JP2010159184A - Method for producing aluminum nitride sintered compact - Google Patents

Method for producing aluminum nitride sintered compact Download PDF

Info

Publication number
JP2010159184A
JP2010159184A JP2009003048A JP2009003048A JP2010159184A JP 2010159184 A JP2010159184 A JP 2010159184A JP 2009003048 A JP2009003048 A JP 2009003048A JP 2009003048 A JP2009003048 A JP 2009003048A JP 2010159184 A JP2010159184 A JP 2010159184A
Authority
JP
Japan
Prior art keywords
aluminum nitride
nitride sintered
sintered body
weight
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009003048A
Other languages
Japanese (ja)
Inventor
Takanori Atsusaka
高範 阿津坂
Koji Nishimura
浩二 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2009003048A priority Critical patent/JP2010159184A/en
Publication of JP2010159184A publication Critical patent/JP2010159184A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing an aluminum nitride sintered compact having little warp. <P>SOLUTION: The aluminum nitride sintered compact is produced by the method in which degreasing and firing processes are characterized by following (1) and (2). (1) Degreasing and firing are performed under such a condition that a weight is put on a laminate, obtained by alternately laminating formed bodies in such a manner that the surfaces or the rear surfaces of the formed bodies face each other. (2) The mass of the weight applied to the laminate is A, represented by following formula, per 1 cm<SP>2</SP>: 10≤A≤100-(n-1)×a (the unit of the mass is g), wherein n is number of the laminated formed bodies, and a is mass per 1 cm<SP>2</SP>of the surface of the formed body after drying. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、窒化アルミニウム焼結体の製造方法に関する。 The present invention relates to a method for producing an aluminum nitride sintered body.

従来、半導体搭載用セラミックス基板の表面に、導電性を有する金属回路層をろう材で接合し、更に金属回路層の所定位置に半導体素子を搭載した回路基板が用いられている。回路基板が信頼性高く動作するためには、半導体素子が発生する熱を放散し、半導体素子の温度が過大とならないようにすることが肝要であり、セラミックス基板材料には、電気絶縁性に加えて、優れた放熱特性を発現するように高熱伝導率が要求されている。近年、回路基板の小型化、パワーモジュールの高出力化が進む中、小型軽量化モジュールにおいては、窒化アルミニウム基板が注目されている。また、窒化アルミニウム基板の回路自体への小型化の要求に伴って、窒化アルミニウム焼結体にも、反りの低減が求められるようになってきた。 Conventionally, a circuit board is used in which a conductive metal circuit layer is bonded to a surface of a ceramic substrate for mounting a semiconductor with a brazing material and a semiconductor element is mounted at a predetermined position of the metal circuit layer. In order for a circuit board to operate with high reliability, it is important to dissipate the heat generated by the semiconductor element so that the temperature of the semiconductor element does not become excessive. Therefore, high thermal conductivity is required so as to exhibit excellent heat dissipation characteristics. In recent years, with the progress of miniaturization of circuit boards and higher output of power modules, aluminum nitride substrates have attracted attention as miniaturization and weight reduction modules. Further, along with the demand for miniaturization of the circuit itself of the aluminum nitride substrate, the aluminum nitride sintered body has been required to reduce warpage.

窒化アルミニウム基板となる窒化アルミニウム焼結体は、一般に以下の方法で製造される。すなわち、窒化アルミニウム粉末に焼結助剤、バインダー、可塑剤、分散媒、離型剤等の添加剤を混合し、それを押出成形等によってシート状の成形体に加工する。次いで、成形体を空気中又は、窒素等の非酸化性雰囲気中で350〜700℃に加熱してバインダーを除去した後(脱脂)、窒素等の非酸化性雰囲気中にて1800〜1900℃で0.5〜10時間保持すること(焼成)によって製造される。 An aluminum nitride sintered body that becomes an aluminum nitride substrate is generally manufactured by the following method. That is, an additive such as a sintering aid, a binder, a plasticizer, a dispersion medium, and a release agent is mixed with the aluminum nitride powder and processed into a sheet-like molded body by extrusion molding or the like. Next, the molded body is heated in air or in a non-oxidizing atmosphere such as nitrogen to 350 to 700 ° C. to remove the binder (degreasing), and then in a non-oxidizing atmosphere such as nitrogen at 1800 to 1900 ° C. Manufactured by holding for 0.5-10 hours (firing).

