JPS5968906A - Method of producing voltage nonlinear resistor - Google Patents
Method of producing voltage nonlinear resistorInfo
- Publication number
- JPS5968906A JPS5968906A JP57181010A JP18101082A JPS5968906A JP S5968906 A JPS5968906 A JP S5968906A JP 57181010 A JP57181010 A JP 57181010A JP 18101082 A JP18101082 A JP 18101082A JP S5968906 A JPS5968906 A JP S5968906A
- Authority
- JP
- Japan
- Prior art keywords
- zinc oxide
- voltage
- bismuth
- voltage nonlinear
- drying
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Thermistors And Varistors (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
この発明は、避雷器、サージ吸収器に使用される、酸化
亜鉛を主成分とする電圧非直線抵抗体の製造方法にIP
lするものである。DETAILED DESCRIPTION OF THE INVENTION The present invention provides an IP method for manufacturing a voltage non-linear resistor that is mainly composed of zinc oxide and is used in lightning arresters and surge absorbers.
It is something to do.
従来、酸化亜鉛電圧非直線抵抗体を製造する場合、一般
的fは主成分の酸化亜鉛をはじめ酸化ビスマス、酸化コ
バルトなどの添加物も酸化物粉末原料として使用する。Conventionally, when producing a zinc oxide voltage nonlinear resistor, the general f is the main component of zinc oxide, and additives such as bismuth oxide and cobalt oxide are also used as oxide powder raw materials.
これら各種の粉末は水を加えボールミル等の手段で混合
され、乾燥後適当なバインダを加えて顆粒をつくり、フ
レス成形を経て7.200℃前後の温度で焼成して焼結
体を得る。These various powders are mixed by adding water and using a ball mill or the like, and after drying, a suitable binder is added to form granules, which are then subjected to fless molding and fired at a temperature of around 7.200°C to obtain a sintered body.
こねに研磨電極の形成ののち素子が得られる。これらの
工程中、顆粒を形成する造粒工程は大量生産の場合、
P V A (ポリビニールアルコール)ナトのバイン
ダを加えた泥漿をトルネートリアクタ。After forming a polished electrode on the dough, an element is obtained. Among these processes, the granulation process to form granules is required for mass production.
Add a binder of PVA (polyvinyl alcohol) to the tornado reactor.
スプレィドライヤ等の乾燥装置を使って乾燥顆粒を造る
ことがよく行われている。Dry granules are often produced using drying equipment such as spray dryers.
電圧非直線抵抗体の種々の電気特性は、製造方法及びそ
の製造パラメータ妬より大きく変化することは周知の通
りである。例えば、混合工程の場合、主成分以外の微量
添加物が10種類近くあること、各粉体密度がかなり異
なること(酸化亜鉛密度:左A g/ct/I 、酸化
ビスマス密度gqF!/crl、酸化珪素密度ユ、21
1/cd等)などの理由により十分均一な混合をするに
はかなり困難な点があった。It is well known that various electrical characteristics of voltage nonlinear resistors vary greatly depending on the manufacturing method and manufacturing parameters thereof. For example, in the case of the mixing process, there are nearly 10 types of trace additives other than the main ingredients, and the density of each powder is quite different (zinc oxide density: left A g/ct/I, bismuth oxide density gqF!/crl, Silicon oxide density, 21
1/cd, etc.), it is quite difficult to achieve sufficiently uniform mixing.
混合不良はセラミック自体の均一性を悪化させ、ひいて
は電圧非直線性、寿命、各種耐量試験不良などとしてあ
られ矛する。Poor mixing deteriorates the uniformity of the ceramic itself, which in turn causes problems such as voltage non-linearity, lifespan, and failures in various durability tests.
