is the autofocus operation.

尚、中心孔1aの内面が、ヘッド10に対して逆に+方向へ変位した場合には、上述とは逆のオートフォーカス動作が行われる(図6、図7)。   When the inner surface of the center hole 1a is displaced in the + direction on the contrary to the head 10, an autofocus operation opposite to the above is performed (FIGS. 6 and 7).

以上のようなオートフォーカス動作において、コリメータレンズ手段18の移動量と、ヘッド10に対する中心孔1aの内面の変位dとは、比例関係にあるため、コリメータレンズ手段18の移動量を検出することにより、中心孔1aの内面の形状(凹凸)を測定することができる。   In the autofocus operation as described above, the amount of movement of the collimator lens means 18 and the displacement d of the inner surface of the center hole 1a with respect to the head 10 are in a proportional relationship. Therefore, by detecting the amount of movement of the collimator lens means 18 The shape (unevenness) of the inner surface of the center hole 1a can be measured.

特に、この実施形態では、Z軸方向での第1結像レンズ手段20の焦点距離を、X軸方向での対物レンズ手段21よりも十分に大きく設定しているため、X軸方向での変位dに対して、コリメータレンズ手段18のZ軸方向での変位量が大きくなり、光位置検出手段17の位置決め精度以上の変位計測が可能となる。   In particular, in this embodiment, since the focal length of the first imaging lens means 20 in the Z-axis direction is set sufficiently larger than the objective lens means 21 in the X-axis direction, the displacement in the X-axis direction is set. With respect to d, the amount of displacement of the collimator lens means 18 in the Z-axis direction increases, and displacement measurement that is greater than the positioning accuracy of the optical position detection means 17 becomes possible.

すなわち、円筒部材1は回転ステージ2上に載置されているため、円筒部材1を回転ステージ2によりθ方向へ回転させることにより、中心孔1aの内面の円周方向での二次元形状を測定することができる。   That is, since the cylindrical member 1 is mounted on the rotary stage 2, the two-dimensional shape in the circumferential direction of the inner surface of the center hole 1a is measured by rotating the cylindrical member 1 in the θ direction by the rotary stage 2. can do.

また、ある高さ位置位置でのヘッド10により、中心孔1aの内面の円周方向での二次元形状の測定を終了した後、ヘッド10の高さ位置を変えて同様の形状測定を繰り返し行うことにより、中心孔1aの内面の関する三次元形状を測定することも可能となる。   Further, after the measurement of the two-dimensional shape in the circumferential direction of the inner surface of the center hole 1a is completed by the head 10 at a certain height position, the same shape measurement is repeated by changing the height position of the head 10. This also makes it possible to measure the three-dimensional shape related to the inner surface of the center hole 1a.

この実施形態によれば、下端に位置するプリズム12、対物レンズ手段21、第1結像レンズ手段20が固定された構造のため、ヘッド10の小型化が可能である。また、Z軸で移動するコリメータレンズ手段18でオートフォーカスするため、プローブ9を細い径のまま長く形成することができる。従って、円筒部材1の中心孔1a内にヘッド10を奥深くまで挿入して、その内面を形状を測定することができる。   According to this embodiment, since the prism 12, the objective lens means 21, and the first imaging lens means 20 positioned at the lower end are fixed, the size of the head 10 can be reduced. Further, since the autofocus is performed by the collimator lens means 18 that moves on the Z axis, the probe 9 can be formed long with a small diameter. Therefore, the head 10 can be inserted deeply into the central hole 1a of the cylindrical member 1 and the shape of the inner surface can be measured.

図8は、本発明の第2実施形態を示す図である。本実施形態は、前記第1実施形態と同様の構成要素を備えている。よって、それら同様の構成要素については共通の符号を付すとともに、重複する説明を省略する。   FIG. 8 is a diagram showing a second embodiment of the present invention. This embodiment includes the same components as those in the first embodiment. Therefore, the same constituent elements are denoted by common reference numerals, and redundant description is omitted.