焼成の際の窒化アルミニウム焼結体の変形(反り)を低減する方法として、窒化アルミニウム成形体を焼成する際に周囲をセラミックス製のスペーサーやセッターで囲う方法(特許文献1)、セラミックス粉を含有するしき粉を介して窒化アルミニウム成形体を多段に積層配置して焼成する方法(特許文献2)等が提案されている。しかしながら、これらの方法では、今日の要求を満たすまでの十分な反り改善効果は得られず、しかもセッターやスペーサーを配置したり、しき粉を用いたりすることが必須であり、生産性の面で問題があった。
一方、脱脂工程に際し、窒素雰囲気中で脱バインダーを行った後、さらに空気中で脱バインダーを行うことで、反りの小さい窒化アルミニウム焼結体を製造する方法(特許文献3)が提案されている。しかし、この方法においても、脱脂工程を2度繰り返す必要があり、生産性を高めて製造することが困難であった。
As a method of reducing deformation (warpage) of the aluminum nitride sintered body during firing, a method of surrounding the periphery with a ceramic spacer or setter when firing the aluminum nitride molded body (Patent Document 1), containing ceramic powder There has been proposed a method (Patent Document 2) or the like in which aluminum nitride molded bodies are laminated and fired in multiple stages through sushi powder. However, these methods do not provide sufficient warping improvement effects to meet today's requirements, and it is essential to arrange setters and spacers, and to use a dust, in terms of productivity. There was a problem.
On the other hand, in the degreasing step, after debinding in a nitrogen atmosphere, a method of manufacturing an aluminum nitride sintered body having a small warpage by further debinding in air has been proposed (Patent Document 3). . However, even in this method, it is necessary to repeat the degreasing process twice, and it has been difficult to increase the productivity.

特開平5−229873号公報JP-A-5-229873 特開平5−229872号公報Japanese Patent Laid-Open No. 5-229872 特開平5−9077号公報Japanese Patent Laid-Open No. 5-9077

本発明の目的は、反りの少ない窒化アルミニウム焼結体の製造方法を提供することである。   An object of the present invention is to provide a method for producing an aluminum nitride sintered body with less warpage.

即ち、本発明は、窒化アルミニウム粉末と、希土類化合物からなる焼結助剤を含む成形体を焼成する窒化アルミニウム焼結体の製造方法において、(1)成形体の表面同士又は裏面同士が向かい合わせになる様に交互に積層した積層体とすること、(2)前記積層体にかかる重しの質量が、1cmあたり次式で示されるAの範囲となる重しを乗せて焼成することを特徴とする窒化アルミニウム焼結体の製造方法であり、
10≦A≦100−(n−1)×a
但し、nは積層した成形体の枚数、aは乾燥後の成形体の表面1cmあたりの質量
重しがタングステン、モリブデン、もしくはこれらを含む合金からなり、焼結体の反りが5μm/cm以下であることを特徴とする窒化アルミニウム製造方法である。更に、前記窒化アルミニウムの製造方法により製造された窒化アルミニウム焼結体を用いてなる窒化アルミニウム回路基板であり、窒化アルミニウム回路基板を用いるモジュールである。
That is, the present invention relates to a method for producing an aluminum nitride sintered body in which a molded body containing an aluminum nitride powder and a sintering aid comprising a rare earth compound is fired. (1) The front surfaces or the back surfaces of the molded bodies face each other. (2) The weight of the weight applied to the laminate is fired with a weight in the range of A represented by the following formula per 1 cm 2. A method for producing a featured aluminum nitride sintered body,
10 ≦ A ≦ 100− (n−1) × a
However, n is the number of laminated molded bodies, a is a weight of 1 cm 2 of the surface of the molded body after drying is made of tungsten, molybdenum, or an alloy containing these, and the warp of the sintered body is 5 μm / cm or less. This is a method for producing aluminum nitride. Further, the present invention is an aluminum nitride circuit board using an aluminum nitride sintered body manufactured by the aluminum nitride manufacturing method, and a module using the aluminum nitride circuit board.

本発明によれば、反りの少ない窒化アルミニウム焼結体の製造方法が提供される。 ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of an aluminum nitride sintered compact with few curvature is provided.

本発明の製造方法は、原料調製、成形、積層、脱脂、焼成の各工程を経るものであるが、大きな特徴は積層工程、脱脂工程及び焼成工程にあり、原料調製工程及び成形工程は従来と同様でよい。 The production method of the present invention goes through the steps of raw material preparation, molding, lamination, degreasing, and firing, but the major features are in the lamination step, degreasing step, and firing step, and the raw material preparation step and molding step are conventional. It may be the same.

本発明で使用される窒化アルニミウム原料粉末としては、直接窒化法、アルミナ還元法等公知の方法で製造された粉末が使用できる。   As the aluminum nitride raw material powder used in the present invention, a powder produced by a known method such as a direct nitriding method or an alumina reduction method can be used.

