WO2021229801A1 - Air conditioning control device, air conditioning system, and position information output method - Google Patents

Air conditioning control device, air conditioning system, and position information output method Download PDF

Info

Publication number
WO2021229801A1
WO2021229801A1 PCT/JP2020/019457 JP2020019457W WO2021229801A1 WO 2021229801 A1 WO2021229801 A1 WO 2021229801A1 JP 2020019457 W JP2020019457 W JP 2020019457W WO 2021229801 A1 WO2021229801 A1 WO 2021229801A1
Authority
WO
WIPO (PCT)
Prior art keywords
indoor unit
air conditioning
infrared sensor
unit
image
Prior art date
Application number
PCT/JP2020/019457
Other languages
French (fr)
Japanese (ja)
Inventor
英里 酒井
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2022522476A priority Critical patent/JPWO2021229801A1/ja
Priority to PCT/JP2020/019457 priority patent/WO2021229801A1/en
Publication of WO2021229801A1 publication Critical patent/WO2021229801A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/79Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling the direction of the supplied air

Definitions

  • This disclosure relates to an air conditioning control device, an air conditioning system, and a position information output method.
  • Patent Document 1 describes an air conditioning system that analyzes the position of an air outlet of an indoor unit and the position of a user based on an image captured by a camera and controls air conditioning according to the position of the user. ..
  • a light emitting unit is provided around the air outlet of the indoor unit, and the position of the air outlet is specified based on the position of the light emitting unit in the image captured by the camera. ..
  • the present disclosure has been made in view of the above problems, and an object of the present disclosure is to provide an air conditioning control device, an air conditioning system, and a position information output method that realize appropriate air conditioning with a simple configuration.
  • the air conditioning control device is An air conditioning control means that controls the operation of indoor units installed indoors, An output means for outputting indoor unit position information indicating the position of the indoor unit based on an infrared image acquired by an infrared sensor taking an image of the room while the indoor unit is blowing out conditioned air is provided.
  • indoor unit position information indicating the position of the indoor unit based on an infrared image acquired by an infrared sensor taking an image of the room while the indoor unit is blowing out conditioned air is output. Therefore, according to the present disclosure, appropriate air conditioning can be realized with a simple configuration.
  • Configuration diagram of the air conditioning system according to the first embodiment Diagram showing a room to be air-conditioned Configuration diagram of the air conditioning control device according to the first embodiment Bottom view of the indoor unit according to the first embodiment
  • Functional configuration diagram of the air conditioning control device according to the first embodiment A flowchart showing an air conditioning control process executed by the air conditioning control device according to the first embodiment.
  • a flowchart showing the indoor unit position estimation process shown in FIG. A diagram showing an infrared image used to estimate the position of an indoor unit
  • FIG. 1 is a diagram showing a configuration of an air conditioning system 1000 according to the first embodiment.
  • the air conditioning system 1000 is a system that harmonizes the air in the room to be air-conditioned.
  • FIG. 2 is a diagram showing a room to be air-conditioned.
  • the air conditioning system 1000 includes an air conditioning control device 100, an infrared sensor 210, an infrared sensor 220, four indoor units 300, an outdoor unit 400, and a terminal device 500.
  • FIG. 1 illustrates only one of the four indoor units 300 of the indoor unit 300A, the indoor unit 300B, the indoor unit 300C, and the indoor unit 300D.
  • the air conditioning control device 100, the infrared sensor 210, the infrared sensor 220, and the four indoor units 300 are provided indoors, and the outdoor unit 400 is provided outdoors.
  • the terminal device 500 may be indoors or outdoors.
  • FIG. 1 shows an example in which the terminal device 500 is indoors.
  • the air conditioning control device 100 is a device that controls the operation of the four indoor units 300 and the operation of the outdoor unit 400 to harmonize the air in the room to be air-conditioned.
  • the air conditioning control device 100 has a function of communicating with each of the infrared sensor 210, the infrared sensor 220, the four indoor units 300, the outdoor unit 400, and the terminal device 500.
  • the air conditioning control device 100 has a function of estimating the positions of each of the four indoor units 300 based on the infrared image captured by the infrared sensor 210.
  • the air conditioning control device 100 is installed on the wall 630 of the room to be air-conditioned.
  • the air conditioning control device 100 is, for example, a remote controller mounted on the wall 630.
  • the air conditioning control device 100 includes a control unit 11, a storage unit 12, a display unit 13, an operation reception unit 14, a first communication unit 15, a second communication unit 16, and a third.
  • a communication unit 17 and an angle adjusting unit 18 are provided. Each of these parts is connected via a communication bus.
  • the control unit 11 includes a CPU (Central Processing Unit), ROM (Read Only Memory), RAM (Random Access Memory), RTC (Real Time Clock), and the like.
  • the CPU is also called a central processing unit, a central processing unit, a processor, a microprocessor, a microcomputer, a DSP (Digital Signal Processor), etc., and functions as a central processing unit that executes processing and operations related to the control of the air conditioning control device 100. ..
  • the CPU reads out the programs and data stored in the ROM, and uses the RAM as a work area to collectively control the air conditioning control device 100.
  • the RTC is, for example, an integrated circuit having a timekeeping function. The CPU can specify the current date and time from the time information read from the RTC.
  • the storage unit 12 includes a non-volatile semiconductor memory such as a flash memory, EPROM (ErasableProgrammableROM), and EEPROM (ElectricallyErasableProgrammableROM), and serves as a so-called auxiliary storage device (also referred to as a secondary storage device). Take on.
  • the storage unit 12 stores programs and data used by the control unit 11 to execute various processes. Further, the storage unit 12 stores data generated or acquired by the control unit 11 executing various processes.
  • the display unit 13 displays various images according to the control by the control unit 11.
  • the display unit 13 includes a touch screen, a liquid crystal display, and the like.
  • the operation reception unit 14 receives various operations from the user and supplies information indicating the contents of the accepted operations to the control unit 11.
  • the operation reception unit 14 includes a touch screen, buttons, levers, and the like.
  • the first communication unit 15 communicates with each of the infrared sensor 210 and the infrared sensor 220 by wire according to the control by the control unit 11. For example, the first communication unit 15 communicates with the infrared sensor 210 by wire via a communication line connecting the air conditioning control device 100 and the infrared sensor 210. Further, for example, the first communication unit 15 communicates with the infrared sensor 220 by wire via a communication line connecting the air conditioning control device 100 and the infrared sensor 220.
  • the first communication unit 15 includes a communication interface conforming to various wired communication standards.
  • the second communication unit 16 communicates with each of the four indoor units 300 and also communicates with the outdoor unit 400 according to the control by the control unit 11.
  • the second communication unit 16 communicates with the indoor unit 300A by wire via a communication line connecting the air conditioning control device 100 and the indoor unit 300A.
  • the second communication unit 16 is wired to the outdoor unit 400 via a communication line connecting the air conditioning control device 100 and the indoor unit 300A and a communication line connecting the indoor unit 300A and the outdoor unit 400.
  • the second communication unit 16 includes a communication interface conforming to various wired communication standards.
  • the third communication unit 17 communicates with the terminal device 500 according to the control by the control unit 11.
  • the third communication unit 17 communicates with the terminal device 500 in accordance with well-known communication standards such as Wi-Fi (registered trademark) and Bluetooth (registered trademark).
  • the third communication unit 17 includes a communication interface compliant with wireless communication standards such as Wi-Fi and Bluetooth.
  • the angle adjusting unit 18 adjusts the installation angle of the infrared sensor 210 built in the air conditioning control device 100 according to the control by the control unit 11.
  • the angle adjusting unit 18 switches the imaging region of the infrared sensor 210 by adjusting the installation angle of the infrared sensor 210.
  • the angle adjusting unit 18 includes, for example, a rotating member, a support member, and an actuator.
  • the rotating member is a member that rotates about a rotation axis and is a member to which the infrared sensor 210 is fixed.
  • the support member is a member that includes a rotation shaft and rotatably supports the rotation member around the rotation shaft.
  • the rotation axis included in the support member is one axis extending in the horizontal direction.
  • the actuator rotates a rotating member around a rotation axis.
  • the infrared sensor 210 is a sensor that detects infrared rays. That is, the infrared sensor 210 outputs an electric signal according to the amount of received infrared rays.
  • the infrared sensor 210 is an infrared image sensor in which an image pickup element for detecting infrared rays is two-dimensionally arranged.
  • the infrared sensor 210 generates an infrared image showing the amount of received infrared rays for each portion in the imaging region.
  • the amount of infrared rays received basically corresponds to the temperature of the surface of the object.
  • the infrared sensor 210 is mainly used to identify the position where the indoor unit 300 is installed.
  • the infrared sensor 210 is installed indoors so that the indoor unit 300 fits in the image pickup area of the infrared sensor 210. Since the indoor unit 300 is installed on the ceiling 610 in the room, the infrared sensor 210 is installed at a position where the image of the ceiling 610 can be captured and at an angle at which the image of the ceiling 610 can be captured.
  • the infrared sensor 210 is built in the air conditioning control device 100 installed on the wall 630. It is preferable that the portion of the housing of the air conditioning control device 100 facing the infrared sensor 210 is made of a transparent resin. Alternatively, the housing of the air conditioning control device 100 may have an opening in this portion, and the infrared sensor 210 may be exposed. It is preferable that the infrared sensor 210 is installed at an angle at which a region above the horizontal direction is imaged.
  • the infrared sensor 220 basically has the same configuration as the infrared sensor 210.
  • the infrared sensor 220 is used to detect the heat distribution in the room.
  • the infrared sensor 220 is installed near the center of the ceiling 610 in the room, for example.
  • Each of the infrared sensor 210 and the infrared sensor 220 communicates with the air conditioning control device 100 by wire.
  • Each of the infrared sensor 210 and the infrared sensor 220 may capture an infrared image according to the control by the air conditioning control device 100 and transmit the captured infrared image to the air conditioning control device 100.
  • each of the infrared sensor 210 and the infrared sensor 220 may continuously capture an infrared image and continuously transmit the infrared image to the air conditioning control device 100 during activation.
  • the indoor unit 300 is an equipment installed in the room among the equipment that harmonizes the air in the room according to the control by the air conditioning control device 100. Harmonizing the indoor air means adjusting the temperature, humidity, air cleanliness, etc. of the indoor air.
  • the indoor unit 300 blows harmonized air into the room according to the control by the air conditioning control device 100.
  • the conditioned air is the air for harmonizing the indoor air, and is basically heating air or cooling air.
  • the heating air is air for heating the room, and is air having a temperature higher than the temperature of the air in the room.
  • the cooling air is air for cooling the room, and is air having a temperature lower than the temperature of the air in the room.
  • FIG. 4 is a bottom view of the indoor unit 300.
  • the indoor unit 300 includes four outlets 310, four louvers 320, and a suction port 330.
  • the outlet 310 is a general term for the outlet 310A, the outlet 310B, the outlet 310C, and the outlet 310D.
  • the louver 320 is a general term for the louver 320A, the louver 320B, the louver 320C, and the louver 320D.
  • the outlet 310 is an opening for blowing out harmonious air from the inside of the air conditioning control device 100 into the room.
  • each of the four outlets 310 has an elongated shape, and the four outlets 310 are arranged at positions corresponding to the four sides of the square.
  • the louver 320 is a member for adjusting the wind direction of the conditioned air blown out from the outlet 310.
  • one louver 320 is provided for one outlet 310.
  • a louver 320A is provided for the outlet 310A
  • a louver 320B is provided for the outlet 310B
  • a louver 320C is provided for the outlet 310C
  • a louver 320D is provided for the outlet 310D. It will be provided.
  • the louver 320 adjusts the wind direction of the conditioned air between the direction directly below and the direction directly beside it.
  • the horizontal direction is a horizontal direction toward the outside of the air conditioning control device 100.
  • the angles of the four louvers 320 can be independently controlled, and the wind direction of the conditioned air blown out from the four outlets 310 can be independently controlled.
  • the suction port 330 is an opening for taking in air from the room into the air conditioning control device 100.
  • the suction port 330 is arranged at a position surrounded by the four outlets 310 and is square in a plan view.
  • the indoor unit 300A is arranged on the right side in front of the infrared sensor 210.
  • the indoor unit 300B is arranged on the left side in front of the infrared sensor 210.
  • the indoor unit 300C is arranged on the right side on the far side when viewed from the infrared sensor 210.
  • the indoor unit 300D is arranged on the left side on the far side when viewed from the infrared sensor 210.
  • the room has a rectangular parallelepiped space, and includes a ceiling 610, a floor 620, a wall 630, a wall 640, and a wall 650.
  • the wall 630 and the wall 640 face each other, the wall 630 and the wall 650 are adjacent to each other, and the wall 640 and the wall 650 are adjacent to each other.
  • Each of the four indoor units 300 communicates with the air conditioning control device 100 by wire and operates according to the control signal supplied from the air conditioning control device 100.
  • the outdoor unit 400 is an equipment installed outdoors among the equipment that harmonizes the indoor air according to the control by the air conditioning control device 100.
  • the outdoor unit 400 takes in the air taken in from the room by the indoor unit 300, and supplies the conditioned air obtained by heating or cooling the taken-in air to the indoor unit 300.
  • the outdoor unit 400 communicates with the air conditioning control device 100 by wire via the indoor unit 300, and operates according to the control signal supplied from the air conditioning control device 100.
  • the terminal device 500 is a device that functions as a user interface of the air conditioning control device 100.
  • the user can control and monitor the air conditioning by the air conditioning control device 100 via the terminal device 500.
  • the user can operate the terminal device 500 to change the operation mode, the operation mode, the set temperature, the wind direction, and the like.
  • the operation mode is a mode indicating operating, stopped, or the like.
  • the operation mode is a mode indicating a heating operation, a cooling operation, a dehumidifying operation, and the like.
  • the set temperature is the temperature of the target room in the heating operation or the cooling operation.
  • the user can operate the terminal device 500 to check various information regarding air conditioning. For example, the user can confirm the operation mode, the operation mode, the set temperature, and the like by checking the screen displayed by the terminal device 500. Further, the user can confirm the heat distribution image showing the heat distribution of the room by confirming the screen displayed by the terminal device 500.
  • the heat distribution image is generated from the infrared image captured by the infrared sensor 210 or the infrared sensor 220.
  • the terminal device 500 communicates with a control unit that controls the operation of the entire terminal device 500, an operation unit that accepts operations from the user, a display unit that displays various information, a storage unit that stores various information, and an air conditioning control device 100. It is equipped with a communication unit and the like.
  • the control unit includes, for example, a CPU, ROM, RAM, RTC, and the like.
  • the operation unit and the display unit include, for example, a touch screen.
  • the storage unit includes an SSD, a hard disk drive, and the like.
  • the communication unit includes, for example, a communication interface for communicating according to a well-known communication standard such as Wi-Fi or Bluetooth.
  • the terminal device 500 is a smartphone, a tablet terminal, a personal computer, or the like.
  • the air conditioning control device 100 functionally includes an image acquisition unit 101, an air conditioning control unit 102, a position estimation unit 103, an output unit 104, and an angle control unit 105. Each of these functions is realized by software, firmware, or a combination of software and firmware.
  • the software and firmware are described as a program and stored in the ROM or the storage unit 12. Then, the CPU realizes each of these functions by executing the program stored in the ROM or the storage unit 12.
  • the image acquisition unit 101 acquires an infrared image from the infrared sensor 210.
  • the image acquisition unit 101 transmits image pickup instruction information instructing image pickup to the infrared sensor 210 via the first communication unit 15.
  • the image acquisition unit 101 acquires an infrared image acquired by the infrared sensor 210 by imaging from the infrared sensor 210 via the first communication unit 15.
  • the image acquisition unit 101 acquires an infrared image from the infrared sensor 220 via the first communication unit 15.
  • the image acquisition unit 101 is an example of an image acquisition means.
  • the air conditioning control unit 102 controls the operation of the indoor unit 300 installed in the room. For example, the air conditioning control unit 102 determines the control content for the indoor unit 300 according to the operation received from the user by the operation reception unit 14. Then, the air conditioning control unit 102 transmits control information indicating the control content for the indoor unit 300 to the indoor unit 300 via the second communication unit 16.
  • the air conditioner control unit 102 is indoors based on an infrared image acquired from the infrared sensor 210, an infrared image acquired from the infrared sensor 220, and indoor unit position information output by the output unit 104, which will be described later. Controls the operation of the machine 300.
  • the air conditioning control unit 102 is an example of the air conditioning control means.
  • the position estimation unit 103 estimates the position of the indoor unit 300 based on the infrared image acquired by the image acquisition unit 101. This infrared image is acquired by the infrared sensor 210 taking an image of the room while the indoor unit 300 is blowing out conditioned air.
  • the position of the indoor unit 300 is a concept including the installation position of the indoor unit 300 and the relative position of the indoor unit 300 with respect to the infrared sensor 210 (hereinafter, appropriately referred to as “relative position of the indoor unit 300”).
  • the installation position of the indoor unit 300 is the position where the indoor unit 300 is installed in the room.
  • the relative position of the indoor unit 300 is a position relatively representing the installation position of the indoor unit 300 with reference to the installation position of the infrared sensor 210.
  • the installation position of the infrared sensor 210 is the position where the infrared sensor 210 is installed in the room.
  • the relative position of the indoor unit 300 is, for example, the distance from the infrared sensor 210 to the indoor unit 300, the height of the indoor unit 300 when viewed from the infrared sensor 210, the straight line connecting the infrared sensor 210 and the indoor unit 300, and the horizontal plane. It is expressed by the angle formed by infrared rays.
  • the relative position of the indoor unit 300 is expressed by the magnitude relationship of the distance from the infrared sensor 210 to the indoor unit 300, the arrangement of the indoor units 300 when viewed from the infrared sensor 210, and the like. You may.
  • the relative position of the indoor unit 300A and the relative position of the indoor unit 300B may be expressed as the front side, and the relative position of the indoor unit 300C and the relative position of the indoor unit 300D may be expressed as the back side.
  • the relative position of the indoor unit 300A may be expressed as the right front
  • the relative position of the indoor unit 300B may be expressed as the left front
  • the relative position of the indoor unit 300C may be expressed as the right back
  • the relative position of the indoor unit 300D may be expressed as the left back.
  • the position estimation unit 103 estimates the relative position of the indoor unit 300 based on the infrared image acquired by the image acquisition unit 101. For example, when the conditioned air is heating air, the temperature of the portion around the outlet 310 of the indoor unit 300 is higher than the temperature of the other portions. Therefore, in the infrared image, the portion around the outlet 310 of the indoor unit 300 is represented at a higher temperature than the other portions. Therefore, the position estimation unit 103 estimates the relative position of the indoor unit 300 by using the portion represented by the high temperature in the infrared image as the peripheral portion of the outlet 310 of the indoor unit 300. The position estimation unit 103 can accurately estimate the relative position of the indoor unit 300 based on the device information stored in the storage unit 12.
  • the device information is information indicating the model of the indoor unit 300, the number of outlets 310, the arrangement of outlets 310, and the like.
  • the position estimation unit 103 further estimates the installation position of the indoor unit 300 from the estimated relative position of the indoor unit 300 and the installation position of the infrared sensor 210.
  • the operation receiving unit 14 receives the installation position of the infrared sensor 210 from the user.
  • the installation position of the infrared sensor 210 is, for example, which wall of the wall 630, the wall 640, and the wall 650 the infrared sensor 210 is installed, the position of the wall 630 where the infrared sensor 210 is installed, and the infrared rays from the ceiling 610. It is expressed by the distance to the sensor 210, the distance from the floor 620 to the infrared sensor 210, and the like.
  • the storage unit 12 stores information necessary for appropriately expressing the installation position of the infrared sensor 210, the installation position of the indoor unit 300, and the like. For example, it is assumed that the storage unit 12 stores indoor information indicating the shape of the room and the size of the room. Further, it is assumed that the storage unit 12 stores information indicating the installation position of the infrared sensor 220.
  • the position estimation unit 103 estimates the installation position of the indoor unit 300 in the room based on the installation position of the infrared sensor 210 in the room and the relative position of the indoor unit 300 when viewed from the infrared sensor 210.
  • the position estimation unit 103 estimates the installation position in the room for each of the four indoor units 300.
  • the position estimation unit 103 is an example of the position estimation means.
  • the operation reception unit 14 is an example of the installation position reception means.
  • the output unit 104 outputs indoor unit position information indicating the position of the indoor unit 300 based on an infrared image acquired by the infrared sensor 210 taking an image of the room while the indoor unit 300 is blowing out conditioned air. That is, the output unit 104 outputs the indoor unit position information indicating the relative position of the indoor unit 300 estimated by the position estimation unit 103 or the installation position of the indoor unit 300 obtained from the relative position of the indoor unit 300.
  • the output unit 104 outputs the indoor unit position information to the air conditioning control unit 102.
  • the air conditioning control unit 102 controls the operation of the indoor unit 300 based on the indoor unit position information output by the output unit 104.
  • the output unit 104 outputs the indoor unit position information to the display unit 13.
  • the display unit 13 displays a heat distribution image showing the heat distribution in the room and the position of the indoor unit 300 based on the indoor unit position information output by the output unit 104.
  • the output unit 104 transmits the indoor unit position information to the terminal device 500 via the third communication unit 17.
  • the terminal device 500 displays a heat distribution image showing the heat distribution in the room and the position of the indoor unit 300 based on the indoor unit position information output by the output unit 104.
  • the output unit 104 is an example of output means.
  • the display unit 13 is an example of display means.
  • the angle control unit 105 controls the operation of the angle adjustment unit 18 that adjusts the installation angle of the infrared sensor 210. That is, the angle control unit 105 controls the operation of the angle adjustment unit 18 so that the indoor unit 300 is included in the image pickup region. For example, when the indoor unit 300 is not included in the imaging region, the angle control unit 105 adjusts the installation angle of the infrared sensor 210 until the indoor unit 300 is included in the imaging region.
  • the angle control unit 105 is an example of the angle control means.
  • the angle adjusting unit 18 is an example of the angle adjusting means.
  • the indoor unit 300 is provided with a plurality of outlets 310, and the wind direction can be adjusted for each of the plurality of outlets 310.
  • the indoor unit 300 blows out the harmonized air from the plurality of outlets 310, and the wind direction of the first outlet of the plurality of outlets 310 is different from the wind direction of the other outlets.
  • the operation of the indoor unit 300 is controlled so as to be in a state.
  • the position estimation unit 103 is relative to the infrared sensor 210 of the first outlet based on the infrared image acquired by the infrared sensor 210 taking an image of the room when the indoor unit 300 is in the first state. Estimate the position.
  • the output unit 104 is a first outlet obtained from the relative position of the first outlet with respect to the infrared sensor 210 estimated by the position estimation unit 103, or the relative position of the first outlet with respect to the infrared sensor 210.
  • the air conditioning control device 100 starts executing the air conditioning control process, for example, in response to the power being turned on.
  • the position information output method in the present disclosure is realized by the air conditioning control device 100 executing the air conditioning control process.
  • the control unit 11 included in the air conditioning control device 100 determines whether or not there is a position detection instruction (step S101). For example, the control unit 11 determines whether or not the operation reception unit 14 has received the position detection instruction operation instructing the position detection from the user. Alternatively, the control unit 11 determines whether or not the position detection instruction information instructing the position detection has been received from the terminal device 500. Alternatively, if the program is programmed to execute position detection at startup, the control unit 11 determines whether or not the air conditioning control device 100 is immediately after startup.
  • step S101 When the control unit 11 determines that there is a position detection instruction (step S101: YES), the control unit 11 accepts an input of the installation position of the infrared sensor 210 (step S102). For example, the control unit 11 controls the display unit 13 to display an image inquiring about the installation position of the infrared sensor 210.
  • the installation position of the infrared sensor 210 is specified by, for example, the distance from the infrared sensor 210 to the ceiling 610.
  • the installation position of the air conditioning control device 100 may be treated as the installation position of the infrared sensor 210.
  • the control unit 11 receives an input of the installation position of the infrared sensor 210 from the user via the operation reception unit 14.
  • step S102 the control unit 11 executes the air conditioner position estimation process (step S103).
  • the air conditioner position estimation process will be described in detail with reference to FIG. 7.
  • the control unit 11 acquires an infrared image of the ceiling surface (step S201). For example, the control unit 11 controls the angle adjustment unit 18 so that the ceiling surface is included in the image pickup range of the infrared sensor 210. Then, the control unit 11 instructs the infrared sensor 210 to take an image, and acquires an infrared image including the ceiling surface from the infrared sensor 210.
  • the control unit 11 selects the indoor unit 300 when the process of step S201 is completed (step S202). Specifically, the control unit 11 selects one unselected indoor unit 300 out of the four indoor units 300.
  • step S203 the control unit 11 sets the wind direction of the selected indoor unit 300 to the side. Specifically, the control unit 11 adjusts the angles of all the louvers 320 for the selected indoor unit 300 so that the conditioned air is blown out from all the outlets 310 to the side.
  • step S204 the control unit 11 sets the wind direction of the unselected indoor unit 300 directly below. Specifically, the control unit 11 adjusts the angles of all the louvers 320 so that the conditioned air is blown directly below from all the outlets 310 for all the indoor units 300 that have not been selected.
  • step S205 the control unit 11 controls all the indoor units 300 so that the conditioned air is blown out from all the outlets 310 provided in each of the indoor units 300.
  • the conditioned air is heating air.
  • step S206 the control unit 11 acquires an infrared image of the ceiling surface.
  • the control unit 11 acquires an infrared image of the ceiling surface from the infrared sensor 210 by the same processing as in step S201.
  • step S207 the control unit 11 identifies the temperature change region (step S207). This temperature change region is a region in which the infrared image acquired in step S201 and the infrared image acquired in step S206 change the image due to the change in temperature.
  • FIG. 8 shows an image 710, which is an infrared image acquired in step S206 when the indoor unit 300A is selected.