この実施形態では、第1結像レンズ手段20とコリメータレンズ手段18との間に中間結像点P3を形成するリレーレンズ手段22を固定した。このようにすることにより、プローブを更に長くすることができ、より深い部分の内面(側面)まで測定することができる。   In this embodiment, the relay lens means 22 that forms the intermediate image forming point P3 is fixed between the first imaging lens means 20 and the collimator lens means 18. By doing in this way, a probe can be lengthened further and it can measure to the inner surface (side surface) of a deeper part.

図9は、本発明の第3実施形態を示す図である。本実施形態も、前記第1実施形態と同様の構成要素を備えている。よって、それら同様の構成要素については共通の符号を付すとともに、重複する説明を省略する。   FIG. 9 is a diagram showing a third embodiment of the present invention. This embodiment also includes the same components as those in the first embodiment. Therefore, the same constituent elements are denoted by common reference numerals, and redundant description is omitted.

この実施形態では、ビームスプリッタ15を光分岐手段とし、それと同じ高さの水平方向に別のビームスプリッタ23を設置した。そして、そのビームスプリッタ23の上部にレーザー光発生器14を設置し、2つのビームスプリッタ15、23と、レーザー光発生器14により、レーザー光照射手段24を構成した。   In this embodiment, the beam splitter 15 is used as an optical branching unit, and another beam splitter 23 is installed in the horizontal direction at the same height. The laser beam generator 14 was installed on the upper part of the beam splitter 23, and the two beam splitters 15 and 23 and the laser beam generator 14 constituted the laser beam irradiation means 24.

ビームスプリッタ15から水平光軸Kを形成し、その水平光軸K上にビームスプリッタ23、第2結像レンズ手段16、光位置検出手段17を設置した。   A horizontal optical axis K is formed from the beam splitter 15, and the beam splitter 23, the second imaging lens unit 16, and the optical position detection unit 17 are installed on the horizontal optical axis K.

ビームスプリッタ15の上部には、撮影用の結像レンズ25を設置し、その上にカメラ(CCD撮像装置)26を設置した。   An imaging lens 25 for photographing is installed on the beam splitter 15, and a camera (CCD imaging device) 26 is installed thereon.

レーザー光発生器14から照射されたレーザー光Lは、2つのビームスプリッタ15、23で反射された後、コリメータレンズ手段18、第1結像レンズ手段20、プリズム12、対物レンズ手段21を経て中心孔1aの内面に当たる。そして、そこで反射されたレーザー光Lは、逆方向に戻り、一部はビームスプリッタ15で水平方向に反射された後、ビームスプリッタ23、第2結像レンズ手段16を透過して、光位置検出手段17に受光され、オートフォーカス制御される。   The laser beam L emitted from the laser beam generator 14 is reflected by the two beam splitters 15 and 23 and then passes through the collimator lens unit 18, the first imaging lens unit 20, the prism 12 and the objective lens unit 21. It hits the inner surface of the hole 1a. The reflected laser beam L returns in the opposite direction, and a part of the reflected laser beam L is reflected in the horizontal direction by the beam splitter 15 and then passes through the beam splitter 23 and the second imaging lens means 16 to detect the optical position. Light is received by the means 17 and autofocus control is performed.

ビームスプリッタ15の上部にはZ軸上にカメラ26が設置されているため、中心孔1aの内面の映像をカメラ26によりモニターすることができる。   Since the camera 26 is installed on the Z axis above the beam splitter 15, an image of the inner surface of the center hole 1 a can be monitored by the camera 26.

この実施形態によれば、第2結像レンズ手段16及び光位置検出手段17をZ軸上から外したため、Z軸上に別の構成要素(カメラ26)を設置することが可能となった。   According to this embodiment, since the second imaging lens unit 16 and the optical position detection unit 17 are removed from the Z axis, it is possible to install another component (camera 26) on the Z axis.