焼結助剤としては、Y、La、Ce、Ho、Yb、Gd,Nb、Sm、Dy等の希土類元素、Mg、Ca、Sr等のアルカリ土類元素及び/又はAl、Ga、In等の3B族元素などの酸化物、フッ化物等の一種又は二種以上が使用される。   As sintering aids, rare earth elements such as Y, La, Ce, Ho, Yb, Gd, Nb, Sm, Dy, alkaline earth elements such as Mg, Ca, Sr and / or Al, Ga, In, etc. One kind or two or more kinds of oxides such as 3B group elements and fluorides are used.

バインダーとしては、ポリメチルメタクリレート、ポリエチルメタクリレート、ポリブチルメタクリレート、ポリビニルブチラール、ニトロセルロース、ポリビニルアルコール、メチルセルロース等の一種又は二種以上が使用される。
また、バインダーがより均一に分散するようバインダーが可溶な溶媒が使用される。溶媒としては水が例示される。窒化アルミニウム粉末をオレイン酸等の疎水基を有する有機化合物等で前処理しておくことによって水系成形が可能となる。
As the binder, one or more of polymethyl methacrylate, polyethyl methacrylate, polybutyl methacrylate, polyvinyl butyral, nitrocellulose, polyvinyl alcohol, methyl cellulose and the like are used.
A solvent in which the binder is soluble is used so that the binder is more uniformly dispersed. An example of the solvent is water. By pre-treating the aluminum nitride powder with an organic compound having a hydrophobic group such as oleic acid, water-based molding becomes possible.

窒化アルミニウム粉末と焼結助剤、バインダー等の混合には、例えば、攪拌混合機、ボールミル、ロッドミル等の公知の混合機を使用することができる。   For mixing the aluminum nitride powder, the sintering aid, the binder, and the like, for example, a known mixer such as a stirring mixer, a ball mill, or a rod mill can be used.

成形体は、窒化アルミニウム粉末、焼結助剤、有機バインダー、必要に応じて可塑剤、分散剤等を混合し、押出成形法、ドクターブレード法、プレス成形法等により所望形状に成形したり、前記成形法でシートを作製した後切削して所望形状にしたりすることで製造される。成形体の厚みは、2mm以下、好ましくは1mm以下のものが好適に使用される。成形体厚みが2mmを超えると、成形体内での密度分布が不均一となり、その不均一さが原因となって、焼結後の厚みの不均一が生じたり、焼成中に成形体にクラックが生じることがある。更に脱脂中や焼成中の成形体同士の融着を防ぐ程度に、窒化ホウ素からなるスラリーを片面もしくは両面に塗布してもかまわない。   The molded body is an aluminum nitride powder, a sintering aid, an organic binder, and if necessary, a plasticizer, a dispersant and the like are mixed, and molded into a desired shape by an extrusion molding method, a doctor blade method, a press molding method, It is manufactured by producing a sheet by the forming method and then cutting it into a desired shape. The thickness of the molded body is suitably 2 mm or less, preferably 1 mm or less. When the thickness of the molded body exceeds 2 mm, the density distribution in the molded body becomes non-uniform. Due to the non-uniformity, non-uniform thickness occurs after sintering, or cracks occur in the molded body during firing. May occur. Furthermore, a slurry made of boron nitride may be applied to one side or both sides to the extent that fusion between the molded bodies during degreasing and firing is prevented.

本発明の特徴の一つは、成形体の表面同士又は裏面同士が向かい合わせになる様に交互に積層した積層体とすることである。これは、押し出し成形後の乾燥過程で、成形体の厚み方向の乾燥の差により、成形体が反ってしまう為である。表面と裏面を合わせて積層して脱脂・焼成すると、焼結体に反りが生じたままとなる。成形体の表裏は、乾燥後の成形体の反りが、上に凸面を表面、凹面を裏面とする。
積層する枚数は成形体の特に限定されるものではないが、10〜100枚で積層することが望ましい。
One of the features of the present invention is to provide a laminate in which the molded bodies are alternately laminated so that the front surfaces or the back surfaces thereof face each other. This is because in the drying process after extrusion molding, the molded body warps due to the difference in drying in the thickness direction of the molded body. When the front and back surfaces are laminated together and degreased and fired, the sintered body remains warped. As for the front and back of the molded body, warping of the molded body after drying has a convex surface on the top and a concave surface on the back.
The number of sheets to be stacked is not particularly limited, but it is desirable to stack 10 to 100 sheets.