  • the wall 660 is a wall facing the wall 650.
  • the region corresponding to the selected indoor unit 300A is observed as a region having a higher temperature than the surroundings. More specifically, in the image 710, the indoor unit 300A includes a region 330A which is an outer region of the outlet 310A included in the indoor unit 300A, a region 330B which is an outer region of the outlet 310B included in the indoor unit 300A, and the indoor unit 300A.
  • the region 330C, which is the region outside the outlet 310C, and the region 330D, which is the region outside the outlet 310D included in the indoor unit 300A, are observed as regions having a higher temperature than the surroundings. The reason for this is that the heating air is blown out right beside the outlet 310 included in the indoor unit 300A, and the temperature of the member outside the outlet 310 included in the indoor unit 300A rises.
  • the region corresponding to the indoor unit 300B, the indoor unit 300C, and the indoor unit 300D is not observed as a region having a higher temperature than the surroundings.
  • the reason for this is that the heating air is blown directly below from the outlet 310 provided in the indoor unit 300B, the indoor unit 300C and the indoor unit 300D, and the members around the outlet 310 provided in the indoor unit 300B, the indoor unit 300C and the indoor unit 300D. This is because the temperature does not rise so much.
  • the control unit 11 estimates the relative position of the selected indoor unit 300 (step S208). For example, when the selected indoor unit 300 is the indoor unit 300A, in the image 710, the region 330A, the region 330B, the region 330C, and the region 330D are observed as the temperature change region. The control unit 11 identifies a region surrounded by the region 330A, the region 330B, the region 330C, and the region 330D on the image 710 as the region in which the indoor unit 300A is installed.
  • the region 330A and the region 330C are observed as linear regions extending in the horizontal direction. If the distance from the floor 620 to the ceiling 610 is not so long with respect to the distance from the wall 630 to the wall 640 in which the infrared sensor 210 is installed, the straight line connecting the infrared sensor 210 and the indoor unit 300 and the horizontal plane. It is thought that the angle of formation will not be so large. In this case, the length of the region 330A and the length of the region 330C are considered to be longer than the length of the region 330B and the length of the region 330D. Therefore, the area 330A and the area 330C are easier to detect from the image 710 than the area 330B and the area 330D.
  • control unit 11 detects the region 330A and the region 330C extending in the horizontal direction and facing each other from the image 710, and estimates the region sandwiched between the region 330A and the region 330C as the region of the indoor unit 300A. Is preferable.
  • the control unit 11 estimates the relative position of the indoor unit 300A based on the position and size of the indoor unit 300A on the image 710.
  • the relative position of the indoor unit 300A is expressed by, for example, the distance from the infrared sensor 210 to the indoor unit 300A and the angle formed by the straight line connecting the infrared sensor 210 and the indoor unit 300A and the horizontal plane.
  • the control unit 11 estimates the installation position of the selected indoor unit 300 (step S209). Specifically, the control unit 11 installs the selected indoor unit 300 in the room based on the installation position of the infrared sensor 210 received in step S102 and the relative position of the selected indoor unit 300 estimated in step S208. Estimate the position.
  • step S210 determines whether or not there is an unselected indoor unit 300 (step S210).
  • step S210: YES the control unit 11 returns the process to step S202.
  • step S210: NO the control unit 11 completes the air conditioner position estimation process.
  • step S104 the control unit 11 executes the air outlet position estimation process.
  • the outlet position estimation process will be described in detail with reference to FIG.
  • the control unit 11 acquires an infrared image of the ceiling surface (step S301).
  • the control unit 11 selects the indoor unit 300 (step S302).
  • the control unit 11 selects the outlet 310 (step S303). Specifically, the control unit 11 selects one unselected outlet 310 from the four outlets 310.
  • step S304 the control unit 11 sets the wind direction of the selected outlet 310 to the side. Specifically, the control unit 11 adjusts the angle of the louver 320 corresponding to the selected outlet 310 so that the conditioned air is blown right beside the selected outlet 310 included in the selected indoor unit 300.
  • step S305 the control unit 11 sets the wind direction of the unselected outlet 310 directly below. Specifically, the control unit 11 is provided at each of the unselected outlets 310 so that the conditioned air is blown directly below from all the unselected outlets 310 of the selected indoor unit 300. Adjust the angle of the corresponding louver 320.
  • step S306 the control unit 11 controls the selected indoor unit 300 so that conditioned air is blown out from all the outlets 310 included in the selected indoor unit 300.
  • the conditioned air is heating air.
  • step S306 the control unit 11 acquires an infrared image of the ceiling surface (step S307).
  • the control unit 11 acquires an infrared image of the ceiling surface from the infrared sensor 210 by the same processing as in step S201.
  • step S308 the control unit 11 identifies the temperature change region (step S308).
  • This temperature change region is a region in which the infrared image acquired in step S301 and the infrared image acquired in step S307 change the image due to the change in temperature.
  • FIG. 10 shows an image 720 which is an infrared image acquired in step S307 when the indoor unit 300A is selected and the outlet 310A is selected.
  • image 720 the region corresponding to the selected outlet 310A included in the selected indoor unit 300A is observed as a region having a higher temperature than the surroundings. More specifically, in the image 720, the region 330A, which is the region outside the outlet 310A included in the indoor unit 300A, is observed as a region having a higher temperature than the surroundings. The reason for this is that the heating air is blown out from the outlet 310A of the indoor unit 300A right beside, and the temperature of the member outside the outlet 310A of the indoor unit 300A rises.
  • the region corresponding to each of the outlet 310B, the outlet 310C and the outlet 310D included in the indoor unit 300A is not observed as a region having a higher temperature than the surroundings.
  • the reason for this is that the heating air is blown directly below from each of the outlet 310B, the outlet 310C and the outlet 310D provided in the indoor unit 300A, and the outlet 310B, the outlet 310C and the outlet 310D provided in the indoor unit 300A, respectively. This is because the temperature of the surrounding members does not rise so much.
  • the control unit 11 estimates the relative position of the selected outlet 310 (step S309). For example, when the selected indoor unit 300 is the indoor unit 300A and the selected outlet 310 is the outlet 310A, the region 330A is observed as a temperature change region in the image 720. The control unit 11 identifies the region where the region 330A is observed on the image 720 as the region where the outlet 310A included in the indoor unit 300A is installed.
  • step S310 the control unit 11 estimates the installation position of the selected outlet 310 (step S310). Specifically, the control unit 11 installs the selected outlet 310 in the room based on the installation position of the infrared sensor 210 received in step S102 and the relative position of the selected outlet 310 estimated in step S309. Estimate the position.
  • step S311 determines whether or not there is an unselected outlet 310 (step S311).
  • step S311: YES determines whether or not there is an unselected outlet 310
  • step S311: NO determines whether or not there is an unselected indoor unit 300 (step S312).
  • step S312: YES determines whether or not there is an unselected indoor unit 300 (step S312: YES)
  • step S302 the control unit 11 completes the outlet position estimation process.
  • step S101 NO
  • step S104 determines whether or not there is a heat distribution image display instruction.
  • step S105 the control unit 11 determines whether or not the operation reception unit 14 has received a display instruction operation instructing the display of the heat distribution image from the user.
  • the control unit 11 determines whether or not the display instruction information instructing the display of the heat distribution image has been received from the terminal device 500.
  • the control unit 11 determines that there is an instruction to display the heat distribution image (step S105: YES)
  • the control unit 11 displays the heat distribution image (step S106).
  • the control unit 11 controls the display unit 13 to display a heat distribution image.
  • the control unit 11 transmits image information indicating the heat distribution image to the terminal device 500, and causes the terminal device 500 to display the heat distribution image.
  • This heat distribution image is an image showing the heat distribution in the room and the position of the indoor unit 300.
  • the heat distribution image is an image obtained by synthesizing an infrared image acquired by the infrared sensor 210 or an infrared image acquired by the infrared sensor 220 with an image showing the position of the indoor unit 300.
  • FIG. 11 shows an image 730 which is a heat distribution image.
  • the image 730 is an image obtained by synthesizing an icon image showing the indoor unit 300 and a character string image showing the name of the outlet 310 with the infrared image acquired by the infrared sensor 220.
  • the position of the icon image on the image 730 is determined based on the installation position of the indoor unit 300 estimated by the air conditioner position estimation process. Further, the position of the character string image on the image 730 is determined based on the installation position of the outlet 310 estimated by the outlet position estimation process.
  • the indoor unit A, the indoor unit B, the indoor unit C, and the indoor unit D are the names of the indoor unit 300A, the indoor unit 300B, the indoor unit 300C, and the indoor unit 300D, respectively. Further, the outlet A, the outlet B, the outlet C, and the outlet D are the names of the outlet 310A, the outlet 310B, the outlet 310C, and the outlet 310D, respectively.
  • the region 731 is a region where the temperature is lower than that of the region 732 and the region 733.
  • the region 732 is a region having a higher temperature than the region 731 and a lower temperature than the region 733.
  • the region 733 is a region having a higher temperature than the region 731 and the region 732.
  • the indoor unit 300A overlaps the area 731 and the area 732, and the indoor unit 300B, the indoor unit 300C, and the indoor unit 300D overlap the area 733.
  • the image 730 shows that the temperature of the air in the region below the indoor unit 300A is low, and the temperature of the air in the region below the indoor unit 300B, the indoor unit 300C, and the indoor unit 300D is high.
  • the user who refers to the image 730 raises the set temperature of the indoor unit 300A, raises the air volume of the indoor unit 300A, and changes the wind direction of the indoor unit 300B and the wind direction of the indoor unit 300C to the wind direction toward the indoor unit 300A. Measures such as switching can be taken.
  • the control unit 11 executes air conditioning control when it is determined that there is no display instruction of the heat distribution image (step S105: NO) or when the process of step S106 is completed (step S107).
  • the control unit 11 controls the operation of the indoor unit 300 based on the installation position of the indoor unit 300 estimated by the air conditioner position estimation process and the installation position of the outlet 310 estimated by the outlet position estimation process. ..
  • the control unit 11 adjusts the set temperature, the air volume, the angle of the louver 320, and the like for each of the four indoor units 300 so that the temperature in the indoor space does not vary.
  • the control unit 11 completes the process of step S107, the control unit 11 returns the process to step S101.
  • the position of the indoor unit 300 is estimated and estimated based on the infrared image acquired by the infrared sensor 210 taking an image of the room while the indoor unit 300 is blowing out conditioned air.
  • Indoor unit position information indicating the position of the machine 300 is output.
  • This indoor unit position information can be used for air conditioning control, heat distribution image generation, and the like.
  • the infrared image can be used not only for estimating the position of the indoor unit 300 but also for grasping the temperature distribution in the room. Therefore, according to the present embodiment, appropriate air conditioning can be realized with a simple configuration.
  • the relative position of the indoor unit 300 is estimated based on the infrared image, and the indoor unit indicates the relative position of the indoor unit 300 or the installation position of the indoor unit 300 obtained from the relative position of the indoor unit 300. Machine position information is output. Therefore, according to the present embodiment, the relative position of the indoor unit 300 or the installation position of the indoor unit 300 can be used for air conditioning control, heat distribution image generation, and the like.
  • the installation position of the indoor unit 300 is estimated based on the relative position of the indoor unit 300 and the installation position of the infrared sensor 210. According to this embodiment, the installation position of the indoor unit 300 can be automatically detected.
  • the infrared sensor 210 when the indoor unit 300 is in the first state in which the wind direction of the first outlet among the plurality of outlets 310 is different from the wind direction of the other outlets, the infrared sensor 210 takes an image of the room. Based on the infrared image thus acquired, the relative position of the first outlet with respect to the infrared sensor 210 is estimated. According to this embodiment, the relative position of the first outlet with respect to the infrared sensor 210 can be detected with high accuracy.
  • the angle of the infrared sensor 210 can be adjusted. According to this embodiment, a wide range of infrared images can be acquired even when the viewing angle of the infrared sensor 210 is narrow.
  • the operation of the indoor unit 300 is controlled based on the indoor unit position information. According to this embodiment, more appropriate air conditioning control can be expected.
  • a heat distribution image showing the heat distribution in the room and the position of the indoor unit 300 is displayed based on the indoor unit position information. According to the present embodiment, it is possible to inform the user in an easy-to-understand manner of the heat distribution in the room and the operation necessary for realizing appropriate air conditioning control.
  • Embodiment 2 In the first embodiment, an example in which the infrared sensor 210 is built in the air conditioning control device 100 has been described. The infrared sensor 210 may be provided outside the air conditioning control device 100.
  • the air conditioning system 1100 according to the present embodiment will be described with reference to FIGS. 12 to 15.
  • the air conditioning control device 110 having no built-in infrared sensor 210 acquires an infrared image from the infrared sensor 210 by wirelessly communicating with the image pickup device 200 having the built-in infrared sensor 210.
  • the description of the same configuration and function as that of the first embodiment will be omitted or simplified as appropriate.
  • FIG. 12 shows the configuration of the air conditioning control device 110 according to the present embodiment.
  • the air conditioning control device 110 includes a control unit 11, a storage unit 12, a display unit 13, an operation reception unit 14, a first communication unit 15, a second communication unit 16, and a third.
  • a communication unit 17 and a fourth communication unit 19 are provided. That is, the air conditioning control device 110 is different from the air conditioning control device 100 in that the angle adjusting unit 18 is not provided and the fourth communication unit 19 is provided.
  • the fourth communication unit 19 wirelessly communicates with the infrared sensor 210 according to the control by the control unit 11.
  • the fourth communication unit 19 wirelessly communicates with the image pickup device 200, and receives the movement notification information and the infrared image notifying that the image pickup device 200 has moved from the image pickup device 200.
  • the fourth communication unit 19 communicates with the infrared sensor 210 in accordance with well-known communication standards such as Wi-Fi and Bluetooth.
  • the fourth communication unit 19 includes a communication interface compliant with wireless communication standards such as Wi-Fi and Bluetooth.
  • the fourth communication unit 19 is an example of communication means.
  • the first communication unit 15 communicates with the infrared sensor 220 by wire according to the control by the control unit 11.
  • the image pickup device 200 is an infrared camera having a wireless communication function and a movement detection function. As shown in FIG. 13, the image pickup apparatus 200 includes a control unit 21, a storage unit 22, a communication unit 23, an angle adjustment unit 24, a movement detection unit 25, and an infrared sensor 210. Each of these parts is connected via a communication bus.
  • the control unit 21 includes a CPU, ROM, RAM, RTC, and the like.
  • the CPU is also called a central processing unit, a central processing unit, a processor, a microprocessor, a microcomputer, a DSP, or the like, and functions as a central processing unit that executes processing and operations related to the control of the image pickup device 200.
  • the CPU reads out the programs and data stored in the ROM, and uses the RAM as a work area to collectively control the image pickup apparatus 200.
  • the RTC is, for example, an integrated circuit having a timekeeping function. The CPU can specify the current date and time from the time information read from the RTC.
  • the storage unit 22 includes a non-volatile semiconductor memory such as a flash memory, EPROM, or EEPROM, and plays a role as a so-called secondary storage device or auxiliary storage device.
  • the storage unit 22 stores programs and data used by the control unit 21 to execute various processes. Further, the storage unit 22 stores data generated or acquired by the control unit 21 executing various processes.
  • the communication unit 23 wirelessly communicates with the air conditioning control device 110 according to the control by the control unit 21.
  • the communication unit 23 communicates with the air conditioning control device 110 in accordance with well-known communication standards such as Wi-Fi and Bluetooth.
  • the communication unit 23 includes a communication interface compliant with wireless communication standards such as Wi-Fi and Bluetooth.
  • the angle adjusting unit 24 adjusts the installation angle of the infrared sensor 210 built in the image pickup apparatus 200 according to the control by the control unit 21.
  • the angle adjusting unit 24 switches the imaging region of the infrared sensor 210 by adjusting the installation angle of the infrared sensor 210.
  • the angle adjusting unit 24 has the same configuration as the angle adjusting unit 18.
  • the movement detection unit 25 detects that the image pickup device 200 has moved. Further, the movement detection unit 25 detects the movement amount of the image pickup device 200, the movement direction of the image pickup device 200, the direction of the image pickup device 200, and the like.
  • the movement detection unit 25 includes, for example, a 3-axis acceleration sensor and a 3-axis angular velocity sensor.
  • the air conditioning control device 110 functionally includes an image acquisition unit 101, an air conditioning control unit 102, a position estimation unit 103, and an output unit 104. Functionally, the air conditioning control device 110 does not include the angle control unit 105, and the image acquisition unit 101 acquires an infrared image via the fourth communication unit 19 instead of the first communication unit 15. It is different from the air conditioning control device 100.
  • a process of detecting the position of the indoor unit 300 is executed. That is, when the fourth communication unit 19 receives the movement notification information from the image pickup device 200, the image acquisition unit 101 executes a process of acquiring an infrared image from the infrared sensor 210. Further, the position estimation unit 103 estimates the relative position of the indoor unit 300 based on the infrared image acquired by the image acquisition unit 101. Then, the output unit 104 outputs the indoor unit position information indicating the relative position of the indoor unit 300 estimated by the position estimation unit 103 or the installation position of the indoor unit 300 based on the relative position of the indoor unit 300.
  • the image acquisition unit 101 transmits the angle change instruction information for instructing the change of the installation angle of the infrared sensor 210 to the image pickup apparatus 200 via the fourth communication unit 19. Then, the image acquisition unit 101 transmits the image pickup instruction information instructing the infrared sensor 210 to take an image to the image pickup device 200 via the fourth communication unit 19.
  • the image pickup apparatus 200 functionally includes an image pickup control unit 201, an angle control unit 202, and a movement notification unit 203.
  • Each of these functions is realized by software, firmware, or a combination of software and firmware.
  • the software and firmware are described as a program and stored in the ROM or the storage unit 22. Then, the CPU realizes each of these functions by executing the program stored in the ROM or the storage unit 22.
  • the image pickup control unit 201 controls the image pickup by the infrared sensor 210. For example, when the communication unit 23 receives the image pickup instruction information from the air conditioning control device 110, the image pickup control unit 201 instructs the infrared sensor 210 to take an image and acquires an infrared image from the infrared sensor 210. The image pickup control unit 201 transmits an infrared image to the air conditioning control device 110 via the communication unit 23.
  • the angle control unit 202 controls the operation of the angle adjustment unit 24. For example, when the communication unit 23 receives the angle change instruction information from the air conditioning control device 110, the angle control unit 202 controls the angle adjustment unit 24 to change the installation angle of the infrared sensor 210.
  • the movement notification unit 203 notifies that the image pickup apparatus 200 has moved. For example, when the movement detection unit 25 detects the movement of the image pickup device 200, the movement notification unit 203 sends the movement notification information notifying that the image pickup device 200 has moved via the communication unit 23 to the air conditioning control device 110. Send to.
  • the movement notification information may include information indicating the movement amount of the image pickup device 200, the movement direction of the image pickup device 200, the direction of the image pickup device 200, and the like.
  • the air-conditioning control process executed by the air-conditioning control device 110 determines that the air-conditioning control device 110 acquires an infrared image from the infrared sensor 210 by wireless communication and that a position detection instruction is given when the movement of the image pickup device 200 is detected. It is the same as the air conditioning control process executed by the air conditioning control device 100 except that the point is.
  • the air conditioning control device 110 and the infrared sensor 210 communicate wirelessly. Therefore, according to the present embodiment, the degree of freedom in the installation location of the infrared sensor 210 is high. For example, when the installation position of the air conditioning control device 110 is an installation position unsuitable for imaging the ceiling 610, it is difficult to acquire an infrared image of the ceiling 610 if the infrared sensor 210 is built in the air conditioning control device 110. In the air conditioning system 1100 according to the present embodiment, since the air conditioning control device 110 and the infrared sensor 210 communicate wirelessly, the installation location of the infrared sensor 210 can be freely changed.
  • the position detection of the indoor unit 300 is automatically started. Therefore, according to the present embodiment, when the air conditioning control device 110 wants to execute the position detection of the indoor unit 300 every time the image pickup device 200 moves, the user controls the air conditioning every time the image pickup device 200 moves. It is not necessary to give a position detection instruction to the device 110, which can be expected to reduce the burden on the user.
  • the contractor may want to detect and record the positional relationship of a plurality of indoor units 300 installed on the ceiling 610. That is, the contractor may want to create a layout map of the indoor unit 300.
  • the infrared sensor 210 may not be able to image all the indoor units 300 installed in the ceiling 610 at once.
  • a method is conceivable in which the air conditioning control device 110 is made to detect the position of the indoor unit 300 while moving the infrared sensor 210, and the positions of all the indoor units 300 are specified based on the acquired plurality of infrared images. ..
  • the position detection of the indoor unit 300 is automatically executed every time the infrared sensor 210 moves, it is convenient because the user has less trouble.
  • Modification 1 In the first embodiment, an example of specifying the position of the outlet 310 by providing a difference in the wind direction of the plurality of outlets 310 has been described.
  • the position of the outlet 310 may be specified by providing a difference in the temperature of the conditioned air blown out from the plurality of outlets 310.
  • the indoor unit 300 can adjust the temperature of the conditioned air for each of the plurality of outlets 310.
  • the indoor unit 300 blows out the harmonized air from the plurality of outlets 310, and the temperature of the harmonized air blown out from the first outlet of the plurality of outlets 310 is blown out from the other outlets 310.
  • the operation of the indoor unit 300 is controlled so as to be in a second state different from the temperature of the conditioned air.
  • the temperature of the conditioned air blown out from the first outlet is set to 30 ° C.
  • the temperature of the conditioned air blown out from the other outlets 310 is set to 20 ° C. Set.
  • the temperature of the conditioned air blown out from the outlet 310 is basically the set temperature of the outlet 310.
  • the image acquisition unit 101 acquires an infrared image acquired by the infrared sensor 210 taking an image of the room when the indoor unit 300 is in the second state.
  • the position estimation unit 103 estimates the relative position of the first outlet with respect to the infrared sensor 210 based on this infrared image.
  • the output unit 104 installs the first outlet obtained from the relative position of the first outlet with respect to the infrared sensor 210 estimated by the position estimation unit 103 or the relative position of the first outlet with respect to the infrared sensor 210. Outputs indoor unit position information indicating the position.
  • the positions of the four outlets 310 may be estimated from one infrared image. Specifically, one infrared image is acquired with one outlet 310 as the first outlet, the position of the first outlet is estimated from one infrared image, and the other is estimated from the estimated position of the first outlet. The positions of the three outlets 310 may be estimated.
  • the number of indoor units 300 is four has been described.
  • the number of indoor units 300 may be 3 or less, or 5 or more.
  • the number of outlets 310 included in the indoor unit 300 is four and the four outlets 310 are arranged so as to correspond to the four sides of the square has been described.
  • the arrangement of the four outlets 310 is not limited to this example. Further, the number of outlets 310 may be 3 or less, or 5 or more.
  • the air conditioning control device 100 communicates with the infrared sensor 210, the infrared sensor 220, the indoor unit 300, and the outdoor unit 400 by wire, and the air conditioning control device 100 wirelessly communicates with the terminal device 500.
  • the method by which the air conditioning control device 100 communicates with the infrared sensor 210, the infrared sensor 220, the indoor unit 300, the outdoor unit 400, and the terminal device 500 can be appropriately adjusted.
  • the air conditioning control device 100 may wirelessly communicate with each of the infrared sensor 210, the infrared sensor 220, the indoor unit 300, the outdoor unit 400, and the terminal device 500.
  • the air conditioning control device 100 receives an input of the installation position of the infrared sensor 210 from the user.
  • the installation position of the infrared sensor 210 is predetermined, it is not necessary for the user to input the installation position of the infrared sensor 210.
  • the storage unit 12 stores information indicating the installation position of the infrared sensor 210.
  • the heat distribution image presented to the user may be generated by synthesizing the icon image of the indoor unit 300 and the character string image of the outlet 310 with the infrared image acquired by the infrared sensor 210.
  • the infrared sensor 220 may not be necessary.
  • the heat distribution in the room may be accurately obtained from the infrared image acquired by the infrared sensor 220 and the infrared image acquired by the infrared sensor 210.
  • the heat distribution image presented to the user is generated by synthesizing the icon image of the indoor unit 300 and the character string image of the outlet 310 with the obtained image showing the heat distribution in the room.
  • the number of infrared sensors 210 for detecting the position of the indoor unit 300 is one has been described.
  • the number of infrared sensors 210 may be two or more.
  • the conditioned air is the heating air has been described.
  • the conditioned air may be cooling air.
  • control unit 11 the CPU functions as each unit shown in FIGS. 5 and 14 by executing the program stored in the ROM or the storage unit 12.
  • the control unit 11 may be dedicated hardware.
  • the dedicated hardware is, for example, a single circuit, a composite circuit, a programmed processor, an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable Gate Array), or a combination thereof.
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • control unit 11 can realize each of the above-mentioned functions by hardware, software, firmware, or a combination thereof.
  • the computer By applying an operation program that regulates the operation of the air-conditioning control device 100 according to the present disclosure to a computer such as an existing personal computer or an information terminal device, the computer can be made to function as the air-conditioning control device 100 according to the present disclosure. It is possible. Further, the distribution method of such a program is arbitrary, and for example, a computer-readable recording such as a CD-ROM (CompactDiskROM), a DVD (DigitalVersatileDisk), an MO (MagnetoOpticalDisk), or a memory card. It may be stored in a medium and distributed, or may be distributed via a communication network such as the Internet.
  • a computer-readable recording such as a CD-ROM (CompactDiskROM), a DVD (DigitalVersatileDisk), an MO (MagnetoOpticalDisk), or a memory card. It may be stored in a medium and distributed, or may be distributed via a communication network such as the Internet.
  • This disclosure is applicable to air conditioning systems.

