JP2010006631A - Aluminum nitride sintered compact and its manufacturing method - Google Patents

Aluminum nitride sintered compact and its manufacturing method Download PDF

Info

Publication number
JP2010006631A
JP2010006631A JP2008166730A JP2008166730A JP2010006631A JP 2010006631 A JP2010006631 A JP 2010006631A JP 2008166730 A JP2008166730 A JP 2008166730A JP 2008166730 A JP2008166730 A JP 2008166730A JP 2010006631 A JP2010006631 A JP 2010006631A
Authority
JP
Japan
Prior art keywords
aluminum nitride
nitride sintered
sintered body
powder
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008166730A
Other languages
Japanese (ja)
Inventor
Yusaku Harada
祐作 原田
Koji Nishimura
浩二 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2008166730A priority Critical patent/JP2010006631A/en
Publication of JP2010006631A publication Critical patent/JP2010006631A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To manufacture an aluminum sintered compact free from color unevenness and having excellent heat conductivity with high productivity. <P>SOLUTION: In the manufacturing method of the aluminum nitride sintered compact having excellent productivity, the sheet residues of an aluminum nitride formed body produced at a form-pressing step is subjected to a heat treatment and pulverized and the pulverized body is blended again as a raw material, the recovered powder prepared by the heat treatment at ≥350°C is added as the raw material and an Fe increase in the recovered powder is ≤30 ppm. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、窒化アルミニウム焼結体及びその製造方法に関する。 The present invention relates to an aluminum nitride sintered body and a method for producing the same.

セラミックス基板は高電気絶縁性、高熱伝導性という特長を有するため、回路基板として広く使用され、パワーモジュール等に搭載されている。セラミックス基板の中でも、窒化アルミニウム基板は熱伝導性に優れるため注目されている。 Ceramic substrates have the characteristics of high electrical insulation and high thermal conductivity, so they are widely used as circuit boards and mounted on power modules and the like. Among ceramic substrates, aluminum nitride substrates are attracting attention because of their excellent thermal conductivity.

窒化アルミニウム基板となる窒化アルミニウム焼結体は、一般に以下の方法で製造される。窒化アルミニウム粉末に焼結助剤、バインダー、可塑剤、分散媒、離型剤等の添加剤を混合する。それを押出成形等によってシート状に成形し、プレス機等により所望の形状や寸法に加工する(成形・プレス工程)。次いで、成形体を空気中又は、窒素等の非酸化性雰囲気中で350〜700℃に加熱してバインダーを除去した後(脱脂工程)、窒素等の非酸化性雰囲気中にて1800〜1900℃で0.5〜10時間保持すること(焼成工程)によって製造される。 An aluminum nitride sintered body that becomes an aluminum nitride substrate is generally manufactured by the following method. Additives such as a sintering aid, a binder, a plasticizer, a dispersion medium, and a release agent are mixed with the aluminum nitride powder. It is formed into a sheet shape by extrusion molding or the like, and processed into a desired shape and size by a pressing machine or the like (molding / pressing step). Next, the molded body is heated to 350 to 700 ° C. in air or a non-oxidizing atmosphere such as nitrogen to remove the binder (degreasing step), and then 1800 to 1900 ° C. in a non-oxidizing atmosphere such as nitrogen. For 0.5 to 10 hours (firing step).

プレス工程では、シート状の成形体を加工する際、製品とならない成形体のシート残りが発生する。このようなシート残りの有効利用の目的から、シート残りを粉状に粉砕し窒化アルミニウム焼結体の原料として再び配合することが望まれているが、それには課題がある(以後、このように再利用する粉を回収粉と呼ぶ)。すなわち、シート残りを加熱せずに粉砕して作製した回収粉を原料粉として用いると、窒化アルミニウム焼結体の中心部が黒色化したり、縁状の色むらが発生する場合があり、また、熱伝導率が低下する場合がある。また、セラミックスシートをスラリー中で分散させることで、シート残りを再利用する方法もあるが、多量の溶剤を使わなければならないといった問題がある。
特許3779481号
In the pressing process, when a sheet-like molded body is processed, a sheet residue of the molded body that does not become a product is generated. For the purpose of effective utilization of such a sheet residue, it is desired that the sheet residue is pulverized and blended again as a raw material for the aluminum nitride sintered body. Recycled powder is called recovered powder). That is, when the recovered powder produced by pulverizing the rest of the sheet without heating is used as the raw material powder, the center portion of the aluminum nitride sintered body may be blackened, or edge-shaped color unevenness may occur, Thermal conductivity may decrease. In addition, there is a method of reusing the remaining sheet by dispersing the ceramic sheet in the slurry, but there is a problem that a large amount of solvent must be used.
Japanese Patent No. 3779481

本発明の目的は、色むらがなく熱伝導性に優れた窒化アルミニウム焼結体を、生産性良く製造することである。 An object of the present invention is to produce an aluminum nitride sintered body having no color unevenness and excellent thermal conductivity with high productivity.