さらに、本願成形体の積層体は、窒化ホウ素製、黒鉛製又は窒化アルミニウム製等の容器に収納し、窒化ホウ素板材をおいた後、更にその上に重しをおく。積層体の1cmあたりにかかる重しの質量は、次式で表されるAの範囲にすることが好ましい。
10≦A≦100−(n−1)×a (質量の単位はgである。)
但し、nは積層した成形体の枚数、aは乾燥後の成形体の表面1cmあたりの質量。
本発明において、「成形体の表面1cmあたりの質量」とは、乾燥後の成形体を1cmに裁断した質量を意味する。
Furthermore, the laminate of the molded body of the present application is housed in a container made of boron nitride, graphite, or aluminum nitride, placed on a boron nitride plate, and further placed on top of it. It is preferable that the mass of the weight applied per 1 cm 2 of the laminate is in the range of A represented by the following formula.
10 <= A <= 100- (n-1) * a (The unit of mass is g.)
However, n is the number of stacked molded bodies, and a is the mass per 1 cm 2 of the surface of the molded body after drying.
In the present invention, “mass per 1 cm 2 of the surface of the molded body” means a mass obtained by cutting the molded body after drying into 1 cm 2 .

また、タングステン、モリブデン等の金属もしくはこれらの合金等を重しとして好適に用いることができる。 A metal such as tungsten or molybdenum or an alloy thereof can be suitably used as a weight.

積層体の1cmあたりにかかる重しの質量が範囲外では、焼成の際に発生する反りを押さえ込むことができない場合があったり、焼成前或いは焼成中に変形したりクラックが入ったりしまう場合がある。 If the mass of the weight per 1 cm 2 of the laminate is out of the range, the warp generated during firing may not be suppressed, or deformation or cracking may occur before or during firing. is there.

窒素ガスや空気等の気流中、300〜700℃で0.5〜10時間熱処理を行ってバインダーを除去(脱脂)した後、窒素ガス、アルゴンガス等の非酸化性雰囲気中、1500〜1900℃の温度域で焼成する。焼成温度が1500℃未満であると、焼成不足となってしまい、窒化アルミニウム焼結体の製造が困難となる。また、焼成温度が1900℃を超えると、焼成炉内での窒化アルミニウムの蒸気圧が高くなり、窒化アルミニウムが飛散して緻密化が困難となる。   After removing the binder (degreasing) by performing heat treatment at 300 to 700 ° C. for 0.5 to 10 hours in an air flow such as nitrogen gas or air, it is 1500 to 1900 ° C. in a non-oxidizing atmosphere such as nitrogen gas or argon gas. Bake in the temperature range. When the firing temperature is less than 1500 ° C., firing is insufficient, and it becomes difficult to produce an aluminum nitride sintered body. On the other hand, when the firing temperature exceeds 1900 ° C., the vapor pressure of aluminum nitride in the firing furnace becomes high, and aluminum nitride is scattered to make it difficult to make it dense.

以下、実施例と比較例をあげて更に具体的に本発明を説明する。 Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples.

窒化アルミニウム粉末100質量部に対し、酸化イットリウム粉末4質量部添加し、ボールミルにより1時間混合した。さらに、原料粉末100質量部にセルロースエーテル系バインダー6質量部、グリセリン5質量部、イオン交換水10質量部を添加し、ヘンシェルミキサーにより1分間混合した。ついで、スクリュー式成形機でシート(幅80mm、厚さ0.8mm)を成形し、100℃で1時間乾燥した後、60×60mmの形状に切り落として成形体とした。できた成形体は、1cmあたり、0.19gであった。シート表面に離型剤として窒化ホウ素粉末スラリー塗布し、成形体の表面同士又は裏面同士が向かい合わせになる様に交互に20枚積層して、積層体としてから窒化ホウ素製セッターの上に静置し、窒化ホウ素板材を乗せ、最上面には、積層体の1cmあたりにかかる重しの質量が86gになるようにタングステン板をのせた。 4 parts by mass of yttrium oxide powder was added to 100 parts by mass of the aluminum nitride powder, and mixed for 1 hour by a ball mill. Furthermore, 6 parts by mass of a cellulose ether binder, 5 parts by mass of glycerin, and 10 parts by mass of ion-exchanged water were added to 100 parts by mass of the raw material powder, and mixed for 1 minute by a Henschel mixer. Next, a sheet (width 80 mm, thickness 0.8 mm) was formed with a screw-type molding machine, dried at 100 ° C. for 1 hour, and then cut into a 60 × 60 mm shape to form a molded body. The formed body was 0.19 g per 1 cm 2 . Boron nitride powder slurry is applied to the sheet surface as a release agent, and 20 sheets are laminated alternately so that the front surfaces or back surfaces of the molded bodies face each other, and then left on the boron nitride setter. Then, a boron nitride plate material was placed, and a tungsten plate was placed on the uppermost surface so that the weight of the weight per 1 cm 2 of the laminate was 86 g.