Abstract

An air conditioning control unit (102) controls operations of an indoor unit (300) positioned in an indoor space. An output unit (104) outputs indoor unit position information that indicates the position of the indoor unit (300), said information being based on an infrared image acquired through an infrared sensor (210) imaging the indoor space when the indoor unit (300) blows out conditioned air.

Description

空調制御装置、空調システム、及び、位置情報出力方法Air conditioning control device, air conditioning system, and location information output method
 本開示は、空調制御装置、空調システム、及び、位置情報出力方法に関する。 This disclosure relates to an air conditioning control device, an air conditioning system, and a position information output method.
 現在、適切な空調を実現するために、室内機の位置、ユーザの位置等を検出する技術が知られている。例えば、特許文献1には、カメラが撮像した画像に基づいて、室内機の吹出口の位置とユーザの位置とを解析し、ユーザの位置に応じて空調制御する空気調和システムが記載されている。 Currently, a technique for detecting the position of an indoor unit, the position of a user, etc. is known in order to realize appropriate air conditioning. For example, Patent Document 1 describes an air conditioning system that analyzes the position of an air outlet of an indoor unit and the position of a user based on an image captured by a camera and controls air conditioning according to the position of the user. ..
 特許文献1に記載された空気調和システムでは、室内機の吹出口の周囲に発光部を設け、カメラが撮像した画像に写っている発光部の位置に基づいて、吹出口の位置が特定される。 In the air conditioning system described in Patent Document 1, a light emitting unit is provided around the air outlet of the indoor unit, and the position of the air outlet is specified based on the position of the light emitting unit in the image captured by the camera. ..
国際公開第2018/042621号International Publication No. 2018/0426221
 しかしながら、特許文献1に記載された空気調和システムのように、室内機の吹出口の周囲に発光部を設けると、室内機の構成が複雑になる。このため、簡単な構成で適切な空調を実現する技術が望まれている。 However, if a light emitting unit is provided around the air outlet of the indoor unit as in the air conditioning system described in Patent Document 1, the configuration of the indoor unit becomes complicated. Therefore, a technique for realizing appropriate air conditioning with a simple configuration is desired.
 本開示は、上記問題に鑑みてなされたものであり、簡単な構成で適切な空調を実現する空調制御装置、空調システム、及び、位置情報出力方法を提供することを目的とする。 The present disclosure has been made in view of the above problems, and an object of the present disclosure is to provide an air conditioning control device, an air conditioning system, and a position information output method that realize appropriate air conditioning with a simple configuration.
 上記目的を達成するために、本開示に係る空調制御装置は、
 室内に設置された室内機の動作を制御する空調制御手段と、
 前記室内機が調和空気を吹き出しているときに赤外線センサが前記室内を撮像することにより取得される赤外線画像に基づく前記室内機の位置を示す室内機位置情報を出力する出力手段と、を備える。
In order to achieve the above object, the air conditioning control device according to the present disclosure is
An air conditioning control means that controls the operation of indoor units installed indoors,
An output means for outputting indoor unit position information indicating the position of the indoor unit based on an infrared image acquired by an infrared sensor taking an image of the room while the indoor unit is blowing out conditioned air is provided.
 本開示では、室内機が調和空気を吹き出しているときに赤外線センサが室内を撮像することにより取得される赤外線画像に基づく室内機の位置を示す室内機位置情報が出力される。従って、本開示によれば、簡単な構成で適切な空調を実現することができる。 In the present disclosure, indoor unit position information indicating the position of the indoor unit based on an infrared image acquired by an infrared sensor taking an image of the room while the indoor unit is blowing out conditioned air is output. Therefore, according to the present disclosure, appropriate air conditioning can be realized with a simple configuration.
実施の形態1に係る空調システムの構成図Configuration diagram of the air conditioning system according to the first embodiment 空調対象の部屋を示す図Diagram showing a room to be air-conditioned 実施の形態1に係る空調制御装置の構成図Configuration diagram of the air conditioning control device according to the first embodiment 実施の形態1に係る室内機の底面図Bottom view of the indoor unit according to the first embodiment 実施の形態1に係る空調制御装置の機能構成図Functional configuration diagram of the air conditioning control device according to the first embodiment 実施の形態1に係る空調制御装置が実行する空調制御処理を示すフローチャートA flowchart showing an air conditioning control process executed by the air conditioning control device according to the first embodiment. 図6に示す室内機位置推定処理を示すフローチャートA flowchart showing the indoor unit position estimation process shown in FIG. 室内機の位置の推定に用いられる赤外線画像を示す図A diagram showing an infrared image used to estimate the position of an indoor unit 図6に示す吹出口位置推定処理を示すフローチャートA flowchart showing the outlet position estimation process shown in FIG. 吹出口の位置の推定に用いられる赤外線画像を示す図A diagram showing an infrared image used to estimate the position of the air outlet ユーザに提示される熱分布画像を示す図Diagram showing a heat distribution image presented to the user 実施の形態2に係る空調制御装置の構成図Configuration diagram of the air conditioning control device according to the second embodiment 実施の形態2に係る撮像装置の構成図Configuration diagram of the image pickup apparatus according to the second embodiment 実施の形態2に係る空調制御装置の機能構成図Functional configuration diagram of the air conditioning control device according to the second embodiment 実施の形態2に係る撮像装置の機能構成図Functional configuration diagram of the image pickup apparatus according to the second embodiment
 以下、本開示の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一又は相当部分には同一符号を付す。 Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. The same or corresponding parts in the figure are designated by the same reference numerals.
(実施の形態1)
 図1は、実施の形態1に係る空調システム1000の構成を示す図である。空調システム1000は、空調対象の部屋の空気を調和するシステムである。図2は、空調対象の部屋を示す図である。空調システム1000は、空調制御装置100と、赤外線センサ210と、赤外線センサ220と、4つの室内機300と、室外機400と、端末装置500とを備える。なお、理解を容易にするため、図1には、室内機300Aと室内機300Bと室内機300Cと室内機300Dとの4つの室内機300のうち1つの室内機300のみを図示している。
(Embodiment 1)
FIG. 1 is a diagram showing a configuration of an air conditioning system 1000 according to the first embodiment. The air conditioning system 1000 is a system that harmonizes the air in the room to be air-conditioned. FIG. 2 is a diagram showing a room to be air-conditioned. The air conditioning system 1000 includes an air conditioning control device 100, an infrared sensor 210, an infrared sensor 220, four indoor units 300, an outdoor unit 400, and a terminal device 500. For ease of understanding, FIG. 1 illustrates only one of the four indoor units 300 of the indoor unit 300A, the indoor unit 300B, the indoor unit 300C, and the indoor unit 300D.
 図1に示すように、空調制御装置100と赤外線センサ210と赤外線センサ220と4つの室内機300とは室内に設けられ、室外機400は室外に設けられる。端末装置500は、室内にあってもよいし、室外にあってもよい。図1には、端末装置500が室内にある例が示されている。 As shown in FIG. 1, the air conditioning control device 100, the infrared sensor 210, the infrared sensor 220, and the four indoor units 300 are provided indoors, and the outdoor unit 400 is provided outdoors. The terminal device 500 may be indoors or outdoors. FIG. 1 shows an example in which the terminal device 500 is indoors.
 空調制御装置100は、4つの室内機300の動作と室外機400の動作とを制御し、空調対象の部屋の空気を調和する装置である。空調制御装置100は、赤外線センサ210と赤外線センサ220と4つの室内機300と室外機400と端末装置500とのそれぞれと通信する機能を有する。空調制御装置100は、赤外線センサ210が撮像した赤外線画像に基づいて、4つの室内機300のそれぞれの位置を推定する機能を有する。空調制御装置100は、空調対象の部屋が備える壁630に設置される。空調制御装置100は、例えば、壁630に備え付けられるリモートコントローラである。 The air conditioning control device 100 is a device that controls the operation of the four indoor units 300 and the operation of the outdoor unit 400 to harmonize the air in the room to be air-conditioned. The air conditioning control device 100 has a function of communicating with each of the infrared sensor 210, the infrared sensor 220, the four indoor units 300, the outdoor unit 400, and the terminal device 500. The air conditioning control device 100 has a function of estimating the positions of each of the four indoor units 300 based on the infrared image captured by the infrared sensor 210. The air conditioning control device 100 is installed on the wall 630 of the room to be air-conditioned. The air conditioning control device 100 is, for example, a remote controller mounted on the wall 630.
 次に、図3を参照して、空調制御装置100の構成について説明する。図3に示すように、空調制御装置100は、制御部11と、記憶部12と、表示部13と、操作受付部14と、第1通信部15と、第2通信部16と、第3通信部17と、角度調整部18とを備える。これら各部は、通信バスを介して接続される。 Next, the configuration of the air conditioning control device 100 will be described with reference to FIG. As shown in FIG. 3, the air conditioning control device 100 includes a control unit 11, a storage unit 12, a display unit 13, an operation reception unit 14, a first communication unit 15, a second communication unit 16, and a third. A communication unit 17 and an angle adjusting unit 18 are provided. Each of these parts is connected via a communication bus.
 制御部11は、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)、RTC(Real Time Clock)等を備える。CPUは、中央処理装置、中央演算装置、プロセッサ、マイクロプロセッサ、マイクロコンピュータ、DSP(Digital Signal Processor)等とも呼び、空調制御装置100の制御に係る処理及び演算を実行する中央演算処理部として機能する。制御部11において、CPUは、ROMに格納されているプログラム及びデータを読み出し、RAMをワークエリアとして用いて、空調制御装置100を統括制御する。RTCは、例えば、計時機能を有する集積回路である。なお、CPUは、RTCから読み出される時刻情報から現在日時を特定可能である。 The control unit 11 includes a CPU (Central Processing Unit), ROM (Read Only Memory), RAM (Random Access Memory), RTC (Real Time Clock), and the like. The CPU is also called a central processing unit, a central processing unit, a processor, a microprocessor, a microcomputer, a DSP (Digital Signal Processor), etc., and functions as a central processing unit that executes processing and operations related to the control of the air conditioning control device 100. .. In the control unit 11, the CPU reads out the programs and data stored in the ROM, and uses the RAM as a work area to collectively control the air conditioning control device 100. The RTC is, for example, an integrated circuit having a timekeeping function. The CPU can specify the current date and time from the time information read from the RTC.
 記憶部12は、フラッシュメモリ、EPROM(Erasable Programmable ROM)、EEPROM(Electrically Erasable Programmable ROM)等の不揮発性の半導体メモリを備えており、いわゆる補助記憶装置(二次記憶装置ともいう。)としての役割を担う。記憶部12は、制御部11が各種処理を実行するために使用するプログラム及びデータを記憶する。また、記憶部12は、制御部11が各種処理を実行することにより生成又は取得するデータを記憶する。 The storage unit 12 includes a non-volatile semiconductor memory such as a flash memory, EPROM (ErasableProgrammableROM), and EEPROM (ElectricallyErasableProgrammableROM), and serves as a so-called auxiliary storage device (also referred to as a secondary storage device). Take on. The storage unit 12 stores programs and data used by the control unit 11 to execute various processes. Further, the storage unit 12 stores data generated or acquired by the control unit 11 executing various processes.
 表示部13は、制御部11による制御に従って、各種の画像を表示する。表示部13は、タッチスクリーン、液晶ディスプレイ等を備える。操作受付部14は、ユーザから各種の操作を受け付け、受け付けた操作の内容を示す情報を制御部11に供給する。操作受付部14は、タッチスクリーン、ボタン、レバー等を備える。 The display unit 13 displays various images according to the control by the control unit 11. The display unit 13 includes a touch screen, a liquid crystal display, and the like. The operation reception unit 14 receives various operations from the user and supplies information indicating the contents of the accepted operations to the control unit 11. The operation reception unit 14 includes a touch screen, buttons, levers, and the like.
 第1通信部15は、制御部11による制御に従って、赤外線センサ210と赤外線センサ220とのそれぞれと有線で通信する。例えば、第1通信部15は、空調制御装置100と赤外線センサ210とを接続する通信線を介して、赤外線センサ210と有線で通信する。また、例えば、第1通信部15は、空調制御装置100と赤外線センサ220とを接続する通信線を介して、赤外線センサ220と有線で通信する。第1通信部15は、各種の有線通信規格に準拠した通信インターフェースを備える。 The first communication unit 15 communicates with each of the infrared sensor 210 and the infrared sensor 220 by wire according to the control by the control unit 11. For example, the first communication unit 15 communicates with the infrared sensor 210 by wire via a communication line connecting the air conditioning control device 100 and the infrared sensor 210. Further, for example, the first communication unit 15 communicates with the infrared sensor 220 by wire via a communication line connecting the air conditioning control device 100 and the infrared sensor 220. The first communication unit 15 includes a communication interface conforming to various wired communication standards.
 第2通信部16は、制御部11による制御に従って、4つの室内機300のそれぞれと通信し、また、室外機400と通信する。例えば、第2通信部16は、空調制御装置100と室内機300Aとを接続する通信線を介して、室内機300Aと有線で通信する。また、例えば、第2通信部16は、空調制御装置100と室内機300Aとを接続する通信線と、室内機300Aと室外機400とを接続する通信線とを介して、室外機400と有線で通信する。第2通信部16は、各種の有線通信規格に準拠した通信インターフェースを備える。 The second communication unit 16 communicates with each of the four indoor units 300 and also communicates with the outdoor unit 400 according to the control by the control unit 11. For example, the second communication unit 16 communicates with the indoor unit 300A by wire via a communication line connecting the air conditioning control device 100 and the indoor unit 300A. Further, for example, the second communication unit 16 is wired to the outdoor unit 400 via a communication line connecting the air conditioning control device 100 and the indoor unit 300A and a communication line connecting the indoor unit 300A and the outdoor unit 400. Communicate with. The second communication unit 16 includes a communication interface conforming to various wired communication standards.
 第3通信部17は、制御部11による制御に従って、端末装置500と通信する。例えば、第3通信部17は、Wi-Fi(登録商標)、Bluetooth(登録商標)等の周知の通信規格に則って、端末装置500と通信する。第3通信部17は、Wi-Fi、Bluetooth等の無線通信規格に準拠した通信インターフェースを備える。 The third communication unit 17 communicates with the terminal device 500 according to the control by the control unit 11. For example, the third communication unit 17 communicates with the terminal device 500 in accordance with well-known communication standards such as Wi-Fi (registered trademark) and Bluetooth (registered trademark). The third communication unit 17 includes a communication interface compliant with wireless communication standards such as Wi-Fi and Bluetooth.
 角度調整部18は、制御部11による制御に従って、空調制御装置100に内蔵された赤外線センサ210の設置角度を調整する。角度調整部18は、赤外線センサ210の設置角度を調整することにより、赤外線センサ210の撮像領域を切り替える。角度調整部18は、例えば、回転部材と、支持部材と、アクチュエータとを備える。回転部材は、回転軸を中心にして回転する部材であり、赤外線センサ210が固定される部材である。支持部材は、回転軸を備え、回転軸を中心にして回転部材を回転可能に支持する部材である。本実施の形態では、支持部材が備える回転軸は、水平方向に延びる1つの軸である。アクチュエータは、回転軸を中心にして、回転部材を回転させる。 The angle adjusting unit 18 adjusts the installation angle of the infrared sensor 210 built in the air conditioning control device 100 according to the control by the control unit 11. The angle adjusting unit 18 switches the imaging region of the infrared sensor 210 by adjusting the installation angle of the infrared sensor 210. The angle adjusting unit 18 includes, for example, a rotating member, a support member, and an actuator. The rotating member is a member that rotates about a rotation axis and is a member to which the infrared sensor 210 is fixed. The support member is a member that includes a rotation shaft and rotatably supports the rotation member around the rotation shaft. In the present embodiment, the rotation axis included in the support member is one axis extending in the horizontal direction. The actuator rotates a rotating member around a rotation axis.
 赤外線センサ210は、赤外線を検出するセンサである。つまり、赤外線センサ210は、受光した赤外線の量に応じた電気信号を出力する。本実施の形態では、赤外線センサ210は、赤外線を検出する撮像素子が2次元に配置された赤外線イメージセンサである。赤外線センサ210は、撮像領域内の部分毎に、受光した赤外線の量を示す赤外線画像を生成する。なお、受光する赤外線の量は、基本的に、物体の表面の温度に対応する。赤外線センサ210は、主に、室内機300が設置された位置を特定するために用いられる。 The infrared sensor 210 is a sensor that detects infrared rays. That is, the infrared sensor 210 outputs an electric signal according to the amount of received infrared rays. In the present embodiment, the infrared sensor 210 is an infrared image sensor in which an image pickup element for detecting infrared rays is two-dimensionally arranged. The infrared sensor 210 generates an infrared image showing the amount of received infrared rays for each portion in the imaging region. The amount of infrared rays received basically corresponds to the temperature of the surface of the object. The infrared sensor 210 is mainly used to identify the position where the indoor unit 300 is installed.
 赤外線センサ210は、赤外線センサ210の撮像領域の中に室内機300が収まるように、室内に設置される。室内機300は、室内の天井610に設置されるため、赤外線センサ210は、天井610の画像が撮像可能な位置に、天井610の画像が撮像可能な角度で設置される。赤外線センサ210は、壁630に設置された空調制御装置100に内蔵される。空調制御装置100の筐体のうち、赤外線センサ210と対向する部分は、透明な樹脂により構成されることが好適である。又は、空調制御装置100の筐体は、この部分に開口を有し、赤外線センサ210が露出していてもよい。赤外線センサ210は、水平方向よりも上方向の領域が撮像される角度で設置されることが好適である。 The infrared sensor 210 is installed indoors so that the indoor unit 300 fits in the image pickup area of the infrared sensor 210. Since the indoor unit 300 is installed on the ceiling 610 in the room, the infrared sensor 210 is installed at a position where the image of the ceiling 610 can be captured and at an angle at which the image of the ceiling 610 can be captured. The infrared sensor 210 is built in the air conditioning control device 100 installed on the wall 630. It is preferable that the portion of the housing of the air conditioning control device 100 facing the infrared sensor 210 is made of a transparent resin. Alternatively, the housing of the air conditioning control device 100 may have an opening in this portion, and the infrared sensor 210 may be exposed. It is preferable that the infrared sensor 210 is installed at an angle at which a region above the horizontal direction is imaged.
 赤外線センサ220は、基本的に、赤外線センサ210と同様の構成である。赤外線センサ220は、室内の熱分布を検出するために用いられる。赤外線センサ220は、例えば、室内の天井610の中心の付近に設置される。赤外線センサ210と赤外線センサ220とのそれぞれは、有線で空調制御装置100と通信する。赤外線センサ210と赤外線センサ220とのそれぞれは、空調制御装置100による制御に従って赤外線画像を撮像し、撮像した赤外線画像を空調制御装置100に送信してもよい。又は、赤外線センサ210と赤外線センサ220とのそれぞれは、起動中に、継続的に赤外線画像を撮像し、継続的に赤外線画像を空調制御装置100に送信してもよい。 The infrared sensor 220 basically has the same configuration as the infrared sensor 210. The infrared sensor 220 is used to detect the heat distribution in the room. The infrared sensor 220 is installed near the center of the ceiling 610 in the room, for example. Each of the infrared sensor 210 and the infrared sensor 220 communicates with the air conditioning control device 100 by wire. Each of the infrared sensor 210 and the infrared sensor 220 may capture an infrared image according to the control by the air conditioning control device 100 and transmit the captured infrared image to the air conditioning control device 100. Alternatively, each of the infrared sensor 210 and the infrared sensor 220 may continuously capture an infrared image and continuously transmit the infrared image to the air conditioning control device 100 during activation.
 室内機300は、空調制御装置100による制御に従って室内の空気を調和する設備機器のうち室内に設置される設備機器である。室内の空気を調和することは、室内の空気の温度、湿度、空気清浄度等を調整することである。室内機300は、空調制御装置100による制御に従って、調和空気を室内に吹き出す。調和空気は、室内の空気を調和するための空気であり、基本的に、暖房空気又は冷房空気である。暖房空気は、室内を暖房するための空気であり、室内の空気の温度よりも高い温度を有する空気である。冷房空気は、室内を冷房するための空気であり、室内の空気の温度よりも低い温度を有する空気である。 The indoor unit 300 is an equipment installed in the room among the equipment that harmonizes the air in the room according to the control by the air conditioning control device 100. Harmonizing the indoor air means adjusting the temperature, humidity, air cleanliness, etc. of the indoor air. The indoor unit 300 blows harmonized air into the room according to the control by the air conditioning control device 100. The conditioned air is the air for harmonizing the indoor air, and is basically heating air or cooling air. The heating air is air for heating the room, and is air having a temperature higher than the temperature of the air in the room. The cooling air is air for cooling the room, and is air having a temperature lower than the temperature of the air in the room.
 図4を参照して、室内機300の構成について簡単に説明する。図4は、室内機300の底面図である。図4に示すように、室内機300は、4つの吹出口310と、4つのルーバ320と、吸込口330とを備える。吹出口310は、吹出口310Aと吹出口310Bと吹出口310Cと吹出口310Dとの総称である。ルーバ320は、ルーバ320Aとルーバ320Bとルーバ320Cとルーバ320Dとの総称である。 The configuration of the indoor unit 300 will be briefly described with reference to FIG. FIG. 4 is a bottom view of the indoor unit 300. As shown in FIG. 4, the indoor unit 300 includes four outlets 310, four louvers 320, and a suction port 330. The outlet 310 is a general term for the outlet 310A, the outlet 310B, the outlet 310C, and the outlet 310D. The louver 320 is a general term for the louver 320A, the louver 320B, the louver 320C, and the louver 320D.
 吹出口310は、空調制御装置100の内部から室内に調和空気を吹き出すための開口である。本実施の形態では、4つの吹出口310のそれぞれは細長い形状であり、4つの吹出口310がそれぞれ正方形の4つの辺に対応する位置に配置される。ルーバ320は、吹出口310から吹き出す調和空気の風向を調整するための部材である。本実施の形態では、1つの吹出口310に対して1つのルーバ320が設けられる。具体的には、吹出口310Aに対してルーバ320Aが設けられ、吹出口310Bに対してルーバ320Bが設けられ、吹出口310Cに対してルーバ320Cが設けられ、吹出口310Dに対してルーバ320Dが設けられる。 The outlet 310 is an opening for blowing out harmonious air from the inside of the air conditioning control device 100 into the room. In the present embodiment, each of the four outlets 310 has an elongated shape, and the four outlets 310 are arranged at positions corresponding to the four sides of the square. The louver 320 is a member for adjusting the wind direction of the conditioned air blown out from the outlet 310. In this embodiment, one louver 320 is provided for one outlet 310. Specifically, a louver 320A is provided for the outlet 310A, a louver 320B is provided for the outlet 310B, a louver 320C is provided for the outlet 310C, and a louver 320D is provided for the outlet 310D. It will be provided.
 ルーバ320は、調和空気の風向を、真下方向から真横方向の間で調整する。真横方向は、水平方向のうち、空調制御装置100の外側に向かう方向である。本実施の形態では、4つのルーバ320の角度が独立制御可能であり、4つの吹出口310から吹き出す調和空気の風向が独立制御可能である。吸込口330は、室内から空調制御装置100の内部に空気を取り込むための開口である。吸込口330は、4つの吹出口310に囲まれる位置に配置され、平面視で正方形である。 The louver 320 adjusts the wind direction of the conditioned air between the direction directly below and the direction directly beside it. The horizontal direction is a horizontal direction toward the outside of the air conditioning control device 100. In the present embodiment, the angles of the four louvers 320 can be independently controlled, and the wind direction of the conditioned air blown out from the four outlets 310 can be independently controlled. The suction port 330 is an opening for taking in air from the room into the air conditioning control device 100. The suction port 330 is arranged at a position surrounded by the four outlets 310 and is square in a plan view.
 本実施の形態では、室内の天井610には4つの室内機300が設置され、4つの室内機300のそれぞれの底面が天井面から露出する。室内機300Aは、赤外線センサ210から見て手前の右側に配置される。室内機300Bは、赤外線センサ210から見て手前の左側に配置される。室内機300Cは、赤外線センサ210から見て奥側の右側に配置される。室内機300Dは、赤外線センサ210から見て奥側の左側に配置される。 In the present embodiment, four indoor units 300 are installed on the ceiling 610 of the room, and the bottom surface of each of the four indoor units 300 is exposed from the ceiling surface. The indoor unit 300A is arranged on the right side in front of the infrared sensor 210. The indoor unit 300B is arranged on the left side in front of the infrared sensor 210. The indoor unit 300C is arranged on the right side on the far side when viewed from the infrared sensor 210. The indoor unit 300D is arranged on the left side on the far side when viewed from the infrared sensor 210.
 本実施の形態で、室内は、直方体の空間を有し、天井610と、床620と、壁630と、壁640と、壁650とを備える。壁630と壁640とは対向し、壁630と壁650とは隣接し、壁640と壁650とは隣接する。4つの室内機300のそれぞれは、空調制御装置100と有線で通信し、空調制御装置100から供給された制御信号に従って動作する。 In the present embodiment, the room has a rectangular parallelepiped space, and includes a ceiling 610, a floor 620, a wall 630, a wall 640, and a wall 650. The wall 630 and the wall 640 face each other, the wall 630 and the wall 650 are adjacent to each other, and the wall 640 and the wall 650 are adjacent to each other. Each of the four indoor units 300 communicates with the air conditioning control device 100 by wire and operates according to the control signal supplied from the air conditioning control device 100.
 室外機400は、空調制御装置100による制御に従って室内の空気を調和する設備機器のうち室外に設置される設備機器である。室外機400は、室内機300が部屋から取り込んだ空気を取り込み、取り込んだ空気を加熱又は冷却することにより得られる調和空気を室内機300に供給する。室外機400は、室内機300を介して、空調制御装置100と有線で通信し、空調制御装置100から供給された制御信号に従って動作する。 The outdoor unit 400 is an equipment installed outdoors among the equipment that harmonizes the indoor air according to the control by the air conditioning control device 100. The outdoor unit 400 takes in the air taken in from the room by the indoor unit 300, and supplies the conditioned air obtained by heating or cooling the taken-in air to the indoor unit 300. The outdoor unit 400 communicates with the air conditioning control device 100 by wire via the indoor unit 300, and operates according to the control signal supplied from the air conditioning control device 100.
 端末装置500は、空調制御装置100のユーザインターフェースとして機能する装置である。ユーザは、端末装置500を介して、空調制御装置100による空調を制御及び監視することができる。例えば、ユーザは、端末装置500を操作して、動作モード、運転モード、設定温度、風向等を変更することができる。動作モードは、運転中、停止中等を示すモードである。運転モードは、暖房運転、冷房運転、除湿運転等を示すモードである。設定温度は、暖房運転又は冷房運転において、目標とする部屋の温度である。 The terminal device 500 is a device that functions as a user interface of the air conditioning control device 100. The user can control and monitor the air conditioning by the air conditioning control device 100 via the terminal device 500. For example, the user can operate the terminal device 500 to change the operation mode, the operation mode, the set temperature, the wind direction, and the like. The operation mode is a mode indicating operating, stopped, or the like. The operation mode is a mode indicating a heating operation, a cooling operation, a dehumidifying operation, and the like. The set temperature is the temperature of the target room in the heating operation or the cooling operation.
