JP2010010466A - Method of manufacturing antimony-added zinc oxide varistor - Google Patents

Method of manufacturing antimony-added zinc oxide varistor Download PDF

Info

Publication number
JP2010010466A
JP2010010466A JP2008168936A JP2008168936A JP2010010466A JP 2010010466 A JP2010010466 A JP 2010010466A JP 2008168936 A JP2008168936 A JP 2008168936A JP 2008168936 A JP2008168936 A JP 2008168936A JP 2010010466 A JP2010010466 A JP 2010010466A
Authority
JP
Japan
Prior art keywords
varistor
zno
mol
antimony
ppm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008168936A
Other languages
Japanese (ja)
Other versions
JP5152798B2 (en
Inventor
Shinzo Yoshikado
進三 吉門
Yoshiaki Ito
嘉昭 伊藤
Masayuki Takada
雅之 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Doshisha Co Ltd
Original Assignee
Doshisha Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Doshisha Co Ltd filed Critical Doshisha Co Ltd
Priority to JP2008168936A priority Critical patent/JP5152798B2/en
Publication of JP2010010466A publication Critical patent/JP2010010466A/en
Application granted granted Critical
Publication of JP5152798B2 publication Critical patent/JP5152798B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Thermistors And Varistors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a ZnO varistor having a higher varistor voltage, a higher non-linear index, and an excellent anti-charging deterioration characteristic with least addition of antimony Sb. <P>SOLUTION: The antimony-added zinc oxide varistor is manufactured by wet-mixing of silicon dioxide of 100 to 1,500 ppm in the average grain size of 5 to 10 nm added to zinc oxide of 98.8 mol%, bismuth oxide of 0.5 mol%, manganese oxide of 0.5 mol%, Co3O4 of 0.2 mol%, and water-soluble salt of antimony of 200 to 2,400 ppm, tentatively baking a mixture obtained, then milling the mixture, pressure-molding the milled mixture, and finally baking the molded mixture obtained. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、酸化亜鉛(ZnO)バリスタ、特に、アンチモン(Sb)添加酸化亜鉛バリスタを製造する方法に関するものである。   The present invention relates to a method for producing a zinc oxide (ZnO) varistor, particularly an antimony (Sb) -added zinc oxide varistor.

ZnOバリスタは、粒界付近に形成される電気的障壁により急峻な電圧−電流特性を有し、避雷器や電子機器の保護素子として広く利用されている。しかし、ZnOバリスタは、継続使用されると電気的ストレスを受けて特性が低下する。これは課電劣化と呼ばれ、ZnO粒界を酸素イオンあるいは格子間Znイオンあるいはその両方が移動することによって電気的障壁が歪むことが原因であると考えられている。   ZnO varistors have steep voltage-current characteristics due to electrical barriers formed in the vicinity of grain boundaries, and are widely used as lightning arresters and protective devices for electronic devices. However, when the ZnO varistor is continuously used, the characteristics are deteriorated due to electrical stress. This is called electrical degradation, and is considered to be caused by distortion of the electrical barrier caused by movement of oxygen ions, interstitial Zn ions, or both through ZnO grain boundaries.

ところで、現在市販されている高電圧用ZnOバリスタには、バリスタ電圧を制御する目的で三酸化アンチモン(Sb)が付加されているが、Sbは有毒であり、環境負荷が大きいので、Sbの添加量ができるだけ少なく、しかも課電劣化特性に優れたZnOバリスタが望まれている。なお、現在市販されている高電圧用ZnOバリスタには、Sbとケイ素(Si)が、それぞれ2.6mol%、3.6mol%程度用いられている。 By the way, in the ZnO varistor for high voltage currently on the market, antimony trioxide (Sb 2 O 3 ) is added for the purpose of controlling the varistor voltage, but Sb is toxic and has a large environmental load. A ZnO varistor in which the amount of Sb added is as small as possible and is excellent in the electric charge deterioration characteristics is desired. In addition, about 2.6 mol% and 3.6 mol% of Sb and silicon (Si) are used in ZnO varistors for high voltage currently on the market, respectively.

これまでの研究により、Sbの課電劣化特性に及ぼす影響を調べた結果、Sb添加により形成される双晶により、ZnO結晶の方位が変化し、それに伴って課電劣化が抑制されることが知られている(非特許文献1参照)。
また、ZnOバリスタにSbと二酸化ケイ素(SiO)をそれぞれ1.6mol%以上添加することによって、約220V/mmのバリスタ電圧を得ることができ、また、SiOを添加することで、非線形指数が小さくなることが知られている(非特許文献2参照)。
As a result of investigating the influence of Sb on the voltage degradation characteristics by previous studies, the twin crystal formed by the addition of Sb changes the orientation of the ZnO crystal, and accordingly, the voltage degradation is suppressed. It is known (see Non-Patent Document 1).
Also, by adding 1.6 mol% or more of Sb 2 O 3 and silicon dioxide (SiO 2 ) to the ZnO varistor, a varistor voltage of about 220 V / mm can be obtained, and by adding SiO 2 It is known that the nonlinear index becomes smaller (see Non-Patent Document 2).