以上の各実施形態では、中心孔1aの内面を円周方向で測定する例を示したが、円筒部材1の外面を円周方向で測定しても良い。また、円筒部材1に限らず、溝の内面をY軸方向に沿って測定したり、Z軸方向に沿って測定しても良い。反射手段として、プリズム7を例にしたが、ミラーでも良い。   In each of the above embodiments, the example in which the inner surface of the center hole 1a is measured in the circumferential direction has been shown, but the outer surface of the cylindrical member 1 may be measured in the circumferential direction. In addition to the cylindrical member 1, the inner surface of the groove may be measured along the Y-axis direction or measured along the Z-axis direction. Although the prism 7 is taken as an example of the reflecting means, a mirror may be used.

本発明の第1実施形態に係る非接触側面形状測定装置を示す斜視図。The perspective view which shows the non-contact side surface shape measuring apparatus which concerns on 1st Embodiment of this invention. プローブ及びヘッドを示す斜視図。The perspective view which shows a probe and a head. 非接触側面形状測定装置を示す光路図。The optical path figure which shows a non-contact side surface shape measuring apparatus. 内面がマイナス方向へ変位した状態を示す光路図。The optical path figure which shows the state which the inner surface displaced to the minus direction. マイナス方向への変位をオートフォーカスにより是正した状態を示す光路図。The optical path diagram which shows the state which corrected the displacement to a minus direction by autofocus. 内面がプラス方向へ変位した状態を示す光路図。The optical path figure which shows the state which the inner surface displaced to the plus direction. プラス方向への変位をオートフォーカスにより是正した状態を示す光路図。The optical path diagram which shows the state which corrected the displacement to the plus direction by autofocus. 本発明の第2実施形態に係る非接触側面形状測定装置を示す光路図。The optical path figure which shows the non-contact side surface shape measuring apparatus which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る非接触側面形状測定装置を示す光路図。The optical path figure which shows the non-contact side surface shape measuring apparatus which concerns on 3rd Embodiment of this invention.

符号の説明Explanation of symbols

1 円筒部材(測定ワーク)
1a 中心孔
2 回転ステージ(θ方向移動手段)
3 X軸ステージ(X軸方向移動手段)
4 Y軸ステージ(Y軸方向移動手段)
7 Z軸ステージ(Z軸方向移動手段)
12 プリズム(反射手段)
13 レーザー光照射手段
16 第2結像レンズ手段
17 光位置検出手段(光分岐手段)
18 コリメータレンズ手段
19 フォーカス手段
20 第1結像レンズ手段
21 対物レンズ手段
22 リレーレンズ手段
23 ビームスプリッタ
L レーザー光
A プローブの径
B プローブの長さ
F 焦点
P1 第1結像点
P2 第2結像点
P3 中間結像点
K 水平光軸
1 Cylindrical member (measurement workpiece)
1a Center hole 2 Rotating stage (θ direction moving means)
3 X-axis stage (X-axis direction moving means)
4 Y-axis stage (Y-axis direction moving means)
7 Z-axis stage (Z-axis direction moving means)
12 Prism (reflecting means)
13 Laser light irradiation means 16 Second imaging lens means 17 Optical position detection means (light branching means)
18 Collimator lens means 19 Focus means 20 First imaging lens means 21 Objective lens means 22 Relay lens means 23 Beam splitter L Laser light A Probe diameter B Probe length F Focus P1 First imaging point P2 Second imaging Point P3 Intermediate imaging point K Horizontal optical axis

Claims (7)