 また、ユーザは、端末装置500を操作して、空調に関する種々の情報を確認することができる。例えば、ユーザは、端末装置500が表示する画面を確認することにより、動作モード、運転モード、設定温度等を確認することができる。また、ユーザは、端末装置500が表示する画面を確認することにより、部屋の熱分布を示す熱分布画像を確認することができる。なお、熱分布画像は、赤外線センサ210又は赤外線センサ220が撮像した赤外線画像から生成される。 Further, the user can operate the terminal device 500 to check various information regarding air conditioning. For example, the user can confirm the operation mode, the operation mode, the set temperature, and the like by checking the screen displayed by the terminal device 500. Further, the user can confirm the heat distribution image showing the heat distribution of the room by confirming the screen displayed by the terminal device 500. The heat distribution image is generated from the infrared image captured by the infrared sensor 210 or the infrared sensor 220.
 端末装置500は、端末装置500全体の動作を制御する制御部、ユーザから操作を受け付ける操作部、各種の情報を表示する表示部、各種の情報を記憶する記憶部、空調制御装置100と通信する通信部等を備える。制御部は、例えば、CPU、ROM、RAM、RTC等を備える。操作部と表示部とは、例えば、タッチスクリーンを備える。記憶部は、SSD、ハードディスクドライブ等を備える。通信部は、例えば、Wi-Fi、Bluetooth等の周知の通信規格に則って通信する通信インターフェースを備える。端末装置500は、スマートフォン、タブレット端末、パーソナルコンピュータ等である。 The terminal device 500 communicates with a control unit that controls the operation of the entire terminal device 500, an operation unit that accepts operations from the user, a display unit that displays various information, a storage unit that stores various information, and an air conditioning control device 100. It is equipped with a communication unit and the like. The control unit includes, for example, a CPU, ROM, RAM, RTC, and the like. The operation unit and the display unit include, for example, a touch screen. The storage unit includes an SSD, a hard disk drive, and the like. The communication unit includes, for example, a communication interface for communicating according to a well-known communication standard such as Wi-Fi or Bluetooth. The terminal device 500 is a smartphone, a tablet terminal, a personal computer, or the like.
 次に、図5を参照して、空調制御装置100の機能的な構成について説明する。空調制御装置100は、機能的には、画像取得部101と、空調制御部102と、位置推定部103と、出力部104と、角度制御部105とを備える。これらの各機能は、ソフトウェア、ファームウェア、又は、ソフトウェアとファームウェアとの組み合わせによって実現される。ソフトウェア及びファームウェアは、プログラムとして記述され、ROM又は記憶部12に格納される。そして、CPUが、ROM又は記憶部12に記憶されたプログラムを実行することによって、これらの各機能を実現する。 Next, the functional configuration of the air conditioning control device 100 will be described with reference to FIG. The air conditioning control device 100 functionally includes an image acquisition unit 101, an air conditioning control unit 102, a position estimation unit 103, an output unit 104, and an angle control unit 105. Each of these functions is realized by software, firmware, or a combination of software and firmware. The software and firmware are described as a program and stored in the ROM or the storage unit 12. Then, the CPU realizes each of these functions by executing the program stored in the ROM or the storage unit 12.
 画像取得部101は、赤外線センサ210から赤外線画像を取得する。例えば、画像取得部101は、撮像を指示する撮像指示情報を、第1通信部15を介して赤外線センサ210に送信する。そして、画像取得部101は、赤外線センサ210が撮像により取得した赤外線画像を、第1通信部15を介して赤外線センサ210から取得する。同様に、画像取得部101は、第1通信部15を介して赤外線センサ220から赤外線画像を取得する。画像取得部101は、画像取得手段の一例である。 The image acquisition unit 101 acquires an infrared image from the infrared sensor 210. For example, the image acquisition unit 101 transmits image pickup instruction information instructing image pickup to the infrared sensor 210 via the first communication unit 15. Then, the image acquisition unit 101 acquires an infrared image acquired by the infrared sensor 210 by imaging from the infrared sensor 210 via the first communication unit 15. Similarly, the image acquisition unit 101 acquires an infrared image from the infrared sensor 220 via the first communication unit 15. The image acquisition unit 101 is an example of an image acquisition means.
 空調制御部102は、室内に設置された室内機300の動作を制御する。例えば、空調制御部102は、操作受付部14がユーザから受け付けた操作に従って、室内機300に対する制御内容を決定する。そして、空調制御部102は、室内機300に対する制御内容を示す制御情報を、第2通信部16を介して室内機300に送信する。なお、空調制御部102は、赤外線センサ210から取得された赤外線画像と、赤外線センサ220から取得された赤外線画像と、後述する出力部104が出力する後述する室内機位置情報とに基づいて、室内機300の動作を制御する。空調制御部102は、空調制御手段の一例である。 The air conditioning control unit 102 controls the operation of the indoor unit 300 installed in the room. For example, the air conditioning control unit 102 determines the control content for the indoor unit 300 according to the operation received from the user by the operation reception unit 14. Then, the air conditioning control unit 102 transmits control information indicating the control content for the indoor unit 300 to the indoor unit 300 via the second communication unit 16. The air conditioner control unit 102 is indoors based on an infrared image acquired from the infrared sensor 210, an infrared image acquired from the infrared sensor 220, and indoor unit position information output by the output unit 104, which will be described later. Controls the operation of the machine 300. The air conditioning control unit 102 is an example of the air conditioning control means.
 位置推定部103は、画像取得部101が取得した赤外線画像に基づいて、室内機300の位置を推定する。この赤外線画像は、室内機300が調和空気を吹き出しているときに赤外線センサ210が室内を撮像することにより取得される。室内機300の位置は、室内機300の設置位置と、赤外線センサ210に対する室内機300の相対的な位置(以下、適宜「室内機300の相対位置」という。)とを含む概念である。室内機300の設置位置は、部屋において室内機300が設置された位置である。室内機300の相対位置は、赤外線センサ210の設置位置を基準として室内機300の設置位置を相対的に表した位置である。赤外線センサ210の設置位置は、部屋において赤外線センサ210が設置された位置である。 The position estimation unit 103 estimates the position of the indoor unit 300 based on the infrared image acquired by the image acquisition unit 101. This infrared image is acquired by the infrared sensor 210 taking an image of the room while the indoor unit 300 is blowing out conditioned air. The position of the indoor unit 300 is a concept including the installation position of the indoor unit 300 and the relative position of the indoor unit 300 with respect to the infrared sensor 210 (hereinafter, appropriately referred to as “relative position of the indoor unit 300”). The installation position of the indoor unit 300 is the position where the indoor unit 300 is installed in the room. The relative position of the indoor unit 300 is a position relatively representing the installation position of the indoor unit 300 with reference to the installation position of the infrared sensor 210. The installation position of the infrared sensor 210 is the position where the infrared sensor 210 is installed in the room.
 室内機300の相対位置は、例えば、赤外線センサ210から室内機300までの距離、赤外線センサ210から見たときの室内機300の高さ、赤外線センサ210と室内機300とを結ぶ直線と水平面とのなす角度等により表現される。また、室内機300が複数存在する場合、室内機300の相対位置は、赤外線センサ210から室内機300までの距離の大小関係、赤外線センサ210から見たときの室内機300の並び方等により表現されてもよい。例えば、室内機300Aの相対位置と室内機300Bの相対位置とが手前側、室内機300Cの相対位置と室内機300Dの相対位置とが奥側と表現されてもよい。又は、例えば、室内機300Aの相対位置は右手前、室内機300Bの相対位置は左手前、室内機300Cの相対位置は右奥、室内機300Dの相対位置は左奥と表現されてもよい。 The relative position of the indoor unit 300 is, for example, the distance from the infrared sensor 210 to the indoor unit 300, the height of the indoor unit 300 when viewed from the infrared sensor 210, the straight line connecting the infrared sensor 210 and the indoor unit 300, and the horizontal plane. It is expressed by the angle formed by infrared rays. When there are a plurality of indoor units 300, the relative position of the indoor unit 300 is expressed by the magnitude relationship of the distance from the infrared sensor 210 to the indoor unit 300, the arrangement of the indoor units 300 when viewed from the infrared sensor 210, and the like. You may. For example, the relative position of the indoor unit 300A and the relative position of the indoor unit 300B may be expressed as the front side, and the relative position of the indoor unit 300C and the relative position of the indoor unit 300D may be expressed as the back side. Alternatively, for example, the relative position of the indoor unit 300A may be expressed as the right front, the relative position of the indoor unit 300B may be expressed as the left front, the relative position of the indoor unit 300C may be expressed as the right back, and the relative position of the indoor unit 300D may be expressed as the left back.
 位置推定部103は、画像取得部101が取得した赤外線画像に基づいて、室内機300の相対位置を推定する。例えば、調和空気が暖房空気である場合、室内機300の吹出口310の周囲の部分の温度は、他の部分の温度よりも高い。従って、赤外線画像において、室内機300の吹出口310の周囲の部分は、他の部分に比べて、高い温度で表現される。そこで、位置推定部103は、赤外線画像において高い温度で表現された部分を、室内機300の吹出口310の周囲の部分として、室内機300の相対位置を推定する。なお、位置推定部103は、記憶部12に記憶された機器情報に基づいて、室内機300の相対位置を精度よく推定することができる。機器情報は、室内機300の機種、吹出口310の個数、吹出口310の配置等を示す情報である。 The position estimation unit 103 estimates the relative position of the indoor unit 300 based on the infrared image acquired by the image acquisition unit 101. For example, when the conditioned air is heating air, the temperature of the portion around the outlet 310 of the indoor unit 300 is higher than the temperature of the other portions. Therefore, in the infrared image, the portion around the outlet 310 of the indoor unit 300 is represented at a higher temperature than the other portions. Therefore, the position estimation unit 103 estimates the relative position of the indoor unit 300 by using the portion represented by the high temperature in the infrared image as the peripheral portion of the outlet 310 of the indoor unit 300. The position estimation unit 103 can accurately estimate the relative position of the indoor unit 300 based on the device information stored in the storage unit 12. The device information is information indicating the model of the indoor unit 300, the number of outlets 310, the arrangement of outlets 310, and the like.
 また、位置推定部103は、推定した室内機300の相対位置と赤外線センサ210の設置位置とから、室内機300の設置位置を更に推定する。なお、赤外線センサ210の設置位置は、操作受付部14がユーザから受け付ける。赤外線センサ210の設置位置は、例えば、壁630と壁640と壁650とのうちどの壁に赤外線センサ210が設置されたか、壁630のどの位置に赤外線センサ210が設置されたか、天井610から赤外線センサ210までの距離、床620から赤外線センサ210までの距離等により表現される。 Further, the position estimation unit 103 further estimates the installation position of the indoor unit 300 from the estimated relative position of the indoor unit 300 and the installation position of the infrared sensor 210. The operation receiving unit 14 receives the installation position of the infrared sensor 210 from the user. The installation position of the infrared sensor 210 is, for example, which wall of the wall 630, the wall 640, and the wall 650 the infrared sensor 210 is installed, the position of the wall 630 where the infrared sensor 210 is installed, and the infrared rays from the ceiling 610. It is expressed by the distance to the sensor 210, the distance from the floor 620 to the infrared sensor 210, and the like.
 なお、記憶部12には、赤外線センサ210の設置位置、室内機300の設置位置等を適切に表現するために必要な情報が記憶されているものとする。例えば、記憶部12は、室内の形状と室内の大きさとを示す室内情報が記憶されているものとする。また、記憶部12には、赤外線センサ220の設置位置を示す情報が記憶されているものとする。 It is assumed that the storage unit 12 stores information necessary for appropriately expressing the installation position of the infrared sensor 210, the installation position of the indoor unit 300, and the like. For example, it is assumed that the storage unit 12 stores indoor information indicating the shape of the room and the size of the room. Further, it is assumed that the storage unit 12 stores information indicating the installation position of the infrared sensor 220.
 位置推定部103は、室内における赤外線センサ210の設置位置と、赤外線センサ210から見たときの室内機300の相対的な位置とに基づいて、室内における室内機300の設置位置を推定する。位置推定部103は、4つの室内機300のそれぞれについて、室内における設置位置を推定する。位置推定部103は、位置推定手段の一例である。操作受付部14は、設置位置受付手段の一例である。 The position estimation unit 103 estimates the installation position of the indoor unit 300 in the room based on the installation position of the infrared sensor 210 in the room and the relative position of the indoor unit 300 when viewed from the infrared sensor 210. The position estimation unit 103 estimates the installation position in the room for each of the four indoor units 300. The position estimation unit 103 is an example of the position estimation means. The operation reception unit 14 is an example of the installation position reception means.
 出力部104は、室内機300が調和空気を吹き出しているときに赤外線センサ210が室内を撮像することにより取得される赤外線画像に基づく室内機300の位置を示す室内機位置情報を出力する。つまり、出力部104は、位置推定部103が推定した室内機300の相対位置、又は、室内機300の相対位置から求められる室内機300の設置位置を示す室内機位置情報を出力する。 The output unit 104 outputs indoor unit position information indicating the position of the indoor unit 300 based on an infrared image acquired by the infrared sensor 210 taking an image of the room while the indoor unit 300 is blowing out conditioned air. That is, the output unit 104 outputs the indoor unit position information indicating the relative position of the indoor unit 300 estimated by the position estimation unit 103 or the installation position of the indoor unit 300 obtained from the relative position of the indoor unit 300.
 例えば、出力部104は、空調制御部102に室内機位置情報を出力する。一方、空調制御部102は、出力部104が出力した室内機位置情報に基づいて、室内機300の動作を制御する。また、出力部104は、表示部13に室内機位置情報を出力する。一方、表示部13は、出力部104が出力した室内機位置情報に基づいて、室内の熱分布と室内機300の位置とを示す熱分布画像を表示する。また、出力部104は、第3通信部17を介して、端末装置500に室内機位置情報を送信する。一方、端末装置500は、出力部104が出力した室内機位置情報に基づいて、室内の熱分布と室内機300の位置とを示す熱分布画像を表示する。出力部104は、出力手段の一例である。表示部13は、表示手段の一例である。 For example, the output unit 104 outputs the indoor unit position information to the air conditioning control unit 102. On the other hand, the air conditioning control unit 102 controls the operation of the indoor unit 300 based on the indoor unit position information output by the output unit 104. Further, the output unit 104 outputs the indoor unit position information to the display unit 13. On the other hand, the display unit 13 displays a heat distribution image showing the heat distribution in the room and the position of the indoor unit 300 based on the indoor unit position information output by the output unit 104. Further, the output unit 104 transmits the indoor unit position information to the terminal device 500 via the third communication unit 17. On the other hand, the terminal device 500 displays a heat distribution image showing the heat distribution in the room and the position of the indoor unit 300 based on the indoor unit position information output by the output unit 104. The output unit 104 is an example of output means. The display unit 13 is an example of display means.
 角度制御部105は、赤外線センサ210の設置角度を調整する角度調整部18の動作を制御する。つまり、角度制御部105は、撮像領域に室内機300が含まれるように、角度調整部18の動作を制御する。例えば、角度制御部105は、撮像領域に室内機300が含まれない場合、撮像領域に室内機300が含まれるまで、赤外線センサ210の設置角度を調整する。角度制御部105は、角度制御手段の一例である。角度調整部18は、角度調整手段の一例である。 The angle control unit 105 controls the operation of the angle adjustment unit 18 that adjusts the installation angle of the infrared sensor 210. That is, the angle control unit 105 controls the operation of the angle adjustment unit 18 so that the indoor unit 300 is included in the image pickup region. For example, when the indoor unit 300 is not included in the imaging region, the angle control unit 105 adjusts the installation angle of the infrared sensor 210 until the indoor unit 300 is included in the imaging region. The angle control unit 105 is an example of the angle control means. The angle adjusting unit 18 is an example of the angle adjusting means.
 室内機300は、複数の吹出口310を備え、複数の吹出口310毎に風向を調整可能である。この場合、空調制御部102は、室内機300が、複数の吹出口310から調和空気が吹き出され、複数の吹出口310のうち第1吹出口の風向が他の吹出口の風向と異なる第1状態になるように室内機300の動作を制御する。一方、位置推定部103は、室内機300が第1状態であるときに赤外線センサ210が室内を撮像することにより取得される赤外線画像に基づいて、赤外線センサ210に対する第1吹出口の相対的な位置を推定する。そして、出力部104は、位置推定部103が推定した赤外線センサ210に対する第1吹出口の相対的な位置、又は、赤外線センサ210に対する第1吹出口の相対的な位置から求められる第1吹出口の設置位置を示す室内機位置情報を出力する。 The indoor unit 300 is provided with a plurality of outlets 310, and the wind direction can be adjusted for each of the plurality of outlets 310. In this case, in the air conditioning control unit 102, the indoor unit 300 blows out the harmonized air from the plurality of outlets 310, and the wind direction of the first outlet of the plurality of outlets 310 is different from the wind direction of the other outlets. The operation of the indoor unit 300 is controlled so as to be in a state. On the other hand, the position estimation unit 103 is relative to the infrared sensor 210 of the first outlet based on the infrared image acquired by the infrared sensor 210 taking an image of the room when the indoor unit 300 is in the first state. Estimate the position. Then, the output unit 104 is a first outlet obtained from the relative position of the first outlet with respect to the infrared sensor 210 estimated by the position estimation unit 103, or the relative position of the first outlet with respect to the infrared sensor 210. Outputs indoor unit position information indicating the installation position of.
 次に、図6のフローチャートを参照して、空調制御装置100が実行する空調制御処理について説明する。空調制御装置100は、例えば、電源が投入されたことに応答して、空調制御処理の実行を開始する。なお、空調制御装置100が空調制御処理を実行することにより、本開示における位置情報出力方法が実現される。 Next, the air conditioning control process executed by the air conditioning control device 100 will be described with reference to the flowchart of FIG. The air conditioning control device 100 starts executing the air conditioning control process, for example, in response to the power being turned on. The position information output method in the present disclosure is realized by the air conditioning control device 100 executing the air conditioning control process.
 まず、空調制御装置100が備える制御部11は、位置検出指示があるか否かを判別する(ステップS101)。例えば、制御部11は、操作受付部14が位置検出を指示する位置検出指示操作をユーザから受け付けたか否かを判別する。又は、制御部11は、端末装置500から位置検出を指示する位置検出指示情報を受信したか否かを判別する。又は、起動時に位置検出を実行するようにプログラムされている場合、制御部11は、空調制御装置100が起動直後であるか否かを判別する。 First, the control unit 11 included in the air conditioning control device 100 determines whether or not there is a position detection instruction (step S101). For example, the control unit 11 determines whether or not the operation reception unit 14 has received the position detection instruction operation instructing the position detection from the user. Alternatively, the control unit 11 determines whether or not the position detection instruction information instructing the position detection has been received from the terminal device 500. Alternatively, if the program is programmed to execute position detection at startup, the control unit 11 determines whether or not the air conditioning control device 100 is immediately after startup.
 制御部11は、位置検出指示があると判別すると(ステップS101:YES)、赤外線センサ210の設置位置の入力を受け付ける(ステップS102)。例えば、制御部11は、表示部13を制御して、赤外線センサ210の設置位置を問い合わせる画像を表示する。赤外線センサ210の設置位置は、例えば、赤外線センサ210から天井610までの距離により指定される。なお、空調制御装置100の設置位置を示す情報が記憶部12に記憶されている場合、空調制御装置100の設置位置が赤外線センサ210の設置位置として扱われてもよい。制御部11は、赤外線センサ210の設置位置の入力を、操作受付部14を介してユーザから受け付ける。 When the control unit 11 determines that there is a position detection instruction (step S101: YES), the control unit 11 accepts an input of the installation position of the infrared sensor 210 (step S102). For example, the control unit 11 controls the display unit 13 to display an image inquiring about the installation position of the infrared sensor 210. The installation position of the infrared sensor 210 is specified by, for example, the distance from the infrared sensor 210 to the ceiling 610. When the information indicating the installation position of the air conditioning control device 100 is stored in the storage unit 12, the installation position of the air conditioning control device 100 may be treated as the installation position of the infrared sensor 210. The control unit 11 receives an input of the installation position of the infrared sensor 210 from the user via the operation reception unit 14.
 制御部11は、ステップS102の処理を完了すると、空調機位置推定処理を実行する(ステップS103)。以下、図7を参照して、空調機位置推定処理について詳細に説明する。 When the control unit 11 completes the process of step S102, the control unit 11 executes the air conditioner position estimation process (step S103). Hereinafter, the air conditioner position estimation process will be described in detail with reference to FIG. 7.
 まず、制御部11は、天井面の赤外線画像を取得する(ステップS201)。例えば、制御部11は、赤外線センサ210による撮像範囲に天井面が含まれるように、角度調整部18を制御する。そして、制御部11は、赤外線センサ210に撮像を指示し、赤外線センサ210から天井面を含む赤外線画像を取得する。制御部11は、ステップS201の処理を完了すると室内機300を選択する(ステップS202)。具体的には、制御部11は、4つの室内機300のうち未選択の1つの室内機300を選択する。 First, the control unit 11 acquires an infrared image of the ceiling surface (step S201). For example, the control unit 11 controls the angle adjustment unit 18 so that the ceiling surface is included in the image pickup range of the infrared sensor 210. Then, the control unit 11 instructs the infrared sensor 210 to take an image, and acquires an infrared image including the ceiling surface from the infrared sensor 210. The control unit 11 selects the indoor unit 300 when the process of step S201 is completed (step S202). Specifically, the control unit 11 selects one unselected indoor unit 300 out of the four indoor units 300.
 制御部11は、ステップS202の処理を完了すると、選択した室内機300の風向を真横に設定する(ステップS203)。具体的には、制御部11は、選択した室内機300については、全ての吹出口310から真横に調和空気が吹き出されるように、全てのルーバ320の角度を調整する。制御部11は、ステップS203の処理を完了すると、選択していない室内機300の風向を真下に設定する(ステップS204)。具体的には、制御部11は、選択していない全ての室内機300については、全ての吹出口310から真下に調和空気が吹き出されるように、全てのルーバ320の角度を調整する。 When the control unit 11 completes the process of step S202, the control unit 11 sets the wind direction of the selected indoor unit 300 to the side (step S203). Specifically, the control unit 11 adjusts the angles of all the louvers 320 for the selected indoor unit 300 so that the conditioned air is blown out from all the outlets 310 to the side. When the process of step S203 is completed, the control unit 11 sets the wind direction of the unselected indoor unit 300 directly below (step S204). Specifically, the control unit 11 adjusts the angles of all the louvers 320 so that the conditioned air is blown directly below from all the outlets 310 for all the indoor units 300 that have not been selected.
 制御部11は、ステップS204の処理を完了すると、調和空気を吹き出す(ステップS205)。例えば、制御部11は、全ての室内機300のそれぞれが備える全ての吹出口310から調和空気が吹き出されるように、全ての室内機300を制御する。本実施の形態では、調和空気は、暖房空気である。 When the control unit 11 completes the process of step S204, the control unit 11 blows out conditioned air (step S205). For example, the control unit 11 controls all the indoor units 300 so that the conditioned air is blown out from all the outlets 310 provided in each of the indoor units 300. In this embodiment, the conditioned air is heating air.
 制御部11は、ステップS205の処理を完了すると、天井面の赤外線画像を取得する(ステップS206)。制御部11は、ステップS201と同様の処理により、赤外線センサ210から天井面の赤外線画像を取得する。制御部11は、ステップS206の処理を完了すると、温度変化領域を特定する(ステップS207)。この温度変化領域は、ステップS201で取得された赤外線画像とステップS206で取得された赤外線画像とで、温度の変化により画像が変化した領域である。 When the control unit 11 completes the process of step S205, the control unit 11 acquires an infrared image of the ceiling surface (step S206). The control unit 11 acquires an infrared image of the ceiling surface from the infrared sensor 210 by the same processing as in step S201. When the control unit 11 completes the process of step S206, the control unit 11 identifies the temperature change region (step S207). This temperature change region is a region in which the infrared image acquired in step S201 and the infrared image acquired in step S206 change the image due to the change in temperature.
 ステップS201で取得された赤外線画像、つまり、全ての室内機300が調和空気を吹き出す前に取得された赤外線画像では、周囲に比べて高い温度を有する領域が観測されない。一方、ステップS206で取得された赤外線画像では、選択した室内機300に対応する領域が、周囲に比べて高い温度を有する領域として観測される。図8に、室内機300Aが選択されたときにステップS206で取得された赤外線画像である画像710を示す。なお、壁660は、壁650と対向する壁である。 In the infrared image acquired in step S201, that is, the infrared image acquired before all the indoor units 300 blow out the conditioned air, a region having a higher temperature than the surroundings is not observed. On the other hand, in the infrared image acquired in step S206, the region corresponding to the selected indoor unit 300 is observed as a region having a higher temperature than the surroundings. FIG. 8 shows an image 710, which is an infrared image acquired in step S206 when the indoor unit 300A is selected. The wall 660 is a wall facing the wall 650.
 画像710では、選択された室内機300Aに対応する領域が、周囲に比べて高い温度を有する領域として観測される。より詳細には、画像710では、室内機300Aが備える吹出口310Aの外側の領域である領域330Aと、室内機300Aが備える吹出口310Bの外側の領域である領域330Bと、室内機300Aが備える吹出口310Cの外側の領域である領域330Cと、室内機300Aが備える吹出口310Dの外側の領域である領域330Dとが、周囲に比べて高い温度を有する領域として観測される。この理由は、室内機300Aが備える吹出口310からは真横に暖房空気が吹き出され、室内機300Aが備える吹出口310の外側の部材の温度が上昇するためである。 In image 710, the region corresponding to the selected indoor unit 300A is observed as a region having a higher temperature than the surroundings. More specifically, in the image 710, the indoor unit 300A includes a region 330A which is an outer region of the outlet 310A included in the indoor unit 300A, a region 330B which is an outer region of the outlet 310B included in the indoor unit 300A, and the indoor unit 300A. The region 330C, which is the region outside the outlet 310C, and the region 330D, which is the region outside the outlet 310D included in the indoor unit 300A, are observed as regions having a higher temperature than the surroundings. The reason for this is that the heating air is blown out right beside the outlet 310 included in the indoor unit 300A, and the temperature of the member outside the outlet 310 included in the indoor unit 300A rises.
 これに対して、画像710では、室内機300B、室内機300C及び室内機300Dに対応する領域は、周囲に比べて高い温度を有する領域として観測されない。この理由は、室内機300B、室内機300C及び室内機300Dが備える吹出口310からは真下に暖房空気が吹き出され、室内機300B、室内機300C及び室内機300Dが備える吹出口310の周囲の部材の温度はあまり上昇しないためである。 On the other hand, in the image 710, the region corresponding to the indoor unit 300B, the indoor unit 300C, and the indoor unit 300D is not observed as a region having a higher temperature than the surroundings. The reason for this is that the heating air is blown directly below from the outlet 310 provided in the indoor unit 300B, the indoor unit 300C and the indoor unit 300D, and the members around the outlet 310 provided in the indoor unit 300B, the indoor unit 300C and the indoor unit 300D. This is because the temperature does not rise so much.
 制御部11は、ステップS207の処理を完了すると、選択した室内機300の相対位置を推定する(ステップS208)。例えば、選択された室内機300が室内機300Aである場合、画像710では、領域330Aと領域330Bと領域330Cと領域330Dとが、温度変化領域として観測される。制御部11は、画像710上において、領域330Aと領域330Bと領域330Cと領域330Dとにより囲まれた領域を、室内機300Aが設置された領域として特定する。 When the control unit 11 completes the process of step S207, the control unit 11 estimates the relative position of the selected indoor unit 300 (step S208). For example, when the selected indoor unit 300 is the indoor unit 300A, in the image 710, the region 330A, the region 330B, the region 330C, and the region 330D are observed as the temperature change region. The control unit 11 identifies a region surrounded by the region 330A, the region 330B, the region 330C, and the region 330D on the image 710 as the region in which the indoor unit 300A is installed.
