JP2010014350A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2010014350A
JP2010014350A JP2008175146A JP2008175146A JP2010014350A JP 2010014350 A JP2010014350 A JP 2010014350A JP 2008175146 A JP2008175146 A JP 2008175146A JP 2008175146 A JP2008175146 A JP 2008175146A JP 2010014350 A JP2010014350 A JP 2010014350A
Authority
JP
Japan
Prior art keywords
air conditioner
room
wall
air
image data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008175146A
Other languages
Japanese (ja)
Other versions
JP4949330B2 (en
JP2010014350A5 (en
Inventor
Takashi Matsumoto
崇 松本
Akira Hidaka
彰 日高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2008175146A priority Critical patent/JP4949330B2/en
Publication of JP2010014350A publication Critical patent/JP2010014350A/en
Publication of JP2010014350A5 publication Critical patent/JP2010014350A5/ja
Application granted granted Critical
Publication of JP4949330B2 publication Critical patent/JP4949330B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an air conditioner that can automatically make an installation position setting for an indoor unit in the absence of an operator's or user's installation position setting for the indoor unit at installation. <P>SOLUTION: The air conditioner includes a substantially boxlike body having an inlet for drawing room air and an outlet for delivering conditioned air, an infrared sensor mounted on a front surface of the body at a predetermined angle of depression to scan a temperature detection target area transversely and detect temperatures of temperature detection targets, and a control part for controlling the air conditioner in response to detecting humans or heating apparatus through the infrared sensor. At least upon an operation start, the control part makes a scan with the infrared sensor to obtain thermal image data on a room, determines the installation position of the body in the room according to the thermal image data, and sets the direction of wind delivered from the outlet according to the installation position. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、空気調和機に関する。   The present invention relates to an air conditioner.

例えば、壁掛け式の空気調和機では、通常室内機は部屋の高所の壁に据付られる。しかし、室内機が据付られる壁における左右の位置は、様々である。壁の左右方向の略中央に据付られる場合もあるし、室内機から見て右側又は左側の壁に接近して据付られる場合もある。以下、この明細書では、部屋の左右方向とは、室内機から見た左右方向と定義する。   For example, in a wall-mounted air conditioner, an indoor unit is usually installed on a high wall of a room. However, the left and right positions on the wall where the indoor unit is installed are various. It may be installed at the approximate center in the left-right direction of the wall, or may be installed close to the right or left wall as viewed from the indoor unit. Hereinafter, in this specification, the left-right direction of the room is defined as the left-right direction viewed from the indoor unit.

室内機が壁の左右方向の略中央に据付られる場合は、室内機から吹き出される空気の方向による部屋への影響は殆どないが、室内機から見て右側又は左側の壁に接近して据付られる場合は、接近している右側又は左側の壁に向かって室内機から空気が吹き出されると、居住空間の空調が不足するため、空調効率が悪化し快適性が損なわれる。また、直接室内機から空気が吹き付けられる壁に汚れ・はがれ等が発生しやすい。   When the indoor unit is installed at the approximate center in the left-right direction of the wall, the direction of the air blown from the indoor unit has little effect on the room, but it is installed close to the right or left wall as viewed from the indoor unit. If air is blown from the indoor unit toward the approaching right or left wall, the air conditioning in the living space is insufficient, and the air conditioning efficiency deteriorates and the comfort is impaired. In addition, the wall to which air is directly blown from the indoor unit is likely to be contaminated and peeled.

そこで、使用者が、リモコンの設置位置設定スイッチにより室内機の壁における設置位置、「中央設置」、「左設置」、「右設置」を選択し、「中央設置」が選択されたときは、左右風向羽根の風向を、設置壁に対して中央を中心に左右75度ずつ150度左右にスイングするように制御する。また、「左設置」が選択された時は、左右風向羽根の風向を、中央から右方向75度間のみを、左右にスイングするように制御する。また、「右設置」が選択された時は、左右羽根の風向を、中央から左方向75度間のみを、左右にスイングするように制御するようにした空気調和機が提案されている(例えば、特許文献1参照)。
特開2002−106919号公報
Therefore, when the user selects the installation position on the wall of the indoor unit, “center installation”, “left installation”, “right installation” with the remote controller installation position setting switch, and “central installation” is selected, The wind direction of the left and right wind direction blades is controlled to swing left and right by 150 degrees about the center with respect to the installation wall. Further, when “left installation” is selected, the wind direction of the left and right wind direction blades is controlled to swing left and right only within 75 degrees rightward from the center. In addition, when “right installation” is selected, an air conditioner has been proposed in which the wind direction of the left and right blades is controlled to swing left and right only within 75 degrees leftward from the center (for example, , See Patent Document 1).
JP 2002-106919 A

しかしながら、上記特許文献1は、空気調和機の使用者が室内機の設置位置の設定を行う必要があり、使用者にとっては不便なものであった。尚、上記特許文献1には記載されていないが、空気調和機の据付業者が室内機の設置位置の入力を行う場合もある。   However, Patent Document 1 described above is inconvenient for the user because the user of the air conditioner needs to set the installation position of the indoor unit. In addition, although not described in the said patent document 1, the installation contractor of an air conditioner may input the installation position of an indoor unit.

以上のように、従来の空気調和機は、据付業者又は使用者が据付時に室内機の設置位置の入力をリモコン等(室内機本体による場合もある)により行う必要があり、不便であると共に室内機の設置位置の入力を忘れた場合は、空調効率が悪化し快適性が損なわれる。また、直接室内機から空気が吹き付けられる壁に汚れ・はがれ等が発生しやすいという課題があった。   As described above, the conventional air conditioner needs to input the installation position of the indoor unit by a remote controller or the like (sometimes depending on the indoor unit main body) at the time of installation by the installer or user, which is inconvenient and indoors. If you forget to enter the installation position of the machine, air conditioning efficiency will deteriorate and comfort will be impaired. In addition, there is a problem that dirt, peeling, and the like are likely to occur on the wall directly blown from the indoor unit.

この発明は、上記のような課題を解決するためになされたもので、据え付け時に作業者又は使用者が室内機の据付位置の設定をしなくても、自動的に室内機の据付位置の設定を行うことができる空気調和機を提供する。   The present invention has been made to solve the above-described problems. Even when an operator or a user does not set the installation position of the indoor unit during installation, the indoor unit installation position is automatically set. An air conditioner capable of performing the above is provided.

この発明に係る空気調和機は、部屋の空気を吸い込む吸込口と調和空気を吹き出す吹出口とを有する略箱状の本体と、
前記本体の前面に所定の俯角で下向きに取り付けられ、温度検出対象範囲を左右に走査して温度検出対象の温度を検出する赤外線センサと、
前記赤外線センサにより人や発熱機器の存在を検知して、当該空気調和機の制御を司る制御部とを備え、
前記制御部は、少なくとも運転起動時に前記赤外線センサを走査して前記部屋の熱画像データを取得し、前記熱画像データに基づいて前記本体の前記部屋における据付位置を判断し、前記吹出口から吹き出される吹き出し風の風向を前記据付位置に対応して設定することを特徴とする。
The air conditioner according to the present invention is a substantially box-shaped main body having a suction port for sucking room air and a blow-out port for blowing out conditioned air;
An infrared sensor that is attached downward to the front surface of the main body at a predetermined depression angle and that detects the temperature of the temperature detection target by scanning the temperature detection target range from side to side;
The presence of a person or a heat generating device is detected by the infrared sensor, and a control unit that controls the air conditioner is provided.
The control unit scans the infrared sensor at least when the operation is started to obtain thermal image data of the room, determines an installation position of the main body in the room based on the thermal image data, and blows out from the outlet. The direction of the blown air to be blown is set corresponding to the installation position.

この発明に係る空気調和機は、制御部が少なくとも運転起動時に赤外線センサを走査して部屋の熱画像データを取得し、熱画像データに基づいて本体の部屋における据付位置を判断し、吹出口から吹き出される吹き出し風の風向を据付位置に対応して設定するので、据え付け時に作業者又は使用者が室内機の据付位置の設定をしなくても、自動的に室内機の据付位置の設定を行うことができる。   In the air conditioner according to the present invention, the control unit scans the infrared sensor at least at the start of operation to obtain thermal image data of the room, determines the installation position of the main body in the room based on the thermal image data, and from the outlet Since the direction of the blown air blown out is set according to the installation position, the installation position of the indoor unit is automatically set even if the operator or user does not set the installation position of the indoor unit during installation. It can be carried out.

実施の形態1.
先ず、本実施の形態の概要を説明する。空気調和機(室内機)は、温度検出対象範囲を走査しながら温度を検出する可動式赤外線センサを備え、可動式赤外線センサにより熱源検知を行って人や発熱機器の存在を検知して、快適な制御を行うようにしている。
Embodiment 1 FIG.
First, an outline of the present embodiment will be described. The air conditioner (indoor unit) is equipped with a movable infrared sensor that detects the temperature while scanning the temperature detection target range, and detects the presence of people and heat-generating equipment by detecting the heat source using the movable infrared sensor. To perform proper control.

通常室内機は部屋の高所の壁に据付られるが、室内機が据付られる壁における左右の位置は、様々である。壁の左右方向の略中央に据付られる場合もあるし、室内機から見て右側又は左側の壁に接近して据付られる場合もある。   Usually, the indoor unit is installed on a wall at a high place in the room, but the left and right positions on the wall on which the indoor unit is installed are various. It may be installed at the approximate center in the left-right direction of the wall, or may be installed close to the right or left wall as viewed from the indoor unit.

本実施の形態の空気調和機は、起動時に可動式赤外線センサを利用して、空気調和機自身が据付られる壁における左右の位置を判断して、それに合わせて自動的に吹出し風向(左右フラップ)等の設定を行うものである。それにより、空調効率が悪化し快適性が損なわれることを抑制すると共に、直接室内機から空気が吹き付けられる壁に汚れ・はがれ等が発生することがないようにするものである。   The air conditioner of this embodiment uses a movable infrared sensor at the time of start-up to determine the left and right positions on the wall where the air conditioner itself is installed, and automatically blows out the wind direction (left and right flaps) accordingly. Etc. are set. Thus, the air conditioning efficiency is prevented from deteriorating and the comfort is impaired, and the wall to which air is directly blown from the indoor unit is prevented from being contaminated or peeled off.