すなわち、本発明は、窒化アルミニウム成形体を加熱処理した後に粉状とし、それを原料として再び配合することを特徴とする窒化アルミニウム焼結体の製造方法であり、350℃以上で加熱処理して作製した回収粉を原料として添加することを特徴とする窒化アルミニウム焼結体の製造方法であり、回収粉中のFe増分が30ppm以下であることを特徴とする窒化アルミニウム焼結体の製造方法である。 That is, the present invention is a method for producing an aluminum nitride sintered body characterized in that an aluminum nitride molded body is heat-treated and powdered and then blended again as a raw material. A method for producing an aluminum nitride sintered body characterized by adding the produced recovered powder as a raw material, and an aluminum nitride sintered body producing method wherein the Fe increment in the recovered powder is 30 ppm or less is there.

さらに、前記製造方法によって得られた、熱伝導率が170W/m・K以上である窒化アルミニウム焼結体であり、得られた窒化アルミニウム焼結体に金属回路と放熱板を接合してなる窒化アルミニウム回路基板であり、また、窒化アルミニウム回路基板を用いてなるモジュールである。 Furthermore, it is an aluminum nitride sintered body obtained by the above manufacturing method and having a thermal conductivity of 170 W / m · K or more, and is obtained by joining a metal circuit and a heat sink to the obtained aluminum nitride sintered body. An aluminum circuit board and a module using an aluminum nitride circuit board.

本発明によれば、色むらがなく熱伝導性に優れた窒化アルミニウム焼結体を、生産性良く製造でき、この焼結体を用いた窒化アルミニウム回路基板はモジュールへ好適に使用できる。 According to the present invention, an aluminum nitride sintered body having no color unevenness and excellent thermal conductivity can be produced with high productivity, and an aluminum nitride circuit board using the sintered body can be suitably used for a module.

本発明により得られる窒化アルミニウム焼結体は、機械的特性に優れ、且つ、高い熱伝導率を有するので、厳しい使用条件下で用いられる回路基板、例えばパワーモジュール用回路基板として好適である。 The aluminum nitride sintered body obtained by the present invention is excellent as a mechanical property and has a high thermal conductivity, and is therefore suitable as a circuit board used under severe use conditions, for example, a circuit board for a power module.

窒化アルミニウム焼結体の黒色部分には金属不純物が多量に存在していることが多く、黒色化は金属不純物に起因するものと推測される。回収粉は通常、成形体のシート残りを粉砕機で処理することによって作製される。成形体はバインダーを含有しているため強度を発現しており、これを粉砕するにはかなりの負荷がかかる。この粉砕の過程で回収粉に金属不純物が混入してしまうため、窒化アルミニウムが黒色化すると考えられる。これは特に、厚いシートを作製する押出成形法で顕著である。 A large amount of metal impurities are often present in the black portion of the aluminum nitride sintered body, and it is assumed that blackening is caused by metal impurities. The recovered powder is usually produced by processing the remaining sheet of the molded body with a pulverizer. Since the molded body contains a binder, it exhibits strength, and a considerable load is applied to pulverize the molded body. It is considered that the aluminum nitride is blackened because metal impurities are mixed into the recovered powder during the pulverization process. This is particularly noticeable in the extrusion method for producing a thick sheet.

窒化アルミニウム焼結体の黒色化は、炭素によっても引き起こされる。脱脂処理が不十分で残留炭素が多くなると、窒化アルミニウム焼結体の緻密化が阻害されるとともに、残留炭素が窒化アルミニウムと反応して炭素化合物を生成し、色むらを発生するものと推測される。 Blackening of the aluminum nitride sintered body is also caused by carbon. If the degreasing treatment is insufficient and the residual carbon is increased, densification of the aluminum nitride sintered body is inhibited, and the residual carbon reacts with the aluminum nitride to produce a carbon compound, which is assumed to cause color unevenness. The