 なお、領域330Aと領域330Cとは、水平方向に延びる線状の領域として観測される。また、赤外線センサ210が設置された壁630から壁640までの距離に対して、床620から天井610までの距離がそれほど長くない場合、赤外線センサ210と室内機300とを結ぶ直線と水平面とのなす角度がそれほど大きくならないと考えられる。この場合、領域330Aの長さと領域330Cの長さとは、領域330Bの長さと領域330Dの長さとに比べて、長いと考えられる。このため、領域330Aと領域330Cとは、領域330Bと領域330Dとに比べて、画像710から検出しやすい。そこで、制御部11は、水平方向に延びて互いに対向する領域330Aと領域330Cとを画像710から検出し、領域330Aと領域330Cとに挟まれた領域を、室内機300Aの領域として推定することが好適である。 The region 330A and the region 330C are observed as linear regions extending in the horizontal direction. If the distance from the floor 620 to the ceiling 610 is not so long with respect to the distance from the wall 630 to the wall 640 in which the infrared sensor 210 is installed, the straight line connecting the infrared sensor 210 and the indoor unit 300 and the horizontal plane. It is thought that the angle of formation will not be so large. In this case, the length of the region 330A and the length of the region 330C are considered to be longer than the length of the region 330B and the length of the region 330D. Therefore, the area 330A and the area 330C are easier to detect from the image 710 than the area 330B and the area 330D. Therefore, the control unit 11 detects the region 330A and the region 330C extending in the horizontal direction and facing each other from the image 710, and estimates the region sandwiched between the region 330A and the region 330C as the region of the indoor unit 300A. Is preferable.
 制御部11は、画像710上における室内機300Aの位置及び大きさに基づいて、室内機300Aの相対位置を推定する。なお、室内機300Aの相対位置は、例えば、赤外線センサ210から室内機300Aまでの距離と、赤外線センサ210と室内機300Aとを結ぶ直線と水平面とのなす角度とにより表現される。 The control unit 11 estimates the relative position of the indoor unit 300A based on the position and size of the indoor unit 300A on the image 710. The relative position of the indoor unit 300A is expressed by, for example, the distance from the infrared sensor 210 to the indoor unit 300A and the angle formed by the straight line connecting the infrared sensor 210 and the indoor unit 300A and the horizontal plane.
 制御部11は、ステップS208の処理を完了すると、選択した室内機300の設置位置を推定する(ステップS209)。具体的には、制御部11は、ステップS102で受け付けた赤外線センサ210の設置位置と、ステップS208で推定した選択した室内機300の相対位置とに基づいて、室内における選択した室内機300の設置位置を推定する。 When the control unit 11 completes the process of step S208, the control unit 11 estimates the installation position of the selected indoor unit 300 (step S209). Specifically, the control unit 11 installs the selected indoor unit 300 in the room based on the installation position of the infrared sensor 210 received in step S102 and the relative position of the selected indoor unit 300 estimated in step S208. Estimate the position.
 制御部11は、ステップS209の処理を完了すると、未選択の室内機300があるか否かを判別する(ステップS210)。制御部11は、未選択の室内機300があると判別すると(ステップS210:YES)、ステップS202に処理を戻す。制御部11は、未選択の室内機300がないと判別すると(ステップS210:NO)、空調機位置推定処理を完了する。 When the process of step S209 is completed, the control unit 11 determines whether or not there is an unselected indoor unit 300 (step S210). When the control unit 11 determines that there is an unselected indoor unit 300 (step S210: YES), the control unit 11 returns the process to step S202. When the control unit 11 determines that there is no unselected indoor unit 300 (step S210: NO), the control unit 11 completes the air conditioner position estimation process.
 制御部11は、ステップS103の空調機位置推定処理を完了すると、吹出口位置推定処理を実行する(ステップS104)。以下、図9を参照して、吹出口位置推定処理について詳細に説明する。 When the control unit 11 completes the air conditioner position estimation process in step S103, the control unit 11 executes the air outlet position estimation process (step S104). Hereinafter, the outlet position estimation process will be described in detail with reference to FIG.
 まず、制御部11は、天井面の赤外線画像を取得する(ステップS301)。制御部11は、ステップS301の処理を完了すると、室内機300を選択する(ステップS302)。制御部11は、ステップS302の処理を完了すると、吹出口310を選択する(ステップS303)。具体的には、制御部11は、4つの吹出口310のうち未選択の1つの吹出口310を選択する。 First, the control unit 11 acquires an infrared image of the ceiling surface (step S301). When the control unit 11 completes the process of step S301, the control unit 11 selects the indoor unit 300 (step S302). When the control unit 11 completes the process of step S302, the control unit 11 selects the outlet 310 (step S303). Specifically, the control unit 11 selects one unselected outlet 310 from the four outlets 310.
 制御部11は、ステップS303の処理を完了すると、選択した吹出口310の風向を真横に設定する(ステップS304)。具体的には、制御部11は、選択した室内機300が備える選択した吹出口310から真横に調和空気が吹き出されるように、選択した吹出口310に対応するルーバ320の角度を調整する。制御部11は、ステップS304の処理を完了すると、選択していない吹出口310の風向を真下に設定する(ステップS305)。具体的には、制御部11は、選択した室内機300が備える選択していない全ての吹出口310から真下に調和空気が吹き出されるように、選択していない全ての吹出口310のそれぞれに対応するルーバ320の角度を調整する。 When the control unit 11 completes the process of step S303, the control unit 11 sets the wind direction of the selected outlet 310 to the side (step S304). Specifically, the control unit 11 adjusts the angle of the louver 320 corresponding to the selected outlet 310 so that the conditioned air is blown right beside the selected outlet 310 included in the selected indoor unit 300. When the process of step S304 is completed, the control unit 11 sets the wind direction of the unselected outlet 310 directly below (step S305). Specifically, the control unit 11 is provided at each of the unselected outlets 310 so that the conditioned air is blown directly below from all the unselected outlets 310 of the selected indoor unit 300. Adjust the angle of the corresponding louver 320.
 制御部11は、ステップS305の処理を完了すると、調和空気を吹き出す(ステップS306)。例えば、制御部11は、選択した室内機300が備える全ての吹出口310から調和空気が吹き出されるように、選択した室内機300を制御する。本実施の形態では、調和空気は、暖房空気である。 When the control unit 11 completes the process of step S305, the control unit 11 blows out conditioned air (step S306). For example, the control unit 11 controls the selected indoor unit 300 so that conditioned air is blown out from all the outlets 310 included in the selected indoor unit 300. In this embodiment, the conditioned air is heating air.
 制御部11は、ステップS306の処理を完了すると、天井面の赤外線画像を取得する(ステップS307)。制御部11は、ステップS201と同様の処理により、赤外線センサ210から天井面の赤外線画像を取得する。制御部11は、ステップS307の処理を完了すると、温度変化領域を特定する(ステップS308)。この温度変化領域は、ステップS301で取得された赤外線画像とステップS307で取得された赤外線画像とで、温度の変化により画像が変化した領域である。 When the control unit 11 completes the process of step S306, the control unit 11 acquires an infrared image of the ceiling surface (step S307). The control unit 11 acquires an infrared image of the ceiling surface from the infrared sensor 210 by the same processing as in step S201. When the control unit 11 completes the process of step S307, the control unit 11 identifies the temperature change region (step S308). This temperature change region is a region in which the infrared image acquired in step S301 and the infrared image acquired in step S307 change the image due to the change in temperature.
 図10に、室内機300Aが選択され、吹出口310Aが選択されたときにステップS307で取得された赤外線画像である画像720を示す。画像720では、選択された室内機300Aが備える選択された吹出口310Aに対応する領域が、周囲に比べて高い温度を有する領域として観測される。より詳細には、画像720では、室内機300Aが備える吹出口310Aの外側の領域である領域330Aが、周囲に比べて高い温度を有する領域として観測される。この理由は、室内機300Aが備える吹出口310Aからは真横に暖房空気が吹き出され、室内機300Aが備える吹出口310Aの外側の部材の温度が上昇するためである。 FIG. 10 shows an image 720 which is an infrared image acquired in step S307 when the indoor unit 300A is selected and the outlet 310A is selected. In image 720, the region corresponding to the selected outlet 310A included in the selected indoor unit 300A is observed as a region having a higher temperature than the surroundings. More specifically, in the image 720, the region 330A, which is the region outside the outlet 310A included in the indoor unit 300A, is observed as a region having a higher temperature than the surroundings. The reason for this is that the heating air is blown out from the outlet 310A of the indoor unit 300A right beside, and the temperature of the member outside the outlet 310A of the indoor unit 300A rises.
 これに対して、画像720では、室内機300Aが備える吹出口310B、吹出口310C及び吹出口310Dのそれぞれに対応する領域は、周囲に比べて高い温度を有する領域として観測されない。この理由は、室内機300Aが備える吹出口310B、吹出口310C及び吹出口310Dのそれぞれからは真下に暖房空気が吹き出され、室内機300Aが備える吹出口310B、吹出口310C及び吹出口310Dのそれぞれの周囲の部材の温度はあまり上昇しないためである。 On the other hand, in the image 720, the region corresponding to each of the outlet 310B, the outlet 310C and the outlet 310D included in the indoor unit 300A is not observed as a region having a higher temperature than the surroundings. The reason for this is that the heating air is blown directly below from each of the outlet 310B, the outlet 310C and the outlet 310D provided in the indoor unit 300A, and the outlet 310B, the outlet 310C and the outlet 310D provided in the indoor unit 300A, respectively. This is because the temperature of the surrounding members does not rise so much.
 制御部11は、ステップS308の処理を完了すると、選択した吹出口310の相対位置を推定する(ステップS309)。例えば、選択された室内機300が室内機300Aであり、選択した吹出口310が吹出口310Aである場合、画像720では、領域330Aが温度変化領域として観測される。制御部11は、画像720上において領域330Aが観測された領域を、室内機300Aが備える吹出口310Aが設置された領域として特定する。 When the control unit 11 completes the process of step S308, the control unit 11 estimates the relative position of the selected outlet 310 (step S309). For example, when the selected indoor unit 300 is the indoor unit 300A and the selected outlet 310 is the outlet 310A, the region 330A is observed as a temperature change region in the image 720. The control unit 11 identifies the region where the region 330A is observed on the image 720 as the region where the outlet 310A included in the indoor unit 300A is installed.
 制御部11は、ステップS309の処理を完了すると、選択した吹出口310の設置位置を推定する(ステップS310)。具体的には、制御部11は、ステップS102で受け付けた赤外線センサ210の設置位置と、ステップS309で推定した選択した吹出口310の相対位置とに基づいて、室内における選択した吹出口310の設置位置を推定する。 When the control unit 11 completes the process of step S309, the control unit 11 estimates the installation position of the selected outlet 310 (step S310). Specifically, the control unit 11 installs the selected outlet 310 in the room based on the installation position of the infrared sensor 210 received in step S102 and the relative position of the selected outlet 310 estimated in step S309. Estimate the position.
 制御部11は、ステップS310の処理を完了すると、未選択の吹出口310があるか否かを判別する(ステップS311)。制御部11は、未選択の吹出口310があると判別すると(ステップS311:YES)、ステップS303に処理を戻す。制御部11は、未選択の吹出口310がないと判別すると(ステップS311:NO)、未選択の室内機300があるか否かを判別する(ステップS312)。制御部11は、未選択の室内機300があると判別すると(ステップS312:YES)、ステップS302に処理を戻す。制御部11は、未選択の室内機300がないと判別すると(ステップS312:NO)、吹出口位置推定処理を完了する。 When the processing of step S310 is completed, the control unit 11 determines whether or not there is an unselected outlet 310 (step S311). When the control unit 11 determines that there is an unselected outlet 310 (step S311: YES), the control unit 11 returns the process to step S303. When the control unit 11 determines that there is no unselected outlet 310 (step S311: NO), the control unit 11 determines whether or not there is an unselected indoor unit 300 (step S312). When the control unit 11 determines that there is an unselected indoor unit 300 (step S312: YES), the control unit 11 returns the process to step S302. When the control unit 11 determines that there is no unselected indoor unit 300 (step S312: NO), the control unit 11 completes the outlet position estimation process.
 制御部11は、位置検出の開始指示がないと判別した場合(ステップS101:NO)、又は、ステップS104の吹出口位置推定処理を完了した場合、熱分布画像の表示指示があるか否かを判別する(ステップS105)。例えば、制御部11は、操作受付部14が、ユーザから熱分布画像の表示を指示する表示指示操作を受け付けたか否かを判別する。又は、制御部11は、熱分布画像の表示を指示する表示指示情報を端末装置500から受信したか否かを判別する。 When the control unit 11 determines that there is no position detection start instruction (step S101: NO), or when the outlet position estimation process in step S104 is completed, whether or not there is a heat distribution image display instruction. Determination (step S105). For example, the control unit 11 determines whether or not the operation reception unit 14 has received a display instruction operation instructing the display of the heat distribution image from the user. Alternatively, the control unit 11 determines whether or not the display instruction information instructing the display of the heat distribution image has been received from the terminal device 500.
 制御部11は、熱分布画像の表示指示があると判別すると(ステップS105:YES)、熱分布画像を表示する(ステップS106)。例えば、制御部11は、表示部13を制御して、熱分布画像を表示する。又は、制御部11は、熱分布画像を示す画像情報を端末装置500に送信し、端末装置500に熱分布画像を表示させる。この熱分布画像は、室内の熱分布と室内機300の位置とを示す画像である。例えば、熱分布画像は、赤外線センサ210が取得した赤外線画像、又は、赤外線センサ220が取得した赤外線画像に、室内機300の位置を示す画像を合成した画像である。 When the control unit 11 determines that there is an instruction to display the heat distribution image (step S105: YES), the control unit 11 displays the heat distribution image (step S106). For example, the control unit 11 controls the display unit 13 to display a heat distribution image. Alternatively, the control unit 11 transmits image information indicating the heat distribution image to the terminal device 500, and causes the terminal device 500 to display the heat distribution image. This heat distribution image is an image showing the heat distribution in the room and the position of the indoor unit 300. For example, the heat distribution image is an image obtained by synthesizing an infrared image acquired by the infrared sensor 210 or an infrared image acquired by the infrared sensor 220 with an image showing the position of the indoor unit 300.
 図11に、熱分布画像である画像730を示す。画像730は、赤外線センサ220が取得した赤外線画像に、室内機300を示すアイコン画像と、吹出口310の名称を示す文字列画像とを合成した画像である。空調機位置推定処理により推定された室内機300の設置位置に基づいて、画像730上におけるアイコン画像の位置が決定される。また、吹出口位置推定処理により推定された吹出口310の設置位置に基づいて、画像730上における文字列画像の位置が決定される。なお、室内機A、室内機B、室内機C及び室内機Dは、それぞれ、室内機300A、室内機300B、室内機300C及び室内機300Dの名称である。また、吹出口A、吹出口B、吹出口C及び吹出口Dは、それぞれ、吹出口310A、吹出口310B、吹出口310C及び吹出口310Dの名称である。 FIG. 11 shows an image 730 which is a heat distribution image. The image 730 is an image obtained by synthesizing an icon image showing the indoor unit 300 and a character string image showing the name of the outlet 310 with the infrared image acquired by the infrared sensor 220. The position of the icon image on the image 730 is determined based on the installation position of the indoor unit 300 estimated by the air conditioner position estimation process. Further, the position of the character string image on the image 730 is determined based on the installation position of the outlet 310 estimated by the outlet position estimation process. The indoor unit A, the indoor unit B, the indoor unit C, and the indoor unit D are the names of the indoor unit 300A, the indoor unit 300B, the indoor unit 300C, and the indoor unit 300D, respectively. Further, the outlet A, the outlet B, the outlet C, and the outlet D are the names of the outlet 310A, the outlet 310B, the outlet 310C, and the outlet 310D, respectively.
 画像730には、領域731と領域732と領域733とが色分けにより示されている。領域731は、領域732と領域733とに比べて、温度が低い領域である。領域732は、領域731よりも温度が高く、領域733よりも温度が低い領域である。領域733は、領域731と領域732とに比べて、温度が高い領域である。画像730では、室内機300Aが領域731と領域732とに重なり、室内機300Bと室内機300Cと室内機300Dとが領域733に重なる。 In the image 730, the area 731, the area 732, and the area 733 are shown by color coding. The region 731 is a region where the temperature is lower than that of the region 732 and the region 733. The region 732 is a region having a higher temperature than the region 731 and a lower temperature than the region 733. The region 733 is a region having a higher temperature than the region 731 and the region 732. In image 730, the indoor unit 300A overlaps the area 731 and the area 732, and the indoor unit 300B, the indoor unit 300C, and the indoor unit 300D overlap the area 733.
 つまり、画像730は、室内機300Aの下方の領域の空気の温度が低く、室内機300B、室内機300C及び室内機300Dの下方の領域の空気の温度が高いことを示す。例えば、暖房時には、画像730を参照したユーザは、室内機300Aの設定温度を上げる、室内機300Aの風量を上げる、室内機300Bの風向と室内機300Cの風向とを室内機300Aに向かう風向に切り替える等の措置を講じることができる。 That is, the image 730 shows that the temperature of the air in the region below the indoor unit 300A is low, and the temperature of the air in the region below the indoor unit 300B, the indoor unit 300C, and the indoor unit 300D is high. For example, at the time of heating, the user who refers to the image 730 raises the set temperature of the indoor unit 300A, raises the air volume of the indoor unit 300A, and changes the wind direction of the indoor unit 300B and the wind direction of the indoor unit 300C to the wind direction toward the indoor unit 300A. Measures such as switching can be taken.
 制御部11は、熱分布画像の表示指示がないと判別した場合(ステップS105:NO)、又は、ステップS106の処理が完了した場合、空調制御を実行する(ステップS107)。制御部11は、空調機位置推定処理により推定された室内機300の設置位置と、吹出口位置推定処理により推定された吹出口310の設置位置とに基づいて、室内機300の動作を制御する。例えば、制御部11は、室内空間の温度のばらつきがなくなるように、4つの室内機300のそれぞれについて、設定温度、風量、ルーバ320の角度等を調整する。制御部11は、ステップS107の処理を完了すると、ステップS101に処理を戻す。 The control unit 11 executes air conditioning control when it is determined that there is no display instruction of the heat distribution image (step S105: NO) or when the process of step S106 is completed (step S107). The control unit 11 controls the operation of the indoor unit 300 based on the installation position of the indoor unit 300 estimated by the air conditioner position estimation process and the installation position of the outlet 310 estimated by the outlet position estimation process. .. For example, the control unit 11 adjusts the set temperature, the air volume, the angle of the louver 320, and the like for each of the four indoor units 300 so that the temperature in the indoor space does not vary. When the control unit 11 completes the process of step S107, the control unit 11 returns the process to step S101.
 本実施の形態では、室内機300が調和空気を吹き出しているときに赤外線センサ210が室内を撮像することにより取得される赤外線画像に基づいて、室内機300の位置が推定され、推定された室内機300の位置を示す室内機位置情報が出力される。この室内機位置情報は、空調制御、熱分布画像の生成等に用いることができる。また、上記赤外線画像は、室内機300の位置の推定に用いるだけでなく、室内の温度分布の把握にも用いることができる。従って、本実施の形態によれば、簡単な構成で適切な空調を実現することができる。 In the present embodiment, the position of the indoor unit 300 is estimated and estimated based on the infrared image acquired by the infrared sensor 210 taking an image of the room while the indoor unit 300 is blowing out conditioned air. Indoor unit position information indicating the position of the machine 300 is output. This indoor unit position information can be used for air conditioning control, heat distribution image generation, and the like. Further, the infrared image can be used not only for estimating the position of the indoor unit 300 but also for grasping the temperature distribution in the room. Therefore, according to the present embodiment, appropriate air conditioning can be realized with a simple configuration.
 また、本実施の形態では、赤外線画像に基づいて室内機300の相対位置が推定され、室内機300の相対位置、又は、室内機300の相対位置から求められる室内機300の設置位置を示す室内機位置情報が出力される。従って、本実施の形態によれば、室内機300の相対位置、又は、室内機300の設置位置を、空調制御、熱分布画像の生成等に用いることができる。 Further, in the present embodiment, the relative position of the indoor unit 300 is estimated based on the infrared image, and the indoor unit indicates the relative position of the indoor unit 300 or the installation position of the indoor unit 300 obtained from the relative position of the indoor unit 300. Machine position information is output. Therefore, according to the present embodiment, the relative position of the indoor unit 300 or the installation position of the indoor unit 300 can be used for air conditioning control, heat distribution image generation, and the like.
 また、本実施の形態では、室内機300の相対位置と赤外線センサ210の設置位置とに基づいて、室内機300の設置位置が推定される。本実施の形態によれば、室内機300の設置位置を自動で検出することができる。 Further, in the present embodiment, the installation position of the indoor unit 300 is estimated based on the relative position of the indoor unit 300 and the installation position of the infrared sensor 210. According to this embodiment, the installation position of the indoor unit 300 can be automatically detected.
 また、本実施の形態では、室内機300が、複数の吹出口310のうち第1吹出口の風向が他の吹出口の風向と異なる第1状態であるときに赤外線センサ210が室内を撮像することにより取得される赤外線画像に基づいて、赤外線センサ210に対する第1吹出口の相対的な位置が推定される。本実施の形態によれば、赤外線センサ210に対する第1吹出口の相対的な位置を精度よく検出することができる。 Further, in the present embodiment, when the indoor unit 300 is in the first state in which the wind direction of the first outlet among the plurality of outlets 310 is different from the wind direction of the other outlets, the infrared sensor 210 takes an image of the room. Based on the infrared image thus acquired, the relative position of the first outlet with respect to the infrared sensor 210 is estimated. According to this embodiment, the relative position of the first outlet with respect to the infrared sensor 210 can be detected with high accuracy.
 また、本実施の形態では、赤外線センサ210の角度が調整可能である。本実施の形態によれば、赤外線センサ210の視野角が狭い場合においても、広範囲の赤外線画像が取得可能である。 Further, in the present embodiment, the angle of the infrared sensor 210 can be adjusted. According to this embodiment, a wide range of infrared images can be acquired even when the viewing angle of the infrared sensor 210 is narrow.
 また、本実施の形態では、室内機位置情報に基づいて、室内機300の動作が制御される。本実施の形態によれば、より適切な空調制御が期待できる。 Further, in the present embodiment, the operation of the indoor unit 300 is controlled based on the indoor unit position information. According to this embodiment, more appropriate air conditioning control can be expected.
 また、本実施の形態では、室内機位置情報に基づいて、室内の熱分布と室内機300の位置とを示す熱分布画像が表示される。本実施の形態によれば、ユーザに室内の熱分布と適切な空調制御を実現するために必要な操作とを分かりやすく伝えることができる。
(実施の形態2)
 実施の形態1では、空調制御装置100に赤外線センサ210が内蔵される例について説明した。赤外線センサ210が空調制御装置100の外部に設けられてもよい。以下、図12から図15を参照して、本実施の形態に係る空調システム1100について説明する。本実施の形態では、赤外線センサ210を内蔵しない空調制御装置110が、赤外線センサ210を内蔵する撮像装置200と無線で通信することにより、赤外線センサ210から赤外線画像を取得する。実施の形態1と同様の構成及び機能については、適宜、説明を省略又は簡略化する。
Further, in the present embodiment, a heat distribution image showing the heat distribution in the room and the position of the indoor unit 300 is displayed based on the indoor unit position information. According to the present embodiment, it is possible to inform the user in an easy-to-understand manner of the heat distribution in the room and the operation necessary for realizing appropriate air conditioning control.
(Embodiment 2)
In the first embodiment, an example in which the infrared sensor 210 is built in the air conditioning control device 100 has been described. The infrared sensor 210 may be provided outside the air conditioning control device 100. Hereinafter, the air conditioning system 1100 according to the present embodiment will be described with reference to FIGS. 12 to 15. In the present embodiment, the air conditioning control device 110 having no built-in infrared sensor 210 acquires an infrared image from the infrared sensor 210 by wirelessly communicating with the image pickup device 200 having the built-in infrared sensor 210. The description of the same configuration and function as that of the first embodiment will be omitted or simplified as appropriate.
 図12に、本実施の形態に係る空調制御装置110の構成を示す。図12に示すように、空調制御装置110は、制御部11と、記憶部12と、表示部13と、操作受付部14と、第1通信部15と、第2通信部16と、第3通信部17と、第4通信部19とを備える。つまり、空調制御装置110は、角度調整部18を備えず、第4通信部19を備える点において、空調制御装置100と異なる。 FIG. 12 shows the configuration of the air conditioning control device 110 according to the present embodiment. As shown in FIG. 12, the air conditioning control device 110 includes a control unit 11, a storage unit 12, a display unit 13, an operation reception unit 14, a first communication unit 15, a second communication unit 16, and a third. A communication unit 17 and a fourth communication unit 19 are provided. That is, the air conditioning control device 110 is different from the air conditioning control device 100 in that the angle adjusting unit 18 is not provided and the fourth communication unit 19 is provided.
 第4通信部19は、制御部11による制御に従って、赤外線センサ210と無線で通信する。第4通信部19は、撮像装置200と無線で通信し、撮像装置200が移動したことを通知する移動通知情報と赤外線画像とを撮像装置200から受信する。例えば、第4通信部19は、Wi-Fi、Bluetooth等の周知の通信規格に則って、赤外線センサ210と通信する。第4通信部19は、Wi-Fi、Bluetooth等の無線通信規格に準拠した通信インターフェースを備える。第4通信部19は、通信手段の一例である。なお、本実施の形態では、第1通信部15は、制御部11による制御に従って、赤外線センサ220と有線で通信する。 The fourth communication unit 19 wirelessly communicates with the infrared sensor 210 according to the control by the control unit 11. The fourth communication unit 19 wirelessly communicates with the image pickup device 200, and receives the movement notification information and the infrared image notifying that the image pickup device 200 has moved from the image pickup device 200. For example, the fourth communication unit 19 communicates with the infrared sensor 210 in accordance with well-known communication standards such as Wi-Fi and Bluetooth. The fourth communication unit 19 includes a communication interface compliant with wireless communication standards such as Wi-Fi and Bluetooth. The fourth communication unit 19 is an example of communication means. In the present embodiment, the first communication unit 15 communicates with the infrared sensor 220 by wire according to the control by the control unit 11.
 次に、図13を参照して、撮像装置200の構成について説明する。撮像装置200は、無線通信機能と移動検知機能とを有する赤外線カメラである。図13に示すように、撮像装置200は、制御部21と、記憶部22と、通信部23と、角度調整部24と、移動検知部25と、赤外線センサ210とを備える。これら各部は、通信バスを介して接続される。 Next, the configuration of the image pickup apparatus 200 will be described with reference to FIG. The image pickup device 200 is an infrared camera having a wireless communication function and a movement detection function. As shown in FIG. 13, the image pickup apparatus 200 includes a control unit 21, a storage unit 22, a communication unit 23, an angle adjustment unit 24, a movement detection unit 25, and an infrared sensor 210. Each of these parts is connected via a communication bus.