混合の均一性の確保に関する言及は少ないが、例えば特
開昭’Ig 97090号公報に記載されているよう
な添加物イオン水溶液を酸化亜鉛粉末に加え、混合する
という方法が提案されている。Although there is little mention of ensuring uniformity of mixing, for example, a method has been proposed in which an aqueous solution of additive ions is added to zinc oxide powder and mixed, as described in Japanese Patent Application Laid-Open No. 1997-97090.
この混合物はミクロな意味でよく混合しており、得られ
た焼結体は通常の粉末を出発原料としたものと比較する
と、粒子径もよく揃い欠陥も少なく、しかも電流−電圧
特性、寿命特性などもすぐれている。これらの塩を混合
する方法は、素子にすぐれた特性を付与するが、実際の
製作過程では泥漿の乾燥方式の点で問題のあることがわ
かった。This mixture is well mixed in a microscopic sense, and the resulting sintered body has a well-uniformed particle size and fewer defects, as well as current-voltage characteristics and lifespan characteristics, compared to those using ordinary powder as a starting material. etc. are also excellent. Although the method of mixing these salts gives the device excellent properties, it has been found that there are problems in the drying method of the slurry in the actual manufacturing process.
こねについて若干述べる6第1図に、酸化亜鉛を主成分
とする電圧非直線抵抗体の微細構造模型を示す。図中、
抵抗体の微細構造は酸化亜鉛を主成分とする粒子l、主
として酸化ビスマスを主成分とする境界層コ、酸化アン
チモンを添加した場合に生じるスピネル等の粒子3を含
む。電圧非直線性が発生する根源は、酸化亜鉛粒子同志
、又は酸化亜鉛及び酸化ビスマスの境界層に存在する電
気的な障壁に関連するものでま・ると考えられている。6. Figure 1 shows a microstructure model of a voltage nonlinear resistor whose main component is zinc oxide. In the figure,
The fine structure of the resistor includes particles 1 mainly composed of zinc oxide, a boundary layer mainly composed of bismuth oxide, and particles 3 of spinel or the like produced when antimony oxide is added. The source of voltage nonlinearity is thought to be related to electrical barriers existing between zinc oxide particles or in a boundary layer between zinc oxide and bismuth oxide.
障壁Kかかる電圧の大小により、(1)オーミック領域
、(λ)ショットキ領域、(3)トンネル領域、及び(
り)酸化亜鉛粒子の抵抗が電流−電圧特性を支配する領
域とにわかれる。避雷器の場合には課電条件にもよるが
、もれ電流領域はほぼ(,2)領域忙相当し、いわゆる
制限電圧と定義される電流領域(/θKA−)OK八)
は領域(3)及び(ダ)に相当する。Depending on the magnitude of the voltage applied to the barrier K, (1) ohmic region, (λ) Schottky region, (3) tunnel region, and (
(i) A region where the resistance of zinc oxide particles dominates the current-voltage characteristics. In the case of lightning arresters, although it depends on the energizing conditions, the leakage current region roughly corresponds to the (,2) region, and the current region (/θKA-) is defined as the so-called limiting voltage.
corresponds to areas (3) and (da).
すなわち、保護特性のすぐれた素子は(,2)の領域忙
おける電流安定性(寿命)がよ< 、(、?)または(
4t)の領域に関係する制限電圧ができる限り小さい方
が望ましい。In other words, an element with excellent protection characteristics has a current stability (lifetime) in the range (, 2) < , (,?) or (
It is desirable that the limiting voltage related to the region 4t) be as small as possible.