図1乃至図24は実施の形態1を示す図で、図1、図2は空気調和機100の斜視図、図3は空気調和機100の縦断面図、図4は可動式赤外線センサ3と受光素子の各配光視野角を示す図、図5は可動式赤外線センサ3を収納する筐体5の斜視図、図6は可動式赤外線センサ3付近の斜視図((a)は可動式赤外線センサ3が右端端部へ可動した状態、(b)は可動式赤外線センサ3が中央部へ可動した状態、(c)は可動式赤外線センサ3が左端端部へ可動した状態)、図7は可動式赤外線センサ3の縦断面における縦配光視野角を示す図、図8は主婦12が幼児13を抱いている部屋の熱画像データを示す図、図9はある任意の大きさの部屋に空気調和機100が設置されている様子を示す図、図10は床面の1辺が3600mmの正方形(8畳相当)の部屋を2つ並べた16畳相当の部屋の長手方向の壁の中央付近に空気調和機100を設置した部屋空間に対し、3角法にて床面と壁面を展開した図、図11は図10の空気調和機100の据付条件にて熱画像データを取得する際の床面領域22、壁面領域20、床面と壁面との境界線領域21の検知エリア領域を示す図、図12は床面の1辺が3600mmの正方形(8畳相当)の部屋を2つ並べた16畳相当の部屋の短手方向の壁の中央付近に空気調和機100を設置した部屋空間に対し、3角法にて床面と壁面を展開した図、図13は図12の空気調和機100の据付条件にて熱画像データを取得する際の床面領域25、壁面領域23、床面と壁面との境界線領域24の検知エリア領域を示す図、図14は床面の1辺が3600mmの正方形(8畳相当)の部屋を2つ並べた16畳相当の部屋の長手方向の壁の右側端付近に空気調和機100を設置した部屋空間に対し、3角法にて床面と壁面を展開した図、図15は図14の空気調和機100の据付条件にて熱画像データを取得する際の床面領域28、壁面領域26、床面と壁面との境界線領域27の検知エリア領域を示す図、図16は部屋の据付壁50の中央付近に空気調和機100を据付け、吹出し風29を右側に吹出す場合の斜視図(a)と吹出し風30を左側に吹出す場合の斜視図(b)、図17は部屋の据付壁50の右端付近に空気調和機100を据付け、吹出し風29を右側に吹出す場合の斜視図(a)と吹出し風30を左側に吹出す場合の斜視図(b)、図18は図16(a)の据付・運転条件における部屋の熱画像データを示す図、図19は図16(b)の据付・運転条件における部屋の熱画像データを示す図、図20は図18と図19とを合わせた図、図21は図17(a)の据付・運転条件における部屋の熱画像データを示す図、図22は図17(b)の据付・運転条件における部屋の熱画像データを示す図、図23は図21と図22とを合わせた図、図24は空気調和機100と左右壁との距離Lと面積(画素数)Sとの関係を示す図である。   FIGS. 1 to 24 are diagrams showing the first embodiment. FIGS. 1 and 2 are perspective views of the air conditioner 100, FIG. 3 is a longitudinal sectional view of the air conditioner 100, and FIG. FIG. 5 is a perspective view of a housing 5 that houses the movable infrared sensor 3, and FIG. 6 is a perspective view of the vicinity of the movable infrared sensor 3 ((a) is a movable infrared ray). FIG. 7 shows a state in which the sensor 3 is moved to the right end, (b) a state in which the movable infrared sensor 3 is moved to the center, (c) a state in which the movable infrared sensor 3 is moved to the left end). FIG. 8 is a diagram showing a vertical light distribution viewing angle in a longitudinal section of the movable infrared sensor 3, FIG. 8 is a diagram showing thermal image data of a room where the housewife 12 holds the infant 13, and FIG. 9 is a room of an arbitrary size The figure which shows a mode that the air conditioner 100 is installed, FIG. 10 is a positive whose one side of a floor surface is 3600 mm. The floor and wall surface are expanded by the triangle method for the room space where the air conditioner 100 is installed near the center of the longitudinal wall of the 16 tatami mat room, where two rooms (equivalent to 8 tatami mats) are arranged. FIG. 11 shows the detection area of the floor area 22, the wall area 20, and the boundary area 21 between the floor and the wall when acquiring thermal image data under the installation conditions of the air conditioner 100 of FIG. FIG. 12 shows a room in which the air conditioner 100 is installed in the vicinity of the center of the wall in the short direction of a room of 16 tatami mat equivalent, in which two square rooms (equivalent to 8 tatami mat) each having a floor of 3600 mm are arranged side by side. FIG. 13 is a diagram in which a floor surface and a wall surface are developed by a triangle method with respect to a space, and FIG. 13 shows a floor surface region 25, a wall surface region 23, FIG. 14 is a diagram showing a detection area area of a boundary line area 24 between a floor surface and a wall surface, and FIG. 14 shows one side of the floor surface For a room space in which the air conditioner 100 is installed near the right end of the longitudinal wall of a 16 tatami mat room with two 3600 mm square (8 tatami mat) rooms, FIG. 15 is a developed view of the wall surface. FIG. 15 is a diagram illustrating detection of a floor surface region 28, a wall surface region 26, and a boundary region 27 between the floor surface and the wall surface when acquiring thermal image data under the installation conditions of the air conditioner 100 of FIG. FIG. 16 is a perspective view when the air conditioner 100 is installed near the center of the room installation wall 50 and the blowing air 29 is blown to the right side, and the blowing air 30 is blown to the left side. FIGS. 17B and 17B are a perspective view when the air conditioner 100 is installed near the right end of the installation wall 50 of the room and the blowing air 29 is blown to the right side, and the blowing air 30 is blown to the left side. (B) and FIG. 18 show the installation / operation conditions of FIG. FIG. 19 is a diagram showing room thermal image data under the installation / operating conditions of FIG. 16B, FIG. 20 is a diagram combining FIGS. 18 and 19, and FIG. Is a diagram showing room thermal image data under the installation / operation conditions of FIG. 17 (a), FIG. 22 is a diagram showing room thermal image data under the installation / operation conditions of FIG. 17 (b), and FIG. FIG. 24 is a diagram showing the relationship between the distance L between the air conditioner 100 and the left and right walls and the area (number of pixels) S. FIG.

図1乃至図3により、空気調和機100(室内機)の全体構成を説明する。図1、図2共に、空気調和機100の外観斜視図であるが、見る角度が異なる点と、図1は上下フラップ43(上下風向制御板、左右に2個)が閉じているのに対して、図2は上下フラップ43が開き奥の左右フラップ44(左右風向制御板、多数)が見えている点とが異なる。   The overall configuration of the air conditioner 100 (indoor unit) will be described with reference to FIGS. 1 to 3. 1 and FIG. 2 are external perspective views of the air conditioner 100, but the view angle is different, and FIG. 1 shows that the upper and lower flaps 43 (up and down wind direction control plates, two on the left and right) are closed. FIG. 2 is different from FIG. 2 in that the upper and lower flaps 43 are open and the left and right flaps 44 (left and right wind direction control plates, many) are visible.

図1に示すように、空気調和機100(室内機)は、略箱状の室内機筺体40(本体と定義する)の上面に部屋の空気を吸い込む吸込口41が形成されている。   As shown in FIG. 1, the air conditioner 100 (indoor unit) has a suction port 41 for sucking room air on the upper surface of a substantially box-shaped indoor unit housing 40 (defined as a main body).

また、前面の下部に調和空気を吹き出す吹出口42が形成されていて、吹出口42には吹き出し風の風向を制御する上下フラップ43と、左右フラップ44とが設けられる。上下フラップ43は吹き出し風の上下風向を制御し、左右フラップ44は吹き出し風の左右風向を制御する。   Moreover, the blower outlet 42 which blows off conditioned air is formed in the lower part of the front, and the blower outlet 42 is provided with the upper and lower flaps 43 and the left and right flaps 44 for controlling the direction of the blown air. The upper and lower flaps 43 control the up and down direction of the blowing air, and the left and right flaps 44 control the left and right direction of the blowing air.

室内機筺体40の前面の下部で、吹出口42の上に、可動式赤外線センサ3(赤外線センサの一例)が設けられている。可動式赤外線センサ3は、俯角約24.5度の角度で下向きに取り付けられている。俯角とは、可動式赤外線センサ3の中心軸と水平線とがなす角度である。別の言い方をすると、可動式赤外線センサ3は、水平線に対して約24.5度の角度で下向きに取り付けられている。   A movable infrared sensor 3 (an example of an infrared sensor) is provided on the outlet 42 in the lower part of the front surface of the indoor unit housing 40. The movable infrared sensor 3 is attached downward at an depression angle of about 24.5 degrees. The depression angle is an angle formed by the central axis of the movable infrared sensor 3 and a horizontal line. In other words, the movable infrared sensor 3 is mounted downward at an angle of about 24.5 degrees with respect to the horizon.

図3に示すように、空気調和機100(室内機)は、内部に送風機45を備え、該送風機45を囲むように熱交換器46が配置されている。   As shown in FIG. 3, the air conditioner 100 (indoor unit) includes a blower 45 inside, and a heat exchanger 46 is disposed so as to surround the blower 45.

熱交換器46は、室外機(図示せず)に搭載された圧縮機等と接続されて冷凍サイクルを形成している。冷房運転時は蒸発器として、暖房運転時は凝縮器として動作する。   The heat exchanger 46 is connected to a compressor or the like mounted on an outdoor unit (not shown) to form a refrigeration cycle. It operates as an evaporator during cooling operation and as a condenser during heating operation.

吸込口41から送風機45により室内空気が吸い込まれ、熱交換器46で冷凍サイクルの冷媒と熱交換を行い、送風機45を通過して吹出口42から室内へ吹き出される。   Room air is sucked in by the blower 45 from the suction port 41, heat exchange is performed with the refrigerant of the refrigeration cycle in the heat exchanger 46, passes through the blower 45, and is blown out into the room from the outlet 42.

吹出口42では、上下フラップ43と左右フラップ44(図3では図示していない)とにより、上下方向及び左右方向の風向が制御される。図3は、上下フラップ43が水平吹き出しの角度になっている。   At the air outlet 42, the vertical and horizontal flaps 43 and left and right flaps 44 (not shown in FIG. 3) control the vertical and horizontal wind directions. In FIG. 3, the upper and lower flaps 43 are at a horizontal blowing angle.

図4に示すように、可動式赤外線センサ3は、金属缶1内部に8個の受光素子(図示せず)を縦方向に一列に配列している。金属缶1の上面には、8個の受光素子に赤外線を通すためのレンズ製の窓(図示せず)が設けられている。各受光素子の配光視野角2は、縦方向7度、横方向8度である。尚、各受光素子の配光視野角2が、縦方向7度、横方向8度のものを示したが、縦方向7度、横方向8度に限定されるものではない。各受光素子の配光視野角2に応じて、受光素子の数は変化する。例えば、1個の受光素子の縦配光視野角と受光素子の数との積が一定になるようにすればよい。   As shown in FIG. 4, the movable infrared sensor 3 has eight light receiving elements (not shown) arranged in a row in the vertical direction inside the metal can 1. On the upper surface of the metal can 1, there are provided lens windows (not shown) for passing infrared rays through the eight light receiving elements. The light distribution viewing angle 2 of each light receiving element is 7 degrees in the vertical direction and 8 degrees in the horizontal direction. In addition, although the light distribution viewing angle 2 of each light receiving element showed 7 degrees of vertical directions and 8 degrees of horizontal directions, it is not limited to 7 degrees of vertical directions and 8 degrees of horizontal directions. The number of light receiving elements changes according to the light distribution viewing angle 2 of each light receiving element. For example, the product of the vertical light distribution viewing angle of one light receiving element and the number of light receiving elements may be made constant.