 制御部21は、CPU、ROM、RAM、RTC等を備える。CPUは、中央処理装置、中央演算装置、プロセッサ、マイクロプロセッサ、マイクロコンピュータ、DSP等とも呼び、撮像装置200の制御に係る処理及び演算を実行する中央演算処理部として機能する。制御部21において、CPUは、ROMに格納されているプログラム及びデータを読み出し、RAMをワークエリアとして用いて、撮像装置200を統括制御する。RTCは、例えば、計時機能を有する集積回路である。なお、CPUは、RTCから読み出される時刻情報から現在日時を特定可能である。 The control unit 21 includes a CPU, ROM, RAM, RTC, and the like. The CPU is also called a central processing unit, a central processing unit, a processor, a microprocessor, a microcomputer, a DSP, or the like, and functions as a central processing unit that executes processing and operations related to the control of the image pickup device 200. In the control unit 21, the CPU reads out the programs and data stored in the ROM, and uses the RAM as a work area to collectively control the image pickup apparatus 200. The RTC is, for example, an integrated circuit having a timekeeping function. The CPU can specify the current date and time from the time information read from the RTC.
 記憶部22は、フラッシュメモリ、EPROM、EEPROM等の不揮発性の半導体メモリを備えており、いわゆる二次記憶装置又は補助記憶装置としての役割を担う。記憶部22は、制御部21が各種処理を実行するために使用するプログラム及びデータを記憶する。また、記憶部22は、制御部21が各種処理を実行することにより生成又は取得するデータを記憶する。 The storage unit 22 includes a non-volatile semiconductor memory such as a flash memory, EPROM, or EEPROM, and plays a role as a so-called secondary storage device or auxiliary storage device. The storage unit 22 stores programs and data used by the control unit 21 to execute various processes. Further, the storage unit 22 stores data generated or acquired by the control unit 21 executing various processes.
 通信部23は、制御部21による制御に従って、空調制御装置110と無線で通信する。例えば、通信部23は、Wi-Fi、Bluetooth等の周知の通信規格に則って、空調制御装置110と通信する。通信部23は、Wi-Fi、Bluetooth等の無線通信規格に準拠した通信インターフェースを備える。 The communication unit 23 wirelessly communicates with the air conditioning control device 110 according to the control by the control unit 21. For example, the communication unit 23 communicates with the air conditioning control device 110 in accordance with well-known communication standards such as Wi-Fi and Bluetooth. The communication unit 23 includes a communication interface compliant with wireless communication standards such as Wi-Fi and Bluetooth.
 角度調整部24は、制御部21による制御に従って、撮像装置200に内蔵された赤外線センサ210の設置角度を調整する。角度調整部24は、赤外線センサ210の設置角度を調整することにより、赤外線センサ210の撮像領域を切り替える。角度調整部24は、角度調整部18と同様の構成を有する。 The angle adjusting unit 24 adjusts the installation angle of the infrared sensor 210 built in the image pickup apparatus 200 according to the control by the control unit 21. The angle adjusting unit 24 switches the imaging region of the infrared sensor 210 by adjusting the installation angle of the infrared sensor 210. The angle adjusting unit 24 has the same configuration as the angle adjusting unit 18.
 移動検知部25は、撮像装置200が移動したことを検知する。また、移動検知部25は、撮像装置200の移動量、撮像装置200の移動方向、撮像装置200の向き等を検知する。移動検知部25は、例えば、3軸加速度センサと3軸角速度センサとを備える。 The movement detection unit 25 detects that the image pickup device 200 has moved. Further, the movement detection unit 25 detects the movement amount of the image pickup device 200, the movement direction of the image pickup device 200, the direction of the image pickup device 200, and the like. The movement detection unit 25 includes, for example, a 3-axis acceleration sensor and a 3-axis angular velocity sensor.
 次に、図14を参照して、空調制御装置110の機能的な構成について説明する。空調制御装置110は、機能的には、画像取得部101と、空調制御部102と、位置推定部103と、出力部104とを備える。空調制御装置110は、機能的には、角度制御部105を備えない点と、画像取得部101が第1通信部15ではなく第4通信部19を介して赤外線画像を取得する点とが、空調制御装置100と異なる。 Next, the functional configuration of the air conditioning control device 110 will be described with reference to FIG. The air conditioning control device 110 functionally includes an image acquisition unit 101, an air conditioning control unit 102, a position estimation unit 103, and an output unit 104. Functionally, the air conditioning control device 110 does not include the angle control unit 105, and the image acquisition unit 101 acquires an infrared image via the fourth communication unit 19 instead of the first communication unit 15. It is different from the air conditioning control device 100.
 本実施の形態では、撮像装置200が移動したことが検知された場合、室内機300の位置を検出する処理が実行される。つまり、第4通信部19が移動通知情報を撮像装置200から受信した場合、画像取得部101が赤外線センサ210から赤外線画像を取得する処理を実行する。また、位置推定部103は、画像取得部101が取得した赤外線画像に基づいて、室内機300の相対位置を推定する。そして、出力部104は、位置推定部103が推定した室内機300の相対位置、又は、室内機300の相対位置に基づく室内機300の設置位置を示す室内機位置情報を出力する。 In the present embodiment, when it is detected that the image pickup apparatus 200 has moved, a process of detecting the position of the indoor unit 300 is executed. That is, when the fourth communication unit 19 receives the movement notification information from the image pickup device 200, the image acquisition unit 101 executes a process of acquiring an infrared image from the infrared sensor 210. Further, the position estimation unit 103 estimates the relative position of the indoor unit 300 based on the infrared image acquired by the image acquisition unit 101. Then, the output unit 104 outputs the indoor unit position information indicating the relative position of the indoor unit 300 estimated by the position estimation unit 103 or the installation position of the indoor unit 300 based on the relative position of the indoor unit 300.
 本実施の形態では、画像取得部101は、赤外線センサ210の設置角度の変更を指示する角度変更指示情報を、第4通信部19を介して撮像装置200に送信する。そして、画像取得部101は、赤外線センサ210に撮像を指示する撮像指示情報を、第4通信部19を介して撮像装置200に送信する。 In the present embodiment, the image acquisition unit 101 transmits the angle change instruction information for instructing the change of the installation angle of the infrared sensor 210 to the image pickup apparatus 200 via the fourth communication unit 19. Then, the image acquisition unit 101 transmits the image pickup instruction information instructing the infrared sensor 210 to take an image to the image pickup device 200 via the fourth communication unit 19.
 次に、図15を参照して、撮像装置200の機能的な構成について説明する。撮像装置200は、機能的には、撮像制御部201と、角度制御部202と、移動通知部203とを備える。これらの各機能は、ソフトウェア、ファームウェア、又は、ソフトウェアとファームウェアとの組み合わせによって実現される。ソフトウェア及びファームウェアは、プログラムとして記述され、ROM又は記憶部22に格納される。そして、CPUが、ROM又は記憶部22に記憶されたプログラムを実行することによって、これらの各機能を実現する。 Next, the functional configuration of the image pickup apparatus 200 will be described with reference to FIG. The image pickup apparatus 200 functionally includes an image pickup control unit 201, an angle control unit 202, and a movement notification unit 203. Each of these functions is realized by software, firmware, or a combination of software and firmware. The software and firmware are described as a program and stored in the ROM or the storage unit 22. Then, the CPU realizes each of these functions by executing the program stored in the ROM or the storage unit 22.
 撮像制御部201は、赤外線センサ210による撮像を制御する。例えば、撮像制御部201は、通信部23が空調制御装置110から撮像指示情報を受信した場合、赤外線センサ210に撮像を指示し、赤外線センサ210から赤外線画像を取得する。撮像制御部201は、通信部23を介して、赤外線画像を空調制御装置110に送信する。 The image pickup control unit 201 controls the image pickup by the infrared sensor 210. For example, when the communication unit 23 receives the image pickup instruction information from the air conditioning control device 110, the image pickup control unit 201 instructs the infrared sensor 210 to take an image and acquires an infrared image from the infrared sensor 210. The image pickup control unit 201 transmits an infrared image to the air conditioning control device 110 via the communication unit 23.
 角度制御部202は、角度調整部24の動作を制御する。例えば、角度制御部202は、通信部23が空調制御装置110から角度変更指示情報を受信した場合、角度調整部24を制御して、赤外線センサ210の設置角度を変更する。 The angle control unit 202 controls the operation of the angle adjustment unit 24. For example, when the communication unit 23 receives the angle change instruction information from the air conditioning control device 110, the angle control unit 202 controls the angle adjustment unit 24 to change the installation angle of the infrared sensor 210.
 移動通知部203は、撮像装置200が移動したことを通知する。例えば、移動通知部203は、移動検知部25により撮像装置200の移動が検知された場合、撮像装置200が移動したことを通知する移動通知情報を、通信部23を介して、空調制御装置110に送信する。移動通知情報は、撮像装置200の移動量、撮像装置200の移動方向、撮像装置200の向き等を示す情報を含んでいてもよい。 The movement notification unit 203 notifies that the image pickup apparatus 200 has moved. For example, when the movement detection unit 25 detects the movement of the image pickup device 200, the movement notification unit 203 sends the movement notification information notifying that the image pickup device 200 has moved via the communication unit 23 to the air conditioning control device 110. Send to. The movement notification information may include information indicating the movement amount of the image pickup device 200, the movement direction of the image pickup device 200, the direction of the image pickup device 200, and the like.
 空調制御装置110が実行する空調制御処理は、空調制御装置110が無線通信で赤外線センサ210から赤外線画像を取得する点と、撮像装置200の移動が検知されたときに位置検出指示があったと判別される点とを除き、空調制御装置100が実行する空調制御処理と同様である。 The air-conditioning control process executed by the air-conditioning control device 110 determines that the air-conditioning control device 110 acquires an infrared image from the infrared sensor 210 by wireless communication and that a position detection instruction is given when the movement of the image pickup device 200 is detected. It is the same as the air conditioning control process executed by the air conditioning control device 100 except that the point is.
 本実施の形態では、空調制御装置110と赤外線センサ210とが無線で通信する。従って、本実施の形態によれば、赤外線センサ210の設置場所の自由度が高い。例えば、空調制御装置110の設置位置が天井610の撮像に適さない設置位置である場合、空調制御装置110に赤外線センサ210を内蔵すると、天井610の赤外線画像を取得することが困難である。本実施の形態に係る空調システム1100では、空調制御装置110と赤外線センサ210とが無線で通信するため、赤外線センサ210の設置場所を自由に変更することができる。 In this embodiment, the air conditioning control device 110 and the infrared sensor 210 communicate wirelessly. Therefore, according to the present embodiment, the degree of freedom in the installation location of the infrared sensor 210 is high. For example, when the installation position of the air conditioning control device 110 is an installation position unsuitable for imaging the ceiling 610, it is difficult to acquire an infrared image of the ceiling 610 if the infrared sensor 210 is built in the air conditioning control device 110. In the air conditioning system 1100 according to the present embodiment, since the air conditioning control device 110 and the infrared sensor 210 communicate wirelessly, the installation location of the infrared sensor 210 can be freely changed.
 また、本実施の形態では、撮像装置200の移動が検知されたときに、室内機300の位置検出が自動で開始される。従って、本実施の形態によれば、撮像装置200が移動する毎に、空調制御装置110に室内機300の位置検出を実行させたい場合において、撮像装置200が移動する毎に、ユーザが空調制御装置110に位置検出指示をする必要がなく、ユーザ負担の軽減が期待できる。 Further, in the present embodiment, when the movement of the image pickup apparatus 200 is detected, the position detection of the indoor unit 300 is automatically started. Therefore, according to the present embodiment, when the air conditioning control device 110 wants to execute the position detection of the indoor unit 300 every time the image pickup device 200 moves, the user controls the air conditioning every time the image pickup device 200 moves. It is not necessary to give a position detection instruction to the device 110, which can be expected to reduce the burden on the user.
 例えば、施工業者が室内に室内機300を設置した際、天井610に設置された複数の室内機300の位置関係を検出及び記録したいことがある。つまり、施工業者は、室内機300の配置マップを作成したいことがある。ここで、例えば、室内機300が設置される部屋が広い場合、赤外線センサ210が天井610に設置された全ての室内機300を一度に撮像できないことがある。この場合、赤外線センサ210を移動させながら空調制御装置110に室内機300の位置検出を実行させ、取得された複数の赤外線画像に基づいて、全ての室内機300の位置を特定する方法が考えられる。この場合において、赤外線センサ210が移動する毎に、室内機300の位置検出が自動で実行されると、ユーザの手間が少なく便利である。 For example, when a contractor installs an indoor unit 300 indoors, he / she may want to detect and record the positional relationship of a plurality of indoor units 300 installed on the ceiling 610. That is, the contractor may want to create a layout map of the indoor unit 300. Here, for example, when the room in which the indoor unit 300 is installed is large, the infrared sensor 210 may not be able to image all the indoor units 300 installed in the ceiling 610 at once. In this case, a method is conceivable in which the air conditioning control device 110 is made to detect the position of the indoor unit 300 while moving the infrared sensor 210, and the positions of all the indoor units 300 are specified based on the acquired plurality of infrared images. .. In this case, if the position detection of the indoor unit 300 is automatically executed every time the infrared sensor 210 moves, it is convenient because the user has less trouble.
 以上、本開示の実施の形態を説明したが、本開示を実施するにあたっては、種々の形態による変形及び応用が可能である。本開示において、上記実施の形態において説明した構成、機能、動作のどの部分を採用するのかは任意である。また、本開示において、上述した構成、機能、動作のほか、更なる構成、機能、動作が採用されてもよい。また、上記実施の形態において説明した構成、機能、動作は、自由に組み合わせることができる。 Although the embodiments of the present disclosure have been described above, various modifications and applications are possible in carrying out the present disclosure. In the present disclosure, it is arbitrary which part of the configuration, function, and operation described in the above embodiment is adopted. Further, in the present disclosure, in addition to the above-mentioned configurations, functions, and operations, further configurations, functions, and operations may be adopted. Further, the configurations, functions, and operations described in the above embodiments can be freely combined.
(変形例1)
 実施の形態1では、複数の吹出口310の風向に差を設けることにより、吹出口310の位置を特定する例について説明した。複数の吹出口310から吹き出される調和空気の温度に差を設けることにより、吹出口310の位置を特定してもよい。この場合、室内機300は、複数の吹出口310毎に調和空気の温度を調整可能であることが前提である。空調制御部102は、室内機300が、複数の吹出口310から調和空気が吹き出され、複数の吹出口310のうち第1吹出口から吹き出される調和空気の温度が他の吹出口310から吹き出される調和空気の温度と異なる第2状態になるように室内機300の動作を制御する。例えば、複数の吹出口310から暖房空気を吹き出す場合、第1吹出口から吹き出される調和空気の温度が30℃に設定され、他の吹出口310から吹き出される調和空気の温度が20℃に設定される。なお、吹出口310から吹き出される調和空気の温度は、基本的に、吹出口310の設定温度である。
(Modification 1)
In the first embodiment, an example of specifying the position of the outlet 310 by providing a difference in the wind direction of the plurality of outlets 310 has been described. The position of the outlet 310 may be specified by providing a difference in the temperature of the conditioned air blown out from the plurality of outlets 310. In this case, it is premised that the indoor unit 300 can adjust the temperature of the conditioned air for each of the plurality of outlets 310. In the air conditioning control unit 102, the indoor unit 300 blows out the harmonized air from the plurality of outlets 310, and the temperature of the harmonized air blown out from the first outlet of the plurality of outlets 310 is blown out from the other outlets 310. The operation of the indoor unit 300 is controlled so as to be in a second state different from the temperature of the conditioned air. For example, when heating air is blown out from a plurality of outlets 310, the temperature of the conditioned air blown out from the first outlet is set to 30 ° C., and the temperature of the conditioned air blown out from the other outlets 310 is set to 20 ° C. Set. The temperature of the conditioned air blown out from the outlet 310 is basically the set temperature of the outlet 310.
 そして、画像取得部101は、室内機300が第2状態であるときに赤外線センサ210が室内を撮像することにより取得される赤外線画像を取得する。位置推定部103は、この赤外線画像に基づいて、赤外線センサ210に対する第1吹出口の相対的な位置を推定する。出力部104は、位置推定部103が推定した赤外線センサ210に対する第1吹出口の相対的な位置、又は、赤外線センサ210に対する第1吹出口の相対的な位置から求められる第1吹出口の設置位置を示す室内機位置情報を出力する。 Then, the image acquisition unit 101 acquires an infrared image acquired by the infrared sensor 210 taking an image of the room when the indoor unit 300 is in the second state. The position estimation unit 103 estimates the relative position of the first outlet with respect to the infrared sensor 210 based on this infrared image. The output unit 104 installs the first outlet obtained from the relative position of the first outlet with respect to the infrared sensor 210 estimated by the position estimation unit 103 or the relative position of the first outlet with respect to the infrared sensor 210. Outputs indoor unit position information indicating the position.
(他の変形例)
 実施の形態1では、4つの吹出口310のそれぞれを第1吹出口として4つの赤外線画像を取得し、4つの赤外線画像から4つの吹出口310の位置を推定する例について説明した。記憶部12が記憶する機器情報が、室内機300における4つの吹出口310の配置関係を示す情報を含む場合、1つの赤外線画像から4つの吹出口310の位置を推定してもよい。具体的には、1つの吹出口310を第1吹出口として1つの赤外線画像を取得し、1つの赤外線画像から第1吹出口の位置を推定し、推定した第1吹出口の位置から他の3つの吹出口310の位置を推定してもよい。
(Other variants)
In the first embodiment, an example of acquiring four infrared images with each of the four outlets 310 as the first outlet and estimating the positions of the four outlets 310 from the four infrared images has been described. When the device information stored in the storage unit 12 includes information indicating the arrangement relationship of the four outlets 310 in the indoor unit 300, the positions of the four outlets 310 may be estimated from one infrared image. Specifically, one infrared image is acquired with one outlet 310 as the first outlet, the position of the first outlet is estimated from one infrared image, and the other is estimated from the estimated position of the first outlet. The positions of the three outlets 310 may be estimated.
 実施の形態1では、室内機300の個数が4つである例について説明した。室内機300の個数は、3つ以下でもよいし、5つ以上でもよい。また、実施の形態1では、室内機300が備える吹出口310の個数が4つであり、4つの吹出口310が正方形の4つの辺に対応するように配置される例について説明した。4つの吹出口310の配置は、この例に限定されない。また、吹出口310の個数は、3つ以下でもよいし、5つ以上でもよい。 In the first embodiment, an example in which the number of indoor units 300 is four has been described. The number of indoor units 300 may be 3 or less, or 5 or more. Further, in the first embodiment, an example in which the number of outlets 310 included in the indoor unit 300 is four and the four outlets 310 are arranged so as to correspond to the four sides of the square has been described. The arrangement of the four outlets 310 is not limited to this example. Further, the number of outlets 310 may be 3 or less, or 5 or more.
 実施の形態1では、空調制御装置100が、赤外線センサ210と赤外線センサ220と室内機300と室外機400とのそれぞれと有線で通信し、空調制御装置100が、端末装置500と無線で通信する例について説明した。空調制御装置100が、赤外線センサ210と赤外線センサ220と室内機300と室外機400と端末装置500とのそれぞれと通信する手法は、適宜、調整することができる。例えば、空調制御装置100が、赤外線センサ210と赤外線センサ220と室内機300と室外機400と端末装置500とのそれぞれと無線で通信してもよい。 In the first embodiment, the air conditioning control device 100 communicates with the infrared sensor 210, the infrared sensor 220, the indoor unit 300, and the outdoor unit 400 by wire, and the air conditioning control device 100 wirelessly communicates with the terminal device 500. An example was explained. The method by which the air conditioning control device 100 communicates with the infrared sensor 210, the infrared sensor 220, the indoor unit 300, the outdoor unit 400, and the terminal device 500 can be appropriately adjusted. For example, the air conditioning control device 100 may wirelessly communicate with each of the infrared sensor 210, the infrared sensor 220, the indoor unit 300, the outdoor unit 400, and the terminal device 500.
 実施の形態1では、空調制御装置100が、赤外線センサ210の設置位置の入力をユーザから受け付ける例について説明した。赤外線センサ210の設置位置が予め定められている場合、ユーザによる赤外線センサ210の設置位置の入力は不要である。この場合、例えば、記憶部12に、赤外線センサ210の設置位置を示す情報が記憶されていることが好適である。 In the first embodiment, an example in which the air conditioning control device 100 receives an input of the installation position of the infrared sensor 210 from the user has been described. When the installation position of the infrared sensor 210 is predetermined, it is not necessary for the user to input the installation position of the infrared sensor 210. In this case, for example, it is preferable that the storage unit 12 stores information indicating the installation position of the infrared sensor 210.
 実施の形態1では、赤外線センサ220が取得した赤外線画像に室内機300のアイコン画像と吹出口310の文字列画像とを合成することにより、ユーザに提示される熱分布画像を生成する例について説明した。赤外線センサ210が取得した赤外線画像に室内機300のアイコン画像と吹出口310の文字列画像とを合成することにより、ユーザに提示される熱分布画像を生成してもよい。この場合、赤外線センサ220はなくてもよい。 In the first embodiment, an example of generating a heat distribution image presented to the user by synthesizing the icon image of the indoor unit 300 and the character string image of the outlet 310 with the infrared image acquired by the infrared sensor 220 will be described. bottom. The heat distribution image presented to the user may be generated by synthesizing the icon image of the indoor unit 300 and the character string image of the outlet 310 with the infrared image acquired by the infrared sensor 210. In this case, the infrared sensor 220 may not be necessary.
 また、赤外線センサ220が取得した赤外線画像と赤外線センサ210が取得した赤外線画像とから、室内の熱分布を精度良く求めてもよい。この場合、求めた室内の熱分布を示す画像に、室内機300のアイコン画像と吹出口310の文字列画像とを合成することにより、ユーザに提示される熱分布画像を生成する。 Further, the heat distribution in the room may be accurately obtained from the infrared image acquired by the infrared sensor 220 and the infrared image acquired by the infrared sensor 210. In this case, the heat distribution image presented to the user is generated by synthesizing the icon image of the indoor unit 300 and the character string image of the outlet 310 with the obtained image showing the heat distribution in the room.
 実施の形態1では、室内機300の位置を検出するための赤外線センサ210の個数が1つである例について説明した。赤外線センサ210の個数が2つ以上でもよい。また、実施の形態1では、調和空気が暖房空気である例について説明した。調和空気が冷房空気であってもよい。 In the first embodiment, an example in which the number of infrared sensors 210 for detecting the position of the indoor unit 300 is one has been described. The number of infrared sensors 210 may be two or more. Further, in the first embodiment, an example in which the conditioned air is the heating air has been described. The conditioned air may be cooling air.
 上記実施の形態では、制御部11において、CPUがROM又は記憶部12に記憶されたプログラムを実行することによって、図5及び図14に示した各部として機能した。しかしながら、本開示において、制御部11は、専用のハードウェアであってもよい。専用のハードウェアとは、例えば単一回路、複合回路、プログラム化されたプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、又は、これらの組み合わせ等である。制御部11が専用のハードウェアである場合、各部の機能それぞれを個別のハードウェアで実現してもよいし、各部の機能をまとめて単一のハードウェアで実現してもよい。 In the above embodiment, in the control unit 11, the CPU functions as each unit shown in FIGS. 5 and 14 by executing the program stored in the ROM or the storage unit 12. However, in the present disclosure, the control unit 11 may be dedicated hardware. The dedicated hardware is, for example, a single circuit, a composite circuit, a programmed processor, an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable Gate Array), or a combination thereof. When the control unit 11 is dedicated hardware, the functions of each unit may be realized by individual hardware, or the functions of each unit may be collectively realized by a single hardware.
 また、各部の機能のうち、一部を専用のハードウェアによって実現し、他の一部をソフトウェア又はファームウェアによって実現してもよい。このように、制御部11は、ハードウェア、ソフトウェア、ファームウェア、又は、これらの組み合わせによって、上述の各機能を実現することができる。 In addition, some of the functions of each part may be realized by dedicated hardware, and other parts may be realized by software or firmware. As described above, the control unit 11 can realize each of the above-mentioned functions by hardware, software, firmware, or a combination thereof.
 本開示に係る空調制御装置100の動作を規定する動作プログラムを既存のパーソナルコンピュータ又は情報端末装置等のコンピュータに適用することで、当該コンピュータを、本開示に係る空調制御装置100として機能させることも可能である。また、このようなプログラムの配布方法は任意であり、例えば、CD-ROM(Compact Disk ROM)、DVD(Digital Versatile Disk)、MO(Magneto Optical Disk)、又は、メモリカード等のコンピュータ読み取り可能な記録媒体に格納して配布してもよいし、インターネット等の通信ネットワークを介して配布してもよい。 By applying an operation program that regulates the operation of the air-conditioning control device 100 according to the present disclosure to a computer such as an existing personal computer or an information terminal device, the computer can be made to function as the air-conditioning control device 100 according to the present disclosure. It is possible. Further, the distribution method of such a program is arbitrary, and for example, a computer-readable recording such as a CD-ROM (CompactDiskROM), a DVD (DigitalVersatileDisk), an MO (MagnetoOpticalDisk), or a memory card. It may be stored in a medium and distributed, or may be distributed via a communication network such as the Internet.
 本開示は、本開示の広義の精神と範囲を逸脱することなく、様々な実施の形態及び変形が可能とされるものである。また、上述した実施の形態は、この開示を説明するためのものであり、本開示の範囲を限定するものではない。すなわち、本開示の範囲は、実施の形態ではなく、特許請求の範囲によって示される。そして特許請求の範囲内及びそれと同等の開示の意義の範囲内で施される様々な変形が、この開示の範囲内とみなされる。 The present disclosure allows for various embodiments and variations without departing from the broad spirit and scope of the present disclosure. Moreover, the above-described embodiment is for explaining this disclosure, and does not limit the scope of the present disclosure. That is, the scope of the present disclosure is shown not by the embodiment but by the scope of claims. And various modifications made within the scope of the claims and within the scope of the equivalent disclosure are considered to be within the scope of this disclosure.
 本開示は、空調システムに適用可能である。 This disclosure is applicable to air conditioning systems.
11,21 制御部、12,22 記憶部、13 表示部、14 操作受付部、15 第1通信部、16 第2通信部、17 第3通信部、18,24 角度調整部、19 第4通信部、23 通信部、25 移動検知部、100,110 空調制御装置、101 画像取得部、102 空調制御部、103 位置推定部、104 出力部、105 角度制御部、200 撮像装置、201 撮像制御部、202 角度制御部、203 移動通知部、210,220 赤外線センサ、300,300A,300B,300C,300D 室内機、310,310A,310B,310C,310D 吹出口、320,320A,320B,320C,320D ルーバ、330 吸込口、330A,330B,330C,330D 領域、400 室外機、500 端末装置、610 天井、620 床、630,640,650,660 壁、710,720,730 画像、731,732,733 領域、1000,1100 空調システム 11,21 Control unit, 12,22 Storage unit, 13 Display unit, 14 Operation reception unit, 15 1st communication unit, 16 2nd communication unit, 17 3rd communication unit, 18, 24 angle adjustment unit, 19 4th communication Unit, 23 communication unit, 25 movement detection unit, 100, 110 air conditioning control device, 101 image acquisition unit, 102 air conditioning control unit, 103 position estimation unit, 104 output unit, 105 angle control unit, 200 imaging device, 201 imaging control unit , 202 angle control unit, 203 movement notification unit, 210, 220 infrared sensor, 300, 300A, 300B, 300C, 300D indoor unit, 310, 310A, 310B, 310C, 310D outlet, 320, 320A, 320B, 320C, 320D Luba, 330 suction port, 330A, 330B, 330C, 330D area, 400 outdoor unit, 500 terminal device, 610 ceiling, 620 floor, 630, 640, 650, 660 wall, 710, 720, 730 image, 731, 732, 733 Area, 1000, 1100 air conditioning system

