JP3038320B2 - Method for producing aluminum nitride sintered body for circuit board - Google Patents

Method for producing aluminum nitride sintered body for circuit board

Info

Publication number
JP3038320B2
JP3038320B2 JP9059557A JP5955797A JP3038320B2 JP 3038320 B2 JP3038320 B2 JP 3038320B2 JP 9059557 A JP9059557 A JP 9059557A JP 5955797 A JP5955797 A JP 5955797A JP 3038320 B2 JP3038320 B2 JP 3038320B2
Authority
JP
Japan
Prior art keywords
weight
powder
parts
sintered body
binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP9059557A
Other languages
Japanese (ja)
Other versions
JPH10251066A (en
Inventor
光男 加曽利
裕康 角野
昭宏 堀口
文雄 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP9059557A priority Critical patent/JP3038320B2/en
Publication of JPH10251066A publication Critical patent/JPH10251066A/en
Application granted granted Critical
Publication of JP3038320B2 publication Critical patent/JP3038320B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、回路基板用窒化ア
ルミニウム焼結体の製造方法に関し、詳しくは、焼結ム
ラや色ムラの少ない窒化アルミニウムセラミックスを低
温焼結によって製造する回路基板用窒化アルミニウム焼
結体の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an aluminum nitride sintered body for a circuit board, and more particularly, to an aluminum nitride for a circuit board which is produced by low-temperature sintering of an aluminum nitride ceramic having less sintering unevenness and color unevenness. The present invention relates to a method for manufacturing a sintered body.

【0002】[0002]

【従来の技術】電子回路は主に、IC等の素子、基板及
び配線によって構成される。近年、電子回路の高速化、
小型化及び大出力化が進み、素子の発熱量が無視できな
い大きな値となってきた。これに対応するために、高熱
伝導性の窒化アルミニウム(AlN)セラミックスから
なる回路基板が開発され、その生産量は年々増大しつつ
ある。しかし、AINセラミックスが回路基板として優
れた特性を有しているにも関わらず、依然としてセラミ
ックス基板の主流はアルミナ製である。これについて
は、いくつかの要因が挙げられているが、最大の問題は
コスト高である。具体的には、原料粉末の高価格、アル
ミナより高い焼結温度によるエネルギー費の高さ、後加
工が割高なこと等が要因として挙げられる。
2. Description of the Related Art Electronic circuits are mainly composed of elements such as ICs, substrates and wiring. In recent years, the speeding up of electronic circuits,
As the miniaturization and the increase in output have progressed, the heat value of the element has become a large value that cannot be ignored. In order to cope with this, a circuit board made of aluminum nitride (AlN) ceramics having high thermal conductivity has been developed, and the production amount thereof is increasing year by year. However, despite the fact that AIN ceramics have excellent characteristics as a circuit substrate, the mainstream of ceramic substrates is still made of alumina. There are several factors in this regard, but the biggest problem is the high cost. Specifically, factors such as the high price of the raw material powder, the high energy cost due to the sintering temperature higher than that of alumina, and the expensive post-processing are cited as factors.

【0003】このような状況において、AIN焼結体に
関する多くの改良が試みられている。例えば、熱伝導率
の向上や焼結性の改良に関わる添加物に関しては、特開
昭61−117160号公報や特開昭61−20995
9号公報においては希土類及び/又はアルカリ土類の添
加が示されており、特開昭62−153173号公報に
は希土類及び/又はアルカリ土類と遷移金属化合物との
添加が提案されている。更に、1991年5月の日本セ
ラミックス協会年会では、実験室レベルにおいて140
0℃−96時間の焼結条件でAlN焼結体が得られるこ
とが発表されている。このような研究の成果として、当
初1800℃以上の温度がAINの焼結に必要とされて
いたものが、実験室レベルで1600℃−6時間前後の
条件での焼結が可能になっている。
[0003] Under such circumstances, many improvements regarding AIN sintered bodies have been attempted. For example, regarding additives related to improvement of thermal conductivity and improvement of sinterability, JP-A-61-117160 and JP-A-61-20995 have been disclosed.
No. 9 discloses addition of a rare earth and / or alkaline earth, and Japanese Patent Application Laid-Open No. 62-153173 proposes addition of a rare earth and / or alkaline earth and a transition metal compound. Furthermore, at the annual meeting of the Ceramic Society of Japan in May 1991, 140
It is disclosed that an AlN sintered body can be obtained under sintering conditions of 0 ° C. for 96 hours. As a result of such research, what initially required a temperature of 1800 ° C. or more for AIN sintering has become possible at a laboratory level under conditions of about 1600 ° C. for about 6 hours. .

【0004】焼結温度の低下を可能にする方法に関して
は、AIN粉体の特性や添加物の組成等を含み製造プロ
セス等全般を視野に入れながら考える必要がある。一般
に、微細で粒度分布の小さいAIN粉は低温焼結に適し
ているが、酸素不純物の増加や嵩高さの問題がある。一
方、低温焼結用の添加物としては、希土類元素とアルカ
リ土類元素の併用の他、フッ化物、ホウ化物及びアルカ
リ金属化合物などが知られている。しかしながら、希土
類とアルカリ土類との併用だけでは低温且つ短時間での
焼結で充分に緻密化しない。又、フッ化物系の添加物を
用いると、焼結体表面に異物層が堆積するため、後加工
無しには使用できない。更に、ホウ素を含む化合物を用
いると、導体成分としてのタングステンと反応して電気
抵抗の高いホウ化タングステンが生成する。また、アル
カリ金属化合物を添加すると、焼結体の熱伝導率の低下
や、電気抵抗の変化が生じるなどの問題がある。
It is necessary to consider the method of lowering the sintering temperature while taking into consideration the entire manufacturing process including the characteristics of the AIN powder and the composition of the additives. In general, fine AIN powder having a small particle size distribution is suitable for low-temperature sintering, but has problems of increasing oxygen impurities and bulkiness. On the other hand, as additives for low-temperature sintering, fluorides, borides, alkali metal compounds, and the like are known in addition to the use of rare earth elements and alkaline earth elements in combination. However, sintering at a low temperature for a short period of time does not provide sufficient densification only by using a combination of a rare earth and an alkaline earth. In addition, when a fluoride-based additive is used, a foreign substance layer is deposited on the surface of the sintered body, and thus cannot be used without post-processing. Furthermore, when a compound containing boron is used, it reacts with tungsten as a conductor component to produce tungsten boride having high electric resistance. In addition, when an alkali metal compound is added, there are problems such as a decrease in thermal conductivity of the sintered body and a change in electric resistance.

【0005】従って、実際に量産時の条件に近い方法を
想定して検討すると、焼結体特性にバラつきが大きい、
二次加工が避けられない、焼結時間が6時間以上と長す
ぎるなど、いまだにAIN焼結体の製造コストが高いと
いう問題は解消されていないのが実状である。
Therefore, when the method is considered assuming a method which is close to the condition at the time of mass production, the characteristics of the sintered body greatly vary.
Actually, the problem that the production cost of the AIN sintered body is high, such as the inevitable secondary processing and the sintering time of 6 hours or more, has not yet been solved.

【0006】[0006]

【発明が解決しようとする課題】本発明は、これらの状
況に鑑みて成されたもので、安定した特性を有するAl
N焼結体の製造を低温且つ短時間の焼結で可能にするこ
とによって製造コストを低下することを目的としてい
る。
SUMMARY OF THE INVENTION The present invention has been made in view of these circumstances, and has been developed in view of the above.
An object of the present invention is to reduce the production cost by enabling the production of an N sintered body by sintering at a low temperature and for a short time.

【0007】[0007]

【課題を解決するための手段】本発明に係る回路基板用
窒化アルミニウム焼結体の製造方法は、アルカリ土類金
属元素及び希土類元素を含む添加物と窒化アルミニウム
粉末とを用いて、成形体密度が2.0g/cm3 以上で該
窒化アルミニウム100重量部に対して該添加物を酸化
物換算で1.0〜9.9重量部の割合で含有する成形体
を調製し、該成形体を1550℃以上で焼結する。
According to the present invention, there is provided a method for producing an aluminum nitride sintered body for a circuit board, comprising the steps of: using an additive containing an alkaline earth metal element and a rare earth element; Is 2.0 g / cm 3 or more, and the additive is prepared in a ratio of 1.0 to 9.9 parts by weight in terms of oxide with respect to 100 parts by weight of the aluminum nitride. Sinter at 1550 ° C or higher.