三次元直交座標軸XYZとして、鉛直なZ軸と平行にレーザー光を下向きに照射するレーザー光照射手段と、
Z軸の下方に固定され且つ下向きのレーザー光をX軸方向へ反射すると共にX軸上に位置する測定ワークの側面で反射されたレーザー光を上方向へ反射する反射手段と、
X軸上に固定され且つ反射手段で反射されたレーザー光を透過して焦点に向かわせると共に測定ワークの側面で反射されたレーザ光を透過して反射手段へ向かわせる対物レンズ手段と、
反射手段の上方のZ軸上に固定され反射手段から上方向へ反射されたレーザー光をZ軸上の第1結像点に結像させる第1結像レンズ手段と、
Z軸方向に移動自在で且つ第1結像点を通過したレーザー光を透過してその光路をZ軸と平行にするコリメータレンズ手段と、
コリメータレンズ手段を透過したレーザー光を光軸の第2結像点に結像させる第2結像レンズ手段と、
第2結像レンズ手段を透過したレーザー光を受光する光位置検出手段と、
光位置検出手段からの位置信号に基づいてレーザ光の焦点を測定ワークの側面に合致せしめるべく前記コリメータレンズ手段をZ軸方向で移動させるフォーカス手段とを備えたことを特徴とする非接触側面形状測定装置。
Laser light irradiation means for irradiating laser light downward in parallel with the vertical Z axis as a three-dimensional orthogonal coordinate axis XYZ;
Reflecting means fixed below the Z-axis and reflecting downward laser light in the X-axis direction and reflecting laser light reflected by the side surface of the measurement workpiece located on the X-axis upward;
Objective lens means that is fixed on the X axis and transmits the laser light reflected by the reflecting means to the focal point and transmits the laser light reflected from the side surface of the measurement workpiece to the reflecting means;
First imaging lens means for imaging a laser beam fixed on the Z axis above the reflecting means and reflected upward from the reflecting means at a first imaging point on the Z axis;
Collimator lens means that is movable in the Z-axis direction and transmits the laser light that has passed through the first imaging point and makes its optical path parallel to the Z-axis,
Second imaging lens means for imaging the laser beam transmitted through the collimator lens means at a second imaging point of the optical axis;
Optical position detection means for receiving laser light transmitted through the second imaging lens means;
A non-contact side shape comprising: a focus means for moving the collimator lens means in the Z-axis direction so that the focus of the laser beam is made to coincide with the side face of the measurement workpiece based on a position signal from the light position detection means measuring device.
第1結像レンズ手段とコリメータレンズ手段との間に中間結像点を形成するリレーレンズ手段を固定したことを特徴とする請求項1記載の非接触側面形状測定装置。   2. The non-contact side surface shape measuring apparatus according to claim 1, wherein relay lens means for forming an intermediate image forming point is fixed between the first image forming lens means and the collimator lens means. 測定ワークを所定の回転中心を中心に水平方向でθ方向へ相対的に回転させるθ方向移動手段を設けたことを特徴とする請求項1又は請求項2記載の非接触側面形状測定装置。   3. The non-contact side surface shape measuring apparatus according to claim 1, further comprising a θ-direction moving unit that relatively rotates the measurement workpiece in the θ direction in a horizontal direction around a predetermined rotation center. 測定ワークをX軸方向へ相対的に平行移動させるX軸方向移動手段を設けたことを特徴とする請求項1〜3のいずれか1項に記載の非接触側面形状測定装置。   The non-contact side surface shape measuring device according to any one of claims 1 to 3, further comprising an X-axis direction moving unit that relatively translates the measurement workpiece in the X-axis direction. 測定ワークをY軸方向へ相対的に平行移動させるY軸方向移動手段を設けたことを特徴とする請求項1〜4のいずれか1項に記載の非接触側面形状測定装置。   The non-contact side surface shape measuring apparatus according to claim 1, further comprising a Y-axis direction moving unit that relatively translates the measurement workpiece in the Y-axis direction. 測定ワークに対して全体をZ軸方向へ相対的に移動させるZ軸方向移動手段を設けたことを特徴とする請求項1〜5のいずれか1項に記載の非接触側面形状測定装置。   The non-contact side surface shape measuring apparatus according to any one of claims 1 to 5, further comprising a Z-axis direction moving unit that moves the entire workpiece relative to the Z-axis direction. コリメータレンズ手段より上方のZ軸上にレーザー光を水平方向に分岐する光分岐手段を設け、第2結像レンズ手段及び光位置検出手段を光分岐手段と水平な位置に固定したことを特徴とする請求項1〜6のいずれか1項に記載の非接触側面形状測定装置。   A light branching means for horizontally branching the laser beam is provided on the Z-axis above the collimator lens means, and the second imaging lens means and the light position detecting means are fixed at a position horizontal to the light branching means. The non-contact side surface shape measuring apparatus according to any one of claims 1 to 6.
JP2008176817A 2008-07-07 2008-07-07 Noncontact side-surface shape measuring apparatus Pending JP2010014656A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008176817A JP2010014656A (en) 2008-07-07 2008-07-07 Noncontact side-surface shape measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008176817A JP2010014656A (en) 2008-07-07 2008-07-07 Noncontact side-surface shape measuring apparatus