今までの微+vIII構造の検討及び反応メカニズムの
検討から、酸化ビスマス(又は高温で酸化ビスマスにな
るような化合物例えば硝酸ビスマスなど)は、焼成時に
は液相となり、酸化亜鉛粒子の結晶成長を促進し、クロ
ム等のイオンを固溶し、酸化亜鉛粒子を七−おうように
存在する。コノ(ルト、ニッケル、マンガン、クロム、
アルミニウムナトのイオンは酸化亜鉛粒子に固溶するが
、一部は酸化アンチモン(もしくは高温で分解し酸化ア
ンチモンとなるもの例えば酒石酸アンチモン)とともに
スピネル粒子を形成する。これから、酸化亜鉛粒子内に
固溶する成分は主として大電流領域(前記(、?)及び
(4’) )に関連し、酸化ビスマスなどのように酸化
亜鉛と容易に反応せず、粒子間に存在するものについて
は主として低電流領域(前記(1)及び(2))に関係
する。なお、第2相のスピネル粒子をま酸イヒ亜鉛部分
、酸化ビスマス部分への各種イオンの分配に関与してい
ると考えられる。From the previous studies on the fine+vIII structure and the reaction mechanism, we have found that bismuth oxide (or compounds that form bismuth oxide at high temperatures, such as bismuth nitrate) becomes a liquid phase during firing and promotes the crystal growth of zinc oxide particles. , chromium, and other ions are dissolved in solid solution, and zinc oxide particles are present as a solid solution. Kono (ruto, nickel, manganese, chromium,
Aluminum oxide ions are dissolved in zinc oxide particles, but some of them form spinel particles together with antimony oxide (or substances that decompose at high temperatures to become antimony oxide, such as antimony tartrate). From this, it can be seen that the components dissolved in zinc oxide particles are mainly related to the large current region ((,?) and (4') above), do not easily react with zinc oxide like bismuth oxide, and are Those that do exist are mainly related to the low current region ((1) and (2) above). It is thought that the spinel particles of the second phase are involved in the distribution of various ions to the zinc oxide portion and the bismuth oxide portion.
さて、各種の塩の水溶液の作成にあたり、ニッケル、コ
バルト、マンガン及びクロムなどの硝酸塩は水によく溶
解し、また酒石酸アンチモンも易溶性である 一方、ビ
スマスの硝酸塩は、水にシま不溶性で水酸化物状態の自
沈を生じるが、これに濃硝酸を添加してpHを小さくす
ることにより自沈は消滅し」1−1−に溶解する。十分
に〃1い硝酸々性中でビスマスイオンは安定に存在する
が この溶液を多獣の酸化亜鉛粉末と反応させると、次
式に従い硝酸は酸化亜鉛と1みやかに反応するため、Z
nO+ 2HNOy → Zn (No、)
、 + HxO溶液のT)Hは大きくなりビス
マスイオンはただちに自沈を形成する。すなわち、硝酸
を含む硝酸ビスマスの水溶液はみかけ上−轡な水溶液で
あるが、この水溶液を酸化亜鉛粉末と混合するとすぐに
自沈L7固相を形成するため、他の添加イオン成分との
混合と同様には扱えず、均一な分散性にも問題を生じる
。Now, when preparing aqueous solutions of various salts, nitrates such as nickel, cobalt, manganese, and chromium dissolve well in water, and antimony tartrate is also easily soluble, while nitrate of bismuth is slightly insoluble in water. It causes scuttling in an oxide state, but by adding concentrated nitric acid to lower the pH, the scuttling disappears and it dissolves in 1-1-. Bismuth ions exist stably in nitric acid with a sufficiently high concentration of 1, but when this solution is reacted with Zinc oxide powder, nitric acid reacts with zinc oxide quickly according to the following equation, so Z
nO+ 2HNOy → Zn (No,)
, + T)H of the HxO solution becomes large and bismuth ions immediately form scuttling. In other words, an aqueous solution of bismuth nitrate containing nitric acid appears to be a sloppy aqueous solution, but when this aqueous solution is mixed with zinc oxide powder, it immediately forms a scuttling L7 solid phase, so it is similar to mixing with other added ionic components. It cannot be handled as such, and it causes problems in uniform dispersion.