その後、この積層体を空気雰囲気中570℃ で5 時間加熱し脱脂した。脱脂後に、窒素雰囲気中1780℃で2 時間加熱することで窒化アルミニウム焼結体を得た。 Thereafter, this laminate was degreased by heating at 570 ° C. for 5 hours in an air atmosphere. After degreasing, the aluminum nitride sintered body was obtained by heating at 1780 ° C. for 2 hours in a nitrogen atmosphere.

得られた窒化アルミニウム基板に、金属回路及び金属放熱板としてアルミニウム板を以下の方法にて接合し、窒化アルミニウム回路基板を作製した。
窒化アルミニウム基板の両面に60mm×50mm×0.2mmtのろう合金箔を貼付け、さらにその両面から60mm×50mm×0.2mmtのアルミニウム板を挟んだものを、カーボンスペーサーを隔てて10枚積層した。それをカーボン治具に設置した後、620℃で2時間保持して窒化アルミニウム焼結体とアルミニウム板を接合した。接合体の一主面には所定の形状の回路パターンを、もう一方の主面には放熱板パターンを形成させるべく、UV硬化型レジストインクをスクリーン印刷した後、UVランプを照射させてレジスト膜を硬化させた。次いで、レジスト塗布した部分以外を水酸化ナトリウム水溶液でエッチングした後、フッ化アンモニウム水溶液にてレジスト剥離し、窒化アルミニウム回路基板を作製した。
An aluminum plate was bonded to the obtained aluminum nitride substrate as a metal circuit and a metal heat sink by the following method to produce an aluminum nitride circuit substrate.
Ten sheets of aluminum alloy substrate each having a 60 mm × 50 mm × 0.2 mmt brazing alloy foil adhered thereto and a 60 mm × 50 mm × 0.2 mmt aluminum plate sandwiched between the both surfaces were laminated with a carbon spacer therebetween. After placing it on a carbon jig, it was held at 620 ° C. for 2 hours to join the aluminum nitride sintered body and the aluminum plate. In order to form a circuit pattern of a predetermined shape on one main surface of the joined body and a heat sink pattern on the other main surface, a UV curable resist ink is screen-printed and then irradiated with a UV lamp to form a resist film. Was cured. Next, the portion other than the resist-coated portion was etched with an aqueous sodium hydroxide solution, and then the resist was peeled off with an aqueous ammonium fluoride solution to produce an aluminum nitride circuit board.

<使用材料>
窒化アルミニウム粉末:1850℃ 以上に加熱した管状電気炉の頂部からアルミニウム粉末を噴射させてアルミニウム蒸気とし、管内に供給した窒素ガスと反応させて窒化アルミニウムを合成する直接窒化法により作製した。平均粒径1.5μm、酸素含有量0.80質量%
酸化イットリウム粉末:信越化学工業社製、商品名「Yttriumu Oxide」
バインダー:信越化学工業社製、商品名「メトローズ」
グリセリン:花王社製、商品名「エキセパール」
アルミニウム板: 三菱アルミニウム社製、商品名「1085材」
ろう合金箔: 東洋精箔社製、商品名「A2017R−H合金箔」
UV硬化型レジストインク: 互応化学工業社製、商品名「PER−27B−6」
<Materials used>
Aluminum nitride powder: It was produced by a direct nitriding method in which aluminum powder was sprayed from the top of a tubular electric furnace heated to 1850 ° C. or more to form aluminum vapor and reacted with nitrogen gas supplied into the tube to synthesize aluminum nitride. Average particle size 1.5μm, oxygen content 0.80% by mass
Yttrium oxide powder: manufactured by Shin-Etsu Chemical Co., Ltd., trade name “Yttriumu Oxide”
Binder: Shin-Etsu Chemical Co., Ltd., trade name “Metrozu”
Glycerin: Product name “Exepal” manufactured by Kao Corporation
Aluminum plate: Mitsubishi Aluminum Co., Ltd., trade name “1085”
Brazing alloy foil: manufactured by Toyo Seiki Co., Ltd., trade name “A2017R-H alloy foil”
UV curable resist ink: Product name “PER-27B-6” manufactured by Kyoyo Chemical Industry Co., Ltd.

積層体の1cmあたりにかかる重しの質量が76gとなるタングステン板を用いたこと以外は実施例1と同様にして窒化アルミニウム焼結体を製造した。 An aluminum nitride sintered body was produced in the same manner as in Example 1 except that a tungsten plate having a weight of 76 g per 1 cm 2 of the laminate was used.

積層体の1cmあたりにかかる重しの質量が36gとなるタングステン板を用いたこと以外は実施例1と同様にして窒化アルミニウム焼結体を製造した。 An aluminum nitride sintered body was produced in the same manner as in Example 1 except that a tungsten plate having a weight of 36 g per 1 cm 2 of the laminate was used.