図5は、可動式赤外線センサ3付近を裏側(空気調和機100の内部から)から見た斜視図である。図5に示すように、可動式赤外線センサ3は、筐体5内に収納されている。そして、筐体5の上方に可動式赤外線センサ3を駆動するステッピングモーター6が設けられる。筐体5と一体の取付部7が空気調和機100の前面下部に固定されることにより、可動式赤外線センサ3が空気調和機100に取り付けられる。可動式赤外線センサ3が空気調和機100に取り付けられた状態では、ステッピングモーター6と筐体5は垂直である。そして、筐体5の内部で可動式赤外線センサ3が、俯角約24.5度の角度で下向きに取り付けられている。   FIG. 5 is a perspective view of the vicinity of the movable infrared sensor 3 as seen from the back side (from the inside of the air conditioner 100). As shown in FIG. 5, the movable infrared sensor 3 is housed in the housing 5. A stepping motor 6 that drives the movable infrared sensor 3 is provided above the housing 5. The movable infrared sensor 3 is attached to the air conditioner 100 by fixing the attachment portion 7 integrated with the housing 5 to the lower front portion of the air conditioner 100. In a state where the movable infrared sensor 3 is attached to the air conditioner 100, the stepping motor 6 and the housing 5 are vertical. The movable infrared sensor 3 is attached to the inside of the housing 5 downward at an included angle of about 24.5 degrees.

可動式赤外線センサ3は、ステッピングモーター6により左右方向に所定角度範囲を回転駆動する(このような回転駆動をここでは、可動する、と表現する)が、図6に示すように右端端部(a)から中央部(b)を経由して左端端部(c)まで可動し、左端端部(c)に来ると逆方向に反転して可動する。この動作を繰り返す。可動式赤外線センサ3は、部屋の温度検出対象範囲を左右に走査しながら温度検出対象の温度を検出する。   The movable infrared sensor 3 is rotationally driven within a predetermined angle range in the left-right direction by the stepping motor 6 (this rotational drive is expressed as being movable here), but as shown in FIG. It moves from a) to the left end portion (c) via the central portion (b), and when it reaches the left end portion (c), it is reversed and moved in the reverse direction. This operation is repeated. The movable infrared sensor 3 detects the temperature of the temperature detection target while scanning the room temperature detection target range from side to side.

ここで、可動式赤外線センサ3による部屋の壁や床の熱画像データの取得方法について述べる。尚、可動式赤外線センサ3等の制御は、所定の動作がプログラムされたマイクロコンピュータによって行われる。所定の動作がプログラムされたマイクロコンピュータを制御部と定義する。以下の説明では、一々夫々の制御を制御部(所定の動作がプログラムされたマイクロコンピュータ)が行うという記載は省略する。   Here, the acquisition method of the thermal image data of the wall and floor of the room by the movable infrared sensor 3 will be described. The movable infrared sensor 3 and the like are controlled by a microcomputer programmed with a predetermined operation. A microcomputer programmed with a predetermined operation is defined as a control unit. In the following description, a description that each control is performed by the control unit (a microcomputer programmed with a predetermined operation) is omitted.

部屋の壁や床の熱画像データを取得する場合、可動式赤外線センサ3をステッピングモーター6により左右方向に可動し、ステッピングモーター6の可動角度(可動式赤外線センサ3の回転駆動角度)1.6度毎に各位置で可動式赤外線センサ3を所定時間(0.1〜0.2秒)停止させる。   When acquiring thermal image data of the wall or floor of the room, the movable infrared sensor 3 is moved in the left-right direction by the stepping motor 6, and the movable angle of the stepping motor 6 (the rotational drive angle of the movable infrared sensor 3) is 1.6. The movable infrared sensor 3 is stopped at each position every predetermined time for a predetermined time (0.1 to 0.2 seconds).

可動式赤外線センサ3を停止した後、所定時間(0.1〜0.2秒より短い時間)待ち、可動式赤外線センサ3の8個の受光素子の検出結果(熱画像データ)を取り込む。   After the movable infrared sensor 3 is stopped, it waits for a predetermined time (a time shorter than 0.1 to 0.2 seconds), and the detection results (thermal image data) of the eight light receiving elements of the movable infrared sensor 3 are captured.

可動式赤外線センサ3の検出結果を取り込み終了後、再びステッピングモーター6を駆動(可動角度1.6度)して後停止し、同様の動作により可動式赤外線センサ3の8個の受光素子の検出結果(熱画像データ)を取り込む。   After capturing the detection result of the movable infrared sensor 3, the stepping motor 6 is driven again (moving angle 1.6 degrees) and then stopped, and the eight light receiving elements of the movable infrared sensor 3 are detected by the same operation. Capture the results (thermal image data).

上記の動作を繰り返し行い、左右方向に94箇所の可動式赤外線センサ3の検出結果をもとに検知エリア内の熱画像データを演算する。   The above operation is repeated, and thermal image data in the detection area is calculated based on the detection results of 94 movable infrared sensors 3 in the left-right direction.

ステッピングモーター6の可動角度1.6度毎に94箇所で可動式赤外線センサ3を停止させて熱画像データを取り込むので、可動式赤外線センサ3の左右方向の可動範囲(左右方向に回転駆動する角度範囲)は、約150.4度である。   Since the movable infrared sensor 3 is stopped at 94 positions every 1.6 degrees of the movable angle of the stepping motor 6 and the thermal image data is captured, the movable range of the movable infrared sensor 3 in the horizontal direction (the angle for rotationally driving in the horizontal direction) Range) is about 150.4 degrees.

尚、可動式赤外線センサ3をステッピングモーター6により左右方向に可動して部屋の壁や床の熱画像データを取得する場合、空気調和機100の上下フラップ43の向きは水平に固定する。そして、左右フラップ44は、右側に最大に傾けた場合と、左側に最大に傾けた場合との二つのケースについて部屋の熱画像データを取得する。この点については、追って詳しく述べる。   When the movable infrared sensor 3 is moved in the left-right direction by the stepping motor 6 to acquire thermal image data of the wall or floor of the room, the direction of the upper and lower flaps 43 of the air conditioner 100 is fixed horizontally. The left and right flaps 44 acquire room thermal image data for two cases of tilting to the right and maximizing to the left. This point will be described in detail later.

図7は空気調和機100を部屋の床面から1800mmの高さに据付けた状態で、8個の受光素子が縦に一列に配列された可動式赤外線センサ3の縦断面における縦配光視野角を示す。   FIG. 7 shows a vertical light distribution viewing angle in a vertical cross section of the movable infrared sensor 3 in which eight light receiving elements are arranged in a vertical row in a state where the air conditioner 100 is installed at a height of 1800 mm from the floor of the room. Indicates.

図7に示す角度7°は、1個の受光素子の縦配光視野角である。   The angle 7 ° shown in FIG. 7 is the vertical light distribution viewing angle of one light receiving element.

また、図7の角度37.5°は、可動式赤外線センサ3の縦視野領域に入らない領域の空気調和機100が取り付けられた壁からの角度を示す。可動式赤外線センサ3の俯角が0°であれば、この角度は、90°−4(水平より下の受光素子の数)×7°(1個の受光素子の縦配光視野角)=62°になる。本実施の形態の可動式赤外線センサ3は、俯角が24.5°であるから、62°−24.5°=37.5°になる。   Further, an angle 37.5 ° in FIG. 7 indicates an angle from a wall to which the air conditioner 100 in a region that does not enter the vertical field of view of the movable infrared sensor 3 is attached. If the depression angle of the movable infrared sensor 3 is 0 °, this angle is 90 ° −4 (number of light receiving elements below the horizontal) × 7 ° (vertical light distribution viewing angle of one light receiving element) = 62. It becomes °. Since the movable infrared sensor 3 of the present embodiment has a depression angle of 24.5 °, 62 ° -24.5 ° = 37.5 °.

図8は8畳相当の部屋で主婦12が幼児13を抱いている一生活シーンを可動式赤外線センサ3を左右方向に可動させながら得られた検出結果をもとに熱画像データとして演算した結果を示す。   FIG. 8 shows a result of calculation as thermal image data based on a detection result obtained by moving the movable infrared sensor 3 in the left-right direction in a living scene where the housewife 12 is holding the infant 13 in a room equivalent to 8 tatami mats. Indicates.

図8は季節が冬で、且つ天候が曇りの日に取得した熱画像データである。従って、窓14の温度は、10〜15℃と低い。主婦12と幼児13の温度が最も高い。特に、主婦12と幼児13の上半身の温度は、26〜30℃である。このように、可動式赤外線センサ3を左右方向に可動させることにより、例えば、部屋の各部の温度情報を取得することができる。   FIG. 8 shows thermal image data acquired on a day when the season is winter and the weather is cloudy. Therefore, the temperature of the window 14 is as low as 10 to 15 ° C. Housewives 12 and infants 13 have the highest temperatures. In particular, the temperature of the upper body of the housewife 12 and the infant 13 is 26-30 ° C. Thus, by moving the movable infrared sensor 3 in the left-right direction, for example, temperature information of each part of the room can be acquired.

図9はある任意の大きさの部屋に空気調和機100が設置されている様子を示す。空気調和機100は、据付壁50(破線のハッチング部分)に設置されている。据付壁50の右側に、右側の壁17がある。また、据付壁50の左側に、左側の壁16がある。また、据付壁50の正面に、正面の壁19がある。さらに、据付壁50の下に床18がある。   FIG. 9 shows a state where the air conditioner 100 is installed in a room of an arbitrary size. The air conditioner 100 is installed on the installation wall 50 (broken hatched portion). On the right side of the installation wall 50 is the right wall 17. The left wall 16 is on the left side of the installation wall 50. A front wall 19 is located in front of the installation wall 50. Further, there is a floor 18 under the installation wall 50.

図7に示す縦方向の配光視野角を持つ可動式赤外線センサ3を左右方向に94カ所(角度150.4°)可動させることにより取得できる熱画像データの検知対象エリア領域は、空気調和機100から見て右側の壁17と、左側の壁16と、正面の壁19と、床18とが主となる。   The detection area area of the thermal image data that can be acquired by moving the movable infrared sensor 3 having the vertical light distribution viewing angle shown in FIG. 7 in 94 positions (angle 150.4 °) in the left-right direction is an air conditioner. The right wall 17, the left wall 16, the front wall 19, and the floor 18 as viewed from 100 are mainly used.

図10は床面の1辺が3600mmの正方形(8畳相当)の部屋を2つ並べた16畳相当の部屋の長手方向の壁の中央付近に空気調和機100を設置した部屋空間に対し、3角法にて床面と壁面を展開した図である。   FIG. 10 shows a room space in which the air conditioner 100 is installed near the center of the longitudinal wall of a room of 16 tatami mats, in which two square rooms (equivalent to 8 tatami mats) each having a floor of 3600 mm are arranged. It is the figure which developed the floor surface and the wall surface by the triangle method.