Claims (12)

  1.  室内に設置された室内機の動作を制御する空調制御手段と、
     前記室内機が調和空気を吹き出しているときに赤外線センサが前記室内を撮像することにより取得される赤外線画像に基づく前記室内機の位置を示す室内機位置情報を出力する出力手段と、を備える、
     空調制御装置。
    An air conditioning control means that controls the operation of indoor units installed indoors,
    The indoor unit is provided with an output means for outputting indoor unit position information indicating the position of the indoor unit based on an infrared image acquired by an infrared sensor taking an image of the room when the indoor unit is blowing out conditioned air.
    Air conditioning controller.
  2.  前記赤外線センサから前記赤外線画像を取得する画像取得手段と、
     前記画像取得手段が取得した前記赤外線画像に基づいて、前記赤外線センサに対する前記室内機の相対的な位置を推定する位置推定手段と、を更に備え、
     前記出力手段は、前記位置推定手段が推定した前記相対的な位置、又は、前記相対的な位置から求められる前記室内機の設置位置を示す前記室内機位置情報を出力する、
     請求項1に記載の空調制御装置。
    An image acquisition means for acquiring the infrared image from the infrared sensor,
    Further, a position estimation means for estimating the relative position of the indoor unit with respect to the infrared sensor based on the infrared image acquired by the image acquisition means is provided.
    The output means outputs the indoor unit position information indicating the relative position estimated by the position estimation means or the installation position of the indoor unit obtained from the relative position.
    The air conditioning control device according to claim 1.
  3.  ユーザから前記赤外線センサの設置位置を受け付ける設置位置受付手段を更に備え、
     前記位置推定手段は、前記相対的な位置と前記設置位置受付手段が受け付けた前記赤外線センサの設置位置とに基づいて、前記室内機の設置位置を推定し、
     前記出力手段は、前記位置推定手段が推定した前記室内機の設置位置を示す前記室内機位置情報を出力する、
     請求項2に記載の空調制御装置。
    Further equipped with an installation position receiving means for receiving the installation position of the infrared sensor from the user,
    The position estimation means estimates the installation position of the indoor unit based on the relative position and the installation position of the infrared sensor received by the installation position reception means.
    The output means outputs the indoor unit position information indicating the installation position of the indoor unit estimated by the position estimation means.
    The air conditioning control device according to claim 2.
  4.  前記室内機は、複数の吹出口を備え、前記複数の吹出口毎に風向を調整可能であり、
     前記空調制御手段は、前記室内機が、前記複数の吹出口から前記調和空気が吹き出され、前記複数の吹出口のうち第1吹出口の風向が他の吹出口の風向と異なる第1状態になるように前記室内機の動作を制御し、
     前記位置推定手段は、前記室内機が前記第1状態であるときに前記赤外線センサが前記室内を撮像することにより取得される前記赤外線画像に基づいて、前記赤外線センサに対する前記第1吹出口の相対的な位置を推定し、
     前記出力手段は、前記位置推定手段が推定した前記赤外線センサに対する前記第1吹出口の相対的な位置、又は、前記赤外線センサに対する前記第1吹出口の相対的な位置から求められる前記第1吹出口の設置位置を示す前記室内機位置情報を出力する、
     請求項2又は3に記載の空調制御装置。
    The indoor unit is provided with a plurality of outlets, and the wind direction can be adjusted for each of the plurality of outlets.
    In the air conditioning control means, the indoor unit is in a first state in which the harmonized air is blown out from the plurality of outlets and the wind direction of the first outlet among the plurality of outlets is different from the wind direction of the other outlets. The operation of the indoor unit is controlled so as to be
    The position estimation means is relative to the first outlet with respect to the infrared sensor based on the infrared image acquired by the infrared sensor taking an image of the room when the indoor unit is in the first state. Estimate the position
    The output means is the first outlet obtained from the relative position of the first outlet with respect to the infrared sensor estimated by the position estimation means or the relative position of the first outlet with respect to the infrared sensor. Outputs the indoor unit position information indicating the installation position of the exit.
    The air conditioning control device according to claim 2 or 3.
  5.  前記室内機は、複数の吹出口を備え、前記複数の吹出口毎に前記調和空気の温度を調整可能であり、
     前記空調制御手段は、前記室内機が、前記複数の吹出口から前記調和空気が吹き出され、前記複数の吹出口のうち第1吹出口から吹き出される前記調和空気の温度が他の吹出口から吹き出される前記調和空気の温度と異なる第2状態になるように前記室内機の動作を制御し、
     前記位置推定手段は、前記室内機が前記第2状態であるときに前記赤外線センサが前記室内を撮像することにより取得される前記赤外線画像に基づいて、前記赤外線センサに対する前記第1吹出口の相対的な位置を推定し、
     前記出力手段は、前記位置推定手段が推定した前記赤外線センサに対する前記第1吹出口の相対的な位置、又は、前記赤外線センサに対する前記第1吹出口の相対的な位置から求められる前記第1吹出口の設置位置を示す前記室内機位置情報を出力する、
     請求項2又は3に記載の空調制御装置。
    The indoor unit is provided with a plurality of outlets, and the temperature of the conditioned air can be adjusted for each of the plurality of outlets.
    In the air conditioning control means, in the indoor unit, the harmonized air is blown out from the plurality of outlets, and the temperature of the harmonized air blown out from the first outlet among the plurality of outlets is the temperature of the harmonized air from another outlet. The operation of the indoor unit is controlled so as to be in a second state different from the temperature of the conditioned air to be blown out.
    The position estimation means is relative to the first outlet with respect to the infrared sensor based on the infrared image acquired by the infrared sensor taking an image of the room when the indoor unit is in the second state. Estimate the position
    The output means is the first outlet obtained from the relative position of the first outlet with respect to the infrared sensor estimated by the position estimation means or the relative position of the first outlet with respect to the infrared sensor. Outputs the indoor unit position information indicating the installation position of the exit.
    The air conditioning control device according to claim 2 or 3.
  6.  前記赤外線センサは、無線通信機能と移動検知機能とを有する撮像装置に内蔵されており、
     前記撮像装置と無線で通信し、前記撮像装置が移動したことを通知する移動通知情報と前記赤外線画像とを前記撮像装置から受信する通信手段を更に備え、
     前記通信手段が前記移動通知情報を前記撮像装置から受信した場合、前記画像取得手段が前記赤外線センサから前記赤外線画像を取得し、前記位置推定手段が前記相対的な位置を推定し、前記出力手段が前記室内機位置情報を出力する、
     請求項2から5の何れか1項に記載の空調制御装置。
    The infrared sensor is built in an image pickup device having a wireless communication function and a movement detection function.
    Further provided with a communication means for wirelessly communicating with the image pickup device and receiving the movement notification information for notifying that the image pickup device has moved and the infrared image from the image pickup device.
    When the communication means receives the movement notification information from the image pickup device, the image acquisition means acquires the infrared image from the infrared sensor, the position estimation means estimates the relative position, and the output means. Outputs the indoor unit position information,
    The air conditioning control device according to any one of claims 2 to 5.
  7.  前記赤外線センサは、無線通信機能を有する撮像装置に内蔵されており、
     前記撮像装置と無線で通信し、前記撮像装置から前記赤外線画像を受信する通信手段を更に備える、
     請求項1から5の何れか1項に記載の空調制御装置。
    The infrared sensor is built in an image pickup device having a wireless communication function.
    A communication means for wirelessly communicating with the image pickup device and receiving the infrared image from the image pickup device is further provided.
    The air conditioning control device according to any one of claims 1 to 5.
  8.  前記赤外線センサは、前記空調制御装置に内蔵されており、
     前記赤外線センサの設置角度を調整する角度調整手段と、
     前記角度調整手段の動作を制御する角度制御手段と、を更に備える、
     請求項1から5の何れか1項に記載の空調制御装置。
    The infrared sensor is built in the air conditioning control device, and the infrared sensor is built in the air conditioning control device.
    An angle adjusting means for adjusting the installation angle of the infrared sensor, and
    Further provided with an angle control means for controlling the operation of the angle adjusting means.
    The air conditioning control device according to any one of claims 1 to 5.
  9.  前記空調制御手段は、前記出力手段が出力した前記室内機位置情報に基づいて、前記室内機の動作を制御する、
     請求項1から8の何れか1項に記載の空調制御装置。
    The air conditioning control means controls the operation of the indoor unit based on the indoor unit position information output by the output means.
    The air conditioning control device according to any one of claims 1 to 8.
  10.  前記出力手段が出力した前記室内機位置情報に基づいて、前記室内の熱分布と前記室内機の位置とを示す熱分布画像を表示する表示手段を更に備える、
     請求項1から9の何れか1項に記載の空調制御装置。
    A display means for displaying a heat distribution image showing the heat distribution in the room and the position of the indoor unit based on the indoor unit position information output by the output means is further provided.
    The air conditioning control device according to any one of claims 1 to 9.
  11.  室内に設置された室内機と、前記室内機の動作を制御する空調制御装置と、前記室内を撮像する赤外線センサとを備える空調システムであって、
     前記赤外線センサは、前記室内機が調和空気を吹き出しているときに前記室内を撮像することにより赤外線画像を取得し、
     前記空調制御装置は、
     前記室内機の動作を制御する空調制御手段と、
     前記赤外線センサから前記赤外線画像を取得する画像取得手段と、
     前記画像取得手段が取得した前記赤外線画像に基づく前記室内機の位置を示す室内機位置情報を出力する出力手段と、を備える、
     空調システム。
    An air conditioning system including an indoor unit installed in a room, an air conditioning control device for controlling the operation of the indoor unit, and an infrared sensor for imaging the room.
    The infrared sensor acquires an infrared image by taking an image of the room while the indoor unit is blowing out conditioned air.
    The air conditioning controller is
    An air conditioning control means for controlling the operation of the indoor unit and
    An image acquisition means for acquiring the infrared image from the infrared sensor,
    It is provided with an output means for outputting indoor unit position information indicating the position of the indoor unit based on the infrared image acquired by the image acquisition means.
    Air conditioning system.
  12.  赤外線センサが、室内に設置された室内機が調和空気を吹き出しているときに前記室内を撮像することにより赤外線画像を取得し、
     空調制御装置が、前記赤外線画像に基づく前記室内機の位置を示す室内機位置情報を出力する、
     位置情報出力方法。
    The infrared sensor acquires an infrared image by taking an image of the room when the indoor unit installed in the room blows out conditioned air.
    The air conditioning control device outputs indoor unit position information indicating the position of the indoor unit based on the infrared image.
    Location information output method.
PCT/JP2020/019457 2020-05-15 2020-05-15 Air conditioning control device, air conditioning system, and position information output method WO2021229801A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022522476A JPWO2021229801A1 (en) 2020-05-15 2020-05-15
PCT/JP2020/019457 WO2021229801A1 (en) 2020-05-15 2020-05-15 Air conditioning control device, air conditioning system, and position information output method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/019457 WO2021229801A1 (en) 2020-05-15 2020-05-15 Air conditioning control device, air conditioning system, and position information output method