積層体の1cmあたりにかかる重しの質量が20gとなるタングステン板を用いたこと以外は実施例1と同様にして窒化アルミニウム焼結体を製造した。 An aluminum nitride sintered body was manufactured in the same manner as in Example 1 except that a tungsten plate having a weight of 20 g per 1 cm 2 of the laminate was used.

積層体の1cmあたりにかかる重しの質量が10gとなるタングステン板を用いたこと以外は実施例1と同様にして窒化アルミニウム焼結体を製造した。 An aluminum nitride sintered body was produced in the same manner as in Example 1 except that a tungsten plate having a weight of 10 g per 1 cm 2 of the laminate was used.

また、実施例2〜5で作製した焼結体を用いて実施例1と同様に窒化アルミニウム回路基板を作製した。 Moreover, the aluminum nitride circuit board was produced similarly to Example 1 using the sintered compact produced in Examples 2-5.

(比較例1〜2)
積層体の1cmあたりにかかる重しの質量が5gとなるタングステン板を用いたこと(比較例1)積層体の1cmあたりにかかる重しの質量が100gとなるタングステン板を用いたこと(比較例2)以外は、実施例1と同様にして窒化アルミニウム焼結体を製造した。
(Comparative Examples 1-2)
The mass of the weigh according to 1cm per second laminate has a tungsten plate with a 5 g (Comparative Example 1) that the weigh of the mass according to 1cm per second laminate has a tungsten plate with a 100 g ( An aluminum nitride sintered body was produced in the same manner as in Example 1 except for Comparative Example 2).

(比較例3)
成形体の表面と裏面を合わせて積層して積層体としたこと以外は、実施例5と同様にして窒化アルミニウム焼結体を製造した。
(Comparative Example 3)
An aluminum nitride sintered body was produced in the same manner as in Example 5, except that the front and back surfaces of the molded body were laminated to form a laminated body.

(比較例4)
成形体の表面と裏面を合わせて積層して積層体としたこと以外は、実施例3と同様にして窒化アルミニウム焼結体を製造した。
(Comparative Example 4)
An aluminum nitride sintered body was produced in the same manner as in Example 3, except that the front and back surfaces of the molded body were laminated to form a laminated body.

(比較例5)
成形体の表面と裏面を合わせて積層して積層体としたこと以外は、実施例1と同様にして窒化アルミニウム焼結体を製造した。
(Comparative Example 5)
An aluminum nitride sintered body was manufactured in the same manner as in Example 1 except that the front and back surfaces of the molded body were laminated to form a laminated body.

また、比較例1、3〜5で作製した焼結体を用いて実施例1と同様に窒化アルミニウム回路基板を作製した。 Moreover, the aluminum nitride circuit board was produced similarly to Example 1 using the sintered compact produced by the comparative examples 1 and 3-5.

実施例及び比較例で得られた窒化アルミニウム焼結体と窒化アルミニウム回路基板について、下記の(1)〜(3)の項目について測定を行った。結果を表1に示す。
(1)反り(窒化アルミニウム焼結体)
接触型二次元輪郭形状測定機(東京精密社製;TOURECORD1600D)用いて、検出した反り量と、測定長さから、単位長さ当たりの反り量(μm/cm)として算出した。反りは、窒化アルミニウム焼結体長手方向中央の測定を行い、測定数10の平均値の他に、最大値を求めた。
(2)室温の3点曲げ強度(窒化アルミニウム焼結体)
窒化アルミニウム焼結体から強度試験体(40×20×1mm)を研削加工し、JIS R 1601に準じて曲げ強度試験機を用い、室温25℃で測定した。
(3)熱履歴衝撃試験(窒化アルミニウム回路基板)
−25℃ に10分、25℃ に10分、125℃ に10分、25℃ に10分さらす工程を1サイクルとした熱履歴を、比較例2を除く上記作製窒化アルミニウム回路基板に対して3000サイクル与える試験。接合クラック発生の有無は、熱履歴衝撃試験を実施し、2000サイクル未満にて接合クラックが発生した場合を記号C、2000〜3000サイクルにて接合クラックが発生した場合を記号B、3000サイクルでも接合クラックが発生しない場合を記号Aとした。回路基板としての信頼性保証基準は記号A、Bである。
About the aluminum nitride sintered compact and aluminum nitride circuit board which were obtained by the Example and the comparative example, it measured about the item of following (1)-(3). The results are shown in Table 1.
(1) Warpage (sintered aluminum nitride)
Using a contact-type two-dimensional contour shape measuring machine (Tokyo Seimitsu Co., Ltd .; TOURCORED1600D), the amount of warpage per unit length (μm / cm) was calculated from the detected amount of warpage and the measured length. The warpage was measured at the center in the longitudinal direction of the aluminum nitride sintered body, and the maximum value was obtained in addition to the average value of 10 measurements.
(2) Three-point bending strength at room temperature (aluminum nitride sintered body)
A strength test body (40 × 20 × 1 mm) was ground from the aluminum nitride sintered body, and measured at a room temperature of 25 ° C. using a bending strength tester according to JIS R 1601.
(3) Thermal history impact test (aluminum nitride circuit board)
Thermal history with one cycle of exposure to -25 ° C. for 10 minutes, 25 ° C. for 10 minutes, 125 ° C. for 10 minutes, and 25 ° C. for 10 minutes is 3000 for the fabricated aluminum nitride circuit board excluding Comparative Example 2. Cycle giving test. Presence / absence of joint cracks is determined by conducting a thermal history impact test, symbol C when joining cracks occur in less than 2000 cycles, and joining symbols B and 3000 cycles when joining cracks occur in 2000-3000 cycles. The case where no crack occurred was designated as symbol A. The reliability assurance standards for circuit boards are symbols A and B.

Figure 2010159184


表1からわかるように、本発明の製造方法によれば、反りが5μm/cm以下である窒化アルミニウム焼結体を、焼結体間のばらつきを少なくして(歩留まりよく)、生産性を高めて製造することができた。
Figure 2010159184


As can be seen from Table 1, according to the production method of the present invention, the aluminum nitride sintered body having a warp of 5 μm / cm or less is reduced in variation between the sintered bodies (high yield), and the productivity is increased. Could be manufactured.

本発明によれば、反りが5μm/cm以下である窒化アルミニウム焼結体が提供される。本発明の窒化アルミニウム焼結体を用いて作製した回路基板は、厳しい使用条件で用いられる回路基板、例えばパワーモジュール用の回路基板のセラミックス基板として好適な材料である。また、本発明の窒化アルミニウム焼結体の製造方法によれば、スペーサーやしき粉を用いたり、脱脂工程を繰り返し行わなくても、上記特性を有する窒化アルミニウム焼結体を、歩留まりよく生産性を高めて製造することができる。
According to the present invention, an aluminum nitride sintered body having a warp of 5 μm / cm or less is provided. The circuit board produced using the aluminum nitride sintered body of the present invention is a material suitable as a circuit board used under severe usage conditions, for example, a ceramic substrate of a circuit board for a power module. In addition, according to the method for producing an aluminum nitride sintered body of the present invention, an aluminum nitride sintered body having the above characteristics can be produced with high yield without using spacers or squeezing powder or repeatedly performing a degreasing process. It can be manufactured at a higher level.

Claims (5)

脱脂及び焼成過程が下記の(1)及び(2)を特徴とする窒化アルミニウム焼結体の製造方法。
(1)成形体の表面同士又は裏面同士が向かい合わせになる様に交互に積層した積層体に、重しを載せて脱脂及び焼成する。
(2)前記積層体にかかる重しの質量が、1cmあたり次式で示されるAである。
10≦A≦100−(n−1)×a (質量の単位はgである。)
但し、nは積層した成形体の枚数、aは乾燥後の成形体の表面1cmあたりの質量。
A method for producing an aluminum nitride sintered body characterized in that the degreasing and firing processes are characterized by the following (1) and (2).
(1) Degreased and fired by placing a weight on the laminated body that is alternately laminated so that the front surfaces or back surfaces of the molded body face each other.
(2) The weight of the weight applied to the laminate is A represented by the following formula per 1 cm 2 .
10 <= A <= 100- (n-1) * a (The unit of mass is g.)
However, n is the number of stacked molded bodies, and a is the mass per 1 cm 2 of the surface of the molded body after drying.
重しがタングステン、モリブデン又はタングステン、モリブデンいずれかを含む合金からなることを特徴とする請求項1記載の窒化アルミニウム焼結体の製造方法。 2. The method for producing an aluminum nitride sintered body according to claim 1, wherein the weight is made of tungsten, molybdenum, or an alloy containing either tungsten or molybdenum. 焼結体の反りが5μm/cm以下であることを特徴とする請求項1又は請求項2記載の窒化アルミニウム焼結体の製造方法。 The method for producing an aluminum nitride sintered body according to claim 1 or 2, wherein the warp of the sintered body is 5 µm / cm or less. 請求項1〜3記載のいずれか一項記載の製造方法で得られた窒化アルミニウム焼結体を用いた窒化アルミニウム回路基板。   The aluminum nitride circuit board using the aluminum nitride sintered compact obtained by the manufacturing method as described in any one of Claims 1-3. 請求項4記載の窒化アルミニウム回路基板を用いたモジュール。
A module using the aluminum nitride circuit board according to claim 4.
JP2009003048A 2009-01-09 2009-01-09 Method for producing aluminum nitride sintered compact Pending JP2010159184A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009003048A JP2010159184A (en) 2009-01-09 2009-01-09 Method for producing aluminum nitride sintered compact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009003048A JP2010159184A (en) 2009-01-09 2009-01-09 Method for producing aluminum nitride sintered compact

Publications (1)

Publication Number Publication Date
JP2010159184A true JP2010159184A (en) 2010-07-22

Family

ID=42576664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009003048A Pending JP2010159184A (en) 2009-01-09 2009-01-09 Method for producing aluminum nitride sintered compact

Country Status (1)

Country Link
JP (1) JP2010159184A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014529526A (en) * 2011-08-26 2014-11-13 ダウ グローバル テクノロジーズ エルエルシー Improved method of making a ceramic body
JP2021024106A (en) * 2019-07-31 2021-02-22 デンカ株式会社 Method for producing ceramic substrate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02239157A (en) * 1989-03-08 1990-09-21 Matsushita Electric Works Ltd Production of ceramic substrate
JP2001089248A (en) * 1999-09-22 2001-04-03 Ngk Spark Plug Co Ltd Process for producing ceramic substrate and jig used for the same
JP2004083341A (en) * 2002-08-27 2004-03-18 Denki Kagaku Kogyo Kk Aluminum nitride sintered compact and its producing process

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02239157A (en) * 1989-03-08 1990-09-21 Matsushita Electric Works Ltd Production of ceramic substrate
JP2001089248A (en) * 1999-09-22 2001-04-03 Ngk Spark Plug Co Ltd Process for producing ceramic substrate and jig used for the same
JP2004083341A (en) * 2002-08-27 2004-03-18 Denki Kagaku Kogyo Kk Aluminum nitride sintered compact and its producing process

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014529526A (en) * 2011-08-26 2014-11-13 ダウ グローバル テクノロジーズ エルエルシー Improved method of making a ceramic body
KR101926698B1 (en) 2011-08-26 2018-12-07 다우 글로벌 테크놀로지스 엘엘씨 Improved process for preparing ceramic bodies
JP2021024106A (en) * 2019-07-31 2021-02-22 デンカ株式会社 Method for producing ceramic substrate
JP7337587B2 (en) 2019-07-31 2023-09-04 デンカ株式会社 Manufacturing method of ceramic substrate

Similar Documents

Publication Publication Date Title
JP4804343B2 (en) Manufacturing method of ceramic sheet
TWI445682B (en) Alumina sintered body, and its manufacturing method and semiconductor manufacturing device parts
JP2011178598A (en) Method for manufacturing silicon nitride substrate and silicon nitride substrate
JPWO2007004579A1 (en) Manufacturing method of ceramic sheet, ceramic substrate using the same, and use thereof
JP6304923B2 (en) Metal-ceramic bonding substrate and manufacturing method thereof
JP2011216577A (en) Method of manufacturing silicon nitride substrate, silicon nitride substrate, and circuit board using the same
JP2010159184A (en) Method for producing aluminum nitride sintered compact
JP2007189112A (en) Silicon nitride substrate, circuit board and module using the same
JP7080422B1 (en) Aluminum nitride sintered body and its manufacturing method, circuit board, and bonded substrate
WO2021200866A1 (en) Circuit board, joined body, and methods for producing same
JP2007248317A (en) Heating and cooling module
JP4850667B2 (en) Aluminum nitride sintered body and manufacturing method thereof
JP2009031117A (en) Heating/cooling module
JP4347206B2 (en) Manufacturing method of ceramic sheet, ceramic substrate using the same, and use thereof
JP5073135B2 (en) Aluminum nitride sintered body, production method and use thereof
WO2020090832A1 (en) Silicon nitride substrate production method and silicon nitride substrate
JP4142556B2 (en) Aluminum nitride sintered body, manufacturing method and use thereof
JP2000269615A (en) Circuit board
JP2013182983A (en) Silicon nitride circuit board and module using the same
JP4987345B2 (en) Aluminum nitride substrate
JP5031147B2 (en) Method for producing aluminum nitride sintered body
JP4510579B2 (en) Manufacturing method of ceramic sheet
JP4520243B2 (en) Manufacturing method of ceramic sheet, ceramic substrate using the same, and use thereof
JP2007186385A (en) Aluminum nitride sintered compact and aluminum nitride circuit board using it
JP2013193891A (en) Method of manufacturing aluminum nitride sintered body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110920

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120806

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130129