しかしながら、これらの従来の製造方法においては、Sbを3.2mol%以上添加する必要があり、これより少ないSb添加量で、高いバリスタ電圧および高い非線形指数を有し、課電劣化特性に優れたZnOバリスタを製造することは難しかった。   However, in these conventional manufacturing methods, it is necessary to add Sb in an amount of 3.2 mol% or more. With a smaller amount of Sb added, the varistor voltage is high and the nonlinear index is high, and the electric charging deterioration characteristics are excellent. It was difficult to manufacture a ZnO varistor.

高田雅之、吉野浩行、吉門進三、「ZnOバリスタの粒界と課電劣化の関係」、電学論A、2006年、第126巻、p.105〜112Masayuki Takada, Hiroyuki Yoshino, Shinzo Yoshimon, "Relationship between grain boundaries of ZnO varistors and electrical degradation", Electron Theory, 2006, Vol. 126, p. 105-112 T.Takemura, M.Kobayashi, Y.Takada, K.Sato,「Effects of Antimony Oxide on the Characteristics of ZnO Varistors」J.Am.Ceram.Soc,1987年、第70巻、第4号、p.237〜241T. Takemura, M. Kobayashi, Y. Takada, K. Sato, “Effects of Antimony Oxide on the Characteristics of ZnO Varistors” J. Am. Ceram. Soc, 1987, Vol. 70, No. 4, p. 237-241

したがって、本発明の課題は、Sbの添加量ができるだけ少なく、高いバリスタ電圧を有し、高い非線形指数を有し、課電劣化特性に優れたZnOバリスタを提供することにある。   Accordingly, an object of the present invention is to provide a ZnO varistor having as little Sb addition as possible, a high varistor voltage, a high non-linear index, and excellent electric charging deterioration characteristics.

上記課題を解決するため、本発明は、酸化亜鉛98.8mol%、酸化ビスマス0.5mol%、酸化マンガン0.5mol%、4酸化3コバルト0.2mol%およびアンチモンの水溶性塩200〜2400ppmに、平均粒径5〜10nmの二酸化ケイ素100〜1500ppmを添加したものを湿式混合し、得られた混合物を仮焼成した後粉砕し、粉砕物を加圧成形し、得られた成形物を本焼成することによってアンチモン添加酸化亜鉛バリスタを製造する方法を構成したものである。ここで、ppmはmolppmを意味する。以下同様である。   In order to solve the above problems, the present invention provides zinc oxide 98.8 mol%, bismuth oxide 0.5 mol%, manganese oxide 0.5 mol%, tetracobalt trioxide 0.2 mol%, and antimony water-soluble salt 200-2400 ppm. A mixture of 100 to 1500 ppm of silicon dioxide having an average particle size of 5 to 10 nm is wet-mixed, the resulting mixture is temporarily fired and then pulverized, the pulverized product is pressure-molded, and the resulting molded product is subjected to main firing. Thus, a method for producing an antimony-added zinc oxide varistor is constituted. Here, ppm means molppm. The same applies hereinafter.

上記構成において、前記アンチモンの水溶性塩は、塩化アンチモンまたは硝酸アンチモンであることが好ましい。また、前記湿式混合は、水またはエタノールを使用して行うことが好ましい。
また、前記仮焼成は、空気中において500〜800℃の温度で行い、前記本焼成は、空気中において1100〜1200℃の温度で行うことが好ましい。
In the above configuration, the water-soluble salt of antimony is preferably antimony chloride or antimony nitrate. The wet mixing is preferably performed using water or ethanol.
Moreover, it is preferable that the said temporary baking is performed at the temperature of 500-800 degreeC in the air, and the said main baking is performed at the temperature of 1100-1200 degreeC in the air.

本発明によれば、Sbの添加量ができるだけ少なく、高いバリスタ電圧を有し、高い非線形指数を有し、課電劣化特性に優れたZnOバリスタを製造することができる。   According to the present invention, it is possible to manufacture a ZnO varistor having as little Sb addition as possible, a high varistor voltage, a high non-linear exponent, and excellent electrical charging deterioration characteristics.

以下、添付図面を参照して本発明の好ましい実施例について説明する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings.

図1は、本発明の1実施例によるZnOバリスタの製造方法のフロー図である。
図1に示すように、本発明によれば、まず酸化亜鉛98.8mol%、酸化ビスマス0.5mol%、酸化マンガン0.5mol%、4酸化3コバルト0.2mol%およびアンチモンの水溶性塩200〜2400ppmに、ナノ粒子(例えば、平均粒径5〜10nm)の二酸化ケイ素100〜1500ppmを添加したものを湿式混合する(図1のステップS1)。
ここで、アンチモンの水溶性塩として、塩化アンチモン(SbCl)または硝酸アンチモンを使用する。また、湿式混合は、例えば、水又はエタノールを使用してボールミルにより所定時間行う。
FIG. 1 is a flowchart of a method for manufacturing a ZnO varistor according to an embodiment of the present invention.
As shown in FIG. 1, according to the present invention, first, zinc oxide 98.8 mol%, bismuth oxide 0.5 mol%, manganese oxide 0.5 mol%, tetroxide 3 mol 0.2 mol%, and antimony water-soluble salt 200 A mixture obtained by adding 100 to 1500 ppm of silicon dioxide having a nanoparticle (for example, an average particle diameter of 5 to 10 nm) to ˜2400 ppm is wet-mixed (step S <b> 1 in FIG. 1).
Here, antimony chloride (SbCl 3 ) or antimony nitrate is used as a water-soluble salt of antimony. Moreover, wet mixing is performed for a predetermined time with a ball mill using water or ethanol, for example.