【0008】上記成形体の調製は、溶剤に含まれた溶液
状態の上記添加物を上記窒化アルミニウムの粉末と混合
した後に該溶剤を除去することによって得られる混合粉
末を圧縮成形する工程を有し、上記添加物のアルカリ土
類金属元素及び希土類元素を含む化合物は、各々、硝酸
塩、アルコキシド及びゾルからなる群より選ばれ、該溶
剤は極性溶剤である。
[0008] The preparation of the compact comprises a step of compression-molding a mixed powder obtained by mixing the additive in a solution contained in the solvent with the aluminum nitride powder and then removing the solvent. The compound containing the alkaline earth metal element and the rare earth element as the additive is selected from the group consisting of nitrate, alkoxide and sol, respectively, and the solvent is a polar solvent.

【0009】上記窒化アルミニウムの粉末は比表面積が
3.0〜4.0m2 /gであり、上記成形体は、アルカ
リ金属化合物、弗素化合物およびホウ素含有化合物を含
まない。
The aluminum nitride powder has a specific surface area of 3.0 to 4.0 m 2 / g, and the compact does not contain an alkali metal compound, a fluorine compound and a boron-containing compound.

【0010】又、本発明に係る回路基板用窒化アルミニ
ウム焼結体の製造方法は、硝酸塩、アルコキシド及びゾ
ルからなる群より選ばれる極性溶剤に溶解した状態のア
ルカリ土類金属添加物及び希土類添加物を、窒化アルミ
ニウム粉末、遷移金属成分及びバインダー粉末と混合し
た後に該極性溶剤を除去して、該窒化アルミニウム10
0重量部に対して該添加物を酸化物換算で1.0〜9.
9重量部、該遷移金属成分を元素換算で0.05〜1.
1重量部の割合で含有する混合粉末を得る工程と、該混
合粉末を圧縮成形した後に加熱によりバインダーを除去
して成形体密度が2.0g/cm3 以上の成形体を調製す
る工程と、該成形体を1550〜1600℃で焼結する
工程とを有する。
Further, the method for producing an aluminum nitride sintered body for a circuit board according to the present invention is a method for manufacturing an alkaline earth metal additive and a rare earth additive dissolved in a polar solvent selected from the group consisting of nitrates, alkoxides and sols. Is mixed with an aluminum nitride powder, a transition metal component and a binder powder, and then the polar solvent is removed.
The additive is added in an amount of 1.0 to 9 in terms of oxide based on 0 parts by weight.
9 parts by weight of the transition metal component in an amount of 0.05 to 1.
A step of obtaining a mixed powder containing 1 part by weight, a step of compressing the mixed powder, and then removing a binder by heating to prepare a molded body having a molded body density of 2.0 g / cm 3 or more; Sintering the molded body at 1550 to 1600 ° C.

【0011】[0011]

【発明の実施の形態】通常、AlN焼結体を得るために
は、AlN粉末にバインダー粉末及び所望の添加剤を加
えた混合粉を調製し、これを圧縮成形した後に成形体を
加熱して脱バインダー及び焼結を行う。この場合、焼結
温度は1800℃以上とする必要があり、焼結温度を下
げると成形体の緻密化が進行し難くなる。このため、従
来の技術においては、焼結助剤などの添加剤の使用によ
る焼結温度の低下が試みられているが、プラント規模で
1600℃以下の低温焼結によって緻密なAlN焼結体
が得られる程に効果的なものは見られない。本発明者ら
は、低温焼結より緻密なAlN焼結体を得るために、焼
結前の原料粉末の圧縮成形の工程に着目し、試行錯誤を
行った結果、成形体密度(green density、圧縮成形及
び脱バインダーを行った後あるいは焼結前における成形
体の密度)が2.0g/cm3 以上となるように原料粉末
を成形することによって、焼結温度1600℃以下且つ
焼結時間2時間以内の焼結条件でも緻密なAlN焼結体
が得られ、プラント規模でも焼結体の熱伝導率及び強度
は満足な値を示すことを見出した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In general, to obtain an AlN sintered body, a mixed powder obtained by adding a binder powder and a desired additive to an AlN powder is prepared, and after compression-molding the mixture, the molded body is heated. Perform binder removal and sintering. In this case, the sintering temperature must be 1800 ° C. or higher. For this reason, in the related art, the sintering temperature is lowered by using an additive such as a sintering aid. However, a dense AlN sintered body is formed by low-temperature sintering at 1600 ° C. or less on a plant scale. Nothing is as effective as it can be. The present inventors focused on the step of compression molding of raw material powder before sintering and obtained trial and error to obtain a more compact AlN sintered body than low-temperature sintering. By molding the raw material powder so that the density of the compact after compression molding and binder removal or before sintering is 2.0 g / cm 3 or more, the sintering temperature is 1600 ° C. or less and the sintering time is 2 hours. It has been found that a dense AlN sintered body can be obtained even under sintering conditions within a time period, and that the thermal conductivity and strength of the sintered body show satisfactory values even on a plant scale.

【0012】成形圧や原料AlN粉末の選択によって成
形体密度が2.0g/cm3 以上のAlN成形体をプラン
ト規模の操作で得るのはかなり難しい。本発明では、A
lN粉末と添加物との混合を、AlN粉末の分散性がよ
い溶剤に添加物を溶解させた溶液状態で行うことによっ
て、混合粉の充填率を向上させて成形体密度を2.0g
/cm3 以上に高めることを容易にする。具体的には、添
加剤の少なくとも一部を溶剤に溶解させてAlN粉末と
混合し、混合後に溶剤を混合粉末から除去することによ
って混合粉末の充填率を改善する。
It is quite difficult to obtain an AlN compact having a compact density of 2.0 g / cm 3 or more by a plant-scale operation by selecting the compacting pressure and the raw material AlN powder. In the present invention, A
By mixing the 1N powder and the additive in a solution state in which the additive is dissolved in a solvent having good dispersibility of the AlN powder, the filling rate of the mixed powder is improved, and the density of the compact is 2.0 g.
/ Cm 3 or more. Specifically, at least a part of the additive is dissolved in a solvent and mixed with the AlN powder, and after mixing, the solvent is removed from the mixed powder to improve the filling rate of the mixed powder.

【0013】以下、本発明に係るAlN焼結体の製造方
法の好適な実施形態について詳細に説明する。
Hereinafter, a preferred embodiment of the method for producing an AlN sintered body according to the present invention will be described in detail.

【0014】本発明では、BET比表面積が3.0〜
4.0m2 /gのAIN粉を用いるのが好ましい。3.
0m2 /g未満では粒度が粗すぎて低温での焼結が困難
になる。4.0m2 /gを超えると嵩高くなり、湿式混
合などの際に多くの有機溶媒やバインダーを必要とした
り、脱バインダー後の残炭素量が多くなって焼結を困難
にするなどの問題が生じる。また、AlN粉の不純物酸
素量は、好ましくは0.60〜2.20重量%、より好
ましくは0.90〜1.80重量%のものが用いられ
る。
In the present invention, the BET specific surface area is from 3.0 to 3.0.
It is preferable to use 4.0 m 2 / g of AIN powder. 3.
If it is less than 0 m 2 / g, the particle size is too coarse and sintering at low temperature becomes difficult. If it exceeds 4.0 m 2 / g, it becomes bulky and requires many organic solvents and binders during wet mixing and the like, and the amount of residual carbon after debinding increases, making sintering difficult. Occurs. The AlN powder preferably has an impurity oxygen content of 0.60 to 2.20% by weight, more preferably 0.90 to 1.80% by weight.

【0015】AlN粉末は、以下に述べるような無機添
加物及びバインダーと混合するが、本発明においては、
添加物をAlN粉末と混合させる際に溶剤が使用され
る。この溶剤には、AlN粉末の分散性が良い溶剤が使
用される。AlN粉末の分散性は極性の溶剤において良
好であり、例えば、メタノール、エタノール、プロパノ
ール、ブタノール等のアルコール系溶剤;アセトン、メ
チルエチルケトン等のケトン系溶剤;酢酸エチル等のエ
ステル系溶剤などが使用され、特殊な表面処理を施した
場合にのみ水系溶剤が使用される。
[0015] The AlN powder is mixed with an inorganic additive and a binder as described below.
A solvent is used when mixing the additives with the AlN powder. As this solvent, a solvent having good dispersibility of the AlN powder is used. The dispersibility of AlN powder is good in polar solvents, for example, alcohol solvents such as methanol, ethanol, propanol and butanol; ketone solvents such as acetone and methyl ethyl ketone; ester solvents such as ethyl acetate are used; An aqueous solvent is used only when a special surface treatment is applied.

【0016】本発明で用いる無機添加物は、アルカリ土
類金属成分及び希土類成分を含み、これらの成分は、焼
結助剤、高熱伝導率化剤として機能する。これらの成分
は上述の溶剤に溶解した液相状態でAlN粉末と混合す
るので、上記溶剤に溶解する形態である必要がある。こ
のため、硝酸塩、塩化物、アルコキシド、ゾル等の形態
のものを使用する。例えば、硝酸イットリウム(Y(N
33 ・6H2 O)、硝酸カルシウム(Ca(NO
32 ・4H2 O)、エタノール等のアルコールを分散
媒としたイットリウムゾル、イットリウムアルコキシド
などが好ましい。ゾルは、厳密に言えば溶液とは若干異
なるが、本発明における混合粉末の充填率の向上の点に
おいてゾルも同様の効果を有する溶液であるので、本発
明で用いる溶液に含まれるものである。これらの添加物
の総量は、AlN粉末100重量部に対して酸化物換算
で1.0〜9.9重量部となるように設定する。1.0
重量部未満であると十分な添加効果が得られず、9.9
重量部を越えると熱伝導率の低下が著しい。これらの添
加物の粉末の少なくとも一部、望ましくは全量を、適量
の上述した溶剤に投入して液相を形成し、AlN粉末と
混合する。ゾルについてはそのままAlN粉末と混合す
ることができる。
The inorganic additive used in the present invention contains an alkaline earth metal component and a rare earth component, and these components function as a sintering aid and a high thermal conductivity agent. Since these components are mixed with the AlN powder in a liquid phase dissolved in the above-mentioned solvent, the components need to be dissolved in the above-mentioned solvent. For this reason, those in the form of nitrate, chloride, alkoxide, sol and the like are used. For example, yttrium nitrate (Y (N
O 3) 3 · 6H 2 O ), calcium nitrate (Ca (NO
3) 2 · 4H 2 O) , yttrium sol alcohol such as ethanol as a dispersion medium, such as yttrium alkoxide are preferable. The sol is slightly different from the solution strictly speaking, but is included in the solution used in the present invention because the sol is a solution having the same effect in improving the filling ratio of the mixed powder in the present invention. . The total amount of these additives is set so as to be 1.0 to 9.9 parts by weight in terms of oxide based on 100 parts by weight of AlN powder. 1.0
If the amount is less than parts by weight, a sufficient effect of addition cannot be obtained, and 9.9 is obtained.
If the amount exceeds the weight part, the thermal conductivity is significantly reduced. At least a part, preferably the whole amount, of the powder of these additives is charged into an appropriate amount of the above-mentioned solvent to form a liquid phase, and mixed with the AlN powder. The sol can be directly mixed with the AlN powder.

【0017】本発明では、上述の添加物に加えて、T
i,Nb,Zr,Ta,W,Mo,Cr,Fe,Co,
Niなどの遷移金属成分を添加することができる。遷移
金属成分は、焼結ムラや色ムラ等のムラ抑制、及び、焼
結体の黒色化の作用を有する。又、AlN焼結体の機械
的強度及び輻射性も向上させる。遷移金属成分は、例え
ば、酸化物、窒化物、炭化物、酸炭化物、酸窒化物など
の金属化合物として添加することができる。特に、焼結
体中で導電性を有する化合物であることが望ましい。か
かる導電性を有する遷移金属化合物としては、例えば、
W及びMoのメタルや、Zr,Ti,Nb,Taから選
ばれる元素の窒化物または炭化物を挙げることができ
る。遷移金属成分の添加量は、AlN粉末100重量部
に対して酸化物換算で0.05〜1.1重量部であるこ
とが望ましい。1.1重量部を越えると電気的特性が劣
化する恐れがあり、0.05重量部未満では十分な添加
効果が得られない。遷移金属成分とAlN粉末との混合
は、前述のアルカリ土類金属成分及び希土類成分からな
る添加物の溶液と同時で行っても個別に行ってもよい。
アルカリ土類金属成分及び希土類成分の溶液に遷移金属
成分を分散してAlN粉末と混合すると効率がよい。
In the present invention, in addition to the above additives, T
i, Nb, Zr, Ta, W, Mo, Cr, Fe, Co,
A transition metal component such as Ni can be added. The transition metal component has an effect of suppressing unevenness such as unevenness of sintering and unevenness of color, and blackening the sintered body. In addition, the mechanical strength and radiation of the AlN sintered body are improved. The transition metal component can be added, for example, as a metal compound such as an oxide, nitride, carbide, oxycarbide, or oxynitride. In particular, it is desirable that the compound has conductivity in the sintered body. Examples of such conductive transition metal compounds include, for example,
Metals of W and Mo, and nitrides or carbides of elements selected from Zr, Ti, Nb, and Ta can be given. The added amount of the transition metal component is desirably 0.05 to 1.1 parts by weight in terms of oxide based on 100 parts by weight of AlN powder. If the amount exceeds 1.1 parts by weight, electrical characteristics may be degraded. If the amount is less than 0.05 parts by weight, a sufficient effect of addition cannot be obtained. The mixing of the transition metal component and the AlN powder may be performed simultaneously with the solution of the additive composed of the alkaline earth metal component and the rare earth component described above or individually.
Efficiency is improved when the transition metal component is dispersed in a solution of the alkaline earth metal component and the rare earth component and mixed with the AlN powder.

【0018】更に、必要に応じて、通常の粉末冶金技術
において用いられる各種添加物を常法に従って用いても
よい。但し、弗素化合物、アルカリ金属成分及びホウ素
化合物は添加しない。弗素化合物は、AlN焼結体の表
面に酸化物からなる表面層を生じさせ、アルカリ金属は
AlN焼結体の絶縁性を低下させる。又、ホウ素化合物
は、導体成分としてタングステン成分を用いた場合に、
これと反応してホウ化タングステンを生成し、AlN焼
結体の導電性を低下させる。
Further, if necessary, various additives used in ordinary powder metallurgy may be used according to a conventional method. However, a fluorine compound, an alkali metal component and a boron compound are not added. The fluorine compound produces a surface layer made of an oxide on the surface of the AlN sintered body, and the alkali metal lowers the insulation of the AlN sintered body. In addition, the boron compound, when using a tungsten component as a conductor component,
By reacting with this, tungsten boride is generated, and the conductivity of the AlN sintered body is reduced.

【0019】又、上述したAlN混合粉末の成形性を向
上させるために、本発明においてはバインダーが用いら
れる。バインダーとしては、例えば、ブチラール系、ア
クリル系、メタクリル系、PVB系などのバインダーが
使用される。バインダーの添加量は、使用するAlN粉
末の粒度によっても異なるが、上記添加物とAlN粉末
との混合粉末の総量に対して2〜12重量%、より好ま
しくは4〜10重量%である。バインダーは、例えばエ
タノール、1−ブタノール等のアルコール系などのAl
N粉の分散性が良い溶剤を用いてAlN粉末に分散させ
るのが好ましい。キシレンなどの分散性が悪い溶剤を用
いるのは好ましくない。上述の添加物とAlN粉末との
混合物にバインダーを添加する際にキシレンなどの分散
性が悪い溶剤を用いると、分散していた添加物が凝集
し、混合粉末の圧縮性を低下させる。又、バインダーの
分散も十分に行われない。従って、アルコール等を用い
て上記の添加物をAlN粉末に十分に分散させた後であ
っても、添加物を溶解しない溶剤の使用は避けなければ
ならない。換言すれば、圧縮成形を行う最終組成の混合
粉末を得る際の混合操作において上述のような極性溶剤
を用いることが肝要である。
In order to improve the moldability of the AlN mixed powder, a binder is used in the present invention. As the binder, for example, a butyral-based, acryl-based, methacryl-based, or PVB-based binder is used. The amount of the binder to be added varies depending on the particle size of the AlN powder used, but is 2 to 12% by weight, more preferably 4 to 10% by weight, based on the total amount of the mixed powder of the above additive and AlN powder. The binder is, for example, an alcohol such as ethanol or 1-butanol.
It is preferable to disperse in the AlN powder using a solvent having a good dispersibility of the N powder. It is not preferable to use a solvent having poor dispersibility such as xylene. When a solvent having poor dispersibility such as xylene is used when a binder is added to a mixture of the above-described additive and AlN powder, the dispersed additive is aggregated, and the compressibility of the mixed powder is reduced. Also, the binder is not sufficiently dispersed. Therefore, the use of a solvent that does not dissolve the additive must be avoided even after the additive is sufficiently dispersed in the AlN powder using alcohol or the like. In other words, it is important to use the above-mentioned polar solvent in the mixing operation when obtaining the mixed powder of the final composition to be subjected to compression molding.