図9と同様に取得する熱画像としての検知対象エリア領域は空気調和機100から見て、右側の壁17と、左側の壁16と、正面の壁19と、床18となる。   Similar to FIG. 9, the detection target area area as a thermal image to be acquired is the right wall 17, the left wall 16, the front wall 19, and the floor 18 as viewed from the air conditioner 100.

図11は図10の空気調和機100の据付条件にて熱画像データを取得する際の床面領域22、壁面領域20、床面と壁面との境界線領域21の検知エリア領域を示す図である。空気調和機100の据付け高さを1800mmとした場合(図7)に取得できる縦8素子*横94分解能から得られる752画素相当の熱画像における壁面領域20と、床面領域22と、床18と壁面(右側の壁17、左側の壁16、正面の壁19)との境界線領域21とを示す。   FIG. 11 is a diagram showing detection area regions of the floor surface region 22, the wall surface region 20, and the boundary region 21 between the floor surface and the wall surface when acquiring thermal image data under the installation conditions of the air conditioner 100 of FIG. is there. When the installation height of the air conditioner 100 is 1800 mm (FIG. 7), the wall surface region 20, the floor surface region 22, and the floor 18 in the thermal image corresponding to 752 pixels obtained from 8 vertical elements * 94 horizontal resolutions that can be acquired. And a boundary region 21 between the wall surface (the right wall 17, the left wall 16, and the front wall 19).

空気調和機100から見て手前側の床面領域22を検知する検知素子は受光素子a〜cが支配的となる。また、壁面領域20を検知する検知素子は受光素子e〜hが主となる。   The light receiving elements a to c are dominant in the detection element that detects the floor surface region 22 on the near side when viewed from the air conditioner 100. In addition, the light receiving elements e to h are the main detecting elements for detecting the wall surface region 20.

そして、受光素子d,eが左右角度と可動式赤外線センサ3の縦方向配光視野角(図7)の関係上、床18と壁面(右側の壁17、左側の壁16、正面の壁19)との境界線付近の境界線領域21を検知することとなる。   The light receiving elements d and e have a floor 18 and a wall surface (the right wall 17, the left wall 16, and the front wall 19) because of the relationship between the left and right angles and the vertical light distribution viewing angle of the movable infrared sensor 3 (FIG. 7). ) Is detected near the boundary line 21).

従って、図11において、取得される熱画像において床面領域22は下部領域となり、壁面領域20は上部領域となり、床18と壁面(右側の壁17、左側の壁16、正面の壁19)との境界線領域21が、床面領域22と壁面領域20の間の位置付けとなる。   Accordingly, in FIG. 11, the floor area 22 is a lower area and the wall surface area 20 is an upper area in the acquired thermal image, and the floor 18 and the wall surfaces (the right wall 17, the left wall 16, and the front wall 19). The boundary line region 21 is positioned between the floor surface region 22 and the wall surface region 20.

図12は床面の1辺が3600mmの正方形(8畳相当)の部屋を2つ並べた16畳相当の部屋の短手方向の壁の中央付近に空気調和機100を設置した部屋空間に対し、3角法にて床面の壁面を展開した図である。   FIG. 12 shows a room space in which an air conditioner 100 is installed near the center of a short-side wall of a room of 16 tatami mat equivalent to two rooms of a square (equivalent to 8 tatami mat) each having a side of the floor of 3600 mm. It is the figure which developed the wall surface of the floor surface by the triangle method.

図13は図12の空気調和機100の据付条件にて熱画像データを取得する際の床面領域25、壁面領域23、床18と壁面(右側の壁17、左側の壁16、正面の壁19)との境界線領域24の検知エリア領域を示したものである。空気調和機100の据付け高さを1800mmとした場合(図7)に取得できる縦8素子*横94分解能から得られる752画素相当の熱画像における壁面領域23と、床面領域25と、床18と壁面(右側の壁17、左側の壁16、正面の壁19)との境界線領域24とを示す。   13 shows a floor area 25, a wall area 23, a floor 18 and a wall surface (right wall 17, left wall 16, front wall when acquiring thermal image data under the installation conditions of the air conditioner 100 of FIG. 19) shows the detection area of the boundary line area 24. When the installation height of the air conditioner 100 is 1800 mm (FIG. 7), the wall surface region 23, the floor surface region 25, and the floor 18 in the thermal image corresponding to 752 pixels obtained from the vertical 8 element * horizontal 94 resolution that can be acquired. And a boundary region 24 between the wall surface (the right wall 17, the left wall 16, and the front wall 19).

空気調和機100から見て手前側の床面領域25を検知する検知素子は受光素子a〜eが支配的となる。図11と比較すると、検知エリア領域の中央部付近の床面領域25が広くなっている。また、検知エリア領域の両端付近の床面領域25が狭くなっている。これは、図12に示す部屋が、空気調和機100から見て図10に示す部屋よりも縦長になっているためである。   The light receiving elements a to e are dominant in the detection element that detects the floor surface region 25 on the near side when viewed from the air conditioner 100. Compared to FIG. 11, the floor surface area 25 near the center of the detection area area is wider. Further, the floor area 25 near both ends of the detection area area is narrowed. This is because the room shown in FIG. 12 is longer than the room shown in FIG. 10 when viewed from the air conditioner 100.

また、壁面領域23を検知する検知素子は受光素子c〜hが主となる。図11と比較すると、検知エリア領域の中央部付近の壁面領域23が狭くなっている。また、検知エリア領域の両端付近の壁面領域23が広くなっている。これも、図12に示す部屋が、空気調和機100から見て図10に示す部屋よりも縦長になっているためである。   In addition, the light receiving elements c to h are the main detecting elements for detecting the wall surface region 23. Compared to FIG. 11, the wall surface region 23 near the center of the detection area region is narrower. Further, the wall surface region 23 near both ends of the detection area region is widened. This is also because the room shown in FIG. 12 is longer than the room shown in FIG. 10 when viewed from the air conditioner 100.

そして、受光素子c〜fが左右角度と可動式赤外線センサ3の縦方向配光視野角(図7)の関係上、床18と壁面(右側の壁17、左側の壁16、正面の壁19)との境界線付近の境界線領域24を検知することとなる。   The light receiving elements c to f have a floor 18 and a wall surface (the right wall 17, the left wall 16, the front wall 19) because of the relationship between the left and right angles and the vertical light distribution viewing angle of the movable infrared sensor 3 (FIG. 7). ) Is detected near the boundary line.

従って、図13においても、取得される熱画像において床面領域25は下部領域となり、壁面領域23は上部領域となり、床18と壁面(右側の壁17、左側の壁16、正面の壁19)との境界線領域24が、床面領域25と壁面領域23の間の位置付けとなる。   Accordingly, also in FIG. 13, the floor area 25 is a lower area and the wall surface area 23 is an upper area in the acquired thermal image, and the floor 18 and the wall surface (the right wall 17, the left wall 16, and the front wall 19). The boundary line area 24 is positioned between the floor area 25 and the wall area 23.

図14は床面の1辺が3600mmの正方形(8畳相当)の部屋を2つ並べた16畳相当の部屋の長手方向の壁の右側端付近に空気調和機100を設置した部屋空間に対し、3角法にて床面と壁面を展開した図である。   FIG. 14 shows a room space in which an air conditioner 100 is installed near the right end of a longitudinal wall of a room of 16 tatami mats, in which two square rooms (equivalent to 8 tatami mats) each having a side of 3600 mm are arranged side by side. It is the figure which developed the floor surface and the wall surface by the triangle method.

図15は図14の空気調和機100の据付条件にて熱画像データを取得する際の床面領域28、壁面領域26、床面と壁面との境界線領域27の検知エリア領域を示す図である。空気調和機100の据付け高さを1800mmとした場合(図7)に取得できる縦8素子*横94分解能から得られる752画素相当の熱画像における壁面領域26と、床面領域28と、床18と壁面(右側の壁17、左側の壁16、正面の壁19)との境界線領域27とを示す。   FIG. 15 is a diagram showing detection area areas of a floor area 28, a wall area 26, and a boundary area 27 between the floor and the wall surface when acquiring thermal image data under the installation conditions of the air conditioner 100 of FIG. is there. When the installation height of the air conditioner 100 is set to 1800 mm (FIG. 7), the wall surface area 26, the floor area 28, and the floor 18 in the thermal image corresponding to 752 pixels obtained from 8 vertical elements * 94 horizontal resolution that can be acquired. And a boundary region 27 between the wall surface (the right wall 17, the left wall 16, and the front wall 19).

空気調和機100から見て手前側の床面領域25を検知する検知素子は受光素子a〜eが支配的となる。床面領域28が、検知エリア領域の左側に偏る。これは、部屋の長手方向の壁の右側端付近に空気調和機100を設置したため、可動式赤外線センサ3が中央付近から右端の間を左右方向に可動する場合、床18が検知領域に入らないからである。   The light receiving elements a to e are dominant in the detection element that detects the floor surface region 25 on the near side when viewed from the air conditioner 100. The floor area 28 is biased to the left side of the detection area area. This is because the air conditioner 100 is installed near the right end of the wall in the longitudinal direction of the room, so that the floor 18 does not enter the detection region when the movable infrared sensor 3 moves in the left-right direction from near the center to the right end. Because.

また、受光素子a〜hの全てが、壁面領域26を検知する。壁面領域26が、検知エリア領域の左から右に向かって広くなっている。検知エリア領域の右側の約1/3は、壁面領域26だけになっている。これも、部屋の長手方向の壁の右側端付近に空気調和機100を設置したためである。   Further, all of the light receiving elements a to h detect the wall surface region 26. The wall surface area 26 is widened from the left to the right of the detection area area. About 1/3 on the right side of the detection area is only the wall surface area 26. This is also because the air conditioner 100 is installed near the right end of the longitudinal wall of the room.

そして、受光素子a〜fが左右角度と可動式赤外線センサ3の縦方向配光視野角(図7)の関係上、床18と壁面(右側の壁17、左側の壁16、正面の壁19)との境界線付近の境界線領域27を検知することとなる。部屋の長手方向の壁の右側端付近に空気調和機100を設置したため、境界線領域27も検知エリア領域の右側の約1/3には存在しない。   The light receiving elements a to f have a floor 18 and a wall surface (the right wall 17, the left wall 16, and the front wall 19) because of the relationship between the left and right angles and the vertical light distribution viewing angle of the movable infrared sensor 3 (FIG. 7). ) Is detected in the vicinity of the boundary line 27). Since the air conditioner 100 is installed near the right end of the wall in the longitudinal direction of the room, the boundary line area 27 does not exist in about 1/3 of the right side of the detection area area.

