JPS5992504A - Method of producing voltage nonlinear resistor - Google Patents

Method of producing voltage nonlinear resistor

Info

Publication number
JPS5992504A
JPS5992504A JP57204134A JP20413482A JPS5992504A JP S5992504 A JPS5992504 A JP S5992504A JP 57204134 A JP57204134 A JP 57204134A JP 20413482 A JP20413482 A JP 20413482A JP S5992504 A JPS5992504 A JP S5992504A
Authority
JP
Japan
Prior art keywords
solution
zinc oxide
mixed
nonlinear resistor
voltage nonlinear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57204134A
Other languages
Japanese (ja)
Inventor
森田 知二
良雄 高田
建 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP57204134A priority Critical patent/JPS5992504A/en
Publication of JPS5992504A publication Critical patent/JPS5992504A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thermistors And Varistors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 この発明は、酸化亜鉛を主成分とし、酸化ビスマスなど
の金属酸化物を含む電圧非直線抵抗体の製法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a voltage non-linear resistor containing zinc oxide as a main component and a metal oxide such as bismuth oxide.

電圧非直線抵抗体はサージ吸収素子、電圧安定化素子、
避雷器等に広く用いられているが、近年酸化亜鉛を主成
分とする酸化物焼結体の電圧非直線抵抗体が開発された
。この電圧非直線抵抗体は、一般的に酸化亜鉛と微量添
加物である酸化ビスマス、酸化コバルト、酸化クロム、
酸化アンチモンなどとを混合、加圧成形した後/100
−%−/:!0θ℃で焼結したものに電極を取付けて作
られる。その配合組成、製法などの詳細は例えばジャパ
ニーズ・ジャーナル・オプ・アプライド・フィジックス
誌(MoMatsuoka、”Nonohmic Pr
operties of ZincOxde  Cer
amics” *Jap、J 、Appl 、Phys
 、、tO,73g(tqqt))に述べられている。
Voltage nonlinear resistors are surge absorbing elements, voltage stabilizing elements,
It is widely used in lightning arresters, etc., and in recent years, a voltage nonlinear resistor made of oxide sintered body containing zinc oxide as a main component has been developed. This voltage nonlinear resistor is generally made of zinc oxide and trace additives such as bismuth oxide, cobalt oxide, and chromium oxide.
After mixing with antimony oxide etc. and press molding/100
-%-/:! It is made by attaching electrodes to something sintered at 0θ℃. Details such as its composition and manufacturing method can be found in, for example, the Japanese Journal of Applied Physics (MoMatsuoka, “Nonohmic Pr.
operations of ZincOxde Cer
amics” *Jap, J, Appl, Phys
,,tO,73g(tqqt)).

この方法は一般に原料を粉末同志で混合(以下粉末混合
方法と呼ぶ)しているため、得られた素子の成分分布に
ある程度の不均一性が残る(このような不均一性のある
電圧非直線抵抗体は直流の連続通電によって劣化しやす
いことがわかっている)。そのため、酸化亜鉛粉末に添
加成分を加えて電圧非直線抵抗体を得るにあたり、添加
物(添加成分)の溶液同志が反応して固相を生じない添
加物の塩溶液(有機溶媒を用いても可)/fffi以上
の液に、酸化亜鉛粉末を浸漬して蒸発乾固または濾過乾
燥して得た粉末を乾燥、成形、焼結する製造方法(以下
溶液混合方法と呼ぶ)が提案されている(特開昭lIg
−qg3’ys号公報)。
In this method, the raw materials are generally mixed as powders (hereinafter referred to as powder mixing method), so some degree of non-uniformity remains in the component distribution of the resulting device (such non-uniform voltage It is known that resistors are susceptible to deterioration due to continuous DC energization.) Therefore, when adding additive components to zinc oxide powder to obtain a voltage nonlinear resistor, it is necessary to use a salt solution of the additive (additive component) that does not react with each other to form a solid phase (even if an organic solvent is used). A production method (hereinafter referred to as the solution mixing method) has been proposed in which zinc oxide powder is immersed in a liquid with a liquid temperature of /fffi or higher, and the powder obtained by evaporation to dryness or filtration is dried, molded, and sintered. (Special Publication Showa Ig
-qg3'ys publication).