Publications (1)

Publication Number Publication Date
JP2010014656A true JP2010014656A (en) 2010-01-21

Family

ID=41700889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008176817A Pending JP2010014656A (en) 2008-07-07 2008-07-07 Noncontact side-surface shape measuring apparatus

Country Status (1)

Country Link
JP (1) JP2010014656A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102042815A (en) * 2010-10-12 2011-05-04 深圳大学 Superfast real-time three-dimensional measurement system
JP2012002573A (en) * 2010-06-15 2012-01-05 Mitaka Koki Co Ltd Non-contact shape measuring apparatus
WO2014125690A1 (en) * 2013-02-14 2014-08-21 学校法人埼玉医科大学 Shape-measuring device
KR101854137B1 (en) * 2010-11-19 2018-05-03 삼성전자 주식회사 Optical probe and optical system therefor
US10363080B2 (en) 2005-05-20 2019-07-30 Pacira Cryotech, Inc. Subdermal cryogenic remodeling of muscles, nerves, connective tissue, and/or adipose tissue (fat)
DE102022121313A1 (en) 2021-08-24 2023-03-02 Tokyo Seimitsu Co., Ltd. Calibration standard and method for calibrating a form measuring machine

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61191946A (en) * 1985-02-20 1986-08-26 Matsushita Electric Ind Co Ltd Optical defect inspector
JPH05164556A (en) * 1991-12-17 1993-06-29 Mitsutoyo Corp Focusing type non-contact displacement gage
JPH08189816A (en) * 1995-01-10 1996-07-23 Sumitomo Electric Ind Ltd Die hole shape measuring apparatus and measuring method
JP2001004329A (en) * 1999-06-25 2001-01-12 Keyence Corp Measuring device and confocal microscope
JP2002039724A (en) * 2000-07-24 2002-02-06 Yasunaga Corp Internal hole surface inspecting device
JP2004028914A (en) * 2002-06-27 2004-01-29 Omron Corp Optical displacement sensor
JP2004125411A (en) * 2002-09-30 2004-04-22 Toshiba Corp Method of adjusting height position of test piece face
JP2005049363A (en) * 2003-06-03 2005-02-24 Olympus Corp Infrared confocal scanning type microscope and measurement method
JP2006058115A (en) * 2004-08-19 2006-03-02 Mitsutoyo Corp Optical displacement measuring apparatus
JP2007136212A (en) * 2006-12-07 2007-06-07 Olympus Corp Optical imaging device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61191946A (en) * 1985-02-20 1986-08-26 Matsushita Electric Ind Co Ltd Optical defect inspector
JPH05164556A (en) * 1991-12-17 1993-06-29 Mitsutoyo Corp Focusing type non-contact displacement gage
JPH08189816A (en) * 1995-01-10 1996-07-23 Sumitomo Electric Ind Ltd Die hole shape measuring apparatus and measuring method
JP2001004329A (en) * 1999-06-25 2001-01-12 Keyence Corp Measuring device and confocal microscope
JP2002039724A (en) * 2000-07-24 2002-02-06 Yasunaga Corp Internal hole surface inspecting device
JP2004028914A (en) * 2002-06-27 2004-01-29 Omron Corp Optical displacement sensor
JP2004125411A (en) * 2002-09-30 2004-04-22 Toshiba Corp Method of adjusting height position of test piece face
JP2005049363A (en) * 2003-06-03 2005-02-24 Olympus Corp Infrared confocal scanning type microscope and measurement method
JP2006058115A (en) * 2004-08-19 2006-03-02 Mitsutoyo Corp Optical displacement measuring apparatus
JP2007136212A (en) * 2006-12-07 2007-06-07 Olympus Corp Optical imaging device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10363080B2 (en) 2005-05-20 2019-07-30 Pacira Cryotech, Inc. Subdermal cryogenic remodeling of muscles, nerves, connective tissue, and/or adipose tissue (fat)
US11350979B2 (en) 2005-05-20 2022-06-07 Pacira Cryotech, Inc. Subdermal cryogenic remodeling of muscles, nerves, connective tissue, and/or adipose tissue (fat)
US11963706B2 (en) 2005-05-20 2024-04-23 Pacira Cryotech, Inc. Subdermal cryogenic remodeling of muscles, nerves, connective tissue, and/or adipose tissue (fat)
JP2012002573A (en) * 2010-06-15 2012-01-05 Mitaka Koki Co Ltd Non-contact shape measuring apparatus
CN102042815A (en) * 2010-10-12 2011-05-04 深圳大学 Superfast real-time three-dimensional measurement system
KR101854137B1 (en) * 2010-11-19 2018-05-03 삼성전자 주식회사 Optical probe and optical system therefor
WO2014125690A1 (en) * 2013-02-14 2014-08-21 学校法人埼玉医科大学 Shape-measuring device
JP2014153343A (en) * 2013-02-14 2014-08-25 Saitama Medical Univ Shape measurement device
DE102022121313A1 (en) 2021-08-24 2023-03-02 Tokyo Seimitsu Co., Ltd. Calibration standard and method for calibrating a form measuring machine