次に、可動式赤外線センサ3を用いて取得することができる部屋の熱画像データの一例を説明する。空気調和機100の冷房又は暖房運転を行う。このとき、上下フラップ43は、吹き出し風が水平以上となる向きに固定する。吹出口42から吹き出す調和空気の温度が、室内空気よりも所定の温度差がある状態を所定時間維持してその間に部屋の熱画像データを可動式赤外線センサ3を用いて取得する。左右フラップ44は、右側に最大に傾けた第1の状態と、左側に最大に傾けた第2の状態との夫々について、熱画像データを取得するものとする。但し、左右フラップ44の傾けは、最大でなくてもよい。   Next, an example of room thermal image data that can be acquired using the movable infrared sensor 3 will be described. The air conditioner 100 is cooled or heated. At this time, the upper and lower flaps 43 are fixed in a direction in which the blown air becomes horizontal or higher. The temperature of the conditioned air blown out from the air outlet 42 is maintained for a predetermined time in a state where there is a predetermined temperature difference from the room air, and the thermal image data of the room is acquired using the movable infrared sensor 3 during that time. The left and right flaps 44 acquire thermal image data for each of the first state tilted to the maximum on the right side and the second state tilted to the maximum on the left side. However, the inclination of the left and right flaps 44 may not be the maximum.

図16は部屋の据付壁50の中央付近に空気調和機100を据付け、吹出し風29を右側に吹出す場合の斜視図(a)と吹出し風30を左側に吹出す場合の斜視図(b)である。吹出し風29を右側に吹出す場合は、左右フラップ44を右側に最大に傾ける(第1の状態)。また、吹出し風30を左側に吹出す場合は、左右フラップ44を左側に最大に傾ける(第2の状態)。但し、左右フラップ44の左右への傾きは、最大でなくてもよい。   FIG. 16 is a perspective view when the air conditioner 100 is installed near the center of the installation wall 50 in the room and the blowing air 29 is blown to the right side, and a perspective view when the blowing air 30 is blown to the left side (b). It is. When blowing the blowing air 29 to the right, the left and right flaps 44 are tilted to the right to the maximum (first state). Further, when blowing the blown air 30 to the left, the left and right flaps 44 are tilted to the left to the maximum (second state). However, the inclination of the left and right flaps 44 to the left and right may not be the maximum.

また、図17は部屋の据付壁50の右端付近に空気調和機100を据付け、吹出し風を右側に吹出す場合の斜視図(a)と吹出し風を左側に吹出す場合の斜視図(b)である。左右フラップ44の向きは、図16の場合と同様である。   FIG. 17 is a perspective view when the air conditioner 100 is installed near the right end of the installation wall 50 in the room, and the blown air is blown to the right, and a perspective view when the blown air is blown to the left (b). It is. The directions of the left and right flaps 44 are the same as in the case of FIG.

図16(a)に示す据付・運転条件で取得した部屋の熱画像データを図18に示す。この場合、部屋の据付壁50の中央付近に空気調和機100を据付け、室内空気と所定の温度差のある吹出し風29を右側に吹出すので、熱画像データには右端付近に、右側の壁17の温度変化が現れる。この右側の壁17の温度変化を、右壁面温度変化分布32と定義する。部屋の右側の壁17以外の部分には、温度変化は現れない。   FIG. 18 shows thermal image data of the room acquired under the installation / operation conditions shown in FIG. In this case, the air conditioner 100 is installed near the center of the installation wall 50 of the room, and the blowing air 29 having a predetermined temperature difference from the room air is blown to the right side. A temperature change of 17 appears. The temperature change of the right wall 17 is defined as a right wall temperature change distribution 32. A temperature change does not appear in any part other than the wall 17 on the right side of the room.

図16(b)に示す据付・運転条件で取得した部屋の熱画像データを図19に示す。この場合、部屋の据付壁50の中央付近に空気調和機100を据付け、室内空気と所定の温度差のある吹出し風30を左側に吹出すので、熱画像データには左端付近に、左側の壁16の温度変化が現れる。この左側の壁16の温度変化を、左壁面温度変化分布31と定義する。部屋の左側の壁16以外の部分には、温度変化は現れない。   FIG. 19 shows the thermal image data of the room acquired under the installation / operation conditions shown in FIG. In this case, the air conditioner 100 is installed near the center of the installation wall 50 in the room, and the blowout air 30 having a predetermined temperature difference from the room air is blown out to the left side. Sixteen temperature changes appear. This temperature change of the left wall 16 is defined as a left wall temperature change distribution 31. A temperature change does not appear in any part other than the left wall 16 of the room.

図20は図18と図19とを合わせた図である。右壁面温度変化分布32と左壁面温度変化分布31とが左右対称に現れる。右壁面温度変化分布32と左壁面温度変化分布31とは、面積が等しく、且つ熱分布の温度も同等である。   FIG. 20 is a combination of FIG. 18 and FIG. The right wall temperature change distribution 32 and the left wall temperature change distribution 31 appear symmetrically. The right wall surface temperature change distribution 32 and the left wall surface temperature change distribution 31 have the same area and the same heat distribution temperature.

図17(a)に示す据付・運転条件で取得した部屋の熱画像データを図21に示す。この場合、部屋の据付壁50の右端付近に空気調和機100を据付け、室内空気と所定の温度差のある吹出し風29を右側に吹出すので、熱画像データには右端付近に、右側の壁17の温度変化が現れる。この右側の壁17の温度変化を、右壁面温度変化分布34と定義する。部屋の右側の壁17以外の部分には、温度変化は現れない。右壁面温度変化分布34は、図18の右壁面温度変化分布32と比較すると、面積が広くなると共に、熱分布の温度も高くなっている。熱分布の温度の違いは、ハッチングの種類を変えて表わしている。   FIG. 21 shows the thermal image data of the room acquired under the installation / operation conditions shown in FIG. In this case, the air conditioner 100 is installed in the vicinity of the right end of the installation wall 50 in the room, and the blowing air 29 having a predetermined temperature difference from the room air is blown out on the right side. A temperature change of 17 appears. The temperature change of the right wall 17 is defined as a right wall temperature change distribution 34. A temperature change does not appear in any part other than the wall 17 on the right side of the room. The right wall surface temperature change distribution 34 has a larger area and a higher heat distribution temperature than the right wall surface temperature change distribution 32 of FIG. The difference in temperature of the heat distribution is expressed by changing the type of hatching.

図17(b)に示す据付・運転条件で取得した部屋の熱画像データを図22に示す。この場合、部屋の据付壁50の右端付近に空気調和機100を据付け、室内空気と所定の温度差のある吹出し風30を左側に吹出すので、熱画像データには左端付近に、左側の壁16の温度変化が現れる。この右側の壁17の温度変化を、左壁面温度変化分布33と定義する。部屋の左側の壁16以外の部分には、温度変化は現れない。左壁面温度変化分布33は、図19の左壁面温度変化分布31と比較すると、面積が狭くなると共に、熱分布の温度も低くなっている。熱分布の温度の違いは、ハッチングの種類を変えて表わしている。左壁面温度変化分布33のハッチングは、左壁面温度変化分布31のハッチングよりも粗くすることで、熱分布の温度(温度変化)が低いことを表している。   FIG. 22 shows the thermal image data of the room acquired under the installation / operation conditions shown in FIG. In this case, the air conditioner 100 is installed in the vicinity of the right end of the room installation wall 50, and the blowout air 30 having a predetermined temperature difference from the room air is blown out on the left side. Sixteen temperature changes appear. The temperature change of the right wall 17 is defined as a left wall temperature change distribution 33. A temperature change does not appear in any part other than the left wall 16 of the room. Compared with the left wall surface temperature change distribution 31 of FIG. 19, the left wall surface temperature change distribution 33 has a smaller area and a lower temperature of the heat distribution. The difference in temperature of the heat distribution is expressed by changing the type of hatching. The hatching of the left wall surface temperature change distribution 33 indicates that the temperature (temperature change) of the heat distribution is low by making it rougher than the hatching of the left wall surface temperature change distribution 31.

図23は図21と図22とを合わせた図である。右壁面温度変化分布34と左壁面温度変化分布33とを比較すると、右壁面温度変化分布34の面積が左壁面温度変化分布33の面積よりも広くなり、且つ右壁面温度変化分布34の熱分布の温度(温度変化)が左壁面温度変化分布33の熱分布の温度(温度変化)が高くなっている。熱分布の温度(温度変化)の違いは、ハッチングの種類の違いで表わしている。   FIG. 23 is a combination of FIG. 21 and FIG. When the right wall temperature change distribution 34 and the left wall temperature change distribution 33 are compared, the area of the right wall temperature change distribution 34 is larger than the area of the left wall temperature change distribution 33 and the heat distribution of the right wall temperature change distribution 34 is. The temperature (temperature change) of the heat distribution of the left wall surface temperature change distribution 33 is high (temperature change). The difference in temperature (temperature change) of the heat distribution is represented by the difference in the type of hatching.

図示はしないが、部屋の据付壁50の左端付近に空気調和機100を据付ける場合は、図23と左右を逆にした熱画像データが得られることは明白である。   Although not shown, when the air conditioner 100 is installed near the left end of the installation wall 50 in the room, it is apparent that thermal image data that is the opposite of that in FIG. 23 is obtained.

以上の結果を踏まえて、空気調和機100の据付時等に、自動的に部屋における空気調和機100の据付位置を空気調和機100自身が判断して、それに合わせた吹き出し風向に設定する方法について説明する。従来、据付時等に、据付業者又は使用者がリモコンで空気調和機100の据付位置の入力を行っていた作業は、上記の自動的な据付位置設定処理により、不要となる。リモコンの据付位置入力部も不要となる。   Based on the above results, when the air conditioner 100 is installed, etc., the air conditioner 100 itself automatically determines the installation position of the air conditioner 100 in the room, and sets the blowing wind direction according to it. explain. Conventionally, the installation work or the user of inputting the installation position of the air conditioner 100 with a remote controller at the time of installation or the like is not required by the above-described automatic installation position setting process. A remote control installation position input unit is also unnecessary.

空気調和機100の据付位置を空気調和機100自身が判断してそれに合わせた吹き出し風向に設定する処理を、「据付位置自動判定処理」と定義する。   The process in which the air conditioner 100 itself determines the installation position of the air conditioner 100 and sets the blowing air direction according to the determination is defined as “installation position automatic determination process”.

据付位置自動判定処理を行う時期(タイミング)について、先ず説明する。以下の幾つかが考えられる。
(1)運転起動時に常時行い、ある検知回数を超えたら確定情報として以後は行わない。(2)運転起動時に常時行う。
(3)リモコン又は本体に、据付位置自動判定処理ボタンを設け、この据付位置自動判定処理ボタンが押された場合のみ据付位置自動判定処理が行われる。このケースは、据付時又は移設時に据付業者又は使用者が行う。
The timing (timing) for performing the installation position automatic determination process will be described first. Some of the following are possible.
(1) It is always performed at the time of starting operation, and if it exceeds a certain number of detections, it will not be performed thereafter as confirmed information. (2) Always when starting operation.
(3) The installation position automatic determination processing button is provided on the remote controller or the main body, and the installation position automatic determination processing is performed only when this installation position automatic determination processing button is pressed. This case is performed by the installer or user during installation or relocation.