この方法では、添加物の塩溶液を用意した段階では固相
は生じていないが、酸化亜鉛粉末を浸漬等した場合に固
相が生じる欠点があった。すなわち、酸化ビスマスの硝
酸酸性水溶液(コバルト。
In this method, a solid phase is not formed when the salt solution of the additive is prepared, but there is a drawback that a solid phase is formed when the zinc oxide powder is immersed. Namely, a nitric acidic aqueous solution of bismuth oxide (cobalt.

クロム、マンガン等の塩を含む)を用意し、こねを酸化
亜鉛粉末に浸漬した場合、硝酸と酸化亜鉛とが反応して
酸性度が落ちることにより、酸化ビスマスあるいは水酸
化ビスマス等の固体が生じる。
When a dough (containing salts such as chromium and manganese) is prepared and the dough is immersed in zinc oxide powder, the nitric acid and zinc oxide react and the acidity decreases, producing solids such as bismuth oxide or bismuth hydroxide. .

また、塩化ビスマスのエタノール溶液を用いた場合、他
の添加物の塩がエタノールに溶けないため水溶液を用い
なければならず、酸化亜鉛粉末な浸漬する場合2種のア
ルコール溶液及び水溶液が混合し、水の存在により塩化
ビスマスが分解しビスマスの固相(化学式は不明)が生
じる。すなわち、添加物の塩溶液を用いても、塩溶液の
同時混合の方法では従来の粉末混合と何ら変わらす固相
が生じるという欠点がある。
In addition, when using an ethanol solution of bismuth chloride, an aqueous solution must be used because the salts of other additives do not dissolve in ethanol, and when zinc oxide powder is immersed, two kinds of alcohol solutions and aqueous solutions are mixed. In the presence of water, bismuth chloride decomposes to form a solid phase of bismuth (chemical formula unknown). That is, even if a salt solution of the additive is used, the method of simultaneous mixing of the salt solution has the disadvantage that a solid phase is generated which is no different from conventional powder mixing.

この発明は上記のような従来の欠点を除去するためにな
されたもので、一種以上の添加物の塩溶液を順次加える
ことにより固−液混合となり、均一性が高く電流、電圧
特性が優ね、かつ、連続通電によっても劣化の少ない電
圧非直線抵抗体を得ることを目的としている。
This invention was made in order to eliminate the above-mentioned drawbacks of the conventional technology. By sequentially adding salt solutions of one or more types of additives, a solid-liquid mixture is created, resulting in high uniformity and excellent current and voltage characteristics. The object of the present invention is to obtain a voltage nonlinear resistor that exhibits little deterioration even when continuously energized.

この発明の特徴とするところは、酸化亜鉛粉末に添加成
分を加えて電圧非直線抵抗体を得るにあたり、添加物と
して添加物の溶液同志が反応して固相を生じず、かつ酸
化亜鉛粉末に浸漬しても固相を生じない添加物の塩混合
溶液(有機溶媒も可)をいくつか用意し、混合溶液を酸
化亜鉛粉末に浸漬し蒸発乾固する操作を塩混合溶液の種
類数だけ繰り返した後、得た粉末を乾燥、熱分解、成形
The feature of this invention is that when adding additive components to zinc oxide powder to obtain a voltage nonlinear resistor, solutions of the additive do not react with each other to form a solid phase, and the zinc oxide powder Prepare several salt mixed solutions of additives that do not form a solid phase even when immersed (organic solvents are also acceptable), and repeat the process of immersing the mixed solutions in zinc oxide powder and evaporating to dryness for the number of types of salt mixed solutions. After that, the obtained powder is dried, pyrolyzed, and shaped.

(3) 焼結する電圧非直線抵抗体の製造方法にある。この型遣
方法により、酸化亜鉛粉末W添加物の塩混合溶液を接触
させて、酸化亜鉛粉末に添加物成分を均一に混合させる
ことができる。
(3) A method for manufacturing a sintered voltage nonlinear resistor. By this molding method, it is possible to uniformly mix the additive components into the zinc oxide powder by bringing the salt mixed solution of the zinc oxide powder W additive into contact with the zinc oxide powder.

添加物の塩は添加物溶液同志が反応して塩を形成しても
よいが、沈殿を生じない関係にあることが必要である。
The salt of the additive may form a salt by reacting with the additive solution, but it is necessary that the relationship is such that no precipitation occurs.

ただし、沈殿を生じる場合は、別途の溶液にすわばよく
、上記条件は必須なものではない。
However, if precipitation occurs, it may be added to a separate solution, and the above conditions are not essential.

他の条件は加熱1(よって容易に酸化物となる塩である
ことで、たとえば硝酸塩、塩化物、硫酸塩等で水あるい
は有機溶媒に可溶なもの、または陰イオンが弱酸または
弱アルカリ性のもので水溶性のもの等である。
Other conditions are heating 1 (thus, salts that easily become oxides, such as nitrates, chlorides, sulfates, etc., are soluble in water or organic solvents, or the anion is a weak acid or weak alkaline). and water-soluble ones.

この塩は酸化物に換算して秤量され沈殿を生じない塩同
志でいくつかの塩混合溶液にされる。酸化亜鉛粉末をひ
とつの混合溶液中忙懸濁混合し、溶媒がなくなるまで蒸
発乾固する。次に、酸化亜鉛粉末を懸濁混合し蒸発乾固
させたものを別の添加物の塩混合溶液に懸濁混合し、再
び蒸発乾固す(1) る。これを添加物の塩混合溶液の数だけ繰り返す。
This salt is weighed in terms of oxide and prepared into a mixed solution of several salts that do not cause precipitation. Zinc oxide powder was mixed in suspension in one mixed solution and evaporated to dryness until the solvent disappeared. Next, the zinc oxide powder is suspended and mixed and evaporated to dryness, then suspended and mixed in a salt mixed solution of another additive, and evaporated to dryness again (1). Repeat this for the number of additive salt mixture solutions.

なお、混合溶液と酸化亜鉛粉末との懸濁混合に塩それぞ
わ別個に酸化亜鉛粉末と懸濁混合する。
In addition, each salt is separately suspended and mixed with the zinc oxide powder in the suspension mixture of the mixed solution and the zinc oxide powder.

このようにして得た粉末を熱分解し、添加物を酸化物に
した後、従来の方法で粉砕、成形、焼結す幻ば厨偏混合
によって成分分布が均一になった酸化亜鉛が焼結される
ため、均一性の高い緻密な電流・電圧特性の優れた電圧
非直線抵抗体素子が待られる。
The powder thus obtained is thermally decomposed to turn the additives into oxides, and then crushed, molded, and sintered using conventional methods. Therefore, there is a need for a voltage nonlinear resistor element with highly uniform and precise current/voltage characteristics.

以下実施例によってこの発明を説明する。The present invention will be explained below with reference to Examples.

実施例 l 第1表に原料として用いた溶液の組成を示す。Example l Table 1 shows the composition of the solution used as a raw material.

酸化亜鉛lθθgに溶液lを混合し、ボールミルで1時
間混合した。この混合系を蒸発皿で9θ〜9!r℃、6
〜/j時間加熱した。乾燥した粉末に溶液コを混合しボ
ールミルで1時間混合した。
Solution 1 was mixed with zinc oxide lθθg and mixed in a ball mill for 1 hour. Pour this mixture into an evaporating dish at 9θ~9! r℃, 6
Heated for ~/j hours. The dry powder was mixed with the solution and mixed in a ball mill for 1 hour.

上記と同様に9θ〜?3℃で加熱し試料を乾燥した。得
られた粉末を100℃で2時間加熱し熱分解した後ライ
カイ機で粉砕し、バインダーとしてポリビニルアルコー
ル水溶液(3%)を加えて成形した。酸形圧300〜、
試料は円板状で直径コ左龍、厚さAm、得られた試料を
空気中で7200℃あるいはt3oOaC’1時間焼成
した。焼結体の両面にアルミを溶射し電極(素子)とし
た。
Same as above, 9θ~? The sample was dried by heating at 3°C. The obtained powder was thermally decomposed by heating at 100° C. for 2 hours, and then pulverized using a Laikai machine, and an aqueous polyvinyl alcohol solution (3%) was added as a binder and molded. Acid pressure 300~,
The sample was in the shape of a disk, had a diameter of 10 mm, and had a thickness of Am. Aluminum was sprayed on both sides of the sintered body to form electrodes (elements).

t【お、この実施例では溶液lと溶液−とを混合すると
沈殿が生じるため、2回にわけて酸化亜鉛と混合したも
のである。
t [In this example, since precipitation occurs when solution 1 and solution - are mixed, they are mixed with zinc oxide in two parts.

実施例 コ 第−表に原料として用いた溶液の組成を示す。Example Table 1 shows the composition of the solution used as a raw material.

第2表 (ただし溶液a中の酒石酸は酸化アンチモンを外溶解す
るため忙使用した。) 酸化亜鉛100gに溶液/と溶液コとを同時に混合し、
乾燥後溶液3を混合し、次いで乾燥して得られた粉末を
実施例1と同様にして電極とした。
Table 2 (However, tartaric acid in solution a was used to externally dissolve antimony oxide.) 100 g of zinc oxide was mixed with solution / and solution co at the same time,
After drying, solution 3 was mixed and then dried, and the resulting powder was used as an electrode in the same manner as in Example 1.

なお、この実施例では溶液は3種類あるが、溶液lと溶
液コとを混合しても沈殿は生じず同時に酸化亜鉛と混合
しても差し支えない。溶液l及び溶液コは塩を溶かすた
めに便宜士別にしただけで、溶けた後は混合してよい。
Although there are three types of solutions in this example, precipitation does not occur even if solutions 1 and 2 are mixed, and there is no problem even if they are mixed with zinc oxide at the same time. Solutions 1 and 2 are simply separated for convenience in order to dissolve the salt, and may be mixed after they have been dissolved.

ここでは溶液l及び溶液コを同時に混合し乾燥させた後
、溶液3を混合(り  ) した。
Here, solutions 1 and 2 were simultaneously mixed and dried, and then solution 3 was mixed.

比較例 従来の溶液混合方法及び粉末混合方法により得らねた粉
末を、実施例1と同様にして電極とした。
Comparative Example Powders obtained by the conventional solution mixing method and powder mixing method were made into electrodes in the same manner as in Example 1.

溶液混合方法では実施例1の第1表に示す酸化亜鉛、溶
液/及び溶液コの化合物を使用し、粉末混合方法では酸
化亜鉛lθθgと、酸化ビスマス+xJ(酸化アンチモ
ン3.ty、炭WIRマンガンθクダg、酸化コバルト
二1g、酸化クロムθ?gy、酸化ニッケル4 ? A
 Fとを用いた。
In the solution mixing method, zinc oxide, solution/and solution compounds shown in Table 1 of Example 1 were used, and in the powder mixing method, zinc oxide lθθg, bismuth oxide + xJ (antimony oxide 3.ty, charcoal WIR manganese θ Kuda g, cobalt oxide 2 1g, chromium oxide θ?gy, nickel oxide 4?A
F was used.

第3表にこの発明により得られた素子及び従来の製造方
法により得られた素子のみかけの密度を比較して示す。
Table 3 shows a comparison of the apparent densities of the device obtained by the present invention and the device obtained by the conventional manufacturing method.

(t’) 第3表かられかるように、従来の溶液混合方法では従来
の粉末混合方法に比べて密度がいくらか良くなっている
が、本発明の実施例ではそれを上回って非常に大きい値
となっている。すなわち、本発明によって得られた素子
は均一性が高く緻密であると言える。
(t') As can be seen from Table 3, the density is somewhat better in the conventional solution mixing method than in the conventional powder mixing method, but in the example of the present invention, the density is much higher than that. It becomes. That is, it can be said that the device obtained by the present invention has high uniformity and is dense.

次に実施例で製造した素子及び従来法により製造した素
子の電流・電圧特性を測定した結果を第1図に示す。曲
線lは本発明の実施例1及びコで製造した素子の値(両
結果はほとんど同じ値であった)、曲線コは従来の溶液
混合方法により製造した素子の値、曲線3は従来の粉末
混合方法により製造した素子の値をそれぞれ示す。焼成
温度はすべて1000℃である。電流の変化に対して電
圧の変化の小さいものほど優れた特性である。図かられ
かるように本発明により得られた素子は全電流領域で優
れた電流・電圧特性を示す。しかるに、従来の溶液混合
方法忙より得られた素子は低電流領域において劣った特
性を示し、従来の粉末混合方法により得られた素子は、
低電流領域及び高電流領域のいずれにおいても劣ってい
る。従来の溶液混合方法では混合時のビスマスの固相に
併なう分布不均一性が低電流領域での特性悪化を招き、
従来の粉末混合方法では添加物の不均一性が最も悪い結
果を与えたと考えられる。
Next, FIG. 1 shows the results of measuring the current/voltage characteristics of the device manufactured in the example and the device manufactured by the conventional method. Curve l is the value of the device manufactured in Example 1 and Example C of the present invention (both results were almost the same), curve C is the value of the device manufactured by the conventional solution mixing method, and curve 3 is the value of the device manufactured by the conventional powder mixing method. The values of elements manufactured by the mixing method are shown. The firing temperature was 1000°C in all cases. The smaller the change in voltage with respect to the change in current, the better the characteristics. As can be seen from the figure, the device obtained according to the present invention exhibits excellent current/voltage characteristics over the entire current range. However, the devices obtained using the conventional solution mixing method showed inferior characteristics in the low current region, and the devices obtained using the conventional powder mixing method showed poor characteristics in the low current region.
It is inferior in both the low current region and the high current region. In the conventional solution mixing method, the uneven distribution of bismuth in the solid phase during mixing leads to deterioration of characteristics in the low current region.
It is believed that non-uniformity of additives gave the worst results in conventional powder mixing methods.

第2図に第1図と同様の試料を用いて周囲温度/30℃
、課電率(交流印加電圧/ V/mA )=Or!rで
の抵抗外漏れ電流の経時変化を測定した結果を示す。図
中曲線lは本発明の実施例1及び2による素子の値、曲
線コは従来の溶液混合方法による素子の値、曲線、?は
従来の粉末混合方法による素子の値を示す。焼成温度は
すべて1000℃である。
Figure 2 shows the ambient temperature/30°C using the same sample as in Figure 1.
, charging rate (AC applied voltage/V/mA) = Or! The results of measuring the change in leakage current outside the resistor over time at r are shown. In the figure, curve 1 is the value of the device according to Examples 1 and 2 of the present invention, curve C is the value of the device according to the conventional solution mixing method, and the curve ? indicates the value of the element obtained by the conventional powder mixing method. The firing temperature was 1000°C in all cases.

図で曲線が右上がすなものほど通電により素子が劣化し
やすいことを示している。図かられかるように本発明に
より得られた素子は抵抗外漏れ電流の増加が最も小さく
、従来のコ種の製法に比べて連続通電によって劣化しに
くいのは明らかである。
In the figure, the closer the curve is to the upper right, the more easily the element deteriorates due to energization. As can be seen from the figure, the element obtained by the present invention has the smallest increase in leakage current outside the resistor, and it is clear that it is less likely to deteriorate due to continuous energization than the conventional manufacturing method.

なお、上記実施例では酸化亜鉛粉末を原料としたものを
示したが、硝酸亜鉛等のように水あるいは有機溶媒に可
溶なもので加熱によって容易に酸化物となる塩を原料と
し、混合系全体を溶液としてもよく、上記実施例と同様
の効果が見られる。
In addition, in the above examples, zinc oxide powder was used as the raw material, but a mixed system using a salt such as zinc nitrate, which is soluble in water or an organic solvent and easily becomes an oxide when heated, is used as the raw material. The entire solution may be used as a solution, and the same effect as in the above example can be seen.

また、上記実施例では塩化ビスマスのエタノール溶液を
用いたものを示したが、他の有機溶媒としてもよく、ま
た、有機溶媒に可溶な他のビスマス塩も使用でき、上記
実施例と同様の効果が見られる。
In addition, although the above example uses an ethanol solution of bismuth chloride, other organic solvents may be used, and other bismuth salts soluble in organic solvents may also be used, and the same solution as in the above example may be used. You can see the effect.

以上のように、この発明によれば酸化亜鉛粉末と添加物
塩溶液の混合の際に固相が生じることを避けるため、段
階的に添加物塩溶液を懸濁混合し、すべての添加物を溶
液として混合するようにしたので、均一性の高い緻密で
電流・電圧特性の優れた、かつ連続通電によっても劣化
のしにくい電圧非直線抵抗体が得られる効果がある。
As described above, according to the present invention, in order to avoid the formation of a solid phase when mixing the zinc oxide powder and the additive salt solution, the additive salt solution is suspended and mixed in stages to completely remove all the additives. Since the mixture is mixed as a solution, it is possible to obtain a voltage nonlinear resistor that is highly uniform, dense, has excellent current/voltage characteristics, and is resistant to deterioration even when continuously energized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明方法により製造した素子及び従来法に
より製造した素子の電流・電圧特性を示す図、第一図は
第1図と同様の試料についての抵抗外漏れ電流の経時変
化を示す図である。 代理人  葛  野  信  − 党1図 −2、 特許庁長官殿 1.事件の表示    特願昭37一−〇411JII
号2、発明の名称 電圧非直線抵抗体の製造方法 3、補正をする者 事件との関係   特許出願人 住 所     東京都千代田区丸の内二丁目2番3号
名 称(601,)   三菱電機株式会社代表者片山
仁八部 4、代理人 住 所     東京都千代田区丸の内二丁目2番3号
三菱電機株式会社内 よ 補正の対象 (1)  明細書の発明の詳細な説明の欄ム 補正の内
容 +11  明細書第ざ頁下から7行「電極」を「素子」
に補正する。
Fig. 1 is a diagram showing the current/voltage characteristics of an element manufactured by the method of the present invention and an element manufactured by the conventional method, and Fig. 1 shows the change over time in the leakage current outside the resistance for the same sample as in Fig. 1. It is a diagram. Agent Makoto Kuzuno - Party 1 Figure 2, Commissioner of the Japan Patent Office 1. Indication of the case Patent application No. 371-0411JII
No. 2, Name of the invention Method for manufacturing a voltage nonlinear resistor 3, Relationship with the case of the person making the amendment Patent applicant address 2-2-3 Marunouchi, Chiyoda-ku, Tokyo Name (601,) Mitsubishi Electric Corporation Representative: Hitoshi Katayama 4, Agent address: Mitsubishi Electric Corporation, 2-2-3 Marunouchi, Chiyoda-ku, Tokyo Subject of amendment (1) Column for detailed explanation of the invention in the specification Contents of amendment +11 7th line from the bottom of page 1 of the specification “electrode” is changed to “element”
Correct to.

Claims (2)

【特許請求の範囲】[Claims] (1)  酸化亜鉛を主成分とし添加成分を加えて電圧
非直線抵抗体を製造する方法において、添加物の溶液を
用意し、固相が生じない組合せで1種以上の混合溶液と
し、該混合溶液と酸化亜鉛粉末とく− を懸濁混合する際に固液混合となるように順次読混合溶
液と酸化亜鉛粉末との懸濁混合、乾燥を繰り返し、得た
粉末を粉砕、熱分解、成形、焼結することを特徴とする
電圧非直線抵抗体の製造方法。
(1) In a method of manufacturing a voltage nonlinear resistor using zinc oxide as the main component and adding additive components, a solution of the additive is prepared, a mixed solution of one or more types is prepared in a combination that does not produce a solid phase, and the mixture is When the solution and zinc oxide powder are mixed in suspension, the suspension mixing and drying of the mixed solution and zinc oxide powder are repeated in order to form a solid-liquid mixture, and the obtained powder is pulverized, pyrolyzed, molded, A method for manufacturing a voltage nonlinear resistor, characterized by sintering.
(2)混合溶液と酸化亜鉛粉末との懸濁混合に塩化ビス
マスの有機溶媒溶液を用いる特許請求の範囲第7項記載
の電圧非直線抵抗体の製造方法。 特許請求の範囲第コ項記載の電圧非直線抵抗体の製造方
法。
(2) The method for manufacturing a voltage nonlinear resistor according to claim 7, wherein an organic solvent solution of bismuth chloride is used for suspension mixing of the mixed solution and zinc oxide powder. A method for manufacturing a voltage nonlinear resistor according to claim 1.
JP57204134A 1982-11-18 1982-11-18 Method of producing voltage nonlinear resistor Pending JPS5992504A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57204134A JPS5992504A (en) 1982-11-18 1982-11-18 Method of producing voltage nonlinear resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57204134A JPS5992504A (en) 1982-11-18 1982-11-18 Method of producing voltage nonlinear resistor

Publications (1)

Publication Number Publication Date
JPS5992504A true JPS5992504A (en) 1984-05-28

Family

ID=16485395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57204134A Pending JPS5992504A (en) 1982-11-18 1982-11-18 Method of producing voltage nonlinear resistor

Country Status (1)

Country Link
JP (1) JPS5992504A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010010466A (en) * 2008-06-27 2010-01-14 Doshisha Method of manufacturing antimony-added zinc oxide varistor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010010466A (en) * 2008-06-27 2010-01-14 Doshisha Method of manufacturing antimony-added zinc oxide varistor

Similar Documents

Publication Publication Date Title
US4318995A (en) Method of preparing lightly doped ceramic materials
US3445731A (en) Solid capacitor with a porous aluminum anode containing up to 8% magnesium
US2946937A (en) Ceramic material and method of producing the same
US4049789A (en) Process for preparation of mixed oxide powders
EP0415428B1 (en) Powder composition for sintering into modified barium titanate semiconductive ceramic
US3028656A (en) Ceramic material and method of producing the same
JPS5992504A (en) Method of producing voltage nonlinear resistor
US3316184A (en) Barium titanate ceramic composition
JPH0210089B2 (en)
JP2774890B2 (en) Method for producing thick film thermistor composition
JPS606535B2 (en) porcelain composition
KR960012294B1 (en) Solid tantalium electrolytic capacitor manufacturing method using a surface active agent
KR0143448B1 (en) High positive temperature purogen and the process for preparing the same
JPS62230622A (en) Production of perovskite-type compound
JP3149467B2 (en) Method for producing fine powder for semiconductor porcelain
JPS6364301A (en) Manufacture of voltage nonlinear resistor
JPS59106104A (en) Method of producing voltage nonlinear resistor
JPS62293702A (en) Manufacture of ceramic zinc oxide varistor material
JPS6291417A (en) Production of raw material for easy-to-sinter perovskite and its solid solution by multiple wet method
KR970005088B1 (en) Plastic method of tantalium electrolytic condenser
JP2563971B2 (en) Oxide voltage nonlinear resistor manufacturing method
JPS61102004A (en) Manufacture of voltage non-linear resistance element
JPS6049619A (en) Method of producing grain goundary type semiconductor ceramic capacitor
JPS6320001B2 (en)
JPS5968906A (en) Method of producing voltage nonlinear resistor