特に、こ11らの泥漿を静置して乾燥すると、ビスマス
イオン以外は水溶液の蒸発乾固物となるが、ビスマスは
自沈物として同相から乾燥されることになり、しかもこ
の密度が極めて大、きいことからビスマス九関しては均
一性の高い乾燥粉末を得る・ことが極めて困難となり、
これが低電流側の電流電圧特性を悪化させ、寿命特性に
も悪影響を与えることがわかった。In particular, when these 11 slurries are allowed to stand and dry, all but the bismuth ions become evaporated to dryness from the aqueous solution, but the bismuth is dried from the same phase as a scuttling substance, and this density is extremely high. Due to this fact, it is extremely difficult to obtain a highly uniform dry powder for bismuth nine.
It was found that this deteriorated the current-voltage characteristics on the low current side and had a negative impact on the life characteristics.
なお、ここで硝酸ビスマスの使用を主としてのべてきた
が、塩化ビスマスをアルコール溶液で使用した場合にも
水が多量にあると容8に加水分解を起し同相を形成する
ので同様である、いずれにしても、ビスマスイオン匠関
しては溶液状態で酸化亜鉛ど混合することは困鮮である
ため、この自沈物が生じてもできるだけよりよい混合状
態で乾燥させる必要がある。こりす第1ば他の大巾に改
善さAすることかわかった。Although we have mainly talked about the use of bismuth nitrate here, the same is true when bismuth chloride is used in an alcoholic solution because if there is a large amount of water, it will undergo hydrolysis and form the same phase. In any case, since it is difficult to mix bismuth ion powder with zinc oxide in a solution state, it is necessary to dry it in the best possible mixed state even if this precipitate occurs. I found out that Collisu's first A was improved to other large widths.
この発明は以上のような知見Kmいてなさ第1たもので
あり、酸化亜鉛も主成分どした電圧非直線抵抗体の製造
において、酸化亜鉛粉末、添加物の金属塩水溶液及び添
加物の一部の反応沈澱物を含む混合泥漿を攪拌又は擾乱
により均一化し、直ちに該混合泥漿を微細固体に乾燥し
、前記抵抗体原料粉末を得る工程を含む電圧非直iiI
!i!4F(抗体の製造方法に存する。This invention is the first of its kind to have the above-mentioned knowledge, and in the production of a voltage nonlinear resistor that also contains zinc oxide as a main component, zinc oxide powder, an aqueous metal salt solution of an additive, and a part of the additive are used. Voltage non-straight III comprising the step of homogenizing the mixed slurry containing the reaction precipitate by stirring or agitation, and immediately drying the mixed slurry into a fine solid to obtain the resistor raw material powder.
! i! 4F (in the antibody production method).
よりよい混合状態で乾燥させる方法としては噴霧乾燥器
、流動層/JLI熱器又は凍結乾燥器等を使用したいく
つかの方法が好適に用いられるが、いずハにしても急速
に乾燥させる方法が望ましい。ここでは噴霧乾燥器を使
用した場合及び凍結乾燥法を使用した場合について実施
例にもとすいて説明する。As a method for drying in a better mixed state, several methods using a spray dryer, fluidized bed/JLI heater, freeze dryer, etc. are preferably used, but any method is a method for rapid drying. is desirable. Here, a case where a spray dryer is used and a case where a freeze-drying method is used will be explained based on examples.
実施例 実験室タイプの噴霧乾燥器を使用した場合を説明する。Example The case where a laboratory type spray dryer is used will be explained.
硝酸ニッケル、?、 t g 、硝酸コバルト7、s;
1.硝酸クロムs、、zg 、硝酸マンガン1g5yを
lθθmlの水に溶解した溶液を作り、これと10θy
の酸化亜鉛粉末とを混合し泥漿を形成する。得た泥漿を
スタラー等により約30分間混合する。次に酒石酸/3
1!と酸化アンチモンJざIを700gの水に溶解して
前記泥漿に加え、同様に攪拌を続ける。Nickel nitrate? , t g , cobalt nitrate 7, s;
1. Prepare a solution by dissolving chromium nitrate s,,zg and manganese nitrate 1g5y in lθθml of water, and mix this with 10θy
and zinc oxide powder to form a slurry. The obtained slurry is mixed for about 30 minutes using a stirrer or the like. Next, tartaric acid/3
1! and antimony oxide JZI were dissolved in 700 g of water and added to the slurry, and stirring was continued in the same manner.