次に、ステップS1で得た混合物を仮焼成する(図1のステップS2)。
仮焼成は、具体的には、空気中で500〜800℃の温度で所定時間行う。
Next, the mixture obtained in step S1 is temporarily fired (step S2 in FIG. 1).
Specifically, the preliminary baking is performed in air at a temperature of 500 to 800 ° C. for a predetermined time.

その後、ステップS2で得た仮焼成物を粉砕する(図1のステップS3)。
粉砕は、例えば、超硬乳鉢を用いて行う。
Thereafter, the temporarily fired product obtained in step S2 is pulverized (step S3 in FIG. 1).
The pulverization is performed using, for example, a cemented mortar.

そして、ステップS3で得た粉砕物を加圧成形する(図1のステップS4)。
この場合、例えば、真空加圧で直径20mmの円板状に成形する。
Then, the pulverized material obtained in step S3 is pressure-molded (step S4 in FIG. 1).
In this case, for example, it is formed into a disk shape having a diameter of 20 mm by vacuum pressing.

さらに、上記の成形物を本焼成することによりZnOバリスタを形成する(図1のステップS5)。
本焼成は、具体的には、空気中において1100〜1200℃の温度で所定時間行う。
Furthermore, a ZnO varistor is formed by subjecting the above molded product to main firing (step S5 in FIG. 1).
Specifically, the main baking is performed in air at a temperature of 1100 to 1200 ° C. for a predetermined time.

次に、本発明の方法によって、ZnOバリスタを実際に製造し、所期の効果が得られるかどうかを調べた。
[実施例1]
酸化亜鉛98.8mol%、酸化ビスマス0.5mol%、酸化マンガン0.5mol%、4酸化3コバルト0.2mol%および塩化アンチモン2400ppmに、平均粒径7nmの二酸化ケイ素100ppmを添加したものを、エタノールを使用してボールミルにより24時間湿式混合し、得られた混合物を空気中において600℃で3時間仮焼成した後粉砕し、粉砕物を真空加圧で直径20mmの円板状に成形し、得られた成形物を空気中において1150℃で3時間本焼成して、ZnOバリスタを製造した。
[実施例2]
二酸化ケイ素以外は実施例1と同様にして、二酸化ケイ素300ppmを添加して、ZnOバリスタを製造した。
[実施例3]
二酸化ケイ素以外は実施例1と同様にして、二酸化ケイ素700ppmを添加して、ZnOバリスタを製造した。
[実施例4]
二酸化ケイ素以外は実施例1と同様にして、二酸化ケイ素1500ppmを添加して、ZnOバリスタを製造した。
[比較例1]
二酸化ケイ素以外は実施例1と同様にして、二酸化ケイ素を添加せずに、ZnOバリスタを製造した。
Next, a ZnO varistor was actually manufactured by the method of the present invention, and it was examined whether or not the desired effect could be obtained.
[Example 1]
Zinc oxide 98.8 mol%, bismuth oxide 0.5 mol%, manganese oxide 0.5 mol%, tetracobalt tetroxide 0.2 mol%, and antimony chloride 2400 ppm added with silicon dioxide 100 ppm with an average particle size of 7 nm are ethanol. The mixture obtained was wet-mixed for 24 hours using a ball mill, and the resulting mixture was calcined in air at 600 ° C. for 3 hours and then pulverized, and the pulverized product was formed into a disk shape having a diameter of 20 mm by vacuum pressing. The obtained molded product was finally fired in air at 1150 ° C. for 3 hours to produce a ZnO varistor.
[Example 2]
A ZnO varistor was produced by adding 300 ppm of silicon dioxide in the same manner as in Example 1 except for silicon dioxide.
[Example 3]
A ZnO varistor was manufactured by adding 700 ppm of silicon dioxide in the same manner as in Example 1 except for silicon dioxide.
[Example 4]
A ZnO varistor was manufactured by adding 1500 ppm of silicon dioxide in the same manner as in Example 1 except for silicon dioxide.
[Comparative Example 1]
A ZnO varistor was produced in the same manner as in Example 1 except that silicon dioxide was not added without adding silicon dioxide.

[比較検討1]
実施例1〜4と比較例1におけるZnOバリスタの諸特性を調べた。それぞれの試料に関して、課電劣化前の非線形指数α、課電劣化後の非線形指数α(α30min)、ZnO結晶の(002)面の面積強度、およびバリスタ電圧を測定した。
[Comparison study 1]
Various characteristics of the ZnO varistors in Examples 1 to 4 and Comparative Example 1 were examined. For each sample, the non-linear exponent α before the deterioration of electric charge, the non-linear exponent α after the deterioration of electric charge (α 30 min ), the area intensity of the (002) plane of the ZnO crystal, and the varistor voltage were measured.