窒化アルミニウム焼結体中の酸素含有量にばらつきが生じると、色むらが発生することが多い。これは、酸素含有量がばらつくと、焼結時に生成される複合酸化物の組成や焼結開始温度にばらつきが生じ、その結果、焼結状態にも影響が及び、色むらが発生するものと考えられる。酸素含有量のばらつきが大きくなると透光性や色調に違いが現れ、縁状の色むらが生じる場合がある。酸素含有量のばらつきは、脱脂、焼成工程で起こる原料窒化アルミニウム粉末の加水分解反応や、成形体中の含有炭素による還元作用によって引き起こされるものと考えられる。また、同じ酸素含有量の窒化アルミニウム粉末を用いて焼結体を作製する場合でも、脱脂、焼成条件によって酸素含有量分布は異なってくる。例えば、成形体中央部では成形体外周部と比べて水分が籠り易く、局所的に酸素含有量の増加がみられる。従って、水に対する安定性(耐加水分解性)を向上させた窒化アルミニウム粉末を用いることが好ましい。さらに、加熱処理を施さないで作製した回収粉を用いる場合、回収粉が含有しているバインダーや水が偏在しやすいため、酸素含有量のばらつきが大きくなることがある。 When variation occurs in the oxygen content in the aluminum nitride sintered body, color unevenness often occurs. This is because when the oxygen content varies, the composition of the composite oxide produced during sintering and the sintering start temperature vary, and as a result, the sintered state is affected and color unevenness occurs. Conceivable. When the variation in the oxygen content increases, a difference in translucency and color tone appears, and edge-like color unevenness may occur. It is considered that the variation in the oxygen content is caused by a hydrolysis reaction of the raw material aluminum nitride powder that occurs in the degreasing and firing processes and a reduction action by the carbon contained in the molded body. Even when a sintered body is produced using aluminum nitride powder having the same oxygen content, the oxygen content distribution varies depending on the degreasing and firing conditions. For example, in the central portion of the molded body, moisture is more likely to be swollen than in the outer peripheral portion of the molded body, and the oxygen content is locally increased. Therefore, it is preferable to use an aluminum nitride powder with improved water stability (hydrolysis resistance). Furthermore, when using the recovered powder produced without heat treatment, the binder and water contained in the recovered powder are likely to be unevenly distributed, which may cause a large variation in oxygen content.

また、色むらの発生した窒化アルミニウム焼結体は、一般に、熱伝導率が低下する傾向がある。 In addition, an aluminum nitride sintered body with uneven color generally tends to have low thermal conductivity.

本発明に係る窒化アルミニウム焼結体の製造方法について説明する。 A method for producing an aluminum nitride sintered body according to the present invention will be described.

窒化アルミニウム粉末に関して特に制限はなく、直接窒化法、アルミナ還元法等の公知の方法で製造された窒化アルミニウム粉末が使用できる。 There is no restriction | limiting in particular regarding aluminum nitride powder, The aluminum nitride powder manufactured by well-known methods, such as a direct nitriding method and an alumina reduction method, can be used.

焼結助剤は特に限定されるものではなく、希土類金属の化合物、アルカリ土類金属の化合物、遷移金属の化合物等が使用できる。中でも、酸化イットリウム、或いは、酸化イットリウムと酸化アルミニウムの併用が好ましい。これらの焼結助剤は、窒化アルミニウム粉末と反応し複合酸化物の液相(例えば2Y・Al、Y・Al、3Y・5Al等)を形成し、この液相が焼結体の高密度化をもたらし、同時に窒化アルミニウム粒子中の不純物である酸素等を抽出し、結晶粒界の酸化物相として偏析させることによって高熱伝導化をもたらす。複合酸化物としては、Y・Alを主に生成させることが好ましい。2Y・Alや3Y・5AlがY・Alより多く生成すると、窒化アルミニウム焼結体の熱伝導性や抗折強度、回路形成時の接合性が低下する場合がある。原料の窒化アルミニウム粉末中の酸素含有量に応じて、酸化イットリウム、或いは、酸化イットリウムと酸化アルミニウムの配合量を適正化することにより、複合酸化物としてY・Alを主に生成させることが出来る。 The sintering aid is not particularly limited, and rare earth metal compounds, alkaline earth metal compounds, transition metal compounds, and the like can be used. Among these, yttrium oxide or a combination of yttrium oxide and aluminum oxide is preferable. These sintering aids, the liquid phase of the composite oxide reacts with aluminum nitride powder (e.g. 2Y 2 O 3 · Al 2 O 3, Y 2 O 3 · Al 2 O 3, 3Y 2 O 3 · 5Al 2 O 3 ) and this liquid phase increases the density of the sintered body, and at the same time, oxygen, which is an impurity in the aluminum nitride particles, is extracted and segregated as an oxide phase at the grain boundary, thereby achieving high thermal conductivity. Bring about As the composite oxide, it is preferable to mainly generate Y 2 O 3 .Al 2 O 3 . When 2Y 2 O 3 · Al 2 O 3 or 3Y 2 O 3 · 5Al 2 O 3 is produced more than Y 2 O 3 · Al 2 O 3 , the thermal conductivity, bending strength, and circuit formation of the aluminum nitride sintered body There are cases where the bondability at the time decreases. Y 2 O 3 · Al 2 O 3 is mainly used as a composite oxide by optimizing the blending amount of yttrium oxide or yttrium oxide and aluminum oxide according to the oxygen content in the raw material aluminum nitride powder. Can be generated.