Similar Documents

Publication Publication Date Title
JP5584140B2 (en) Non-contact surface shape measuring method and apparatus
EP2769800B1 (en) Laser processing machine
JP2009236601A (en) Surveying device and surveying system
JP2014509730A (en) Shape measuring apparatus, shape measuring method, and structure manufacturing method
JP2010014656A (en) Noncontact side-surface shape measuring apparatus
CN102043352B (en) Focusing and leveling detection device
JP2010043954A (en) Dimension measuring apparatus
KR20160068675A (en) Probe apparatus and probe method
JP5242940B2 (en) Non-contact shape measuring device
JP2005205429A (en) Laser beam machine
JP5371514B2 (en) Laser light state inspection method and apparatus, and solar panel manufacturing method
JP2010243205A (en) Substrate state inspection method, laser beam machining device, and method for manufacturing solar panel
JP2008102014A (en) Apparatus and method for measuring surface profile
JP2010188395A (en) Laser beam machining method, laser beam machining device, and method for producing solar panel
JP2007248414A (en) Optical displacement gage
JP7262081B2 (en) LASER PROCESSING DEVICE AND OPTICAL ADJUSTMENT METHOD
US9594230B2 (en) On-axis focus sensor and method
JP5346670B2 (en) Non-contact surface shape measuring device
JP2010264461A (en) Laser beam machining method, laser beam machining apparatus and method for manufacturing solar panel
JP2022013223A (en) Control device for laser processing device, laser processing device, and laser processing method
CN112804420A (en) Image capturing apparatus
JP2010188396A (en) Laser beam machining method, laser beam machining device, and method for producing solar panel
JP6567410B2 (en) Non-contact concave shape measuring device
JP2012002573A (en) Non-contact shape measuring apparatus
JP4925239B2 (en) Synchrotron radiation angle measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110614

A131 Notification of reasons for refusal

Effective date: 20120807

Free format text: JAPANESE INTERMEDIATE CODE: A131

A977 Report on retrieval

Effective date: 20120808

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121005

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130625