図2は、実施例1〜4と比較例1におけるZnOバリスタの課電劣化前の非線形指数αの測定結果を示したグラフである。
図3は、実施例1〜4と比較例1におけるZnOバリスタの課電劣化後の非線形指数α、およびZnO結晶の(002)面の面積強度の測定結果を示したグラフである。
図4は、実施例1〜4と比較例1におけるZnOバリスタのバリスタ電圧の測定結果を示したグラフである。
FIG. 2 is a graph showing measurement results of the non-linear exponent α before degradation of the ZnO varistors in Examples 1 to 4 and Comparative Example 1.
FIG. 3 is a graph showing the measurement results of the non-linear exponent α of the ZnO varistor after the deterioration of voltage application in Examples 1 to 4 and Comparative Example 1, and the area strength of the (002) plane of the ZnO crystal.
FIG. 4 is a graph showing measurement results of varistor voltages of ZnO varistors in Examples 1 to 4 and Comparative Example 1.

[実施例5]
酸化亜鉛98.8mol%、酸化ビスマス0.5mol%、酸化マンガン0.5mol%、4酸化3コバルト0.2mol%および塩化アンチモン200ppmに、平均粒径7nmの二酸化ケイ素100ppmを添加したものを、エタノールを使用してボールミルにより24時間湿式混合し、得られた混合物を空気中において600℃で3時間仮焼成した後粉砕し、粉砕物を真空加圧で直径20mmの円板状に成形し、得られた成形物を空気中において1150℃で3時間本焼成して、ZnOバリスタを製造した。
[実施例6]
二酸化ケイ素以外は実施例5と同様にして、二酸化ケイ素300ppmを添加して、ZnOバリスタを製造した。
[実施例7]
二酸化ケイ素以外は実施例5と同様にして、二酸化ケイ素700ppmを添加して、ZnOバリスタを製造した。
[実施例8]
二酸化ケイ素以外は実施例5と同様にして、二酸化ケイ素1500ppmを添加して、ZnOバリスタを製造した。
[比較例2]
二酸化ケイ素以外は実施例5と同様にして、二酸化ケイ素を添加せずに、ZnOバリスタを製造した。
[Example 5]
A mixture of 98.8 mol% of zinc oxide, 0.5 mol% of bismuth oxide, 0.5 mol% of manganese oxide, 0.2 mol% of 3 cobalt oxide and 200 ppm of antimony chloride and 100 ppm of silicon dioxide having an average particle diameter of 7 nm The mixture obtained was wet-mixed for 24 hours using a ball mill, and the resulting mixture was calcined in air at 600 ° C. for 3 hours and then pulverized, and the pulverized product was formed into a disk shape having a diameter of 20 mm by vacuum pressing. The obtained molded product was finally fired in air at 1150 ° C. for 3 hours to produce a ZnO varistor.
[Example 6]
A ZnO varistor was produced by adding 300 ppm of silicon dioxide in the same manner as in Example 5 except for silicon dioxide.
[Example 7]
A ZnO varistor was manufactured by adding 700 ppm of silicon dioxide in the same manner as in Example 5 except for silicon dioxide.
[Example 8]
A ZnO varistor was produced by adding 1500 ppm of silicon dioxide in the same manner as in Example 5 except for silicon dioxide.
[Comparative Example 2]
A ZnO varistor was manufactured in the same manner as in Example 5 except that silicon dioxide was not added without adding silicon dioxide.

[比較検討2]
実施例5〜8と比較例2におけるZnOバリスタの諸特性を調べた。それぞれの試料に関して、課電劣化前の非線形指数α、課電劣化後の非線形指数α(α30min)、ZnO結晶の(002)面の面積強度、およびバリスタ電圧を測定した。
[Comparison study 2]
Various characteristics of the ZnO varistors in Examples 5 to 8 and Comparative Example 2 were examined. For each sample, the non-linear exponent α before the deterioration of electric charge, the non-linear exponent α after the deterioration of electric charge (α 30 min ), the area intensity of the (002) plane of the ZnO crystal, and the varistor voltage were measured.

図5は、実施例5〜8と比較例2におけるZnOバリスタの課電劣化前の非線形指数αの測定結果を示したグラフである。
図6は、実施例5〜8と比較例2におけるZnOバリスタの課電劣化後の非線形指数α、およびZnO結晶の(002)面の面積強度の測定結果を示したグラフである。
図7は、実施例5〜8と比較例2におけるZnOバリスタのバリスタ電圧の測定結果を示したグラフである。
FIG. 5 is a graph showing measurement results of the non-linear exponent α before degradation of the ZnO varistors in Examples 5 to 8 and Comparative Example 2.
FIG. 6 is a graph showing the measurement results of the non-linear exponent α of ZnO varistors after degradation of voltage applied in Examples 5 to 8 and Comparative Example 2, and the area intensity of the (002) plane of the ZnO crystal.
FIG. 7 is a graph showing measurement results of varistor voltages of ZnO varistors in Examples 5 to 8 and Comparative Example 2.