上記(1)〜(3)の中では、(1)が有力である。但し、(1)では空気調和機100を移設する場合(稀ではあるが)、空気調和機100の部屋での据付位置が変わる場合もあることから、移設に伴い据付位置自動判定処理をやり直すプログラムを追加する必要がある。そのプログラムとしては、初回(移設前)の据付位置自動判定処理における部屋の熱画像データをメモリに記憶しておき、メモリに記憶された部屋の熱画像データを定期的に更新する処理を追加する。そして、メモリに記憶された部屋の熱画像データが変化したら、移設と判断して、据付位置自動判定処理をやり直す等の方法が考えられる。   Among the above (1) to (3), (1) is dominant. However, in (1), when the air conditioner 100 is moved (although rarely), the installation position in the room of the air conditioner 100 may change. Need to be added. As the program, the thermal image data of the room in the first automatic installation position determination process (before the relocation) is stored in the memory, and the process of periodically updating the thermal image data of the room stored in the memory is added. . If the thermal image data of the room stored in the memory changes, it can be determined that the room is to be moved and the installation position automatic determination process is performed again.

据付位置自動判定処理の指令が出された場合、空気調和機100の制御部は、以下の処理を行う。
(1)冷房又は暖房運転を開始する。
(2)上下フラップ43は水平吹きとする。
(3)左右フラップ44を右側に最大又はそれに近い角度で傾け、可動式赤外線センサ3を走査させて、第1の部屋の熱画像データを取得する(例えば、図18、図21)。
(4)左右フラップ44を左側に最大又はそれに近い角度で傾け、可動式赤外線センサ3を走査させて、第2の部屋の熱画像データを取得する(例えば、図19、図22)。
(5)第1の部屋の熱画像データと、第2の部屋の熱画像データとを比較する(例えば、図20、図23)。そして、その比較結果に基づいて、部屋における空気調和機100の据付位置を判定する。
When a command for installation position automatic determination processing is issued, the control unit of the air conditioner 100 performs the following processing.
(1) Start cooling or heating operation.
(2) The upper and lower flaps 43 are horizontally blown.
(3) The left and right flaps 44 are tilted to the right at a maximum or near angle, and the movable infrared sensor 3 is scanned to acquire thermal image data of the first room (for example, FIGS. 18 and 21).
(4) The left and right flaps 44 are tilted to the left at a maximum or near angle, and the movable infrared sensor 3 is scanned to acquire thermal image data of the second room (for example, FIGS. 19 and 22).
(5) The thermal image data of the first room is compared with the thermal image data of the second room (for example, FIGS. 20 and 23). And the installation position of the air conditioner 100 in a room is determined based on the comparison result.

判定方法としては、以下に示す方法が考えられる。
(1)吹き出し温度の影響による熱分布の面積を左右にて比較し、同じ面積の場合は中央据付けであると判断する。例えば、図20の右壁面温度変化分布32と左壁面温度変化分布31は、面積が等しいので、中央据付けであると判断する。また、図23の右壁面温度変化分布34と左壁面温度変化分布33は、右壁面温度変化分布34の面積が左壁面温度変化分布33の面積よりも広くなっているので、コーナー据付(据付壁50の右端付近に据付)と判断する。
(2)吹き出し温度の影響による熱分布の温度(温度変化)を左右で比較することで、空気調和機100の部屋での据付位置を判断する。例えば、図20の右壁面温度変化分布32と左壁面温度変化分布31は、熱分布の温度(温度変化)が等しいので、中央据付けであると判断する。また、図23の右壁面温度変化分布34と左壁面温度変化分布33は、右壁面温度変化分布34の熱分布の温度(温度変化)が左壁面温度変化分布33の熱分布の温度(温度変化)よりも高いので、コーナー据付(据付壁50の右端付近に据付)と判断する。
(3)吹き出し温度の影響による熱分布の温度(温度変化)と面積との積を左右で比較することで、空気調和機100の部屋での据付位置を判断する。
上記(1)〜(3)のいずれか、若しくは(1)+(2)の条件で、空気調和機100の部屋での据付位置を判断する。
As a determination method, the following method can be considered.
(1) The areas of the heat distribution due to the influence of the blowing temperature are compared on the left and right, and if they are the same area, it is determined that the installation is central. For example, since the right wall surface temperature change distribution 32 and the left wall surface temperature change distribution 31 in FIG. 20 have the same area, it is determined that the center wall is installed. Further, the right wall surface temperature change distribution 34 and the left wall surface temperature change distribution 33 in FIG. 23 have an area of the right wall surface temperature change distribution 34 larger than the area of the left wall surface temperature change distribution 33. It is determined that it is installed near the right end of 50).
(2) The installation position in the room of the air conditioner 100 is determined by comparing the temperature (temperature change) of the heat distribution due to the influence of the blowing temperature on the left and right. For example, the right wall surface temperature change distribution 32 and the left wall surface temperature change distribution 31 in FIG. 20 have the same heat distribution temperature (temperature change), and thus are determined to be centrally installed. Further, in the right wall surface temperature change distribution 34 and the left wall surface temperature change distribution 33 in FIG. 23, the heat distribution temperature (temperature change) of the right wall surface temperature change distribution 34 is the temperature of the left wall temperature change distribution 33 (temperature change). Therefore, it is determined that the corner is installed (installed near the right end of the installation wall 50).
(3) The installation position of the air conditioner 100 in the room is determined by comparing the product of the temperature (temperature change) and the area of the heat distribution due to the influence of the blowing temperature on the left and right.
The installation position of the air conditioner 100 in the room is determined on the basis of any one of the above (1) to (3) or (1) + (2).

空気調和機100の部屋での据付位置が略据付壁50の右端付近に据付と判断された場合は、左右フラップ44の向きを、据付壁50に対して、中央を中心に左右に所定角度スイングするように制御する。   When it is determined that the installation position of the air conditioner 100 in the room is substantially installed near the right end of the installation wall 50, the direction of the left and right flaps 44 is swung to the right and left about the center with respect to the installation wall 50 by a predetermined angle. Control to do.

空気調和機100の部屋での据付位置が略据付壁50の右端付近と判断された場合は、左右フラップ44の向きを、据付壁50の中央から右方向に所定角度スイングするように制御する。   When it is determined that the installation position of the air conditioner 100 in the room is substantially near the right end of the installation wall 50, the direction of the left and right flaps 44 is controlled to swing from the center of the installation wall 50 to the right by a predetermined angle.

空気調和機100の部屋での据付位置が略据付壁50の左端付近と判断された場合は、左右フラップ44の向きを、据付壁50の中央から左方向に所定角度スイングするように制御する。   When it is determined that the installation position of the air conditioner 100 in the room is substantially near the left end of the installation wall 50, the direction of the left and right flaps 44 is controlled to swing from the center of the installation wall 50 to the left by a predetermined angle.

図24は空気調和機100と左右壁との距離Lと面積(画素数)Sとの関係を示す図である。図24の縦軸の面積(画素数)Sは、吹き出し温冷風による壁面温度の影響を面積に置き換えたものである。   FIG. 24 is a diagram showing the relationship between the distance L and the area (number of pixels) S between the air conditioner 100 and the left and right walls. The area (number of pixels) S on the vertical axis in FIG. 24 is obtained by replacing the influence of the wall surface temperature by the blown hot / cold air with the area.

取得される熱画像の壁面温度の影響度から空気調和機100と左右壁との距離Lを求め、左右の壁面温度の面積を比較することで据付位置関係を判断することができる。   The installation positional relationship can be determined by obtaining the distance L between the air conditioner 100 and the left and right walls from the degree of influence of the wall temperature of the acquired thermal image and comparing the areas of the left and right wall temperatures.

空気調和機100と左右壁との距離Lに応じて、左右フラップ44のスイング角度を変えるようにしてもよい。空気調和機100と左右壁との距離Lが長くなれば、中央よりスイングする側の反対側にスイング角度を広げることができる。   The swing angle of the left and right flaps 44 may be changed according to the distance L between the air conditioner 100 and the left and right walls. If the distance L between the air conditioner 100 and the left and right walls becomes longer, the swing angle can be widened to the opposite side of the swing side from the center.

以上のように、この実施の形態によれば、空気調和機100自身が、部屋での据付位置(主に据付壁50での左右方向の位置)を判断して、その据付位置に応じた吹き出し風の制御を行うので、従来、据付時等に、据付業者又は使用者がリモコンで空気調和機100の据付位置の入力を行っていた作業は、不要となる。また、リモコンの据付位置入力部も不要となる。さらに、制御部(マイクロコンピュータ)の制御プログラムの変更のみで対応できる。   As described above, according to this embodiment, the air conditioner 100 itself determines the installation position in the room (mainly the position in the left-right direction on the installation wall 50), and the blowout according to the installation position. Since the wind is controlled, conventionally, the installation work or the user of inputting the installation position of the air conditioner 100 with the remote controller at the time of installation or the like becomes unnecessary. Moreover, the installation position input part of the remote control is not required. Furthermore, it can respond only by changing the control program of the control unit (microcomputer).

なお、上記の説明においては、可動式赤外線センサ3を左右方向に所定角度範囲で回転駆動させて空気調和機100を設置した部屋空間の熱画像データを取得したが、熱画像データを取得する赤外線センサは可動式赤外線センサ3に限定されるものではない。配光視野角が、対象とする部屋空間全体をほぼカバーするような固定式の1つの赤外線センサを用いて空気調和機100を設置した部屋空間の熱画像データを取得してもよいし、または、視野がそれぞれ異なる固定式の赤外線センサを複数用いて、それぞれが同タイミングで取得した熱画像データをつなげて空気調和機100を設置した部屋空間の熱画像データを取得してもよい。   In the above description, thermal image data of the room space where the air conditioner 100 is installed is obtained by rotating the movable infrared sensor 3 in the left-right direction within a predetermined angle range. The sensor is not limited to the movable infrared sensor 3. Thermal image data of the room space in which the air conditioner 100 is installed may be acquired using one fixed infrared sensor whose light distribution viewing angle almost covers the entire target room space, or Alternatively, a plurality of fixed infrared sensors having different fields of view may be used, and thermal image data of the room space in which the air conditioner 100 is installed may be acquired by connecting the thermal image data acquired at the same timing.