Publications (1)

Publication Number Publication Date
WO2021229801A1 true WO2021229801A1 (en) 2021-11-18

Family

ID=78525600

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/019457 WO2021229801A1 (en) 2020-05-15 2020-05-15 Air conditioning control device, air conditioning system, and position information output method

Country Status (2)

Country Link
JP (1) JPWO2021229801A1 (en)
WO (1) WO2021229801A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0379942A (en) * 1989-08-21 1991-04-04 Daikin Ind Ltd Air conditioner
JP2009109025A (en) * 2007-10-26 2009-05-21 Fujitsu General Ltd Remote controller for air conditioner
JP2010014350A (en) * 2008-07-04 2010-01-21 Mitsubishi Electric Corp Air conditioner
JP2011257071A (en) * 2010-06-09 2011-12-22 Mitsubishi Electric Corp Air conditioner
JP2012225586A (en) * 2011-04-20 2012-11-15 Mitsubishi Electric Corp Air conditioning device and remote controller for use in the device
JP2016065848A (en) * 2014-03-03 2016-04-28 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America Sensing method, sensing system, and air conditioner including the same
WO2018150535A1 (en) * 2017-02-17 2018-08-23 三菱電機株式会社 Indoor unit and air conditioning device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5389211B2 (en) * 2012-03-27 2014-01-15 三菱電機株式会社 Air conditioning control method and air conditioner

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0379942A (en) * 1989-08-21 1991-04-04 Daikin Ind Ltd Air conditioner
JP2009109025A (en) * 2007-10-26 2009-05-21 Fujitsu General Ltd Remote controller for air conditioner
JP2010014350A (en) * 2008-07-04 2010-01-21 Mitsubishi Electric Corp Air conditioner
JP2011257071A (en) * 2010-06-09 2011-12-22 Mitsubishi Electric Corp Air conditioner
JP2012225586A (en) * 2011-04-20 2012-11-15 Mitsubishi Electric Corp Air conditioning device and remote controller for use in the device
JP2016065848A (en) * 2014-03-03 2016-04-28 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America Sensing method, sensing system, and air conditioner including the same
WO2018150535A1 (en) * 2017-02-17 2018-08-23 三菱電機株式会社 Indoor unit and air conditioning device

Also Published As

Publication number Publication date
JPWO2021229801A1 (en) 2021-11-18

Similar Documents

Publication Publication Date Title
JP2022023104A (en) Air conditioning system
WO2011016225A1 (en) Air conditioner
JP7377333B2 (en) air conditioner
JP7179176B2 (en) Air conditioning controller and air conditioning control system
JP6790249B2 (en) Air conditioners, air conditioners, air conditioners and programs
JP2015183964A (en) Air conditioner and indoor unit of the same
KR20140010689A (en) Monitoring camera apparatus and controlling method thereof
WO2021229801A1 (en) Air conditioning control device, air conditioning system, and position information output method
JP2016017707A (en) Air conditioning system
JP2015210062A (en) Indoor equipment controller and air conditioner including the same, and method for controlling indoor equipment controller
JP6783386B2 (en) Air conditioning system
JP7278378B2 (en) Air-conditioning detection device, air-conditioning control device, air-conditioning device, air-conditioning system, and air-conditioning method
JP2002328933A (en) Apparatus and method for presenting information
JP2022077547A (en) Imaging apparatus, air-conditioning system, information update method, and, program
JP2017207254A (en) Air Conditioning System
JP6345377B1 (en) Control system and remote control device
KR102398452B1 (en) Controlling system of air conditioner
JP7374217B2 (en) Air conditioning control system, air conditioning system and association method
JP7305040B2 (en) Air-conditioning control system, air-conditioning system, air-conditioning control method and air-conditioning control program
JP7055251B1 (en) Control system, control device, management table information generation method and program
WO2020183651A1 (en) Air conditioning system
KR20190013044A (en) Indoor thermostat with built-in camera for angle adjustment and zoom
JP7390946B2 (en) Air conditioning control device, photographing device, air conditioning control system, air conditioning system, and air conditioning control method
WO2023139667A1 (en) Device cooperation system, air conditioner, and self-propelled device
WO2022130513A1 (en) Identification device, equipment system, and identification method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20935935

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022522476

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20935935

Country of ref document: EP

Kind code of ref document: A1