硝酸ビスマスSSgを水/θrIItと濃硝酸lθm)
の混合物に溶解し、この溶液を攪拌しつつある前記酸化
亜鉛等を含む泥漿にゆっくり加えていく。Bismuth nitrate SSg in water/θrIIt and concentrated nitric acid lθm)
This solution is slowly added to the stirring slurry containing zinc oxide, etc.
約3分間1υ拌後、噴霧乾燥器の液輸送ポンプから泥漿
を送り、乾燥を開始する。本発明では当然のことながら
乾燥中は常に泥漿攪拌は続ける。第2図には使用した二
流体ノズル方式の市販品噴霧乾燥器の概略図を示す、図
史の噴霧乾燥器では例えば泥漿状試料ケ、泥漿輸送ポン
プS、ノズルル。After 1υ stirring for about 3 minutes, the slurry is sent from the liquid transfer pump of the spray dryer to start drying. In the present invention, as a matter of course, the slurry is constantly stirred during drying. FIG. 2 shows a schematic diagram of the two-fluid nozzle type commercially available spray dryer used.
空気加熱器7.乾燥ヂャンバt、排風器9.サイクロ7
/θ、コンプレッサ//、生成物収容器lλ及び/ 、
7等を含む。本実験での動作条件は、熱風入口湯度l左
O℃、チェンバ排風温度10℃、乾燥空気量0. !
m”7分、ノズル吐出圧3〜、液送量lθml 7分で
あった。Air heater7. Drying chamber, exhaust fan9. cyclo 7
/θ, compressor//, product container lλ and/,
Including 7th prize. The operating conditions in this experiment were: hot air inlet temperature 10°C, chamber exhaust air temperature 10°C, dry air amount 0. !
m"7 minutes, nozzle discharge pressure 3~, and liquid delivery amount lθml 7 minutes.
なお得られた抵抗体原料粉未収率は約7θ%であった。The unrecovered rate of the resistor raw material powder obtained was about 7θ%.
この粉末を通常の窯業的手法にまり造粒。This powder is granulated using standard ceramic techniques.
成形後焼成した。アルミニウム電極を溶射により形成し
て電流電圧特性を測った。After molding, it was fired. An aluminum electrode was formed by thermal spraying and the current-voltage characteristics were measured.
なお、噴霧乾燥粉末を使用して素子を作成した場合をA
試料とし、更に比較例として噴霧乾燥せずに泥漿を静止
してオーブン等で乾燥した粉末から出発して素子を作成
した場合なり試料、また、酸化亜鉛粉末も全て酸化物粉
末を使用した場合なC試料として示す。なお、乾燥粉未
作成以外の製造工程はA 、B 、及びC試料では全て
同一である。In addition, the case where the device was created using spray-dried powder is A.
As a sample, and as a comparative example, an element was prepared starting from a powder that had been dried in an oven, etc. by keeping the slurry still without spray drying, and a case where all oxide powder was used for the zinc oxide powder. Shown as sample C. Note that the manufacturing steps for samples A, B, and C are all the same except that the dry powder was not prepared.
/jθ℃でダ時間焼成して得られた素子の収縮率を下記
の表に示す。The shrinkage percentage of the element obtained by firing at /jθ°C for a period of time is shown in the table below.