ここで、非線形指数αの値は、10−8〜10−4Aの電流範囲で定電流法により電圧−電流特性を測定して、以下の式1を用いて算出した。

Figure 2010010466
なお、Iは定数であり、V1mAは電流を1mA流したときの電圧で降伏電圧を示す尺度でありバリスタ電圧と呼ばれる。
また、課電劣化前後の測定には同じ試料を用いた。試料は、空気中で直流電流100mA/cmを、合計時間で30分間流して課電劣化させた。 Here, the value of the nonlinear index α was calculated by using the following equation 1 by measuring the voltage-current characteristic by a constant current method in a current range of 10 −8 to 10 −4 A.
Figure 2010010466
Note that I N is a constant, and V 1 mA is a voltage indicating a breakdown voltage as a voltage when a current of 1 mA flows, and is called a varistor voltage.
In addition, the same sample was used for the measurement before and after the degradation of electric power. The sample was subjected to voltage degradation by applying a direct current of 100 mA / cm 2 for 30 minutes in the air.

図2から判るように、実施例1〜4のZnOバリスタの非線形指数αの値は約40〜60であり、比較例1のZnOバリスタと同程度の高い非線形性を有する試料が得られた。   As can be seen from FIG. 2, the values of the nonlinear index α of the ZnO varistors of Examples 1 to 4 are about 40 to 60, and samples having high nonlinearity comparable to that of the ZnO varistor of Comparative Example 1 were obtained.

図3から判るように、各ZnOバリスタの課電劣化30分後の非線形指数αの値は、比較例1のZnOバリスタにおいては約7であるのに対し、実施例1〜4のZnOバリスタにおいてはSiの添加量を増加するに従い増加し、特に実施例3のZnOバリスタにおいて約35となり極大値を示した。また、(002)面の面積強度は、Siの添加量を増加するに従い強くなっているのが判る。これは、Siの添加により、粒界での表面自由エネルギーに変化が起こり、ZnO結晶の方位に影響が出たため課電劣化が抑えられた結果であると考えられる。   As can be seen from FIG. 3, the value of the nonlinear index α after 30 minutes of degradation of the voltage applied to each ZnO varistor is about 7 in the ZnO varistor of Comparative Example 1, whereas in the ZnO varistors of Examples 1 to 4. Increased as the amount of Si added was increased. In particular, the ZnO varistor of Example 3 was about 35, showing a maximum value. It can also be seen that the area strength of the (002) plane increases as the amount of Si added increases. This is considered to be a result of suppressing the deterioration of electric charging because the addition of Si causes a change in the surface free energy at the grain boundary and affects the orientation of the ZnO crystal.

図4から判るように、実施例1〜4のZnOバリスタのバリスタ電圧は約220V/mm以上であり、比較例1のZnOバリスタのバリスタ電圧である約165V/mmに比べて、十分高いバリスタ電圧を有する試料が得られた。特に、実施例2のZnOバリスタのバリスタ電圧は、約240V/mmと極大値を示した。これは、小さな平均粒径の二酸化ケイ素の添加によるZnO粒子の粒成長抑制効果が無くても、双晶境界面などに新たな障壁が形成されること等が原因であると考えられる。   As can be seen from FIG. 4, the varistor voltage of the ZnO varistors of Examples 1 to 4 is about 220 V / mm or more, which is sufficiently higher than the varistor voltage of about 165 V / mm, which is the varistor voltage of the ZnO varistor of Comparative Example 1. A sample with was obtained. In particular, the varistor voltage of the ZnO varistor of Example 2 showed a maximum value of about 240 V / mm. This is considered to be due to the fact that a new barrier is formed at the twin interface even if there is no effect of suppressing the growth of ZnO particles due to the addition of silicon dioxide having a small average particle diameter.

図5から判るように、実施例5〜8のZnOバリスタの非線形指数αの値は約40〜50であり、実施例1〜4のZnOバリスタと同程度の高い非線形性を有する試料が得られた。   As can be seen from FIG. 5, the non-linear index α of the ZnO varistors of Examples 5 to 8 is about 40 to 50, and a sample having high non-linearity similar to that of the ZnO varistors of Examples 1 to 4 is obtained. It was.

図6から判るように、各ZnOバリスタの課電劣化30分後の非線形指数αの値は、比較例2のZnOバリスタにおいては約16であるのに対し、実施例5〜7のZnOバリスタにおいてはSiの添加量を増加するに従い増加し、特に実施例5のZnOバリスタにおいて約24となり極大値を示した。また、(002)面の面積強度は、Siの添加量を増加するに従い弱くなっているのが判る。これは、Siの添加により、粒界での表面自由エネルギーに変化が起こり、ZnO結晶の方位に影響が出たため課電劣化が抑えられた結果であると考えられる。   As can be seen from FIG. 6, the value of the nonlinear index α after 30 minutes of degradation of the voltage applied to each ZnO varistor is about 16 in the ZnO varistor of Comparative Example 2, whereas in the ZnO varistors of Examples 5-7. Increased as the amount of Si added increased, and in particular, the ZnO varistor of Example 5 was about 24, indicating a maximum value. It can also be seen that the area strength of the (002) plane becomes weaker as the amount of Si added is increased. This is considered to be a result of suppressing the deterioration of electric charging because the addition of Si causes a change in the surface free energy at the grain boundary and affects the orientation of the ZnO crystal.