【0020】上記添加物及びバインダーを混合したAl
N混合粉末は、用いた溶剤を除去して造粒した後に、圧
縮成形を行う。本発明においては、100〜500MP
a程度の成形圧で圧縮成形することによって成形体密度
が2.0g/cm3 以上の成形体が得られる。成形工程は
複数回に分けて行ってもよく、例えば、一旦シート状に
成形した後に再度プレスすることによって密度を高めて
成形体密度(脱バインダー後の密度)が2.0g/cm3
以上となるように設定してもよい。
Al mixed with the above additives and binder
The N mixed powder is subjected to compression molding after granulation by removing the solvent used. In the present invention, 100 to 500MP
A compact having a compact density of 2.0 g / cm 3 or more can be obtained by compression molding at a compacting pressure of about a. The molding step may be performed in a plurality of times. For example, the density is increased by forming once into a sheet and then pressing again to increase the density of the molded body (density after debinding) to 2.0 g / cm 3.
You may set so that it may become above.

【0021】混合粉末を圧縮成形して得た成形体は、加
熱により脱バインダーを行う。脱バインダーは通常、最
高温度1000℃以下の温度に加熱することによって達
成される。AlN混合粉末中にタングステンやモリブデ
ンなどの導体金属が含まれていない場合は、酸素を含む
雰囲気中で加熱して脱バインダーを行うことができる
が、含まれている場合には非酸化性雰囲気中で加熱す
る。非酸化性雰囲気としては、窒素、アルゴン等の不活
性なガスや、これらに水素、炭酸ガスなどを含んだもの
等を使用することができる。AlN混合粉末中に導体金
属が含まれていない場合は、加熱温度を最高500℃ま
でとすることが望ましい。
The compact obtained by compression-molding the mixed powder is debindered by heating. Debinding is usually achieved by heating to a maximum temperature of 1000 ° C. or less. When a conductive metal such as tungsten or molybdenum is not contained in the AlN mixed powder, the binder can be removed by heating in an atmosphere containing oxygen. Heat with. As the non-oxidizing atmosphere, an inert gas such as nitrogen or argon, or a gas containing hydrogen, carbon dioxide or the like can be used. When the conductive metal is not contained in the AlN mixed powder, the heating temperature is desirably up to 500 ° C.

【0022】脱バインダー後の成形体は、焼結容器に収
容し、非酸化性雰囲気中で1550〜1600℃の温度
で焼結する。焼結時の雰囲気圧力は0.01〜10.0
気圧で行われる。非酸化性雰囲気には前述と同様のもの
が使用できる。焼結容器としては、AlN、BN、アル
ミナ等の耐熱性材料で形成されたものが用いられ、カー
ボン、タングステン、モリブデン等を用いて製作された
ヒーターを具備する焼結炉が用いられる。焼結スケジュ
ールは、最高温度まで単調に昇温しても段階的に昇温し
てもよく、必要に応じて適宜選択する。得られたAlN
焼結体は、必要に応じてトリミング等の後処理を施して
もよい。
The compact after debinding is housed in a sintering vessel and sintered at a temperature of 1550 to 1600 ° C. in a non-oxidizing atmosphere. Atmospheric pressure during sintering is 0.01 to 10.0
Performed at atmospheric pressure. The same non-oxidizing atmosphere as described above can be used. As the sintering container, one made of a heat-resistant material such as AlN, BN, and alumina is used, and a sintering furnace equipped with a heater made of carbon, tungsten, molybdenum, or the like is used. The sintering schedule may be increased monotonically or stepwise to the maximum temperature, and is appropriately selected as needed. The obtained AlN
The sintered body may be subjected to post-processing such as trimming as necessary.

【0023】本発明に従って脱バインダー後の成形体密
度が2.0g/cm3 以上となった成形体は、1550〜
1600℃の温度で焼結することによって、十分緻密化
されたAlN焼結体となり、焼結に要する時間も2時間
程度まで短縮することができる。得られるAlN焼結体
の熱伝導率は100〜120W/mKとなり、4点曲げ
強度も300MPa以上の平均値を示す。従って、本発
明に従って製造されるAlN焼結体は、高温高強度材や
ヒートシンクとして使用したり、メタライズして各種回
路基板として使用することができる。例えば、DBG、
QFP、PGA、BGA、DIP、薄膜、厚膜などの電
気または電子回路の基板に用いることができる。本発明
のAlN焼結体を回路基板の絶縁部分の形成に使用する
と、回路基板は優れた熱方散性や機械強度を備え、導体
層での剥離や断線などの欠陥がなく、良好な回路性能を
発揮し得る。回路基板を形成する際に使用する導電材料
としては、W,Wo,Pt,Pd,Niなどが挙げられ
る。
According to the present invention, the molded article having a density of 2.0 g / cm 3 or more after debinding is 1550 to
By sintering at a temperature of 1600 ° C., a sufficiently dense AlN sintered body is obtained, and the time required for sintering can be reduced to about 2 hours. The thermal conductivity of the obtained AlN sintered body is 100 to 120 W / mK, and the four-point bending strength also shows an average value of 300 MPa or more. Therefore, the AlN sintered body manufactured according to the present invention can be used as a high-temperature high-strength material or a heat sink, or can be metalized and used as various circuit boards. For example, DBG,
It can be used for substrates of electric or electronic circuits such as QFP, PGA, BGA, DIP, thin film, and thick film. When the AlN sintered body of the present invention is used for forming an insulating portion of a circuit board, the circuit board has excellent heat dissipation and mechanical strength, has no defects such as peeling or disconnection in a conductor layer, and has a good circuit. Can demonstrate performance. Examples of the conductive material used when forming the circuit board include W, Wo, Pt, Pd, and Ni.

【0024】回路基板は、例えば以下のような方法で製
造される。まず、AlN粉末及び上述の添加物にバイン
ダー及び溶媒を加えて充分に混練して所定の粘度のスラ
リーとする。この間に、AlN粉末及びバインダーの解
砕と添加物の溶解・分散とが進行する。得られたスラリ
ーを用いてドクターブレード法によってシートを形成し
た後、加熱乾燥して溶媒を除去しグリーンシートを得
る。次に、グリーンシートの少なくとも1面に、例えば
スクリーン印刷のような方法で導電ペーストを用いて所
定の回路パターンを形成する。この時、多層回路を形成
する場合には、層間の電気的接続を行うバイア用の穴を
あらかじめグリーンシートに設け、この穴に例えば圧入
法で導電ペーストを充填する。次に、前記の導体回路が
形成されたグリーンシートを非酸化性雰囲気中で加熱し
て導電ペースト中のバインダーを除去する。必要に応じ
て、さらに表面に回路パターンを形成し、熱間加圧して
グリーンシートの積層を行う。この後、グリーンシート
中のバインダーを非酸化性雰囲気中で加熱除去した後焼
結する。焼結後は、必要に応じてトリミングや薄膜や厚
い膜の回路形成や、外部電極を形成することができる。
The circuit board is manufactured, for example, by the following method. First, a binder and a solvent are added to the AlN powder and the above-mentioned additives, and they are sufficiently kneaded to form a slurry having a predetermined viscosity. During this time, the disintegration of the AlN powder and the binder and the dissolution and dispersion of the additive proceed. A sheet is formed by a doctor blade method using the obtained slurry, and then dried by heating to remove the solvent to obtain a green sheet. Next, a predetermined circuit pattern is formed on at least one surface of the green sheet using a conductive paste by a method such as screen printing. At this time, when a multilayer circuit is formed, holes for vias for electrical connection between layers are provided in advance in the green sheet, and the holes are filled with a conductive paste by, for example, a press-fitting method. Next, the green sheet on which the conductive circuit is formed is heated in a non-oxidizing atmosphere to remove the binder in the conductive paste. If necessary, a circuit pattern is further formed on the surface, and hot pressing is performed to laminate the green sheets. Thereafter, the binder in the green sheet is removed by heating in a non-oxidizing atmosphere and then sintered. After sintering, trimming, thin-film or thick-film circuit formation, and external electrodes can be formed as necessary.

【0025】[0025]

【実施例】以下、本発明の実施例を詳細に説明する。Embodiments of the present invention will be described below in detail.

【0026】(実施例1)不純物酸素量0.9wt%、平
均粒径1.1μm、比表面積3.1m2 /gのAlN粉
95.7重量部に、純度99.5%の硝酸イットリウム
をY23 換算で3.0重量部、純度99.9%の硝酸
カルシウムをCaO換算で1.0重量部、及び、平均粒
径0.1μmで純度99.9%のWO3 をW換算で0.
3重量部加えて得られる混合粉体に、1−ブタノール1
50重量部を加え、湿式ボールミルにより解砕、混合し
た。この工程中、硝酸イットリウムと硝酸カルシウムは
1−ブタノールに溶解していた。この後、1−ブタノー
ルを除去して原料粉とした。続いて、この原料粉に、エ
タノール溶媒にブチラール系バインダーを含有するバイ
ンダー液をバインダー量が6重量部になる量を秤量して
添加した。更に、エタノールを除去し、造粒した後、一
軸加圧成形機を用いて200MPaで加圧成形して成形
体とした。この成形体を乾燥空気中500℃まで加熱し
てバインダーを除去した。脱バインダー後の成形体密度
は、2.02g/cm3 であった。脱バインダー後の成形
体を、AIN焼結体で製作された焼結容器中に収容し、
グラファイト製ヒータ炉を用いて、1気圧の窒素ガス雰
囲気中、1600℃で2時間焼結した。
Example 1 95.7% by weight of yttrium nitrate having a purity of 99.5% was added to 95.7 parts by weight of AlN powder having an impurity oxygen amount of 0.9 wt%, an average particle diameter of 1.1 μm and a specific surface area of 3.1 m 2 / g. 3.0 parts by weight in terms of Y 2 O 3 , calcium nitrate having a purity of 99.9% is 1.0 parts by weight in terms of CaO, and WO 3 having an average particle diameter of 0.1 μm and a purity of 99.9% is converted to W. With 0.
1-butanol 1 was added to the mixed powder obtained by adding 3 parts by weight.
50 parts by weight were added, crushed and mixed by a wet ball mill. During this step, yttrium nitrate and calcium nitrate were dissolved in 1-butanol. Thereafter, 1-butanol was removed to obtain a raw material powder. Subsequently, a binder liquid containing a butyral-based binder in an ethanol solvent was weighed in such an amount that the amount of the binder became 6 parts by weight, and added to the raw material powder. Furthermore, after removing ethanol and granulating, it was press-formed at 200 MPa using a uniaxial pressing machine to obtain a formed body. The compact was heated to 500 ° C. in dry air to remove the binder. The molded article density after debinding was 2.02 g / cm 3 . The compact after debinding is housed in a sinter container made of an AIN sintered body,
Using a graphite heater furnace, sintering was performed at 1600 ° C. for 2 hours in a nitrogen gas atmosphere at 1 atm.

【0027】得られた焼結体は黒色で、色ムラや焼きム
ラがなく、密度をアルキメデス法で測定したところ、
3.28g/cm3 と緻密化していた。この焼結体から、
直径10mm、厚さ3mmの円板を切り出し、21±2℃の
室温下で、JIS−R1611に従ってレーザーフラッ
シュ法により熱伝導率を測定したところ、115W/m
Kであった。また、JIS−R1601に従って4点曲
げ強度を測定したところ、平均値が315MPaであっ
た。
The obtained sintered body was black, had no color unevenness or uneven firing, and was measured for density by Archimedes method.
It was densified to 3.28 g / cm 3 . From this sintered body,
A disk having a diameter of 10 mm and a thickness of 3 mm was cut out, and the thermal conductivity was measured at a room temperature of 21 ± 2 ° C. by a laser flash method according to JIS-R1611.
It was K. When the four-point bending strength was measured according to JIS-R1601, the average value was 315 MPa.

【0028】(比較例1)一軸加圧成形機による成形圧
力を50MPaに代えたこと以外は実施例1と同じ操作
を繰り返して成形体を得、同様に脱バインダーを行って
脱バインダー後の成形体密度を測定したところ、1.8
7g/cm3 であった。実施例1と同じ方法で焼結し、密
度を測定したところ、焼結体の密度は3.24g/cm3
と充分に緻密化していなかった。又、熱伝導率も107
W/mKと低かった。
(Comparative Example 1) A molding was obtained by repeating the same operation as in Example 1 except that the molding pressure by the uniaxial pressure molding machine was changed to 50 MPa. When the body density was measured, it was 1.8.
It was 7 g / cm 3 . When the sintered body was sintered in the same manner as in Example 1 and the density was measured, the density of the sintered body was 3.24 g / cm 3.
It was not dense enough. Also, the thermal conductivity is 107
It was as low as W / mK.

【0029】(比較例2)実施例1で用いたAlN粉9
5.7重量部に対して、純度99.9wt%で平均粒径
0.4μmのY23 を3.0重量部、純度99.9%
で平均粒径0.5μmのCaCO3 をCaO換算で1.
0重量部、平均粒径0.1μmで純度99.9wt%のW
3 をW換算で0.3重量部加えて得られる混合粉体
に、1−ブタノール150重量部を加え、湿式ボールミ
ルにより解砕、混合した後、1−ブタノールを除去して
原料粉とした。続いて、この原料粉にアクリル系バイン
ダーとキシレン溶媒からなるバインダー液をバインダー
が6重量部になるように秤量して添加した。キシレンを
除去し、造粒した後、実施例1と同じ方法で加圧成形
し、脱バインダーした。成形体密度を測定したところ、
1.91g/cm3 であった。脱バインダーした成形体を
AlN焼結体製の焼結容器中に収容し、グラファイト製
ヒート炉を用いて、1気圧の窒素ガス雰囲気中、160
0℃で2時間焼結した。
(Comparative Example 2) AlN powder 9 used in Example 1
Against 5.7 parts by weight, the Y 2 O 3 having an average particle diameter of 0.4μm with a purity 99.9 wt% 3.0 parts by weight, a purity of 99.9%
In the above, CaCO 3 having an average particle size of 0.5 μm was converted into 1.
0 parts by weight, W having an average particle size of 0.1 μm and a purity of 99.9 wt%
To a mixed powder obtained by adding 0.3 parts by weight of O 3 in terms of W, 150 parts by weight of 1-butanol was added, crushed and mixed by a wet ball mill, and 1-butanol was removed to obtain a raw material powder. . Subsequently, a binder liquid composed of an acrylic binder and a xylene solvent was weighed and added to the raw material powder so that the binder became 6 parts by weight. After removing xylene and granulating, the mixture was pressure-molded in the same manner as in Example 1 to remove the binder. When the density of the compact was measured,
It was 1.91 g / cm 3 . The molded body from which the binder was removed was placed in a sintering vessel made of an AlN sintered body, and heated in a nitrogen gas atmosphere at 1 atm using a graphite heating furnace.
Sintered at 0 ° C. for 2 hours.

【0030】実施例1と同じ方法で評価したところ、得
られた焼結体は密度3.18g/cm3 と緻密化不充分
で、熱伝導率も105W/mKと低かった。
When evaluated by the same method as in Example 1, the obtained sintered body had a density of 3.18 g / cm 3 , insufficient densification, and a low thermal conductivity of 105 W / mK.

【0031】(比較例3)実施例1で用いたAlN粉9
5.7重量部に対して、純度99.9wt%で平均粒径
0.4μmのY23 を3.0重量部、純度99.9%
で平均粒径0.5μmのCaCO3 をCaO換算で1.
0重量部、平均粒径0.1μmで純度99.9wt%のW
3 をW換算で0.3重量部加えて得られる混合粉体
に、1−ブタノール150重量部を加え、湿式ボールミ
ルにより解砕、混合した後、1−ブタノールを除去して
原料粉とした。続いて、この原料粉にブチラール系バイ
ンダーとエタノール溶媒からなるバインダー液をバイン
ダーが6重量部になるように秤量して添加した。エタノ
ールを除去し、造粒した後、実施例1と同じ方法で加圧
成形し、脱バインダーした。成形体密度を測定したとこ
ろ、1.90g/cm3 であった。脱バインダーした成形
体をAlN焼結体製の焼結容器中に収容し、グラファイ
ト製ヒート炉を用いて、1気圧の窒素ガス雰囲気中、1
600℃で2時間焼結した。
Comparative Example 3 AlN Powder 9 Used in Example 1
Against 5.7 parts by weight, the Y 2 O 3 having an average particle diameter of 0.4μm with a purity 99.9 wt% 3.0 parts by weight, a purity of 99.9%
In the above, CaCO 3 having an average particle size of 0.5 μm was converted into 1.
0 parts by weight, W having an average particle size of 0.1 μm and a purity of 99.9 wt%
To a mixed powder obtained by adding 0.3 parts by weight of O 3 in terms of W, 150 parts by weight of 1-butanol was added, crushed and mixed by a wet ball mill, and 1-butanol was removed to obtain a raw material powder. . Subsequently, a binder solution comprising a butyral-based binder and an ethanol solvent was weighed and added to the raw material powder so that the binder became 6 parts by weight. After removing the ethanol and granulating, the mixture was pressure-molded in the same manner as in Example 1 to remove the binder. The measured density of the compact was 1.90 g / cm 3 . The molded body from which the binder was removed was placed in a sintering container made of an AlN sintered body, and was heated in a nitrogen gas atmosphere at 1 atm using a graphite heating furnace.
Sintered at 600 ° C. for 2 hours.

【0032】実施例1と同じ方法で評価したところ、得
られた焼結体は密度3.17g/cm3 と緻密化不充分
で、熱伝導率も103W/mKと低かった。
When evaluated by the same method as in Example 1, the obtained sintered body had a density of 3.17 g / cm 3 , insufficient densification, and a low thermal conductivity of 103 W / mK.

【0033】(比較例4)実施例1で用いたAlN粉9
5.7重量部に対して、純度99.5wt%の硝酸イット
リウムをY23 換算で3.0重量部、純度99.9%
の硝酸カルシウムをCaO換算で1.0重量部、平均粒
径0.1μmで純度99.9wt%のWO3をW換算で
0.3重量部加えて得られる混合粉体に、1−ブタノー
ル150重量部を加え、湿式ボールミルにより解砕、混
合した後、1−ブタノールを除去して原料粉とした。続
いて、この原料粉にアクリル系バインダーとキシレン溶
媒からなるバインダー液をバインダーが6重量部になる
ように秤量して添加した。キシレンを除去し、造粒した
後、実施例1と同じ方法で加圧成形し、脱バインダーし
た。成形体密度を測定したところ、1.88g/cm3
あった。脱バインダーした成形体をAlN焼結体製の焼
結容器中に収容し、グラファイト製ヒート炉を用いて、
1気圧の窒素ガス雰囲気中、1600℃で2時間焼結し
た。
(Comparative Example 4) AlN powder 9 used in Example 1
Yttrium nitrate having a purity of 99.5 wt% is converted to Y 2 O 3 by 3.0 parts by weight, and the purity is 99.9% based on 5.7 parts by weight.
1.0 part by weight calculated as CaO of calcium nitrate, a WO 3 of purity 99.9 wt% in average particle size 0.1μm in a mixed powder obtained by adding 0.3 parts by weight W terms, 1-butanol 150 The mixture was crushed and mixed by a wet ball mill, and 1-butanol was removed to obtain a raw material powder. Subsequently, a binder liquid composed of an acrylic binder and a xylene solvent was weighed and added to the raw material powder so that the binder became 6 parts by weight. After removing xylene and granulating, the mixture was pressure-molded in the same manner as in Example 1 to remove the binder. The measured density of the compact was 1.88 g / cm 3 . The molded body from which the binder was removed was placed in a sintering container made of an AlN sintered body, and was heated using a graphite heat furnace.
Sintering was performed at 1600 ° C. for 2 hours in a nitrogen gas atmosphere at 1 atm.

【0034】実施例1と同じ方法で評価したところ、得
られた焼結体は密度3.16g/cm3 と緻密化不充分
で、熱伝導率も101W/mKと低かった。
When evaluated by the same method as in Example 1, the obtained sintered body had a density of 3.16 g / cm 3 , insufficient densification, and a low thermal conductivity of 101 W / mK.

【0035】(比較例5)実施例1で用いたAlN粉9
5.7重量部に対して、純度99.5wt%の硝酸イット
リウムをY23 換算で3.0重量部、純度99.9%
の硝酸カルシウムをCaO換算で1.0重量部、平均粒
径0.1μmで純度99.9wt%のWO3をW換算で
0.3重量部加えて得られる混合粉体に、キシレン16
0重量部を加え、湿式ボールミルにより解砕、混合した
後、キシレンを除去して原料粉とした。続いて、この原
料粉にアクリル系バインダーとキシレン溶媒からなるバ
インダー液をバインダーが6重量部になるように秤量し
て添加した。キシレンを除去し、造粒した後、実施例1
と同じ方法で加圧成形し、脱バインダーした。成形体密
度を測定したところ、1.83g/cm3 であった。脱バ
インダーした成形体をAlN焼結体製の焼結容器中に収
容し、グラファイト製ヒート炉を用いて、1気圧の窒素
ガス雰囲気中、1600℃で2時間焼結した。
(Comparative Example 5) AlN powder 9 used in Example 1
Yttrium nitrate having a purity of 99.5 wt% is converted to Y 2 O 3 by 3.0 parts by weight, and the purity is 99.9% based on 5.7 parts by weight.
To a mixed powder obtained by adding 1.0 part by weight of calcium nitrate in terms of CaO and 0.3 part by weight in terms of W of WO 3 having an average particle diameter of 0.1 μm and a purity of 99.9 wt%.
After adding 0 parts by weight, crushing and mixing with a wet ball mill, xylene was removed to obtain a raw material powder. Subsequently, a binder liquid composed of an acrylic binder and a xylene solvent was weighed and added to the raw material powder so that the binder became 6 parts by weight. Example 1 after removing xylene and granulating.
Pressure molding was performed in the same manner as described above, and the binder was removed. The measured density of the compact was 1.83 g / cm 3 . The molded body from which the binder was removed was accommodated in a sintering container made of an AlN sintered body, and sintered at 1600 ° C. for 2 hours in a nitrogen gas atmosphere at 1 atm using a graphite furnace.

【0036】実施例1と同じ方法で評価したところ、得
られた焼結体は密度3.10g/cm3 と緻密化不充分
で、熱伝導率も99W/mKと低かった。
When evaluated by the same method as in Example 1, the obtained sintered body had a density of 3.10 g / cm 3 , insufficient densification, and a low thermal conductivity of 99 W / mK.

【0037】(実施例2)不純物酸素量1.3wt%、平
均粒径1.3μm、比表面積3.5m2 /gのAlN粉
96.65重量部に対して、Y23 が2.29重量部
となる量のイットリウムゾル(容量100ml中に50
gの割合でY23 がエタノール分散媒に含まれる)、
純度99.9%の硝酸カルシウムをCaO換算で0.7
6重量部、平均粒径0.1μmで純度99.9%のWO
3 をW換算で0.3重量部を加えて得られる混合粉体
に、エタノールを140重量部加え、湿式ボールミルに
より解砕、混合した後、エタノールを除去して原料粉と
した。続いて、この原料粉にブチラール系バインダーと
エタノール溶媒からなるバインダー液をバインダーが6
重量部になるように秤量して添加した。エタノールを除
去し、造粒した後、200MPaの一軸加圧下で成形し
た圧粉体とした。この圧粉体を乾燥空気中で500℃ま
で加熱してバインダーを除去した。脱バインダー後の成
形体密度は2.12g/cm3 であった。脱バインダー後
の成形体をAlN焼結体製の焼結容器中に収容し、グラ
ファイト製ヒータ炉を用いて、1気圧の窒素ガス雰囲気
中、1600℃で2時間焼結した。
[0037] (Example 2) impurity oxygen amount 1.3 wt%, an average particle diameter of 1.3 .mu.m, with respect to AlN powder 96.65 parts by weight of the specific surface area of 3.5m 2 / g, Y 2 O 3 is 2. Yttrium sol in an amount of 29 parts by weight (50
g of Y 2 O 3 is contained in the ethanol dispersion medium),
99.9% pure calcium nitrate is converted to 0.7 as CaO.
6 parts by weight, WO having an average particle diameter of 0.1 μm and a purity of 99.9%
To a mixed powder obtained by adding 0.3 parts by weight of 3 to W was added 140 parts by weight of ethanol, and the mixture was pulverized and mixed by a wet ball mill, and then ethanol was removed to obtain a raw material powder. Subsequently, a binder solution comprising a butyral-based binder and an ethanol solvent was added to the raw material powder to form a binder.
It was weighed so as to become parts by weight and added. After removing ethanol and granulating, a green compact was formed under uniaxial pressure of 200 MPa. The green compact was heated to 500 ° C. in dry air to remove the binder. The molded article density after debinding was 2.12 g / cm 3 . The compact after debinding was housed in a sintering vessel made of an AlN sintered body, and sintered at 1600 ° C. for 2 hours in a nitrogen atmosphere of 1 atm using a graphite heater furnace.

【0038】得られた焼結体は黒色で、色ムラや焼きム
ラがなく、実施例1と同じ方法で評価したところ、密度
は3.29g/cm3 と緻密化しており、熱伝導率は11
7W/mKであった。4点曲げ強度は平均値が318M
Paであった。
The obtained sintered body was black, was free from color unevenness and baking unevenness, and was evaluated by the same method as in Example 1. The density was 3.29 g / cm 3 and the thermal conductivity was high. 11
It was 7 W / mK. The average value of the four-point bending strength is 318M.
Pa.

【0039】(実施例3)不純物酸素量1.8wt%、平
均粒径0.9μm、比表面積3.9m2 /gのAlN粉
93.71重量部に対して、純度99.5wt%の硝酸イ
ットリウムをY23 換算で4.49重量部、純度9
9.9wt%の硝酸カルシウムをCaO換算で1.50重
量部、平均粒径0.1μmで純度99.9wt%のWO3
をW換算で0.3重量部を加えて得られる混合粉体に、
1−ブタノール160重量部を加え、湿式ボールミルに
より解砕、混合した後、1−ブタノールを除去して原料
粉とした。続いて、この原料粉にブチラール系バインダ
ーとエタノール溶媒からなるバインダー液をバインダー
量が6重量部になるように秤量して添加した。エタノー
ルを除去し、造粒した後、500MPaの一軸加圧下で
成形した圧粉体を得た。
Example 3 Nitric acid having a purity of 99.5% by weight based on 93.71 parts by weight of AlN powder having an impurity oxygen amount of 1.8% by weight, an average particle size of 0.9 μm and a specific surface area of 3.9 m 2 / g. 4.49 parts by weight of yttrium in terms of Y 2 O 3 , purity 9
9.9% by weight of calcium nitrate is 1.50 parts by weight in terms of CaO, WO 3 having an average particle size of 0.1 μm and a purity of 99.9% by weight.
To a mixed powder obtained by adding 0.3 parts by weight in terms of W,
160 parts by weight of 1-butanol was added, crushed and mixed by a wet ball mill, and then 1-butanol was removed to obtain a raw material powder. Subsequently, a binder liquid comprising a butyral-based binder and an ethanol solvent was weighed and added to the raw material powder so that the amount of the binder became 6 parts by weight. After removing ethanol and granulating, a green compact formed under uniaxial pressure of 500 MPa was obtained.

【0040】この圧粉体を乾燥空気中で500℃まで加
熱してバインダーを除去した。脱バインダー後の成形体
密度は2.18g/cm3 であった。脱バインダー後の成
形体をAlN焼結体製の焼結容器中に収容し、グラファ
イト製ヒータ炉を用いて、1気圧の窒素ガス雰囲気中、
1550℃で2時間焼結した。
The green compact was heated to 500 ° C. in dry air to remove the binder. The molded article density after debinding was 2.18 g / cm 3 . The compact after debinding is housed in a sintering vessel made of an AlN sintered body, and is heated in a nitrogen gas atmosphere of 1 atm using a graphite heater furnace.
Sintered at 1550 ° C for 2 hours.

【0041】得られた焼結体は黒色で、色ムラや焼きム
ラがなく、実施例1と同じ方法で評価したところ、密度
は3.29g/cm3 と緻密化しており、熱伝導率は11
3W/mKであった。4点曲げ強度は平均値が313M
Paであった。
The obtained sintered body was black, was free from color unevenness and baking unevenness, and was evaluated by the same method as in Example 1. The density was 3.29 g / cm 3 and the thermal conductivity was high. 11
It was 3 W / mK. The average value of the four-point bending strength is 313M.
Pa.

【0042】(実施例4)実施例2と同じAlN粉9
6.65重量部に、純度99.5%の硝酸イットリウム
をY23 換算で2.29重量部、純度99.9wt%の
硝酸カルシウムをCaO換算で0.76重量、平均粒径
0.1μmで純度99.9wt%のTiO2 をTi換算で
0.3重量部を混合して得られる混合粉体に、更にアク
リル系バインダー6重量部と共にアルコール系溶媒14
0重量部中に分散し、粘度が約5000CPS のスリップ
を調整した。続いて、前記スリップをドクターブレード
法により約0.3mmの均一な厚さを有するグリーンシー
トを作製した。続いて、前記グリーンシートを所定の寸
法に裁断し、各グリーンシートに層間の電気的接続を得
るためのビアホールを形成した。径0.8μmのタング
ステン粒子を50wt%の割合で含有するタングステンペ
ーストを前記ビアホールに圧入して充填した。ビアホー
ルが形成されたグリーンシート上にタングステンペース
トをスクリーン印刷して、導体回路のパターンを形成し
た。
(Example 4) The same AlN powder 9 as in Example 2
To 6.65 parts by weight, 2.29 parts by weight of yttrium nitrate having a purity of 99.5% in terms of Y 2 O 3 , 0.76 parts by weight of calcium nitrate having a purity of 99.9% by weight in terms of CaO, and an average particle diameter of 0. To a mixed powder obtained by mixing 0.3 parts by weight of TiO 2 having a purity of 99.9 wt% with 1 μm in terms of Ti, 6 parts by weight of an acrylic binder and 14 parts by weight of an alcohol solvent 14
It was dispersed in 0 parts by weight to prepare a slip having a viscosity of about 5000 CPS. Subsequently, a green sheet having a uniform thickness of about 0.3 mm was prepared from the slip by a doctor blade method. Subsequently, the green sheet was cut into a predetermined size, and a via hole for obtaining electrical connection between layers was formed in each green sheet. A tungsten paste containing tungsten particles having a diameter of 0.8 μm at a ratio of 50 wt% was press-fitted into the via hole and filled. A tungsten paste was screen-printed on the green sheet in which the via hole was formed to form a pattern of a conductive circuit.

【0043】このような方法で得た各グリーンシートを
積層し、熱間プレスにより一体化した。その後、外形加
工を施し、窒素雰囲気中で最高温度700℃まで加熱し
て、バインダーを除去した。導体部分を含まないグリー
ンシートのみの部分の成形体密度を測定したところ、
2.01g/cm3 であった。脱バインダー後の積層物を
AlN焼結体製容器中に入れ、カーボン製ヒータを有す
る焼結炉を用いて、窒素雰囲気中、1600℃で2時間
で焼結することにより、半導体装置用のAlN焼結体製
パッケージを得た。
Each green sheet obtained by such a method was laminated and integrated by hot pressing. Thereafter, external processing was performed, and heating was performed to a maximum temperature of 700 ° C. in a nitrogen atmosphere to remove the binder. When measuring the green density of the green sheet only part without the conductor part,
2.01 g / cm 3 . The laminate after debinding is placed in a container made of an AlN sintered body, and sintered in a nitrogen atmosphere at 1600 ° C. for 2 hours using a sintering furnace having a carbon heater, thereby obtaining an AlN for a semiconductor device. A sintered body package was obtained.

【0044】得られたパッケージは、反り、うねり、ク
ラックやフクレがなく、表面が平滑であり、形態を走査
型電子顕微鏡(SEM)で観察したところ、AlN層及
びW層は共に充分緻密化していた。
The obtained package was free from warpage, undulation, cracks and blisters, had a smooth surface, and was observed with a scanning electron microscope (SEM) to find that both the AlN layer and the W layer were sufficiently dense. Was.

【0045】(実施例5)実施例4と同じ方法で得られ
た同じ組成のドクターシートを3枚熱間プレスで積層し
た後、窒素雰囲気中で最高温度700℃まで加熱して、
バインダーを除去した。脱バインダー後の積層物をAl
N焼結体製容器中に入れ、カーボン製ヒータを有する焼
結炉を用いて、窒素雰囲気中、1580℃で2時間焼結
した。得られたAlN焼結体を加工して35×35×
0.7mmの板を得た。この板を、空気中で1130℃で
3時間加熱して、焼結体板の表面に厚さ約2μmのα−
Al23 層を形成させた。続いて、前記焼結体板の一
面に酸素を400ppm 含有する銅板を接触させ、酸素を
7ppm 含有する窒素ガス雰囲気中で加熱して1070℃
で3分間保持して前記焼結体板と銅板とを接合させて回
路基板とした。得られた回路基板の接合界面を観察した
ところ、強固に接合されており、ピール強度を測定した
ところ、9kgf/cmと高い強度を示した。
(Example 5) After three doctor sheets of the same composition obtained by the same method as in Example 4 were laminated by a hot press, they were heated to a maximum temperature of 700 ° C in a nitrogen atmosphere.
The binder was removed. Laminate after debinding
It was placed in a container made of N sintered body and sintered at 1580 ° C. for 2 hours in a nitrogen atmosphere using a sintering furnace having a heater made of carbon. The obtained AlN sintered body was processed to 35 × 35 ×
A 0.7 mm plate was obtained. This plate was heated in air at 1130 ° C. for 3 hours to form an α-
An Al 2 O 3 layer was formed. Subsequently, a copper plate containing 400 ppm of oxygen was brought into contact with one surface of the sintered plate, and heated in a nitrogen gas atmosphere containing 7 ppm of oxygen to 1070 ° C.
For 3 minutes to join the sintered body plate and the copper plate to obtain a circuit board. When the bonding interface of the obtained circuit board was observed, it was firmly bonded, and the peel strength was measured. As a result, it was as high as 9 kgf / cm.

【0046】[0046]

【発明の効果】以上述べたように、本発明によれば、1
550〜1600℃の低温域での焼結によって、焼きム
ラや色ムラが少なく安定した特性を有するAlN焼結体
が得られる。又、焼結時間を短縮でき、AIN焼結体の
製造コストの低減が可能になる。本発明によって得られ
るAlN焼結体を用いることで、性能及び信頼性が大き
く向上した高速用、大パワー用の半導体装置を低コスト
で製造することができる。
As described above, according to the present invention, 1
By sintering in a low temperature range of 550 to 1600 ° C., an AlN sintered body having stable characteristics with little unevenness in firing and color is obtained. Further, the sintering time can be shortened, and the manufacturing cost of the AIN sintered body can be reduced. By using the AlN sintered body obtained by the present invention, a high-speed and high-power semiconductor device with greatly improved performance and reliability can be manufactured at low cost.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 上野 文雄 神奈川県川崎市幸区小向東芝町1 株式 会社東芝 研究開発センター内 (56)参考文献 特開 平8−81264(JP,A) 特開 平4−104961(JP,A) (58)調査した分野(Int.Cl.7,DB名) C04B 35/581 - 35/5835 ──────────────────────────────────────────────────続 き Continuation of front page (72) Inventor Fumio Ueno 1 Toshiba, Komukai Toshiba-cho, Saisaki-ku, Kawasaki-shi, Kanagawa Prefecture Toshiba R & D Center (56) References JP-A-8-81264 Hei 4-104961 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) C04B 35/581-35/5835

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 アルカリ土類金属元素及び希土類元素を
含む添加物を、硝酸塩、アルコキシド及びゾルからなる
群より選ばれる形態で極性溶剤に溶解した液相状態で
化アルミニウム粉末、遷移金属成分及びバインダーと混
合して該極性溶剤を除去することによって、窒化アルミ
ニウム100重量部に対し酸化物換算で1.0〜9.
9重量部の上記添加物及び元素換算で0.05〜1.1
重量部の上記遷移金属成分を含有する混合粉末を得る工
程と、該混合粉末を100〜500MPaで圧縮成形し
た後に加熱によりバインダーを除去して成形体密度が
2.0g/cm 3 以上の成形体を調製する工程と、該成形
体を1550〜1600℃で焼結する工程とを有する
とを特徴とする回路基板用窒化アルミニウム焼結体の製
造方法。
1. An additive comprising an alkaline earth metal element and a rare earth element comprises a nitrate, an alkoxide and a sol.
Mixed with a powder of aluminum nitride, a transition metal component and a binder in a liquid phase dissolved in a polar solvent in a form selected from the group
Combined by removing the polar solvent, in terms of oxide with respect to aluminum nitride 100 parts by weight from 1.0 to 9.
9 parts by weight of the above additive and 0.05 to 1.1 in terms of element.
A process for obtaining a mixed powder containing the transition metal component in parts by weight.
And compression molding the mixed powder at 100 to 500 MPa.
After heating, the binder is removed by heating,
An aluminum nitride sintered body for a circuit board, comprising: a step of preparing a molded body of 2.0 g / cm 3 or more ; and a step of sintering the molded body at 1550 to 1600 ° C. Manufacturing method.
【請求項2】 前記窒化アルミニウム粉比表面積
は、3.0〜4.0m2 /gであり、前記成形体は、ア
ルカリ金属化合物、弗素化合物及びホウ素含有化合物を
含まないことを特徴とする請求項記載の製造方法。
Wherein a specific surface area of the end the aluminum nitride powder
Is 3.0~4.0m 2 / g, the molded product, the alkali metal compound The process of claim 1, wherein the free of fluorine compounds and boron containing compounds.
JP9059557A 1997-03-13 1997-03-13 Method for producing aluminum nitride sintered body for circuit board Expired - Lifetime JP3038320B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9059557A JP3038320B2 (en) 1997-03-13 1997-03-13 Method for producing aluminum nitride sintered body for circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9059557A JP3038320B2 (en) 1997-03-13 1997-03-13 Method for producing aluminum nitride sintered body for circuit board

Publications (2)

Publication Number Publication Date
JPH10251066A JPH10251066A (en) 1998-09-22
JP3038320B2 true JP3038320B2 (en) 2000-05-08

Family

ID=13116684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9059557A Expired - Lifetime JP3038320B2 (en) 1997-03-13 1997-03-13 Method for producing aluminum nitride sintered body for circuit board

Country Status (1)

Country Link
JP (1) JP3038320B2 (en)

Also Published As

Publication number Publication date
JPH10251066A (en) 1998-09-22

Similar Documents

Publication Publication Date Title
JP4812144B2 (en) Aluminum nitride sintered body and manufacturing method thereof
JP2002201075A (en) Silicon nitride ceramic substrate and silicon nitride ceramic circuit substrate using it and its manufacturing method
JP3629783B2 (en) Circuit board
JP3662955B2 (en) Circuit board and circuit board manufacturing method
JP2937850B2 (en) Manufacturing method of aluminum nitride sintered body
JPH06206772A (en) Aluminum nitride sintered compact and ceramic circuit substrate
JP3038320B2 (en) Method for producing aluminum nitride sintered body for circuit board
JPH0881267A (en) Aluminum nitride sintered compact, its production, aluminum nitride circuit board and its production
JP3537648B2 (en) Aluminum nitride wiring board and method of manufacturing the same
JP3618422B2 (en) High strength circuit board and manufacturing method thereof
JP2899893B2 (en) Aluminum nitride sintered body and method for producing the same
JPH10251069A (en) Silicon nitride circuit board and semiconductor device
JP5073135B2 (en) Aluminum nitride sintered body, production method and use thereof
JP2677748B2 (en) Ceramics copper circuit board
JP3973407B2 (en) Method for producing aluminum nitride sintered body
JP4535575B2 (en) Silicon nitride multilayer wiring board
JPH0881266A (en) Production of aluminum nitride sintered compact
JP2000244121A (en) Silicon nitride wiring board and manufacture thereof
JP4868641B2 (en) Method for manufacturing aluminum nitride substrate
JP2666744B2 (en) Alumina multilayer wiring board, method of manufacturing the same, and method of manufacturing alumina sintered body
JP3895211B2 (en) Method for manufacturing silicon nitride wiring board
JP2001019576A (en) Substrate and its production
JP2022094464A (en) Green sheet of silicon nitride and production method thereof
JP4516057B2 (en) Silicon nitride wiring board and method for manufacturing the same
JPH0881264A (en) Production of aluminum nitride sintered compact

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080225

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090225

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090225

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100225

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100225

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110225

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120225

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120225

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130225

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 14

EXPY Cancellation because of completion of term