A素子 B素子 C素子
」35(%) 、2コ(%) tg(%)明らか
KA試料及びB試料はC試料より大きく収縮し、各種の
塩を水溶液で加えたために素子内部しておけるセラミッ
ク生成過程の諸反応の反応性が向上したことがうかがえ
る。A element B element C element 35 (%), 2 pieces (%) tg (%) It is clear that the KA sample and the B sample shrunk more than the C sample, and the ceramic inside the element was caused by the addition of various salts in the form of an aqueous solution. It can be seen that the reactivity of various reactions in the production process has improved.
第3図は上記3種の試料の電流電圧特性の測定結果を示
す。試料Aは全電流領域で最も優れた特性を示し、B試
料では低電流領域が、C試料では大電流及び小電流領域
両方が共に劣っていることがわかる。FIG. 3 shows the measurement results of the current-voltage characteristics of the three types of samples mentioned above. It can be seen that sample A exhibits the best characteristics in the entire current range, sample B has poorer characteristics in the low current region, and sample C has poorer characteristics in both the large current and small current regions.
なお、流動層式の乾燥器も、噴霧乾燥器と類似しており
得られた素子の電流・電圧特性も同様だった。Note that the fluidized bed dryer is similar to the spray dryer, and the current and voltage characteristics of the obtained devices were also similar.
実施例 λ
すでに凍結乾燥法として知られている方法を使用した場
合を述べる。例えばAJII 、Ceram 、sac
、BuJ、J、。Example λ A case will be described in which a method already known as the freeze-drying method is used. For example AJII, Ceram, sac
, BuJ, J.
のS/巻/S9頁(t ? 7.2年)にあるような方
法である。この方法の概念図を第1図忙示す。This is the method described in S/Volume/S9 page (t? 7.2). A conceptual diagram of this method is shown in Figure 1.
図中の乾燥器では例えばドライアイス、アセトンなどを
使用した寒剤/f、ヘキサン溶液/jf。The dryer in the figure uses, for example, dry ice, a cold agent/f using acetone, etc., and a hexane solution/jf.
スタラー等の攪拌装置/6、実施例1で述べた各種の塩
、酸化亜鉛及びビスマス化合物など全添加物を含む混合
泥漿/7等を含む。lざから窒素ガスを送りノズルi”
yから細かい霧状になった泥漿をヘキサン溶液中に入れ
瞬時に凍結させる。凍結した泥漿はへキサン溶液の底に
たまるので、これをメツシュ上で集め、すばやく減圧乾
燥する。真空度は10−’〜/ 0−’ 冑wgH程度
である。It includes a stirring device such as a stirrer/6, a mixed slurry/7 containing all the additives such as various salts, zinc oxide, and bismuth compounds described in Example 1. Send nitrogen gas from the nozzle
Put the fine mist-like slurry from y into a hexane solution and freeze it instantly. The frozen slurry will accumulate at the bottom of the hexane solution, so collect it on a mesh and quickly dry it under reduced pressure. The degree of vacuum is about 10-'~/0-'wgH.
このようにして乾燥した抵抗体原料粉末から通・8常の
窯業的手法により作成した素子をD試料として、電流電
圧特性を調べるとほぼ第3図に示めしたA試料と同一な
特性であることが確認された。When we examine the current-voltage characteristics of a device made from the thus dried resistor raw material powder using the usual ceramic method as Sample D, we find that it has almost the same characteristics as Sample A shown in Figure 3. This was confirmed.
以上のように1.セラミクスの均質性をあげ、かつ電流
電圧特性改善のために添加物各種イオン水溶液、ビスマ
ス自沈物及び酸化亜鉛の王者からなる泥漿を静置するこ
となしに攪拌等により均一化し、微細に乾燥固化させこ
れを原料として電圧非直線抵抗体を製造することにより
、その特性の改善が実現された。As mentioned above, 1. In order to increase the homogeneity of ceramics and improve current-voltage characteristics, slurry consisting of various ion aqueous solutions, bismuth autoprecipitates, and the king of zinc oxide is homogenized by stirring without leaving it still, and then finely dried and solidified. By manufacturing a voltage nonlinear resistor using this as a raw material, improvements in its characteristics were realized.
第1図は電圧非直線掛抗体の微細構造を示す模式図、第
2図はこの発明に使用する噴霧乾燥器の概略図、第3図
はこの発明方法及び従来法により製造した素子の電流電
圧特性を示す図、第q図はこの発明に使用する凍結乾燥
法の概略図である。
図中、
l・・酪化亜鉛を主成分とする粒子、コ・・醇化ビスマ
スを主成分とする境界層、3・・スピネル粒子、ダ・・
試料泥漿、3・・泥漿輸送ポンプ、6・・ノズル、7・
・空気加熱器、ざ・・乾燥チャンバ、ワ・・排風器、I
Q・・サイクロン、//・・コンプレッサ、lj及び1
3・・生成物収納容器、/ダ・・ドライアイス−アセト
ン(寒剤)、lj・・ヘキサン溶液、/A・・攪拌装置
、17・・混合泥漿、/Ir・・窒素カス、/9・・ノ
ズル、−〇・・断熱材。
代理人 葛 野 信 −
yfE)1図
焔3図
電丸(/cvlL&)Fig. 1 is a schematic diagram showing the fine structure of a voltage non-linear applied body, Fig. 2 is a schematic diagram of a spray dryer used in this invention, and Fig. 3 is a current/voltage diagram of devices manufactured by the method of this invention and the conventional method. The characteristic diagram, Figure q, is a schematic diagram of the freeze-drying method used in the present invention. In the figure, l...particles whose main component is zinc butyride, co...boundary layer whose main component is bismuth liquefaction, 3...spinel particles, da...
Sample slurry, 3. Slurry transport pump, 6. Nozzle, 7.
・Air heater, za...drying chamber, wa...exhaust fan, I
Q...Cyclone, //...Compressor, lj and 1
3.Product storage container, /Da.Dry ice-acetone (cold agent), lj.Hexane solution, /A.Stirring device, 17.Mixed slurry, /Ir..Nitrogen scum, /9.. Nozzle, -〇...insulation material. Agent Shin Kuzuno - yfE) Figure 1 Flame Figure 3 Denmaru (/cvlL&)
Claims (1)
において、酸化亜鉛粉末、添加物の金属塩水溶液及び添
加物の一部の反応沈澱物を含む混合泥漿を攪拌又は擾乱
により均一化し、直ちに該混合泥漿を微細固体に乾燥し
、前記抵抗体原料粉末を得る工程を含むことを特徴とす
る、電圧非直線抵抗体の製造方法。 (コ)乾燥な噴霧乾燥器又は流動層加熱器により蒸発を
利用して行lJ5特許請求の範囲第1項記載の電圧非直
線抵抗体の製造方法。 (3)乾燥を凍結乾燥器により昇華を利用して行なう特
許請求の範囲第7項記載の電圧非直線抵抗体の製造方法
。[Scope of Claims] In the production of a voltage nonlinear resistor containing zinc oxide as a main component, a mixed slurry containing zinc oxide powder, an aqueous metal salt solution of an additive, and a reaction precipitate of a part of the additive is used. A method for manufacturing a voltage non-linear resistor, comprising the steps of homogenizing by stirring or agitation and immediately drying the mixed slurry into a fine solid to obtain the resistor raw material powder. (g) A method for manufacturing a voltage nonlinear resistor according to claim 1, which is performed by utilizing evaporation in a dry spray dryer or a fluidized bed heater. (3) The method for manufacturing a voltage nonlinear resistor according to claim 7, wherein drying is performed using sublimation in a freeze dryer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57181010A JPS5968906A (en) | 1982-10-13 | 1982-10-13 | Method of producing voltage nonlinear resistor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57181010A JPS5968906A (en) | 1982-10-13 | 1982-10-13 | Method of producing voltage nonlinear resistor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5968906A true JPS5968906A (en) | 1984-04-19 |
JPH043645B2 JPH043645B2 (en) | 1992-01-23 |
Family
ID=16093162
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57181010A Granted JPS5968906A (en) | 1982-10-13 | 1982-10-13 | Method of producing voltage nonlinear resistor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5968906A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013088847A1 (en) * | 2011-12-14 | 2013-06-20 | 株式会社明電舎 | Method for producing non-linear resistor element |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5141438A (en) * | 1974-09-19 | 1976-04-07 | Basf Ag | |
JPS56101713A (en) * | 1980-01-18 | 1981-08-14 | Matsushita Electric Ind Co Ltd | Method of manufacturing voltage nonnlinear resistor |
JPS56101714A (en) * | 1980-01-18 | 1981-08-14 | Matsushita Electric Ind Co Ltd | Method of manufacturing voltage nonnlinear resistor |
-
1982
- 1982-10-13 JP JP57181010A patent/JPS5968906A/en active Granted
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5141438A (en) * | 1974-09-19 | 1976-04-07 | Basf Ag | |
JPS56101713A (en) * | 1980-01-18 | 1981-08-14 | Matsushita Electric Ind Co Ltd | Method of manufacturing voltage nonnlinear resistor |
JPS56101714A (en) * | 1980-01-18 | 1981-08-14 | Matsushita Electric Ind Co Ltd | Method of manufacturing voltage nonnlinear resistor |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013088847A1 (en) * | 2011-12-14 | 2013-06-20 | 株式会社明電舎 | Method for producing non-linear resistor element |
JP2013125821A (en) * | 2011-12-14 | 2013-06-24 | Meidensha Corp | Method for manufacturing nonlinear resistor element |
CN103999169A (en) * | 2011-12-14 | 2014-08-20 | 株式会社明电舍 | Method for producing non-linear resistor element |
Also Published As
Publication number | Publication date |
---|---|
JPH043645B2 (en) | 1992-01-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0528820A (en) | Mixed ion conductor and synthesizing method | |
JPS58225604A (en) | Oxide voltage nonlinear resistor | |
JPS5968906A (en) | Method of producing voltage nonlinear resistor | |
JPS60216504A (en) | Method of producing homogeneous metal oxide varistor | |
JPH0353501A (en) | Varistor material and manufacture thereof | |
JPH0360163B2 (en) | ||
KR100467325B1 (en) | Synthesis of layered lithium-chromium-manganese oxides as cathode material for lithium batteries | |
JPH0616471A (en) | Heat resistant conductive sintered body | |
JPH1092609A (en) | Oxide ceramic thermistor containing indium | |
JP4102322B2 (en) | Method for producing metal oxide using hydroxide | |
JPH0869903A (en) | Manufacture of ntc thermistor | |
JP3465403B2 (en) | Method for producing oxide electrode sintered body | |
JPH01317158A (en) | Production of varister material | |
JP2001102204A (en) | Thermistor composition, manufacturing method therefor and thermistor | |
Tay et al. | The role of metallo-organic chelating ligand in the preparation of ferromagnetic La2O3–SrO–Co3O4 nano composite | |
JPS6019643B2 (en) | Manufacturing method of voltage nonlinear resistor | |
JPS59106104A (en) | Method of producing voltage nonlinear resistor | |
JP2000012308A (en) | Manufacture of thermistor element | |
JPH0729575A (en) | Solid electrolyte type electrolytic cell fuel electrode material | |
JPS63224153A (en) | Manufacture of raw material dispersion solution for gas diffusion electrode reaction layer | |
JPS60928B2 (en) | Manufacturing method of voltage nonlinear resistor | |
JP3633762B2 (en) | Method for manufacturing voltage nonlinear resistor | |
JPS6163565A (en) | Perovskite base ceramic material and manufacture | |
JPS60926B2 (en) | Manufacturing method of voltage nonlinear resistor | |
JPH04567B2 (en) |