原料として添加する回収粉は、シート残りを加熱処理した後に粉砕して作製することが好ましい。中でも、350℃以上で加熱処理することが好ましい。加熱温度が350℃より低いとバインダーが熱分解しにくく、シート残りが保形性をもつため、粉砕時に粉砕機に負荷がかかり、粉砕機の金属部分が摩耗し、回収粉に混入してしまう場合がある。加熱温度の上限は特に限定されるものではないが、加熱炉の保全や生産性の面から、700℃以下が好ましい。粉砕機は特に限定されるものではなく、ボールトンミル、ヘンシェルミキサー、パルペライザー等が使用できる。回収粉中のFe増分は30ppm以下であることが好ましい。回収粉中のFe増分が30ppmを超えると、窒化アルミニウム焼結体が黒色化しやすく、熱伝導率が低下しやすい。回収粉の配合量は、原料の窒化アルミニウム粉末中の酸素含有量や焼結助剤に応じて適正化することができる。回収粉中のFe増分が30ppmを超えると、回収粉の配合量が増やせなくなり、生産性が低下する。 The recovered powder to be added as a raw material is preferably prepared by pulverizing the remaining sheet after heat treatment. Among these, heat treatment is preferably performed at 350 ° C. or higher. When the heating temperature is lower than 350 ° C., the binder is difficult to thermally decompose, and the remaining sheet has shape retention. Therefore, a load is applied to the pulverizer at the time of pulverization, and the metal part of the pulverizer is worn and mixed into the recovered powder. There is a case. Although the upper limit of heating temperature is not specifically limited, 700 degrees C or less is preferable from the surface of maintenance and productivity of a heating furnace. The pulverizer is not particularly limited, and a Ballton mill, a Henschel mixer, a pulverizer, or the like can be used. The Fe increment in the recovered powder is preferably 30 ppm or less. When the Fe increment in the recovered powder exceeds 30 ppm, the aluminum nitride sintered body tends to be blackened, and the thermal conductivity tends to decrease. The blending amount of the recovered powder can be optimized according to the oxygen content in the raw aluminum nitride powder and the sintering aid. When the Fe increment in the recovered powder exceeds 30 ppm, the amount of recovered powder cannot be increased, and the productivity is lowered.

窒化アルミニウム粉末、回収粉、焼結助剤及びバインダーの混合方法は、特に限定されるものではなく、例えばボールミル、ロッドミルなどの公知の混合装置が使用できる。混合粉末はそのまま成形してもよく、また例えばスプレードライヤー法、転動造粒法などによって造粒してから成形してもよい。本発明に係るバインダーは特に限定されないが、可塑性や界面活性効果を有するメチルセルロース系や、熱分解性に優れたアクリル酸エステル系のバインダーを用いることが好ましい。必要に応じて、可塑剤、分散媒、離型剤などを併用することができる。可塑剤としてはグリセリン、グリセリントリオレート、ジエチレングリコールなどが、分散媒としてはイオン交換水やエタノール、トルエンなどが、離型剤としては、ステアリン酸やシリコンなどが使用できる。 The method for mixing the aluminum nitride powder, the recovered powder, the sintering aid, and the binder is not particularly limited, and a known mixing device such as a ball mill or a rod mill can be used. The mixed powder may be molded as it is, or may be molded after being granulated by, for example, a spray dryer method or a rolling granulation method. The binder according to the present invention is not particularly limited, but it is preferable to use a methylcellulose-based binder having plasticity or a surface-active effect or an acrylate-based binder having excellent thermal decomposability. If necessary, a plasticizer, a dispersion medium, a release agent and the like can be used in combination. As the plasticizer, glycerin, glycerin trioleate, diethylene glycol, and the like can be used. As the dispersion medium, ion-exchanged water, ethanol, toluene, and the like can be used. As the release agent, stearic acid, silicon, and the like can be used.

脱脂方法は特に限定されないが、成形体を空気中又は、窒素等の非酸化性雰囲気中で350〜700℃に加熱してバインダーを除去することが好ましい。脱脂時間は成形体のサイズ、処理量に応じて適宜決定する必要があるが、通常、1〜10時間である。焼成方法は特に限定されないが、非酸化性雰囲気中1400〜1900℃で0.5〜10時間保持することが好ましい。 The degreasing method is not particularly limited, but it is preferable to remove the binder by heating the molded body to 350 to 700 ° C. in air or in a non-oxidizing atmosphere such as nitrogen. The degreasing time needs to be appropriately determined according to the size of the molded body and the processing amount, but is usually 1 to 10 hours. Although a baking method is not specifically limited, It is preferable to hold | maintain at 1400-1900 degreeC for 0.5 to 10 hours in non-oxidizing atmosphere.

窒化アルミニウム回路基板は、窒化アルミニウム焼結体に金属回路、放熱板を形成してなるものである。金属回路および放熱板用の金属板と窒化アルミニウム焼結体の接合方法は特に限定されないが、窒化アルミニウム焼結体と金属板との間にろう材を介在させ、真空中で、加熱・冷却するろう材接合法が好ましいものとして挙げられる。金属板の材質は、銅、アルミニウム、タングステン、モリブデンやそれらの合金が一般的である。ろう材は、箔、粉末を用いてよいが、ペーストで用いることが好ましい。ペーストは、ろう材の金属成分に有機溶剤および必要に応じて有機結合剤を加え、ロール、ニーダー、万能混合機、らいかい機等の公知の混合機で混合することによって調製することができる。ペースト塗布方法は特に限定されず、スクリーン印刷法、ロールコーター法等の公知の方法を採用できる。 The aluminum nitride circuit board is formed by forming a metal circuit and a heat sink on an aluminum nitride sintered body. The method of joining the metal plate for the metal circuit and the heat sink and the aluminum nitride sintered body is not particularly limited, but a brazing material is interposed between the aluminum nitride sintered body and the metal plate, and heating and cooling are performed in a vacuum. A brazing material joining method is preferable. The material of the metal plate is generally copper, aluminum, tungsten, molybdenum, or an alloy thereof. The brazing material may be foil or powder, but is preferably used as a paste. The paste can be prepared by adding an organic solvent and, if necessary, an organic binder to the metal component of the brazing filler metal, and mixing them with a known mixer such as a roll, a kneader, a universal mixer, a raker, or the like. The paste application method is not particularly limited, and a known method such as a screen printing method or a roll coater method can be employed.

接合した金属板にエッチングレジストにより回路パターンを描いた後、エッチングを行う。エッチングレジストの除去については、公知の方法を用いることができる。エッチングレジストは特に限定されず、例えば公知の紫外線硬化型や熱硬化型のものを用いることができる。また、エッチング液は、金属板の種類に応じて好適なエッチング液を選択して用いる。例えば金属が銅であるときには、塩化第2鉄溶液、塩化第2銅溶液、硫酸、過酸化水素水等が使用され、好ましいものとして、塩化第2鉄溶液、塩化第2銅溶液が挙げられる。 Etching is performed after a circuit pattern is drawn on the bonded metal plate with an etching resist. A known method can be used to remove the etching resist. The etching resist is not particularly limited, and for example, a known ultraviolet curable type or thermosetting type can be used. As the etching solution, a suitable etching solution is selected and used according to the type of the metal plate. For example, when the metal is copper, ferric chloride solution, cupric chloride solution, sulfuric acid, hydrogen peroxide solution and the like are used, and preferable examples include ferric chloride solution and cupric chloride solution.

[実施例1]
窒化アルミニウム粉末100質量部に、酸化イットリウム粉末4質量部を添加し、ボールミルにて1時間混合して原料粉末を得た。この原料粉末100質量部にセルロースエーテル系バインダー6質量部、グリセリン5質量部、イオン交換水10質量部を添加し、ヘンシェルミキサーにて1分間混合し混合物を得た。次に、混合物を単軸押出機にて厚み0.8mmのシート状に成形し、成形体を金型付きプレス機により90mm×90mmの寸法に打ち抜いた。プレス時に発生したシート残りを窒素雰囲気中500℃で8時間加熱処理した後、ボールトンミルにて粉砕し、回収粉を作製した。
[Example 1]
4 parts by mass of yttrium oxide powder was added to 100 parts by mass of aluminum nitride powder and mixed for 1 hour by a ball mill to obtain a raw material powder. To 100 parts by mass of the raw material powder, 6 parts by mass of a cellulose ether binder, 5 parts by mass of glycerin and 10 parts by mass of ion-exchanged water were added and mixed for 1 minute with a Henschel mixer to obtain a mixture. Next, the mixture was formed into a sheet having a thickness of 0.8 mm using a single screw extruder, and the formed body was punched into a size of 90 mm × 90 mm using a press machine with a die. The sheet residue generated at the time of pressing was heat-treated at 500 ° C. for 8 hours in a nitrogen atmosphere, and then pulverized by a ball ton mill to produce a recovered powder.

窒化アルミニウム粉末100質量部に、回収粉25質量部、酸化イットリウム粉末4質量部を添加し、ボールミルにて1時間混合して原料粉末を得た。原料粉末100質量部にセルロースエーテル系バインダー6質量部、グリセリン5質量部、イオン交換水10質量部を添加し、ヘンシェルミキサーにて1分間混合し混合物を得た。次に、混合物を単軸押出機にて厚み0.8mmのシート状に成形し、成形体を金型付きプレス機により90mm×90mmの寸法に打ち抜いた。成形体に離型剤として窒化ホウ素粉を1mg/cmの塗布量で塗布した後、20枚積層し、空気中570℃で5時間加熱し脱脂した。脱脂後に、窒素雰囲気中1780℃で2時間加熱することで窒化アルミニウム焼結体を作製した。得られた窒化アルミニウム焼結体の外観(色むらの有無)、熱伝導率を評価した。結果を表1に示す。 25 parts by mass of recovered powder and 4 parts by mass of yttrium oxide powder were added to 100 parts by mass of aluminum nitride powder, and mixed for 1 hour in a ball mill to obtain a raw material powder. To 100 parts by mass of the raw material powder, 6 parts by mass of a cellulose ether binder, 5 parts by mass of glycerin and 10 parts by mass of ion-exchanged water were added and mixed for 1 minute with a Henschel mixer to obtain a mixture. Next, the mixture was formed into a sheet having a thickness of 0.8 mm using a single screw extruder, and the formed body was punched into a size of 90 mm × 90 mm using a press machine with a die. After applying boron nitride powder as a release agent to the molded body at a coating amount of 1 mg / cm 2 , 20 sheets were laminated and degreased by heating in air at 570 ° C. for 5 hours. After degreasing, an aluminum nitride sintered body was produced by heating at 1780 ° C. for 2 hours in a nitrogen atmosphere. The appearance (presence / absence of color unevenness) and thermal conductivity of the obtained aluminum nitride sintered body were evaluated. The results are shown in Table 1.

得られた窒化アルミニウム焼結体に、金属回路及び金属放熱板としてアルミニウム板を以下の方法にて接合し、窒化アルミニウム回路基板を作製した。窒化アルミニウム焼結体の両面に70mm×70mm×0.02mmtのろう合金箔を貼付け、さらにその両面から70mm×70mm×0.2mmtのアルミニウム板を挟んだものを、カーボンスペーサーを隔てて10枚積層した。それをカーボン治具に設置した後、620℃で2時間保持して窒化アルミニウム焼結体とアルミニウム板を接合した。接合体の一主面には所定の形状の回路パターンを、もう一方の主面には放熱板パターンを形成させるため、UV硬化型レジストインクをスクリーン印刷した後、UVランプを照射させてレジスト膜を硬化させた。次いで、レジスト塗布した部分以外を水酸化ナトリウム水溶液でエッチングした後、フッ化アンモニウム水溶液にてレジスト剥離し、窒化アルミニウム回路基板を作製した。 To the obtained aluminum nitride sintered body, an aluminum plate as a metal circuit and a metal heat sink was joined by the following method to produce an aluminum nitride circuit board. 10 sheets of 70 mm x 70 mm x 0.02 mmt brazing alloy foil pasted on both sides of an aluminum nitride sintered body, and a 70 mm x 70 mm x 0.2 mmt aluminum plate sandwiched from both sides with a carbon spacer did. After placing it on a carbon jig, it was held at 620 ° C. for 2 hours to join the aluminum nitride sintered body and the aluminum plate. In order to form a circuit pattern of a predetermined shape on one main surface of the joined body and a heat sink pattern on the other main surface, a UV curable resist ink is screen-printed and then irradiated with a UV lamp to form a resist film Was cured. Next, the portion other than the resist-coated portion was etched with an aqueous sodium hydroxide solution, and then the resist was peeled off with an aqueous ammonium fluoride solution to produce an aluminum nitride circuit board.

〈使用材料〉
窒化アルミニウム粉末:平均粒径1.5μm、酸素含有量0.80質量%、Fe含有量15ppm。
酸化イットリウム粉末:信越化学工業社製、商品名「Yttrium Oxide」
バインダー:信越化学工業社製、商品名「メトローズ」
グリセリン:花王社製、商品名「エキセパール」
窒化ホウ素粉:電気化学工業社製、商品名「デンカボロンナイトライドMGP」
アルミニウム板:三菱アルミニウム株式会社製、商品名「1085材」
ろう合金箔:東洋精箔株式会社製、商品名「A2017R−H合金箔」
UV硬化型レジストインク:互応化学工業株式会社製、商品名「PER−27B−6」
<Materials used>
Aluminum nitride powder: Average particle size 1.5 μm, oxygen content 0.80 mass%, Fe content 15 ppm.
Yttrium oxide powder: manufactured by Shin-Etsu Chemical Co., Ltd., trade name “Yttrium Oxide”
Binder: Shin-Etsu Chemical Co., Ltd., trade name “Metrozu”
Glycerin: Product name “Exepal” manufactured by Kao Corporation
Boron nitride powder: manufactured by Denki Kagaku Kogyo Co., Ltd., trade name “DENKABORON NITRIDE MGP”
Aluminum plate: Mitsubishi Aluminum Co., Ltd., trade name “1085”
Brazing alloy foil: Toyo Seimitsu Co., Ltd., trade name “A2017R-H alloy foil”
UV curable resist ink: trade name “PER-27B-6” manufactured by Kyoyo Chemical Co., Ltd.

〈評価方法〉
熱伝導率:10mm×10mmに加工した窒化アルミニウム焼結体を、アルバック理工社製「レーザーフラッシュ法熱定数測定装置TC−7000」により測定した。
<Evaluation methods>
Thermal conductivity: An aluminum nitride sintered body processed to 10 mm × 10 mm was measured by “Laser Flash Method Thermal Constant Measuring Device TC-7000” manufactured by ULVAC-RIKO.

[実施例2〜7]
加熱処理条件を表1に示すように変えたこと以外は、実施例1と同様にして窒化アルミニウム焼結体を得た。結果を表1に示す。
[Examples 2 to 7]
An aluminum nitride sintered body was obtained in the same manner as in Example 1 except that the heat treatment conditions were changed as shown in Table 1. The results are shown in Table 1.

[実施例8、9]
窒化アルミニウム粉末100質量部に、回収粉を50質量部添加したこと以外は、実施例1および実施例2と同様にして窒化アルミニウム焼結体を得た。結果を表1に示す。
[Examples 8 and 9]
An aluminum nitride sintered body was obtained in the same manner as in Example 1 and Example 2 except that 50 parts by mass of the recovered powder was added to 100 parts by mass of the aluminum nitride powder. The results are shown in Table 1.

[比較例1]
加熱処理しないこと以外は、実施例1と同様にして窒化アルミニウム焼結体を得た。結果を表1に示す。
[Comparative Example 1]
An aluminum nitride sintered body was obtained in the same manner as in Example 1 except that the heat treatment was not performed. The results are shown in Table 1.

[比較例2、3]
加熱処理条件を表1に示すように変えたこと以外は、実施例1と同様にして窒化アルミニウム焼結体を得た。結果を表1に示す。
[Comparative Examples 2 and 3]
An aluminum nitride sintered body was obtained in the same manner as in Example 1 except that the heat treatment conditions were changed as shown in Table 1. The results are shown in Table 1.

Figure 2010006631
Figure 2010006631

本発明により製造された窒化アルミニウム焼結体は、色むらがなく且つ高い熱伝導性を有するので、通常の回路基板はもとより、厳しい使用条件下で用いられる回路基板、例えばパワーモジュール用回路基板として好適な材料である。
Since the aluminum nitride sintered body produced according to the present invention has no color unevenness and high thermal conductivity, it can be used not only as a normal circuit board but also as a circuit board used under severe conditions, such as a circuit board for a power module. It is a suitable material.

Claims (7)

窒化アルミニウム成形体を加熱処理した後に粉状とし、それを原料として再び配合することを特徴とする窒化アルミニウム焼結体の製造方法。 A method for producing an aluminum nitride sintered body, wherein the aluminum nitride molded body is powdered after being heat-treated and blended again as a raw material. 加熱処理温度が350℃以上であることを特徴とする、請求項1記載の窒化アルミニウム焼結体の製造方法。 The method for producing an aluminum nitride sintered body according to claim 1, wherein the heat treatment temperature is 350 ° C or higher. 窒化アルミニウム成形体を粉状とする工程において、窒化アルミニウム粉に混入するFeを30ppm以下とすることを特徴とする請求項1又は2記載の窒化アルミニウム焼結体の製造方法。 3. The method for producing an aluminum nitride sintered body according to claim 1, wherein, in the step of forming the aluminum nitride molded body into powder, Fe mixed in the aluminum nitride powder is adjusted to 30 ppm or less. 成形方法が押出成形であることを特徴とする、請求項1〜3のうちいずれか一項記載の窒化アルミニウム焼結体の製造方法。 The method for producing an aluminum nitride sintered body according to any one of claims 1 to 3, wherein the molding method is extrusion molding. 請求項1〜4のうちいずれか一項記載の製造方法によって得られた、熱伝導率が170W/m・K以上である窒化アルミニウム焼結体。 An aluminum nitride sintered body having a thermal conductivity of 170 W / m · K or more, obtained by the production method according to claim 1. 請求項1〜4のうちいずれか一項記載の製造方法によって得られた窒化アルミニウム焼結体に、金属回路と放熱板を接合してなる窒化アルミニウム回路基板。 The aluminum nitride circuit board formed by joining a metal circuit and a heat sink to the aluminum nitride sintered compact obtained by the manufacturing method as described in any one of Claims 1-4. 請求項6項記載の窒化アルミニウム回路基板を用いてなるモジュール。
A module using the aluminum nitride circuit board according to claim 6.
JP2008166730A 2008-06-26 2008-06-26 Aluminum nitride sintered compact and its manufacturing method Pending JP2010006631A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008166730A JP2010006631A (en) 2008-06-26 2008-06-26 Aluminum nitride sintered compact and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008166730A JP2010006631A (en) 2008-06-26 2008-06-26 Aluminum nitride sintered compact and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2010006631A true JP2010006631A (en) 2010-01-14