実施の形態1を示す図で、空気調和機100の斜視図。FIG. 3 shows the first embodiment and is a perspective view of the air conditioner 100. FIG. 実施の形態1を示す図で、空気調和機100の斜視図。FIG. 3 shows the first embodiment and is a perspective view of the air conditioner 100. FIG. 実施の形態1を示す図で、空気調和機100の縦断面図。FIG. 3 is a diagram illustrating the first embodiment and is a longitudinal sectional view of the air conditioner 100. 実施の形態1を示す図で、可動式赤外線センサ3と受光素子の各配光視野角を示す図。FIG. 5 shows the first embodiment and shows the light distribution viewing angles of the movable infrared sensor 3 and the light receiving element. 実施の形態1を示す図で、可動式赤外線センサ3を収納する筐体5の斜視図。FIG. 5 is a diagram showing the first embodiment, and is a perspective view of a housing 5 that houses the movable infrared sensor 3. 実施の形態1を示す図で、可動式赤外線センサ3付近の斜視図((a)は可動式赤外線センサ3が右端端部へ可動した状態、(b)は可動式赤外線センサ3が中央部へ可動した状態、(c)は可動式赤外線センサ3が左端端部へ可動した状態)。FIG. 2 is a diagram showing the first embodiment, and is a perspective view of the vicinity of the movable infrared sensor 3 ((a) is a state where the movable infrared sensor 3 is moved to the right end, and (b) is a state where the movable infrared sensor 3 is moved to the center. The movable state, (c) is the state in which the movable infrared sensor 3 is moved to the left end). 実施の形態1を示す図で、可動式赤外線センサ3の縦断面における縦配光視野角を示す図。FIG. 5 shows the first embodiment, and shows a vertical light distribution viewing angle in a vertical cross section of the movable infrared sensor 3. 実施の形態1を示す図で、主婦12が幼児13を抱いている部屋の熱画像データを示す図。The figure which shows Embodiment 1 and is a figure which shows the thermal image data of the room where the housewife 12 is holding the infant 13. FIG. 実施の形態1を示す図で、ある任意の大きさの部屋に空気調和機100が設置されている様子を示す図。FIG. 5 shows the first embodiment, and shows a state in which the air conditioner 100 is installed in a room of an arbitrary size. 実施の形態1を示す図で、床面の1辺が3600mmの正方形(8畳相当)の部屋を2つ並べた16畳相当の部屋の長手方向の壁の中央付近に空気調和機100を設置した部屋空間に対し、3角法にて床面と壁面を展開した図。In the diagram showing the first embodiment, the air conditioner 100 is installed near the center of the wall in the longitudinal direction of a room equivalent to 16 tatami mats, in which two rooms of a square (equivalent to 8 tatami mats) each having a floor of 3600 mm are arranged side by side The floor surface and the wall surface which were developed with the triangle method to the room space which was done. 実施の形態1を示す図で、図10の空気調和機100の据付条件にて熱画像データを取得する際の床面領域22、壁面領域20、床面と壁面との境界線領域21の検知エリア領域を示す図。FIG. 9 is a diagram illustrating the first embodiment, and detection of a floor area 22, a wall area 20, and a boundary area 21 between the floor and the wall when acquiring thermal image data under the installation conditions of the air conditioner 100 of FIG. The figure which shows an area area | region. 実施の形態1を示す図で、床面の1辺が3600mmの正方形(8畳相当)の部屋を2つ並べた16畳相当の部屋の短手方向の壁の中央付近に空気調和機100を設置した部屋空間に対し、3角法にて床面と壁面を展開した図。In the diagram showing the first embodiment, the air conditioner 100 is placed near the center of the wall in the short direction of a room corresponding to 16 tatami mats, in which two square rooms (equivalent to 8 tatami mats) each having a side surface of 3600 mm are arranged side by side. The figure which expanded the floor surface and the wall surface with the triangle method with respect to the installed room space. 実施の形態1を示す図で、図12の空気調和機100の据付条件にて熱画像データを取得する際の床面領域25、壁面領域23、床面と壁面との境界線領域24の検知エリア領域を示す図。12 is a diagram illustrating the first embodiment, and detection of a floor area 25, a wall area 23, and a boundary area 24 between the floor and the wall when acquiring thermal image data under the installation conditions of the air conditioner 100 of FIG. The figure which shows an area area | region. 実施の形態1を示す図で、床面の1辺が3600mmの正方形(8畳相当)の部屋を2つ並べた16畳相当の部屋の長手方向の壁の右側端付近に空気調和機100を設置した部屋空間に対し、3角法にて床面と壁面を展開した図。In the figure showing Embodiment 1, the air conditioner 100 is placed near the right end of the wall in the longitudinal direction of a room equivalent to 16 tatami mats, where two square rooms (equivalent to 8 tatami mats) each having a floor of 3600 mm are arranged side by side. The figure which expanded the floor surface and the wall surface with the triangle method with respect to the installed room space. 実施の形態1を示す図で、図14の空気調和機100の据付条件にて熱画像データを取得する際の床面領域28、壁面領域26、床面と壁面との境界線領域27の検知エリア領域を示す図。14 is a diagram illustrating the first embodiment, and detection of a floor area 28, a wall area 26, and a boundary area 27 between the floor and the wall when acquiring thermal image data under the installation conditions of the air conditioner 100 of FIG. The figure which shows an area area | region. 実施の形態1を示す図で、部屋の据付壁50の中央付近に空気調和機100を据付け、吹出し風を29右側に吹出す場合の斜視図(a)と吹出し風30を左側に吹出す場合の斜視図(b)。In the figure which shows Embodiment 1, the perspective view (a) at the time of installing the air conditioner 100 in the center vicinity of the installation wall 50 of a room, and blowing off the blowing air on the 29 right side and the case of blowing off the blowing air 30 on the left side FIG. 実施の形態1を示す図で、部屋の据付壁50の右端付近に空気調和機100を据付け、吹出し風29を右側に吹出す場合の斜視図(a)と吹出し風30を左側に吹出す場合の斜視図(b)。In the figure which shows Embodiment 1, the perspective view (a) at the time of installing the air conditioner 100 near the right end of the installation wall 50 of a room, and blowing the blowing air 29 on the right side, and the case where the blowing air 30 is blown off on the left side FIG. 実施の形態1を示す図で、図16(a)の据付・運転条件における部屋の熱画像データを示す図。FIG. 17 shows the first embodiment, and shows the thermal image data of the room under the installation / operation conditions of FIG. 実施の形態1を示す図で、図16(b)の据付・運転条件における部屋の熱画像データを示す図。FIG. 17 shows the first embodiment, and shows the thermal image data of the room under the installation / operation conditions of FIG. 実施の形態1を示す図で、図18と図19とを合わせた図。FIG. 20 shows the first embodiment, and is a diagram in which FIG. 18 and FIG. 19 are combined. 実施の形態1を示す図で、図17(a)の据付・運転条件における部屋の熱画像データを示す図。FIG. 18 shows the first embodiment, and shows the thermal image data of the room under the installation / operation conditions of FIG. 実施の形態1を示す図で、図17(b)の据付・運転条件における部屋の熱画像データを示す図。FIG. 18 shows the first embodiment, and shows the thermal image data of the room under the installation / operation conditions of FIG. 実施の形態1を示す図で、図21と図22とを合わせた図。FIG. 23 shows the first embodiment and is a diagram in which FIG. 21 and FIG. 22 are combined. 実施の形態1を示す図で、空気調和機100と左右壁との距離Lと面積(画素数)Sとの関係を示す図。FIG. 5 shows the first embodiment and shows the relationship between the distance L between the air conditioner 100 and the left and right walls and the area (number of pixels) S;

符号の説明Explanation of symbols

1 金属缶、2 配光視野角、3 可動式赤外線センサ、5 筐体、6 ステッピングモーター、7 取付部、12 主婦、13 幼児、14 窓、16 左側の壁、17 右側の壁、18 床、19 正面の壁、20 壁面領域、21 境界線領域、22 床面領域、23 壁面領域、24 境界線領域、25 床面領域、26 壁面領域、27 境界線領域、28 床面領域、29 吹出し風、30 吹出し風、31 左壁面温度変化分布、32 右壁面温度変化分布、33 左壁面温度変化分布、34 右壁面温度変化分布、40 室内機筺体、41 吸込口、42 吹出口、43 上下フラップ、44 左右フラップ、45 送風機、46 熱交換器、50 据付壁、100 空気調和機。   1 metal can, 2 light distribution viewing angle, 3 movable infrared sensor, 5 housing, 6 stepping motor, 7 mounting part, 12 housewife, 13 infants, 14 windows, 16 left wall, 17 right wall, 18 floor, 19 Front wall, 20 Wall area, 21 Boundary area, 22 Floor area, 23 Wall area, 24 Boundary area, 25 Floor area, 26 Wall area, 27 Boundary area, 28 Floor area, 29 , 30 Blow air, 31 Left wall temperature change distribution, 32 Right wall temperature change distribution, 33 Left wall temperature change distribution, 34 Right wall temperature change distribution, 40 Indoor unit housing, 41 Air inlet, 42 Air outlet, 43 Upper and lower flaps, 44 left and right flaps, 45 blower, 46 heat exchanger, 50 installation wall, 100 air conditioner.

Claims (6)

部屋の空気を吸い込む吸込口と調和空気を吹き出す吹出口とを有する略箱状の本体と、
前記本体の前面に所定の俯角で下向きに取り付けられ、温度検出対象範囲を左右に走査して温度検出対象の温度を検出する赤外線センサと、
前記赤外線センサにより人や発熱機器の存在を検知して、当該空気調和機の制御を司る制御部とを備え、
前記制御部は、少なくとも運転起動時に前記赤外線センサを走査して前記部屋の熱画像データを取得し、前記熱画像データに基づいて前記本体の前記部屋における据付位置を判断し、前記吹出口から吹き出される吹き出し風の風向を前記据付位置に対応して設定することを特徴とする空気調和機。
A substantially box-shaped body having a suction port for sucking air in the room and a blow-out port for blowing out conditioned air;
An infrared sensor that is attached downward to the front surface of the main body at a predetermined depression angle and that detects the temperature of the temperature detection target by scanning the temperature detection target range from side to side;
The presence of a person or heat generating device is detected by the infrared sensor, and a control unit that controls the air conditioner is provided.
The control unit scans the infrared sensor at least when the operation is started to obtain thermal image data of the room, determines an installation position of the main body in the room based on the thermal image data, and blows out from the air outlet. An air conditioner characterized in that the direction of the blown air blow is set corresponding to the installation position.
前記吹出口に、吹き出し風の上下方向の風向を制御する上下風向制御板を備え、前記制御部が前記赤外線センサを走査して前記部屋の熱画像データを取得する場合、前記制御部は前記上下風向制御板を水平吹きとすることを特徴とする請求項1記載の空気調和機。   When the air outlet is provided with an up / down air direction control plate for controlling the air direction in the up / down direction of the blown air, and when the control unit scans the infrared sensor to acquire the thermal image data of the room, the control unit The air conditioner according to claim 1, wherein the wind direction control plate is horizontally blown. 前記吹出口に、吹き出し風の左右方向の風向を制御する左右風向制御板を備え、前記制御部が前記赤外線センサを走査して前記部屋の熱画像データを取得する場合、前記左右風向制御板を右側に傾けた第1の状態と、左側に傾けた第2の状態との夫々について前記熱画像データを取得することを特徴とする請求項1又は請求項2記載の空気調和機。   The left and right wind direction control plate for controlling the left and right wind direction of the blown air is provided at the outlet, and when the control unit scans the infrared sensor to acquire thermal image data of the room, the left and right wind direction control plate is provided. The air conditioner according to claim 1 or 2, wherein the thermal image data is acquired for each of a first state tilted to the right side and a second state tilted to the left side. 前記制御部は、前記吹出口から吹き出される吹き出し風の左右風向を前記据付位置に対応して設定することを特徴とする請求項1乃至3のいずれかに記載の空気調和機。   The air conditioner according to any one of claims 1 to 3, wherein the control unit sets left and right wind directions of blown air blown from the blower outlet in correspondence with the installation position. 前記制御部の前記本体の前記据付位置に対応して前記吹出口から吹き出される吹き出し風の風向を設定する処理は、当該空気調和機の運転起動時に常時行い、ある検知回数を超えたら確定情報として以後は行わないことを特徴とする請求項1乃至4のいずれかに記載の空気調和機。   The process of setting the direction of the blown air blown from the blowout outlet corresponding to the installation position of the main body of the control unit is always performed at the start of operation of the air conditioner, and confirmed information when a certain number of detections is exceeded. The air conditioner according to any one of claims 1 to 4, which is not performed thereafter. 前記制御部は、以下に示す(1)〜(3)のいずれか、若しくは(1)及び(2)により前記本体の前記部屋における据付位置を判断することを特徴とする請求項1乃至5のいずれかに記載の空気調和機。
(1)前記熱画像データの熱分布の面積を左右で比較する;
(2)前記熱画像データの熱分布の温度を左右で比較する;
(3)前記熱画像データの熱分布の面積と前記熱画像データの熱分布の温度との積を左右で比較する。
The said control part judges the installation position in the said room of the said main body in any one of (1)-(3) shown below, or (1) and (2), It is characterized by the above-mentioned. An air conditioner according to any one of the above.
(1) Compare the areas of the thermal distribution of the thermal image data on the left and right;
(2) The temperature of the thermal distribution of the thermal image data is compared between right and left;
(3) The product of the area of the thermal distribution of the thermal image data and the temperature of the thermal distribution of the thermal image data is compared on the left and right.
JP2008175146A 2008-07-04 2008-07-04 Air conditioner Expired - Fee Related JP4949330B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008175146A JP4949330B2 (en) 2008-07-04 2008-07-04 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008175146A JP4949330B2 (en) 2008-07-04 2008-07-04 Air conditioner

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012049870A Division JP5236093B2 (en) 2012-03-07 2012-03-07 Air conditioner

Publications (3)

Publication Number Publication Date
JP2010014350A true JP2010014350A (en) 2010-01-21
JP2010014350A5 JP2010014350A5 (en) 2010-07-22
JP4949330B2 JP4949330B2 (en) 2012-06-06

Family

ID=41700619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008175146A Expired - Fee Related JP4949330B2 (en) 2008-07-04 2008-07-04 Air conditioner

Country Status (1)

Country Link
JP (1) JP4949330B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012037129A (en) * 2010-08-06 2012-02-23 Mitsubishi Electric Corp Indoor unit of air conditioner
JP2015001313A (en) * 2013-06-13 2015-01-05 三菱電機株式会社 Air conditioner
WO2015181950A1 (en) * 2014-05-30 2015-12-03 三菱電機株式会社 Air cleaner
TWI633258B (en) * 2015-03-10 2018-08-21 三菱電機股份有限公司 Air purifier
TWI634286B (en) * 2015-03-25 2018-09-01 三菱電機股份有限公司 Air purifier
JP2019120686A (en) * 2017-12-27 2019-07-22 パナソニックIpマネジメント株式会社 Determination system, air conditioning system, determination method, and program
WO2020178912A1 (en) * 2019-03-01 2020-09-10 三菱電機株式会社 Air condition controlling device
CN111868489A (en) * 2018-03-28 2020-10-30 松下知识产权经营株式会社 Infrared sensor module, air conditioner, and air conditioner control system
CN113154617A (en) * 2021-02-23 2021-07-23 广东积微科技有限公司 Air conditioner air swing angle adjusting method and device and computer equipment
CN113454403A (en) * 2019-02-18 2021-09-28 三菱电机株式会社 Air conditioner
CN113586501A (en) * 2020-04-30 2021-11-02 云米互联科技(广东)有限公司 Circulation fan control method, circulation fan and computer readable storage medium
JPWO2021229801A1 (en) * 2020-05-15 2021-11-18
CN116538634A (en) * 2023-05-11 2023-08-04 宁波安得智联科技有限公司 Method, device and equipment for installing air conditioner and computer readable storage medium
WO2023202069A1 (en) * 2022-04-21 2023-10-26 青岛海尔空调器有限总公司 Method and device for controlling air supply of air conditioner, air conditioner and storage medium

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0379942A (en) * 1989-08-21 1991-04-04 Daikin Ind Ltd Air conditioner
JPH05149791A (en) * 1991-11-29 1993-06-15 Matsushita Electric Ind Co Ltd Room information detecting device
JPH10160580A (en) * 1996-12-04 1998-06-19 Zexel Corp Judging method for thermal image, and control method for air conditioner
JPH10300165A (en) * 1997-04-28 1998-11-13 Mitsubishi Electric Corp Air conditioner
JP2002106919A (en) * 2000-09-29 2002-04-10 Matsushita Electric Ind Co Ltd Air conditioner
JP2006162215A (en) * 2004-12-10 2006-06-22 Sharp Corp Air conditioner

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0379942A (en) * 1989-08-21 1991-04-04 Daikin Ind Ltd Air conditioner
JPH05149791A (en) * 1991-11-29 1993-06-15 Matsushita Electric Ind Co Ltd Room information detecting device
JPH10160580A (en) * 1996-12-04 1998-06-19 Zexel Corp Judging method for thermal image, and control method for air conditioner
JPH10300165A (en) * 1997-04-28 1998-11-13 Mitsubishi Electric Corp Air conditioner
JP2002106919A (en) * 2000-09-29 2002-04-10 Matsushita Electric Ind Co Ltd Air conditioner
JP2006162215A (en) * 2004-12-10 2006-06-22 Sharp Corp Air conditioner

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012037129A (en) * 2010-08-06 2012-02-23 Mitsubishi Electric Corp Indoor unit of air conditioner
JP2015001313A (en) * 2013-06-13 2015-01-05 三菱電機株式会社 Air conditioner
CN106164595B (en) * 2014-05-30 2019-05-17 三菱电机株式会社 Air purifier
WO2015181950A1 (en) * 2014-05-30 2015-12-03 三菱電機株式会社 Air cleaner
CN106164595A (en) * 2014-05-30 2016-11-23 三菱电机株式会社 Air purifier
TWI577940B (en) * 2014-05-30 2017-04-11 三菱電機股份有限公司 Air purifier
JPWO2015181950A1 (en) * 2014-05-30 2017-04-20 三菱電機株式会社 Air cleaner
TWI633258B (en) * 2015-03-10 2018-08-21 三菱電機股份有限公司 Air purifier
TWI634286B (en) * 2015-03-25 2018-09-01 三菱電機股份有限公司 Air purifier
JP2019120686A (en) * 2017-12-27 2019-07-22 パナソニックIpマネジメント株式会社 Determination system, air conditioning system, determination method, and program
JP7213462B2 (en) 2017-12-27 2023-01-27 パナソニックIpマネジメント株式会社 Judgment system, air conditioning system, judgment method, program
CN111868489A (en) * 2018-03-28 2020-10-30 松下知识产权经营株式会社 Infrared sensor module, air conditioner, and air conditioner control system
CN113454403B (en) * 2019-02-18 2022-10-28 三菱电机株式会社 Air conditioner
CN113454403A (en) * 2019-02-18 2021-09-28 三菱电机株式会社 Air conditioner
US11474490B2 (en) 2019-03-01 2022-10-18 Mitsubishi Electric Corporation Air condition control device
JPWO2020178912A1 (en) * 2019-03-01 2021-09-13 三菱電機株式会社 Air condition control device
WO2020178912A1 (en) * 2019-03-01 2020-09-10 三菱電機株式会社 Air condition controlling device
CN113586501A (en) * 2020-04-30 2021-11-02 云米互联科技(广东)有限公司 Circulation fan control method, circulation fan and computer readable storage medium
JPWO2021229801A1 (en) * 2020-05-15 2021-11-18
WO2021229801A1 (en) * 2020-05-15 2021-11-18 三菱電機株式会社 Air conditioning control device, air conditioning system, and position information output method
CN113154617A (en) * 2021-02-23 2021-07-23 广东积微科技有限公司 Air conditioner air swing angle adjusting method and device and computer equipment
WO2023202069A1 (en) * 2022-04-21 2023-10-26 青岛海尔空调器有限总公司 Method and device for controlling air supply of air conditioner, air conditioner and storage medium
CN116538634A (en) * 2023-05-11 2023-08-04 宁波安得智联科技有限公司 Method, device and equipment for installing air conditioner and computer readable storage medium
CN116538634B (en) * 2023-05-11 2024-02-02 宁波安得智联科技有限公司 Method, device and equipment for installing air conditioner and computer readable storage medium

Also Published As

Publication number Publication date
JP4949330B2 (en) 2012-06-06

Similar Documents

Publication Publication Date Title
JP4949330B2 (en) Air conditioner
US10288303B2 (en) Room air conditioning system
JP5800760B2 (en) Air conditioner
JP5819271B2 (en) Air conditioner
JP6046579B2 (en) Air conditioner
US10024563B2 (en) Indoor unit of air-conditioning apparatus and air-conditioning apparatus
JP5236093B2 (en) Air conditioner
JP5247595B2 (en) Air conditioner
JP5111417B2 (en) Air conditioner
CN107305035B (en) Air conditioner
JP6167305B2 (en) Air conditioner
JP6746202B2 (en) Air conditioner
JP6473289B2 (en) Indoor unit of air conditioner and air conditioner using the same
JP2015190666A (en) Indoor machine of air conditioning machine, and air conditioning machine using the same
JP7163662B2 (en) Environmental control system and air conditioner
CN105020866A (en) Air conditioner
JP5289118B2 (en) Air conditioner
JP2016130600A (en) Air conditioner, external terminal device of the same, and air conditioning system
JP7206684B2 (en) Environmental control system and air conditioner
CN104422084B (en) Air conditioner
JP2019011903A (en) Air conditioner
JP2013064594A (en) Air conditioner
JP2011080667A (en) Air conditioner
WO2018069961A1 (en) Air conditioning apparatus
JP6823493B2 (en) Indoor unit of air conditioner

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100609

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100609

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120307

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4949330

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees