JP4987345B2 - Aluminum nitride substrate - Google Patents

Aluminum nitride substrate Download PDF

Info

Publication number
JP4987345B2
JP4987345B2 JP2006124623A JP2006124623A JP4987345B2 JP 4987345 B2 JP4987345 B2 JP 4987345B2 JP 2006124623 A JP2006124623 A JP 2006124623A JP 2006124623 A JP2006124623 A JP 2006124623A JP 4987345 B2 JP4987345 B2 JP 4987345B2
Authority
JP
Japan
Prior art keywords
aluminum nitride
substrate
oxygen content
nitride substrate
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006124623A
Other languages
Japanese (ja)
Other versions
JP2007297225A (en
Inventor
祐作 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2006124623A priority Critical patent/JP4987345B2/en
Publication of JP2007297225A publication Critical patent/JP2007297225A/en
Application granted granted Critical
Publication of JP4987345B2 publication Critical patent/JP4987345B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Ceramic Products (AREA)

Description

本発明は、窒化アルミニウム基板、それを用いた回路基板及びモジュールに関する。 The present invention relates to an aluminum nitride substrate, a circuit board using the same, and a module.

セラミックス基板は高電気絶縁性、高熱伝導性という特長を有するため、回路基板として広く使用され、これらの回路基板はパワーモジュール等に搭載されている。その中でも、窒化アルミニウム焼結体を用いる窒化アルミニウム基板は、熱伝導性に優れるため注目されている。 Ceramic substrates have the characteristics of high electrical insulation and high thermal conductivity, so they are widely used as circuit boards, and these circuit boards are mounted on power modules and the like. Among them, an aluminum nitride substrate using an aluminum nitride sintered body is attracting attention because of its excellent thermal conductivity.

セラミックス基板は一般に以下の方法で製造される。即ち、セラミックス粉末に焼結助剤、バインダー、可塑剤、分散媒、離型剤等の添加剤を混合し、それを押出成形やテープ成形によってシート状の成形体へ加工する。次いで、成形体を空気中又は、窒素などの不活性ガス雰囲気中で、350〜700℃に加熱してバインダーを除去した後(脱脂工程)、窒素などの非酸化性雰囲気中にて1450〜1900℃で0.5〜10時間保持すること(焼成工程)によって製造される。 A ceramic substrate is generally manufactured by the following method. That is, an additive such as a sintering aid, a binder, a plasticizer, a dispersion medium, and a release agent is mixed with the ceramic powder, and the mixture is processed into a sheet-like molded body by extrusion molding or tape molding. Next, the molded body is heated in air or an inert gas atmosphere such as nitrogen to 350 to 700 ° C. to remove the binder (degreasing step), and then 1450 to 1900 in a non-oxidizing atmosphere such as nitrogen. Manufactured by holding at a temperature of 0.5 to 10 hours (firing step).

脱脂工程、焼成工程では、炉への成形体投入量を増やし生産性を向上させるため、成形体を積層することがある。しかし、積層すると焼成後のセラミックス基板に染みや縁状の色むらが発生しやすくなるという課題がある。そこでセラミックス焼結体の色むらを解消するために、しき粉を介して積層する方法(特許文献1)、生基板と焼成板を交互積層する方法(特許文献2)、焼成温度を2段階に分ける方法(特許文献3)などの試みがなされている。しかしながら、特許文献1〜3に示す方法では、色むらの程度は軽減されるものの、熱伝導率が下がったり、生産性に劣るという課題がある。
特開平5−229872号公報 特開平10−59772号公報 特開平16−83367号公報
In the degreasing process and the firing process, the molded body may be laminated in order to increase the amount of the molded body charged into the furnace and improve the productivity. However, when laminated, there is a problem that stains and edge-like color unevenness are likely to occur on the fired ceramic substrate. Therefore, in order to eliminate the color unevenness of the ceramic sintered body, a method of laminating via a powder (Patent Literature 1), a method of alternately laminating a green substrate and a fired plate (Patent Literature 2), and a firing temperature in two stages. Attempts have been made such as a method of dividing (Patent Document 3). However, in the methods shown in Patent Documents 1 to 3, although the degree of color unevenness is reduced, there is a problem that the thermal conductivity is lowered or the productivity is inferior.
Japanese Patent Laid-Open No. 5-229872 Japanese Patent Laid-Open No. 10-59772 Japanese Patent Laid-Open No. 16-83367

本発明は、色むらのない窒化アルミニウム基板、それを用いた窒化アルミニウム回路基板及びモジュールを提供することを課題とする。 An object of the present invention is to provide an aluminum nitride substrate having no color unevenness, and an aluminum nitride circuit substrate and a module using the same.

本発明は、基板内における酸素含有量の最大値と最小値の差が0.20質量%以下であることを特徴とする色むらのない窒化アルミニウム基板であり、酸化処理が施された窒化アルミニウム粉末を原料とする窒化アルミニウム基板である。さらに、窒化アルミニウム基板を用いてなる回路基板であり、この回路基板を用いてなるモジュールである。 The present invention is a non-uniform aluminum nitride substrate characterized in that the difference between the maximum value and the minimum value of the oxygen content in the substrate is 0.20% by mass or less, and the aluminum nitride subjected to oxidation treatment An aluminum nitride substrate using powder as a raw material. Furthermore, it is a circuit board using an aluminum nitride substrate, and is a module using this circuit board.

本発明によれば、色むらのない窒化アルミニウム基板が提供され、セラミックス回路基板及びモジュールへの適用が可能である。 ADVANTAGE OF THE INVENTION According to this invention, the aluminum nitride board | substrate without an uneven color is provided and application to a ceramic circuit board and a module is possible.

本発明により製造された窒化アルミニウム基板は、機械的特性に優れ、且つ、高い熱伝導率を有するので、厳しい使用条件下で用いられる回路基板、例えばパワーモジュール用回路基板に好適な材料である。 The aluminum nitride substrate manufactured according to the present invention has excellent mechanical properties and high thermal conductivity, and is therefore a material suitable for a circuit substrate used under severe usage conditions, for example, a power module circuit substrate.

本発明に係る窒化アルミニウム粉末は、直接窒化法、アルミナ還元法などの公知の方法で製造された窒化アルミニウム粉末が使用できるが、生産性に優れた直接窒化法により製造された窒化アルミニウム粉末が好ましい。中でも、加熱処理(空気中での酸化処理)や化学的酸化法などにより耐加水分解性を向上させた窒化アルミニウム粉末の使用が好適である。 As the aluminum nitride powder according to the present invention, an aluminum nitride powder produced by a known method such as a direct nitriding method or an alumina reduction method can be used, but an aluminum nitride powder produced by a direct nitriding method having excellent productivity is preferable. . Among them, it is preferable to use an aluminum nitride powder whose hydrolysis resistance is improved by heat treatment (oxidation treatment in air), a chemical oxidation method, or the like.

色むらの発生を抑制するために検討を行ったところ、色むらは焼成後の窒化アルミニウム基板内の酸素含有量の分布に関係があることがわかった。1枚の基板内で酸素含有量の差が大きい場合には色むらが生じ、酸素含有量が均一な場合には色むらは生じない。これは、酸素含有量がばらつくと焼結開始温度にばらつきが生じ、その結果、焼結状態にも影響が及び、色むらが発生するものと考えられる。基板内の酸素含有量の最大値と最小値の差が小さいほど焼結状態のばらつきは小さく、酸素含有量の差が0.20質量%までであればその影響は小さく、色むらは発生しない。しかし酸素含有量の差が0.20質量%を超えると透光性や色調に違いが現れ、色むらが生じる場合がある。 As a result of studies to suppress the occurrence of uneven color, it was found that the uneven color is related to the distribution of oxygen content in the aluminum nitride substrate after firing. Color unevenness occurs when the difference in oxygen content is large within one substrate, and color unevenness does not occur when the oxygen content is uniform. This is considered that when the oxygen content varies, the sintering start temperature varies, and as a result, the sintered state is affected and color unevenness occurs. The smaller the difference between the maximum value and the minimum value of the oxygen content in the substrate, the smaller the variation in the sintered state, and if the difference in oxygen content is up to 0.20% by mass, the effect is small, and color unevenness does not occur. . However, if the difference in oxygen content exceeds 0.20% by mass, a difference in translucency and color tone appears and color unevenness may occur.

酸素含有量のばらつきは、脱脂、焼成工程で起こる原料窒化アルミニウム粉末の加水分解反応や、成形体中の含有炭素による還元作用によって引き起こされるものと考えられる。また、同じ酸素含有量の窒化アルミニウム粉末を用いて基板を作製する場合でも、脱脂、焼成条件によって基板内での酸素含有量分布は異なってくる。例えば、積層した成形体中央部では成形体外周部と比べて水分が籠り易く、局所的に酸素含有量の増加がみられる。従って、加熱処理や化学的酸化法などにより水に対する安定性(耐加水分解性)を向上させた窒化アルミニウム粉末を用いることが好ましい。加熱処理の条件は、空気中にて500〜700℃の温度で加熱することが好ましい。加熱温度が500℃未満であると酸化処理の効果が十分でなく、脱脂、焼成時に酸素含有量が増加する場合がある。一方、700℃を越えると、加熱処理自体により酸素含有量が急激に増加し、窒化アルミニウム基板の熱伝導率を低下させる場合がある。加熱処理時間は6時間以内が好ましい。6時間を超えて処理すると酸素含有量が増加し過ぎるため、窒化アルミニウム基板の熱伝導率が低下する場合がある。化学的酸化法としては、例えば、クロム酸塩、リン酸−クロム酸塩、リン酸−アルコール等の水溶液に浸漬する方法や、水酸化ナトリウム、アンモニア、アミン、アルコールアミン等のアルカリ水溶液に浸漬する方法がある。このような酸化処理を施すことにより、窒化アルミニウム粉末表面に酸化物の被膜が形成され、耐加水分解性が向上すると考えられる。 It is considered that the variation in the oxygen content is caused by a hydrolysis reaction of the raw material aluminum nitride powder that occurs in the degreasing and firing processes and a reduction action by the carbon contained in the molded body. Even when a substrate is produced using aluminum nitride powder having the same oxygen content, the oxygen content distribution in the substrate varies depending on the degreasing and firing conditions. For example, moisture is more likely to flow in the central portion of the laminated molded body than in the outer peripheral portion of the molded body, and the oxygen content is locally increased. Therefore, it is preferable to use an aluminum nitride powder having improved water stability (hydrolysis resistance) by heat treatment or chemical oxidation. It is preferable that the heat treatment is performed in air at a temperature of 500 to 700 ° C. When the heating temperature is less than 500 ° C., the effect of the oxidation treatment is not sufficient, and the oxygen content may increase during degreasing and firing. On the other hand, when the temperature exceeds 700 ° C., the oxygen content rapidly increases due to the heat treatment itself, and the thermal conductivity of the aluminum nitride substrate may be lowered. The heat treatment time is preferably within 6 hours. When the treatment is performed for more than 6 hours, the oxygen content is excessively increased, so that the thermal conductivity of the aluminum nitride substrate may be lowered. As a chemical oxidation method, for example, a method of immersing in an aqueous solution of chromate, phosphoric acid-chromate, phosphoric acid-alcohol or the like, or an alkaline aqueous solution of sodium hydroxide, ammonia, amine, alcoholamine, etc. There is a way. By performing such an oxidation treatment, it is considered that an oxide film is formed on the surface of the aluminum nitride powder and the hydrolysis resistance is improved.

本発明の窒化アルミニウム基板及び回路基板の製造方法について説明する。 The manufacturing method of the aluminum nitride substrate and the circuit board of the present invention will be described.

本発明に係る焼結助剤には、希土類金属の化合物、アルカリ土類金属の化合物、遷移金属の化合物などが使用できる。中でも、イットリウム酸化物、アルミニウム酸化物が好ましい。これらの焼結助剤は、窒化アルミニウム粉末の酸素すなわちアルミニウム酸化物と反応し複合酸化物の液相(例えば2Y・Al、Y・Al、3Y・5Al等)を形成し、この液相が焼結体の高密度化をもたらし、同時に窒化アルミニウム粒子中の不純物である酸素等を抽出し、結晶粒界の酸化物相として偏析させることによって高熱伝導化をもたらす。複合酸化物の液相としては、Y・Alを主に生成させることが好ましい。2Y・Alや3Y・5AlがY・Alより多く生成されると、窒化アルミニウム基板の熱伝導率や抗折強度、回路形成時の接合性が低下することがある。原料の窒化アルミニウム粉末中の酸素含有量に応じて、イットリウム酸化物、アルミニウム酸化物などの焼結助剤の配合量を適正化することにより、複合酸化物の液相としてY・Alを主に生成させることが出来る。 As the sintering aid according to the present invention, a rare earth metal compound, an alkaline earth metal compound, a transition metal compound, or the like can be used. Of these, yttrium oxide and aluminum oxide are preferable. These sintering aids react with oxygen in the aluminum nitride powder, that is, aluminum oxide, to form a composite oxide liquid phase (for example, 2Y 2 O 3 .Al 2 O 3 , Y 2 O 3 .Al 2 O 3 , 3Y 2 O 3 · 5Al 2 O 3 etc.), and this liquid phase brings about a high density of the sintered body, and at the same time, extracts oxygen and the like in the aluminum nitride particles as an oxide phase at the grain boundary Segregation results in high thermal conductivity. As the liquid phase of the composite oxide, it is preferable to mainly generate Y 2 O 3 .Al 2 O 3 . When 2Y 2 O 3 · Al 2 O 3 and 3Y 2 O 3 · 5Al 2 O 3 are produced more than Y 2 O 3 · Al 2 O 3 , the thermal conductivity, bending strength, and circuit formation of the aluminum nitride substrate Sometimes the bondability is lowered. By optimizing the amount of sintering aids such as yttrium oxide and aluminum oxide according to the oxygen content in the raw aluminum nitride powder, Y 2 O 3 .Al 2 O 3 can be mainly produced.

窒化アルミニウム粉末、焼結助剤及びバインダーの混合方法は、特に限定されるものではなく、例えばボールミル、ロッドミルなどの公知の混合装置が使用できる。混合粉末はそのまま成形してもよく、また例えばスプレードライヤー法、転動造粒法などによって造粒してから成形してもよい。成形方法は、特に限定されるものではなく、例えば押出成形法、ドクターブレード成形法、乾式プレス成形法、冷間等方圧プレス成形法(CIP法)などによって行うことができる。いずれの場合においても、必要に応じて、可塑剤、分散媒、離型剤などを併用することができる。本発明に係るバインダーは特に限定されないが、可塑性や界面活性効果を有するメチルセルロース系や、熱分解性に優れたアクリル酸エステル系のバインダーを用いることが好ましい。可塑剤としてはグリセリン、グリセリントリオレート、ジエチレングリコールなどが、分散媒としてはイオン交換水やエタノール、トルエンなどが、離型剤としては、ステアリン酸やシリコンなどが使用できる。 The mixing method of the aluminum nitride powder, the sintering aid and the binder is not particularly limited, and a known mixing device such as a ball mill or a rod mill can be used. The mixed powder may be molded as it is, or may be molded after being granulated by, for example, a spray dryer method or a rolling granulation method. The molding method is not particularly limited, and can be performed by, for example, an extrusion molding method, a doctor blade molding method, a dry press molding method, a cold isostatic press molding method (CIP method), or the like. In any case, a plasticizer, a dispersion medium, a release agent, and the like can be used in combination as necessary. The binder according to the present invention is not particularly limited, but it is preferable to use a methylcellulose-based binder having plasticity or a surface-active effect or an acrylate-based binder having excellent thermal decomposability. As the plasticizer, glycerin, glycerin trioleate, diethylene glycol, and the like can be used. As the dispersion medium, ion-exchanged water, ethanol, toluene, and the like can be used. As the release agent, stearic acid, silicon, and the like can be used.

焼成処理の前に、バインダーを除去(脱脂)するため、成形体を350〜700℃で加熱することが好ましい。脱脂する際の雰囲気ガスは窒素ガスなどの非酸化性ガスが好ましい。空気中で脱脂すると、酸素含有量が増加し、焼結後の熱伝導率が下がることがある。また、脱脂時間は1〜10時間とすることが好ましい。脱脂時間が短いと、残留炭素が偏在し酸素含有量のばらつきを引き起こすことがある。脱脂時の積層枚数は、通常10〜20枚が好ましい。積層枚数が少ないと、成形体中央部における水分の籠り具合が軽度となるため、色むらも発生し難くなる。しかし、炉への投入量が減り生産性に劣るため、成形体のサイズに応じて、脱脂時の積層枚数を適宜決定する。焼成処理は、一般に、窒素などの非酸化性雰囲気中にて、1450〜1900℃で0.5〜10時間保持することにより行い、窒化アルミニウム基板を作製する。 Prior to the firing treatment, the molded body is preferably heated at 350 to 700 ° C. in order to remove (defatt) the binder. The atmospheric gas for degreasing is preferably a non-oxidizing gas such as nitrogen gas. Degreasing in air may increase the oxygen content and reduce the thermal conductivity after sintering. The degreasing time is preferably 1 to 10 hours. If the degreasing time is short, the residual carbon is unevenly distributed and the oxygen content may vary. The number of laminated layers at the time of degreasing is usually preferably 10 to 20 sheets. When the number of laminated layers is small, the amount of moisture in the center of the molded body becomes light, and color unevenness is less likely to occur. However, since the amount charged into the furnace is reduced and the productivity is inferior, the number of laminated layers at the time of degreasing is appropriately determined according to the size of the molded body. The baking treatment is generally performed by holding at 1450 to 1900 ° C. for 0.5 to 10 hours in a non-oxidizing atmosphere such as nitrogen to produce an aluminum nitride substrate.

本発明の窒化アルミニウム回路基板は、窒化アルミニウム基板面に金属回路、放熱板を形成してなるものである。金属回路及び放熱板用の金属板と窒化アルミニウム基板の接合方法は特に限定されないが、窒化アルミニウム基板と金属板との間にろう材を介在させ、真空中で、加熱・冷却するろう材接合法が好ましいものとして挙げられる。金属回路及び金属放熱板の材質としては、銅、アルミニウム、タングステン、モリブデンやそれらの合金が一般的である。ろう材には箔、粉末を用いてよいが、ペーストで用いることが好ましい。ペーストは、ろう材の金属成分に有機溶剤及び必要に応じて有機結合剤を加え、ロール、ニーダー、万能混合機、らいかい機等の公知の混合機で混合することによって調製することができる。ペースト塗布方法は特に限定されず、スクリーン印刷法、ロールコーター法等の公知の方法を採用できる。 The aluminum nitride circuit board of the present invention is formed by forming a metal circuit and a heat sink on the aluminum nitride substrate surface. The method of joining the metal plate for the metal circuit and the heat sink and the aluminum nitride substrate is not particularly limited, but a brazing material joining method in which a brazing material is interposed between the aluminum nitride substrate and the metal plate, and heating and cooling are performed in a vacuum. Is preferable. Common materials for the metal circuit and the metal heat sink are copper, aluminum, tungsten, molybdenum, and alloys thereof. The brazing material may be foil or powder, but is preferably used as a paste. The paste can be prepared by adding an organic solvent and, if necessary, an organic binder to the metal component of the brazing material, and mixing with a known mixer such as a roll, a kneader, a universal mixer, a raker, or the like. The paste application method is not particularly limited, and a known method such as a screen printing method or a roll coater method can be employed.

接合した金属板にエッチングレジストにより回路パターンを描いた後、エッチング行う。エッチングレジストの除去については、公知の方法を用いることができる。エッチングレジストは特に限定されず、例えば公知の紫外線硬化型や熱硬化型のものを用いることができる。また、エッチング液は、金属板の種類に応じて好適なエッチング液を選択して用いる。例えば金属が銅であるときには、塩化第2鉄溶液、塩化第2銅溶液、硫酸、過酸化水素水等が使用され、好ましいものとして、塩化第2鉄溶液、塩化第2銅溶液が挙げられる。 Etching is performed after a circuit pattern is drawn on the bonded metal plate with an etching resist. A known method can be used to remove the etching resist. The etching resist is not particularly limited, and for example, a known ultraviolet curable type or thermosetting type can be used. Further, as the etchant, a suitable etchant is selected and used according to the type of the metal plate. For example, when the metal is copper, ferric chloride solution, cupric chloride solution, sulfuric acid, hydrogen peroxide solution and the like are used, and preferable examples include ferric chloride solution and cupric chloride solution.

[実施例1]
直接窒化によって製造した窒化アルミニウム粉末を、空気中650℃で3時間加熱し、酸化処理を施した。酸化処理した窒化アルミニウムの酸素含有量は0.90質量%であった。酸化処理した窒化アルミニウム粉末100質量部に酸化イットリウム粉末3質量部と酸化アルミニウム粉末3質量部を添加し、ボールミルにて1時間混合して原料粉末を得た。原料粉末100質量部にカルボキシメチルセルロース8質量部、グリセリン5質量部、ステアリン酸2質量部、オレイン酸2質量部、イオン交換水7質量部を添加し、ヘンシェルミキサーにて1分間混合し混合物を得た。混合物を単軸押出機にて厚み1.0mmのシート状に成形した。成形体を金型付きプレス機により60mm×50mmの寸法に打ち抜いた。成形体に離型剤として窒化ホウ素粉を塗布した後、20枚積層し、窒素雰囲気中570℃で5時間加熱し脱脂した。脱脂後に、窒素雰囲気中1780℃で2時間加熱することで窒化アルミニウム基板を作製した。得られた基板の酸素含有量、色むらの有無及び熱伝導率を評価した。結果を表1に示す。
[Example 1]
The aluminum nitride powder produced by direct nitriding was heated in air at 650 ° C. for 3 hours for oxidation treatment. The oxygen content of the oxidized aluminum nitride was 0.90% by mass. 3 parts by mass of yttrium oxide powder and 3 parts by mass of aluminum oxide powder were added to 100 parts by mass of the oxidized aluminum nitride powder, and mixed for 1 hour in a ball mill to obtain a raw material powder. To 100 parts by mass of the raw material powder, 8 parts by mass of carboxymethyl cellulose, 5 parts by mass of glycerin, 2 parts by mass of stearic acid, 2 parts by mass of oleic acid, and 7 parts by mass of ion-exchanged water are added and mixed for 1 minute with a Henschel mixer to obtain a mixture. It was. The mixture was formed into a sheet having a thickness of 1.0 mm using a single screw extruder. The molded body was punched into a size of 60 mm × 50 mm by a press machine with a mold. After applying boron nitride powder as a release agent to the molded body, 20 sheets were laminated and degreased by heating at 570 ° C. for 5 hours in a nitrogen atmosphere. After degreasing, an aluminum nitride substrate was produced by heating at 1780 ° C. for 2 hours in a nitrogen atmosphere. The obtained substrate was evaluated for oxygen content, color unevenness, and thermal conductivity. The results are shown in Table 1.

得られた窒化アルミニウム基板に、金属回路及び金属放熱板としてアルミニウム板を以下の方法にて接合し、窒化アルミニウム回路基板を作製した。
窒化アルミニウム基板の両面に60mm×50mm×0.2mmtのろう合金箔を貼付け、さらにその両面から60mm×50mm×0.2mmtのアルミニウム板を挟んだものを、カーボンスペーサーを隔てて10枚積層した。それをカーボン治具に設置した後、620℃で2時間保持して窒化アルミニウム焼結体とアルミニウム板を接合した。接合体の一主面には所定の形状の回路パターンを、もう一方の主面には放熱板パターンを形成させるべく、UV硬化型レジストインクをスクリーン印刷した後、UVランプを照射させてレジスト膜を硬化させた。次いで、レジスト塗布した部分以外を水酸化ナトリウム水溶液でエッチングした後、フッ化アンモニウム水溶液にてレジスト剥離し、窒化アルミニウム回路基板を作製した。
An aluminum plate was bonded to the obtained aluminum nitride substrate as a metal circuit and a metal heat sink by the following method to produce an aluminum nitride circuit substrate.
Ten sheets of aluminum alloy substrate each having a 60 mm × 50 mm × 0.2 mmt brazing alloy foil adhered thereto and a 60 mm × 50 mm × 0.2 mmt aluminum plate sandwiched between the both surfaces were laminated with a carbon spacer therebetween. After placing it on a carbon jig, it was held at 620 ° C. for 2 hours to join the aluminum nitride sintered body and the aluminum plate. In order to form a circuit pattern of a predetermined shape on one main surface of the joined body and a heat sink pattern on the other main surface, a UV curable resist ink is screen-printed and then irradiated with a UV lamp to form a resist film. Was cured. Next, the portion other than the resist-coated portion was etched with an aqueous sodium hydroxide solution, and then the resist was peeled off with an aqueous ammonium fluoride solution to produce an aluminum nitride circuit board.

得られた回路基板の信頼性を評価するため熱履歴衝撃試験を実施し、1)印刷パターンズレの有無、2)断面観察による回路面及び放熱板面と窒化アルミニウム基板間の接合クラック発生の有無、3)回路および放熱板部分を溶解後、インクテストによる窒化アルミニウム基板のクラック発生の有無を確認した。結果を表1に示す。 In order to evaluate the reliability of the obtained circuit board, a thermal hysteresis impact test was performed. 1) Presence or absence of printed pattern deviation, 2) Presence or absence of occurrence of joint cracks between circuit surface and heat sink surface by cross-sectional observation and aluminum nitride substrate 3) After dissolving the circuit and the heat sink, the presence or absence of cracks in the aluminum nitride substrate was confirmed by an ink test. The results are shown in Table 1.

〈使用材料〉
窒化アルミニウム粉末:1850℃以上に加熱した管状電気炉の頂部からアルミニウム粉末を噴射させてアルミニウム蒸気とし、管内に供給した窒素ガスと反応させて窒化アルミニウムを合成する直接窒化法により作製した。平均粒径1.5μm、酸素含有量0.78%。酸化イットリウム粉末:信越化学工業社製、商品名「Yttrium Oxide」
酸化アルミニウム粉末:アドマテックス社製、商品名「AO−500」
カルボキシメチルセルロース:ダイセル化学工業社製、商品名「CMCダイセル」
グリセリン:花王社製、商品名「エキセパール」
ステアリン酸:サンノプコ社製、商品名「ノプコセラLU−6418」
オレイン酸:和光純薬工業社製、商品名「オレイン酸」
アルミニウム板:三菱アルミニウム社製、商品名「1085材」
ろう合金箔:東洋精箔社製、商品名「A2017R−H合金箔」
UV硬化型レジストインク:互応化学工業社製、商品名「PER−27B−6」
<Materials used>
Aluminum nitride powder: An aluminum powder was sprayed from the top of a tubular electric furnace heated to 1850 ° C. or more to form aluminum vapor, and reacted with nitrogen gas supplied into the tube to produce aluminum nitride by a direct nitriding method. Average particle size 1.5 μm, oxygen content 0.78%. Yttrium oxide powder: manufactured by Shin-Etsu Chemical Co., Ltd., trade name “Yttrium Oxide”
Aluminum oxide powder: Product name "AO-500" manufactured by Admatechs
Carboxymethylcellulose: Daicel Chemical Industries, trade name “CMC Daicel”
Glycerin: Product name “Exepal” manufactured by Kao Corporation
Stearic acid: manufactured by San Nopco, trade name “Nopco Sera LU-6418”
Oleic acid: Wako Pure Chemical Industries, trade name “Oleic acid”
Aluminum plate: Mitsubishi Aluminum Co., Ltd., trade name “1085”
Brazing alloy foil: product name “A2017R-H alloy foil” manufactured by Toyo Seiki Co., Ltd.
UV curable resist ink: trade name “PER-27B-6” manufactured by Kyoyo Chemical Industry Co., Ltd.

〈評価方法〉
酸素含有量:窒化アルミニウム基板の1つの角から中央部へ向かって対角上に、□5mm×5mmの寸法でサンプリングを行い、酸素・窒素分析装置にて測定した。
熱伝導率:10mm×10mmに加工した窒化アルミニウム焼結体を、レーザーフラッシュ法により測定した。
熱履歴衝撃試験:−25℃に10分、25℃に10分、125℃に10分、25℃に10分さらす工程を1サイクルとした熱履歴を、サンプルの回路基板に対して3000サイクル与える試験。接合クラック発生の有無は、熱履歴衝撃試験を実施し、2000サイクル未満にて接合クラックが発生した場合を記号C、2000〜3000サイクルにて接合クラックが発生した場合を記号B、3000サイクルでも接合クラックが発生しない場合を記号Aとした。回路基板としての信頼性保証基準は記号A、Bである。
生産性:積層枚数を多くすると、脱脂炉、焼成炉で処理するバッチ量が増えるため、生産性が向上する。また、脱脂時間を短くすると、脱脂炉の運転サイクルを早めることが出来るため、生産性が向上する。実施例1の生産性を記号△として、実施例1より生産性に優れる場合を記号○で、実施例1より生産性に劣る場合を記号×で表した。
<Evaluation methods>
Oxygen content: Sampling was carried out with a dimension of □ 5 mm × 5 mm diagonally from one corner of the aluminum nitride substrate toward the center, and measured with an oxygen / nitrogen analyzer.
Thermal conductivity: An aluminum nitride sintered body processed to 10 mm × 10 mm was measured by a laser flash method.
Thermal history impact test: 3,000 ° C. thermal history is applied to the circuit board of the sample, with a cycle of 10 minutes at −25 ° C., 10 minutes at 25 ° C., 10 minutes at 125 ° C. and 10 minutes at 25 ° C. test. Presence / absence of joint cracks is determined by conducting a thermal history impact test, symbol C when joining cracks occur in less than 2000 cycles, and joining symbols B and 3000 cycles when joining cracks occur in 2000-3000 cycles. The case where no crack occurred was designated as symbol A. The reliability assurance standards for circuit boards are symbols A and B.
Productivity: Increasing the number of stacked layers increases the batch amount to be processed in a degreasing furnace and a firing furnace, thereby improving productivity. Further, when the degreasing time is shortened, the operating cycle of the degreasing furnace can be shortened, so that productivity is improved. The productivity of Example 1 was represented by symbol Δ, the case where productivity was superior to Example 1 was represented by symbol ◯, and the case where productivity was inferior to Example 1 was represented by symbol x.

[実施例2〜4]
脱脂、焼成時の積層枚数及び脱脂時間を表1に示すように変えたこと以外は実施例1と同様にして窒化アルミニウム基板及び窒化アルミニウム回路基板を得た。評価結果を表1に示す。
[Examples 2 to 4]
An aluminum nitride substrate and an aluminum nitride circuit substrate were obtained in the same manner as in Example 1 except that the number of degreasing and the number of laminated layers during firing and the degreasing time were changed as shown in Table 1. The evaluation results are shown in Table 1.

[実施例5〜7]
窒化アルミニウム粉末を酸化処理せず、積層枚数および脱脂、焼成条件を表1に示すように変えたこと以外は実施例1と同様にして窒化アルミニウム基板及び窒化アルミニウム回路基板を得た。評価結果を表1に示す。
[Examples 5 to 7]
An aluminum nitride substrate and an aluminum nitride circuit substrate were obtained in the same manner as in Example 1 except that the aluminum nitride powder was not oxidized and the number of laminated layers, degreasing and firing conditions were changed as shown in Table 1. The evaluation results are shown in Table 1.

[比較例1]
脱脂、焼成時の積層枚数及び脱脂時間を表1に示すように変えたこと以外は実施例1と同様にして窒化アルミニウム基板及び窒化アルミニウム回路基板を得た。評価結果を表1に示す。
[Comparative Example 1]
An aluminum nitride substrate and an aluminum nitride circuit substrate were obtained in the same manner as in Example 1 except that the number of degreasing and the number of laminated layers during firing and the degreasing time were changed as shown in Table 1. The evaluation results are shown in Table 1.

[比較例2]
窒化アルミニウム粉末を酸化処理しないこと以外は実施例1と同様にして窒化アルミニウム基板及び窒化アルミニウム回路基板を得た。評価結果を表1に示す。
[Comparative Example 2]
An aluminum nitride substrate and an aluminum nitride circuit board were obtained in the same manner as in Example 1 except that the aluminum nitride powder was not oxidized. The evaluation results are shown in Table 1.

[比較例3、4]
窒化アルミニウム粉末を酸化処理しないこと以外は実施例2及び実施例3と同様にして窒化アルミニウム焼結体及び窒化アルミニウム回路基板を得た。評価結果を表1に示す。
[Comparative Examples 3 and 4]
An aluminum nitride sintered body and an aluminum nitride circuit board were obtained in the same manner as in Example 2 and Example 3 except that the aluminum nitride powder was not oxidized. The evaluation results are shown in Table 1.

Figure 0004987345
Figure 0004987345

本発明により製造された窒化アルミニウム焼結体は、色むらがなく且つ高い熱伝導率を有するので、通常の回路基板はもとより、厳しい使用条件下で用いられる回路基板、例えばパワーモジュール用回路基板に好適な材料である。
Since the aluminum nitride sintered body produced according to the present invention has no color unevenness and high thermal conductivity, it can be applied not only to a normal circuit board but also to a circuit board used under severe conditions such as a circuit board for a power module. It is a suitable material.

Claims (4)

基板の1つの角から中央部へ向かって対角上に、□5mm×5mmの寸法でサンプリングを行い、酸素・窒素分析装置にて測定した酸素含有量1.58質量%〜1.87質量%から、基板内の酸素含有量の最大値と最小値の差が0.20質量%以下であることを特徴とする色むらのない窒化アルミニウム基板。 Sampling with a dimension of □ 5 mm × 5 mm diagonally from one corner of the substrate to the center, and an oxygen content of 1.58% to 1.87% by weight measured with an oxygen / nitrogen analyzer From the above, an uneven aluminum nitride substrate characterized in that the difference between the maximum value and the minimum value of the oxygen content in the substrate is 0.20% by mass or less. 原料として酸化処理が施された窒化アルミニウム粉末を用いることを特徴とする請求項1記載の窒化アルミニウム基板。 The aluminum nitride substrate according to claim 1, wherein an aluminum nitride powder subjected to an oxidation treatment is used as a raw material. 請求項1または請求項2記載の窒化アルミニウム基板を用いてなる回路基板。 A circuit board using the aluminum nitride substrate according to claim 1. 請求項3記載の回路基板を用いてなるモジュール。 A module using the circuit board according to claim 3.
JP2006124623A 2006-04-28 2006-04-28 Aluminum nitride substrate Active JP4987345B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006124623A JP4987345B2 (en) 2006-04-28 2006-04-28 Aluminum nitride substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006124623A JP4987345B2 (en) 2006-04-28 2006-04-28 Aluminum nitride substrate

Publications (2)

Publication Number Publication Date
JP2007297225A JP2007297225A (en) 2007-11-15
JP4987345B2 true JP4987345B2 (en) 2012-07-25

Family

ID=38767059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006124623A Active JP4987345B2 (en) 2006-04-28 2006-04-28 Aluminum nitride substrate

Country Status (1)

Country Link
JP (1) JP4987345B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0629124B2 (en) * 1989-09-13 1994-04-20 東京タングステン株式会社 Aluminum nitride powder manufacturing method, aluminum nitride sintered body and manufacturing method thereof
JPH0881266A (en) * 1994-09-16 1996-03-26 Toshiba Corp Production of aluminum nitride sintered compact
JP2000355760A (en) * 1999-06-14 2000-12-26 Toshiba Corp Sputtering target, barrier film and electronic parts
JP2004083867A (en) * 2002-06-24 2004-03-18 Toray Ind Inc Tablet, its preparation method and its shaped article
JP2007186385A (en) * 2006-01-16 2007-07-26 Denki Kagaku Kogyo Kk Aluminum nitride sintered compact and aluminum nitride circuit board using it

Also Published As

Publication number Publication date
JP2007297225A (en) 2007-11-15

Similar Documents

Publication Publication Date Title
JP7219810B2 (en) Silicon nitride substrate, silicon nitride-metal composite, silicon nitride circuit substrate, and semiconductor package
JP5142198B2 (en) Silicon nitride substrate, silicon nitride circuit substrate using the same, and use thereof
JPWO2005090032A1 (en) Manufacturing method of ceramic sheet, ceramic substrate using the same, and use thereof
JP2011178598A (en) Method for manufacturing silicon nitride substrate and silicon nitride substrate
CN106537580B (en) Ceramic circuit board and method for manufacturing the same
JP2006332068A (en) Ceramic heater and apparatus mounted the same for manufacturing semiconductor or liquid crystal
JP2007189112A (en) Silicon nitride substrate, circuit board and module using the same
JP4987345B2 (en) Aluminum nitride substrate
JP4023944B2 (en) Manufacturing method of aluminum nitride sintered body and plate heater or electrostatic chuck
JP4850667B2 (en) Aluminum nitride sintered body and manufacturing method thereof
JP2006319344A (en) Wafer holder for semiconductor production system and semiconductor production system mounting same
JP2007186385A (en) Aluminum nitride sintered compact and aluminum nitride circuit board using it
JP2010159184A (en) Method for producing aluminum nitride sintered compact
JP4347206B2 (en) Manufacturing method of ceramic sheet, ceramic substrate using the same, and use thereof
JP2004247387A (en) Wafer holder for semiconductor production system and semiconductor production system mounting it
JP4111013B2 (en) Wafer holder for semiconductor manufacturing apparatus and semiconductor manufacturing apparatus equipped with the same
JP2013182983A (en) Silicon nitride circuit board and module using the same
JP2007186382A (en) Aluminum nitride sintered compact
JP2010006631A (en) Aluminum nitride sintered compact and its manufacturing method
JP7330382B2 (en) Composite substrate
JP2018195784A (en) Method for manufacturing ceramic circuit board
JP2007182339A (en) Method for regenerating aluminum nitride substrate, and circuit board using the same
JP2004266104A (en) Wafer holder for semiconductor manufacturing device and semiconductor manufacturing device mounting the same
JPH10310475A (en) Aluminum nitride sintered compact and its use
JP2004289137A (en) Wafer holder for semiconductor manufacturing apparatus and semiconductor manufacturing apparatus carrying the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110517

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120217

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120424

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120425

R151 Written notification of patent or utility model registration

Ref document number: 4987345

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250