図7から判るように、実施例6〜8のZnOバリスタのバリスタ電圧は約160V/mm以上であり、比較例2のZnOバリスタのバリスタ電圧である約120V/mmに比べて、十分高いバリスタ電圧を有する試料が得られた。このように、Sbの添加量が200ppmのZnOバリスタにおいても、二酸化ケイ素の添加によりバリスタ電圧を増加させる試料が得られた。   As can be seen from FIG. 7, the varistor voltages of the ZnO varistors of Examples 6 to 8 are about 160 V / mm or more, which is sufficiently higher than the varistor voltage of about 120 V / mm which is the varistor voltage of the ZnO varistor of Comparative Example 2. A sample with was obtained. As described above, a sample in which the varistor voltage was increased by the addition of silicon dioxide was obtained even in the ZnO varistor having the Sb addition amount of 200 ppm.

さらに、実施例3が最もよい課電劣化特性であったので、Sbの添加量をどの程度減らせるかを検討するため、以下のZnOバリスタを製造した。
[実施例9]
酸化亜鉛98.8mol%、酸化ビスマス0.5mol%、酸化マンガン0.5mol%、4酸化3コバルト0.2mol%および塩化アンチモン200ppmに、平均粒径7nmの二酸化ケイ素700ppmを添加したものを、エタノールを使用してボールミルにより24時間湿式混合し、得られた混合物を空気中において600℃で3時間仮焼成した後粉砕し、粉砕物を真空加圧で直径20mmの円板状に成形し、得られた成形物を空気中において1150℃で3時間本焼成して、ZnOバリスタを製造した。
[実施例10]
塩化アンチモン以外は実施例9と同様にして、塩化アンチモン800ppmとして、ZnOバリスタを製造した。
[実施例11]
塩化アンチモン以外は実施例9と同様にして、塩化アンチモン1600ppmとして、ZnOバリスタを製造した。
[実施例12]
塩化アンチモン以外は実施例9と同様にして、塩化アンチモン2400ppmとして、ZnOバリスタを製造した。
Furthermore, since Example 3 had the best electrical degradation characteristics, the following ZnO varistors were manufactured in order to examine how much the amount of Sb added can be reduced.
[Example 9]
A mixture of 98.8 mol% of zinc oxide, 0.5 mol% of bismuth oxide, 0.5 mol% of manganese oxide, 0.2 mol% of tetracobalt tetroxide, and 200 ppm of antimony chloride with 700 ppm of silicon dioxide having an average particle diameter of 7 nm is added to ethanol. The mixture obtained was wet-mixed for 24 hours using a ball mill, and the resulting mixture was calcined in air at 600 ° C. for 3 hours and then pulverized, and the pulverized product was formed into a disk shape having a diameter of 20 mm by vacuum pressing. The obtained molded product was finally fired in air at 1150 ° C. for 3 hours to produce a ZnO varistor.
[Example 10]
A ZnO varistor was produced in the same manner as in Example 9 except that antimony chloride was used as 800 ppm of antimony chloride.
[Example 11]
A ZnO varistor was produced in the same manner as in Example 9 except for antimony chloride, using 1600 ppm of antimony chloride.
[Example 12]
A ZnO varistor was produced in the same manner as in Example 9 except for antimony chloride, using 2400 ppm of antimony chloride.

[比較検討3]
実施例9〜12におけるZnOバリスタの諸特性を調べた。それぞれの試料に関して、課電劣化後の非線形指数α、およびバリスタ電圧を測定した。
[Comparison study 3]
Various characteristics of the ZnO varistors in Examples 9 to 12 were examined. For each sample, the non-linear exponent α after voltage degradation and the varistor voltage were measured.

図8は、実施例9〜12におけるZnOバリスタのバリスタ電圧の測定結果を示したグラフである。
図9は、実施例9〜12におけるZnOバリスタの課電劣化後の非線形指数αの測定結果を示したグラフである。
FIG. 8 is a graph showing the measurement results of the varistor voltage of the ZnO varistors in Examples 9-12.
FIG. 9 is a graph showing the measurement results of the non-linear exponent α after the degradation of ZnO varistors in Examples 9-12.

図8から判るように、Sbの添加量を増加させることで、実施例9のZnOバリスタのバリスタ電圧は約160V/mmまで増加し、さらに実施例10〜12のZnOバリスタのバリスタ電圧は約200〜230V/mmで一定となった。   As can be seen from FIG. 8, by increasing the amount of Sb added, the varistor voltage of the ZnO varistor of Example 9 was increased to about 160 V / mm, and the varistor voltage of the ZnO varistors of Examples 10 to 12 was about 200. It became constant at ˜230 V / mm.

図9から判るように、Sbの添加量を増加させることで、実施例9のZnOバリスタの非線形指数αは約19、さらに実施例10〜12のZnOバリスタの非線形指数αは約34となった。   As can be seen from FIG. 9, by increasing the amount of Sb added, the nonlinear index α of the ZnO varistor of Example 9 was about 19, and the nonlinear index α of the ZnO varistors of Examples 10 to 12 was about 34. .

以上のことから、本発明によれば、特に実施例10および11のZnOバリスタにおいて、Sbの添加量が約1/30、Siの添加量が約1/50で市販バリスタと同特性(バリスタ電圧が約230V/mm、課電劣化前の非線形指数αが約45、課電劣化後の非線形指数αが約34)を有するZnOバリスタを製造することができた。   From the above, according to the present invention, in particular, in the ZnO varistors of Examples 10 and 11, the Sb addition amount was about 1/30 and the Si addition amount was about 1/50. ZnO varistors having a non-linear index α of about 45 V and a non-linear index α of about 45) and a non-linear index α of about 34).