Family

ID=41587553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008166730A Pending JP2010006631A (en) 2008-06-26 2008-06-26 Aluminum nitride sintered compact and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2010006631A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021261452A1 (en) * 2020-06-22 2021-12-30 デンカ株式会社 Aluminum nitride sintered body, and substrate

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004338966A (en) * 2003-05-13 2004-12-02 Sumitomo Electric Ind Ltd Ceramic mixed powder, method for manufacturing ceramic mixed powder, and method for manufacturing sintered ceramic compact
JP2008127227A (en) * 2006-11-17 2008-06-05 Denki Kagaku Kogyo Kk Aluminum nitride sintered compact and method of manufacturing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004338966A (en) * 2003-05-13 2004-12-02 Sumitomo Electric Ind Ltd Ceramic mixed powder, method for manufacturing ceramic mixed powder, and method for manufacturing sintered ceramic compact
JP2008127227A (en) * 2006-11-17 2008-06-05 Denki Kagaku Kogyo Kk Aluminum nitride sintered compact and method of manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021261452A1 (en) * 2020-06-22 2021-12-30 デンカ株式会社 Aluminum nitride sintered body, and substrate
JP7043689B1 (en) * 2020-06-22 2022-03-29 デンカ株式会社 Aluminum nitride sintered body and substrate

Similar Documents

Publication Publication Date Title
JP4804343B2 (en) Manufacturing method of ceramic sheet
JP5042829B2 (en) Manufacturing method of ceramic sheet
US8029903B2 (en) Silicon nitride substrate, silicon nitride circuit board utilizing the same, and use thereof
JP2002201075A (en) Silicon nitride ceramic substrate and silicon nitride ceramic circuit substrate using it and its manufacturing method
CN111163880B (en) Method for producing surface-treated copper fine particles
CN107021788B (en) Aluminum nitride ceramic refrigerating sheet and processing method thereof
US20130149530A1 (en) Aluminum nitride substrate for circuit board and production method thereof
JP2007189112A (en) Silicon nitride substrate, circuit board and module using the same
JP4850667B2 (en) Aluminum nitride sintered body and manufacturing method thereof
JP2010006631A (en) Aluminum nitride sintered compact and its manufacturing method
WO2021261453A1 (en) Ceramic sintered body, substrate, and method for enhancing electrical insulation of ceramic sintered body
JP7080422B1 (en) Aluminum nitride sintered body and its manufacturing method, circuit board, and bonded substrate
JP2007186385A (en) Aluminum nitride sintered compact and aluminum nitride circuit board using it
JP4987345B2 (en) Aluminum nitride substrate
JP2007173608A (en) Aluminum nitride sintered body and ceramic circuit board employing it
JP2013182983A (en) Silicon nitride circuit board and module using the same
JP2010159184A (en) Method for producing aluminum nitride sintered compact
JP7429825B2 (en) Aluminum nitride sintered body, method for manufacturing the same, circuit board, and laminated board
JP4347206B2 (en) Manufacturing method of ceramic sheet, ceramic substrate using the same, and use thereof
JP2001019555A (en) Silicon nitride sintered compact and substrate using the same
JP3461644B2 (en) Aluminum nitride sintered body, its manufacturing method and circuit board
JPH10310475A (en) Aluminum nitride sintered compact and its use
JP4520243B2 (en) Manufacturing method of ceramic sheet, ceramic substrate using the same, and use thereof
JP3038320B2 (en) Method for producing aluminum nitride sintered body for circuit board
JP2011032520A (en) Method for manufacturing lanthanum boride target

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110323

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110705