本発明の1実施例によるZnOバリスタの製造方法のフロー図である。It is a flowchart of the manufacturing method of the ZnO varistor by one Example of this invention. 実施例1〜4と比較例1におけるZnOバリスタの課電劣化前の非線形指数αの測定結果を示したグラフである。6 is a graph showing measurement results of nonlinear exponent α before degradation of ZnO varistors in Examples 1 to 4 and Comparative Example 1. 実施例1〜4と比較例1におけるZnOバリスタの課電劣化後の非線形指数α、およびZnO結晶の(002)面の面積強度の測定結果を示したグラフである。It is the graph which showed the measurement result of the area | region intensity | strength of the nonlinear index | exponent α after the electrical charging degradation of the ZnO varistor in Examples 1-4 and the comparative example 1, and the ZnO crystal | crystallization. 実施例1〜4と比較例1におけるZnOバリスタのバリスタ電圧の測定結果を示したグラフである。4 is a graph showing measurement results of varistor voltages of ZnO varistors in Examples 1 to 4 and Comparative Example 1. FIG. 実施例5〜8と比較例2におけるZnOバリスタの課電劣化前の非線形指数αの測定結果を示したグラフである。It is the graph which showed the measurement result of the nonlinear index | exponent (alpha) before the charging deterioration of the ZnO varistor in Examples 5-8 and the comparative example 2. FIG. 実施例5〜8と比較例2におけるZnOバリスタの課電劣化後の非線形指数α、およびZnO結晶の(002)面の面積強度の測定結果を示したグラフである。It is the graph which showed the measurement result of the area | region intensity | strength of the nonlinear index | exponent α after the electrical charging degradation of the ZnO varistor in Examples 5-8 and the comparative example 2, and the Zn002 crystal | crystallization. 実施例5〜8と比較例2におけるZnOバリスタのバリスタ電圧の測定結果を示したグラフである。6 is a graph showing measurement results of varistor voltages of ZnO varistors in Examples 5 to 8 and Comparative Example 2. 実施例9〜12におけるZnOバリスタのバリスタ電圧の測定結果を示したグラフである。It is the graph which showed the measurement result of the varistor voltage of the ZnO varistor in Examples 9-12. 実施例9〜12におけるZnOバリスタの課電劣化後の非線形指数αの測定結果を示したグラフである。It is the graph which showed the measurement result of the nonlinear index | exponent after the electrical charging degradation of the ZnO varistor in Examples 9-12.

Claims (4)

酸化亜鉛98.8mol%、酸化ビスマス0.5mol%、酸化マンガン0.5mol%、4酸化3コバルト0.2mol%およびアンチモンの水溶性塩200〜2400ppmに、平均粒径5〜10nmの二酸化ケイ素100〜1500ppmを添加したものを湿式混合し、得られた混合物を仮焼成した後粉砕し、粉砕物を加圧成形し、得られた成形物を本焼成することによってアンチモン添加酸化亜鉛バリスタを製造する方法。   100% of silicon dioxide having an average particle diameter of 5 to 10 nm was added to 98.8 mol% of zinc oxide, 0.5 mol% of bismuth oxide, 0.5 mol% of manganese oxide, 0.2 mol% of 3 cobalt oxide and 200 to 2400 ppm of an antimony water-soluble salt. A mixture with ˜1500 ppm added is wet-mixed, the resulting mixture is calcined and then pulverized, the pulverized product is pressure-molded, and the resulting molded product is calcined to produce an antimony-added zinc oxide varistor. Method. 前記アンチモンの水溶性塩は、塩化アンチモンまたは硝酸アンチモンであることを特徴とする請求項1に記載の方法。   The method of claim 1, wherein the water-soluble salt of antimony is antimony chloride or antimony nitrate. 前記湿式混合は、水またはエタノールを使用して行うことを特徴とする請求項1または請求項2に記載の方法。   The method according to claim 1 or 2, wherein the wet mixing is performed using water or ethanol. 前記仮焼成は、空気中において500〜800℃の温度で行い、前記本焼成は、空気中において1100〜1200℃の温度で行うことを特徴とする請求項1〜請求項3のいずれかに記載の方法。   The said temporary baking is performed in the temperature of 500-800 degreeC in the air, and the said main baking is performed in the temperature of 1100-1200 degreeC in any one of the Claims 1-3 characterized by the above-mentioned. the method of.
JP2008168936A 2008-06-27 2008-06-27 Method for producing antimony-added zinc oxide varistor Expired - Fee Related JP5152798B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008168936A JP5152798B2 (en) 2008-06-27 2008-06-27 Method for producing antimony-added zinc oxide varistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008168936A JP5152798B2 (en) 2008-06-27 2008-06-27 Method for producing antimony-added zinc oxide varistor

Publications (2)

Publication Number Publication Date
JP2010010466A true JP2010010466A (en) 2010-01-14
JP5152798B2 JP5152798B2 (en) 2013-02-27

Family

ID=41590587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008168936A Expired - Fee Related JP5152798B2 (en) 2008-06-27 2008-06-27 Method for producing antimony-added zinc oxide varistor

Country Status (1)

Country Link
JP (1) JP5152798B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112236834A (en) * 2018-06-06 2021-01-15 兴亚株式会社 Zinc oxide piezoresistor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5992504A (en) * 1982-11-18 1984-05-28 三菱電機株式会社 Method of producing voltage nonlinear resistor
JPS59117202A (en) * 1982-12-24 1984-07-06 株式会社東芝 Voltage and current nonlinear resistor
JPS6074403A (en) * 1983-09-30 1985-04-26 株式会社東芝 Method of producing nonlinear resistor
JPH0348401A (en) * 1989-07-17 1991-03-01 Ngk Insulators Ltd Manufacture of voltage nonlinear resistor
JP2005170738A (en) * 2003-12-11 2005-06-30 Mitsubishi Materials Corp Sio2 powder for sintered compact target for forming optical recording medium protective film, production method of sintered compact target using the powder, and sintered compact target
JP2006312564A (en) * 2005-05-06 2006-11-16 Doshisha Method for manufacturing ferrite/silicon dioxide composite material with high hardness

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5992504A (en) * 1982-11-18 1984-05-28 三菱電機株式会社 Method of producing voltage nonlinear resistor
JPS59117202A (en) * 1982-12-24 1984-07-06 株式会社東芝 Voltage and current nonlinear resistor
JPS6074403A (en) * 1983-09-30 1985-04-26 株式会社東芝 Method of producing nonlinear resistor
JPH0348401A (en) * 1989-07-17 1991-03-01 Ngk Insulators Ltd Manufacture of voltage nonlinear resistor
JP2005170738A (en) * 2003-12-11 2005-06-30 Mitsubishi Materials Corp Sio2 powder for sintered compact target for forming optical recording medium protective film, production method of sintered compact target using the powder, and sintered compact target
JP2006312564A (en) * 2005-05-06 2006-11-16 Doshisha Method for manufacturing ferrite/silicon dioxide composite material with high hardness

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112236834A (en) * 2018-06-06 2021-01-15 兴亚株式会社 Zinc oxide piezoresistor

Also Published As

Publication number Publication date
JP5152798B2 (en) 2013-02-27

Similar Documents

Publication Publication Date Title
Bai et al. Influence of Cr2O3 on highly nonlinear properties and low leakage current of ZnO–Bi2O3 varistor ceramics
Cheng et al. Electrical properties of Al2O3-doped ZnO varistors prepared by sol–gel process for device miniaturization
He et al. AC ageing characteristics of Y2O3-doped ZnO varistors with high voltage gradient
JP5411945B2 (en) Indium oxide-based sintered body and indium oxide-based transparent conductive film
Meng et al. Electrical properties of ZnO varistor ceramics modified by rare earth-yttrium and gallium dopants
CN1093979C (en) Pressure sensitive nonlinear resistor, method for producing pressure sensitive nonlinear resistor and lighting arrester
Meng et al. Tailoring electrical properties of multiple dopant-based ZnO varistor by doping with yttrium, gallium, and indium
JP5152798B2 (en) Method for producing antimony-added zinc oxide varistor
Bai et al. Influence of Bi-Co-O synthetic multi-phase on electrical properties of the ZnO-Bi2O3-MnO2–SiO2 varistors
Wu et al. Effect of SiO 2 addition on the microstructure and electrical properties of ZnO-based varistors
Wang et al. Microstructure and electrical properties of rare-earth oxides doped ZnO-based linear resistance ceramics
Sedghi et al. Comparison of electrical properties of zinc oxide varistors manufactured from micro and nano ZnO powder
JP3653625B2 (en) High permeability Mn-Zn ferrite
CN102543333B (en) Non-linear resistor disc and manufacturing method thereof
Nasir et al. VARIATION WITH TEMPERATURE IN PHOTOPYROELECTRIC SPECTROSCOPY AND ELECTRICAL PARAMETERS OF ZnO+ 1.0 MnO 2+ 0.8 Co 3 O 4+ xBi 2 O 3+ yTiO 2 CERAMICS.
JP5334636B2 (en) Voltage non-linear resistor, lightning arrester equipped with voltage non-linear resistor, and method of manufacturing voltage non-linear resistor
JP2623188B2 (en) Varistor and manufacturing method thereof
JPWO2010055586A1 (en) Voltage non-linear resistor, lightning arrester equipped with voltage non-linear resistor, and method of manufacturing voltage non-linear resistor
JP2002305104A (en) Voltage nonlinear resistor and manufacturing method therefor
JP2003297611A (en) Manufacturing method of voltage-nonlinear resistance
CN101536120A (en) Use of b203 in a tin oxide-based semi conductive ceramic for reducing the leakage current thereof and for possibly stabilizing the electrical properties thereof
JP5388937B2 (en) Voltage non-linear resistor and lightning arrester equipped with voltage non-linear resistor
Alharthi et al. Investigation The Effect of Particle Size and Annealing on the Performance of Nano/Micro Sized ZnO-Based Varistors
UA124086U (en) MATERIAL FOR LOW VOLTAGE VARISTORS
Akinnifesi et al. Influence of microstructure on the non-ohmic behavior of zinc oxide varistor ceramics prepared by direct mixing of constituent phases

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110519

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121128

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151214

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees