JP2010005584A - Adsorbent for lower aldehydes - Google Patents

Adsorbent for lower aldehydes Download PDF

Info

Publication number
JP2010005584A
JP2010005584A JP2008170621A JP2008170621A JP2010005584A JP 2010005584 A JP2010005584 A JP 2010005584A JP 2008170621 A JP2008170621 A JP 2008170621A JP 2008170621 A JP2008170621 A JP 2008170621A JP 2010005584 A JP2010005584 A JP 2010005584A
Authority
JP
Japan
Prior art keywords
urea
activated carbon
adsorbent
potassium
lower aldehydes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008170621A
Other languages
Japanese (ja)
Inventor
Norio Aibe
紀夫 相部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eiko KK
Original Assignee
Eiko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eiko KK filed Critical Eiko KK
Priority to JP2008170621A priority Critical patent/JP2010005584A/en
Publication of JP2010005584A publication Critical patent/JP2010005584A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an adsorbent which is excellent in heat stability, does not emit the odor of a carried chemical, and includes such excellent adsorptivity as to efficiently adsorb and remove lower aldehydes over a long time. <P>SOLUTION: The above problem is solved by impregnating an activated carbon with urea and a salt selected from a carbonate, phosphate or sulfate of alkali metals, and a 1-6C carboxylate and then heating the activated carbon at 45-195°C. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、ホルムアルデヒド、アセトアルデヒドなどの低級アルデヒド類に対し優れた吸着性能を有し、使用期間中担持薬品臭のしない吸着剤に関する。   The present invention relates to an adsorbent that has excellent adsorption performance for lower aldehydes such as formaldehyde and acetaldehyde and does not cause a chemical odor during use.

ホルムアルデヒド、アセトアルデヒドなどの低級アルデヒド類は、いずれも特異な刺激臭を発する有害なガスである。ホルムアルデヒドは、空気中の許容濃度が0.3ppmと低く、かつ発ガン性を有すると言われている。また、アセトアルデヒドをはじめとしてC1〜Cの脂肪族低級アルデヒド類は我が国では特定悪臭物質に指定され、いずれも嗅覚閾値が非常に低く悪臭公害を引き起こす物質である。
ホルムアルデヒドの発生源としては、ホルムアルデヒドの製造工場および尿素、メラミン、フェノールなどを原料とした樹脂の製造工場のほか、これらの樹脂の加工工場、さらにこれらの樹脂を使用した建材、家具など製造工場などが挙げられる。また、消毒剤としてのホルムアルデヒドや石油類の不完全燃焼排ガス、たばこの副流煙にも含まれている。最近では、室内においても新建材や家具などから発生するホルムアルデヒドが問題になっている。
アセトアルデヒドの発生源としては、アセトアルデヒドおよびその誘導体の製造工場のほか、下水汚泥の加熱処理時にも発生し、またたばこの主流煙中にも含まれている。
Lower aldehydes such as formaldehyde and acetaldehyde are harmful gases that emit unique irritating odors. Formaldehyde is said to have a carcinogenicity and an allowable concentration in air as low as 0.3 ppm. In addition, C 1 -C 4 aliphatic lower aldehydes including acetaldehyde are designated as specific malodorous substances in Japan, and all of them are substances that have a very low olfactory threshold and cause odor pollution.
Formaldehyde generation sources include formaldehyde manufacturing plants, resin manufacturing plants made from urea, melamine, phenol, etc., processing plants for these resins, and manufacturing plants for building materials and furniture using these resins. Is mentioned. It is also contained in formaldehyde as a disinfectant, incomplete combustion exhaust gas of petroleum, and sidestream smoke of tobacco. Recently, formaldehyde generated from new building materials and furniture has become a problem even indoors.
As a source of acetaldehyde, it is generated at the time of heat treatment of sewage sludge in addition to the manufacturing plant of acetaldehyde and its derivatives, and is also contained in the mainstream smoke of cigarettes.

近年、これら低級アルデヒド類に対して、作業環境の改善および生活環境の向上などの観点から、有害物質や臭気などが問題視され、この観点から気体、特に空気中の低級アルデヒド類を効率よく除去する吸着剤の開発が強く要望されている。
従来から低級アルデヒド類の吸着剤としては、活性炭、活性アルミナ、シリカゲルなどが挙げられ、なかでも活性炭が広く使用されてきたが、これらの吸着剤自体は、その特性上、ホルムアルデヒド、アセトアルデヒドなどの低級アルデヒド類に対する吸着容量が小さく、寿命が短いという欠点がある。
この改善策として、前記の吸着剤に低級アルデヒド類と反応する化合物、たとえば、脂肪族アミン類、芳香族アミン類などの有機化合物を担持させたものや、触媒として白金族化合物を前記の吸着剤に担持させたものなどが提案されている。
In recent years, harmful substances and odors have been seen as problems with these lower aldehydes from the viewpoint of improving the working environment and living environment. From this viewpoint, gas, especially lower aldehydes in the air are efficiently removed. There is a strong demand for the development of adsorbents.
Conventionally, as adsorbents for lower aldehydes, activated carbon, activated alumina, silica gel and the like have been used, and among them, activated carbon has been widely used. However, these adsorbents themselves have lower properties such as formaldehyde and acetaldehyde. There are drawbacks in that the adsorption capacity for aldehydes is small and the lifetime is short.
As an improvement measure, a compound that reacts with the lower aldehydes on the adsorbent, for example, an organic compound such as an aliphatic amine or an aromatic amine, or a platinum group compound as a catalyst is used as the adsorbent. The one supported on the substrate has been proposed.

しかしながら、有機化合物を担持させた吸着剤は、担持有機化合物の経時安定性、それら自体の有害性、臭気などに問題がある。たとえば、アニリン(沸点185℃)を常温付近で単に添着させたもの(特許文献1)は、アニリン自身が発ガン性の疑いがあり、かつ低級アルデヒド類の吸着に対して、経時的に不安定であるなどのために実用化に問題があった。また、活性炭に酸化処理を施した後に、ポリエチレンイミン(アンモニア臭を有する水溶液)あるいはp−アミノアセトアニリド(沸点267℃、毒性のある薬品)を常温付近で単に添着したもの(特許文献2)などが考案されているが、このようなアミン類を活性炭に常温付近で単に添着させた吸着剤は、一般に熱安定性に劣り、使用条件によっては添着されたアミン類の一部が活性炭から脱着するためにアミン類の臭気が漏れてきたり、吸着性能が低下したりする欠点があった。
触媒を担持させたものは、触媒が高価な上、常温では低級アルデヒド類の除去効果が低い。
このように従来の技術は、いずれも低級アルデヒド類の除去に対して満足できるものではなかった。
However, adsorbents carrying organic compounds have problems with the stability of the carried organic compounds over time, their own toxicity, odor, and the like. For example, aniline (boiling point 185 ° C.) simply attached at room temperature (Patent Document 1) is suspected of causing carcinogenicity, and is unstable over time against the adsorption of lower aldehydes. Because of this, there was a problem in practical use. Further, after the activated carbon is oxidized, polyethyleneimine (aqueous solution having an ammonia odor) or p-aminoacetanilide (boiling point 267 ° C., toxic chemical) is simply attached at around room temperature (Patent Document 2). Although it has been devised, adsorbents obtained by simply attaching such amines to activated carbon at around room temperature are generally inferior in thermal stability, and depending on the usage conditions, some of the attached amines may be desorbed from the activated carbon. In addition, there are drawbacks in that the odor of amines leaks or the adsorption performance decreases.
The catalyst-supported catalyst is expensive and has a low effect of removing lower aldehydes at room temperature.
Thus, none of the conventional techniques are satisfactory for the removal of lower aldehydes.

特公昭60−54095号公報Japanese Patent Publication No. 60-54095 特開平9−168736号公報Japanese Patent Laid-Open No. 9-168736

本発明は、熱安定性に優れ、担持薬品の臭気や漏出がなく、かつ低級アルデヒド類を長時間にわたり効率よく吸着除去することができる優れた低級アルデヒド類の吸着剤を提供することを目的としている。   An object of the present invention is to provide an excellent adsorbent for lower aldehydes that is excellent in thermal stability, has no odor or leakage of a supported chemical, and can efficiently adsorb and remove lower aldehydes over a long period of time. Yes.

本発明者は、前記の点を鑑み鋭意研究した結果、活性炭に尿素と炭酸、燐酸硫酸またはC1-6カルボン酸のアルカリ金属塩とを含浸させた後、45〜195℃の温度で加熱して得られる吸着剤が、熱安定性に優れ、担持薬品の臭気や漏出がなく、低級アルデヒド類を長期に渡り効率よく吸着除去することを見出し、本発明を完成した。 As a result of intensive studies in view of the above points, the present inventors have impregnated activated carbon with urea and carbonic acid, phosphoric acid sulfuric acid or an alkali metal salt of C 1-6 carboxylic acid, and then heated at a temperature of 45 to 195 ° C. The adsorbent obtained in this way was found to be excellent in thermal stability, free from odor and leakage of the supported chemicals, and efficiently adsorbed and removed lower aldehydes over a long period of time, thereby completing the present invention.

本発明で使用される活性炭は、木炭、コークス、石炭、ヤシ殻、樹脂などを原料として通常の方法により賦活されたものであれば、いかなるものでもよい。その形状は、破砕状、円柱状、球状、ハニカム状、繊維状などで、その表面積は、100m/g以上、好ましくは150〜2500m/gのものである。 The activated carbon used in the present invention may be any as long as it is activated by a normal method using charcoal, coke, coal, coconut shell, resin, or the like as a raw material. Its shape is crushed, cylindrical, spherical, honeycomb, fiber, etc., its surface area is 100 m 2 / g or more, preferably 150~2500m 2 / g.

本発明で用いられるアルカリ金属としては、リチウム、ナトリウム、カリウム、ルビジウム,セシウムが挙げられるが、ナトリウム及びカルシウムが便宜に用いられる。
炭酸のアルカリ金属塩としては、たとえば、炭酸水素ナトリウム、炭酸ナトリウム、炭酸水素カリウム、炭酸カリウムなどが、燐酸のアルカリ金属塩としては、たとえば、燐酸二水素ナトリウム、燐酸水素二ナトリウム、燐酸三ナトリウム、燐酸二水素カリ、燐酸水素二カリ、燐酸三カリなどが、硫酸のアルカリ金属塩としては、たとえば、硫酸水素ナトリウム、硫酸ナトリウム、硫酸水素カリ、硫酸カリなどが、また、C1〜C6のカルボン酸のアルカリ金属塩としては、たとえば、酢酸ナトリウム、蓚酸ナトリウム、クエン酸ナトリウム、酒石酸ナトリウム、コハク酸ナトリウム、乳酸ナトリウム、酢酸カリ、蓚酸カリ、クエン酸カリ、酒石酸カリ、コハク酸カリ、乳酸カリなどの一又は多塩基性酸のナトリウム塩やカリウム塩等が挙げられる。
活性炭に含浸させる尿素の量は、活性炭1gに対して0.1ミリモル以上が好ましく、特に0.5〜10.0ミリモルが好ましい。
Examples of the alkali metal used in the present invention include lithium, sodium, potassium, rubidium, and cesium, but sodium and calcium are conveniently used.
Examples of the alkali metal salt of carbonic acid include sodium hydrogen carbonate, sodium carbonate, potassium hydrogen carbonate, and potassium carbonate. Examples of the alkali metal salt of phosphoric acid include sodium dihydrogen phosphate, disodium hydrogen phosphate, trisodium phosphate, Potassium dihydrogen phosphate, dipotassium hydrogen phosphate, tripotassium phosphate, etc., as the alkali metal salt of sulfuric acid, for example, sodium hydrogen sulfate, sodium sulfate, potassium hydrogen sulfate, potassium sulfate, etc., also C 1 -C 6 Examples of the alkali metal salt of carboxylic acid include sodium acetate, sodium oxalate, sodium citrate, sodium tartrate, sodium succinate, sodium lactate, potassium acetate, potassium oxalate, potassium citrate, potassium tartrate, potassium succinate, potassium lactate. And sodium salts and potassium salts of mono- or polybasic acids The
The amount of urea impregnated in the activated carbon is preferably 0.1 mmol or more, particularly 0.5 to 10.0 mmol, relative to 1 g of activated carbon.

アルカリ金属塩の活性炭1gに対する含浸量は、アルカリ金属として0.01mg原子以上が好ましく、特に、0.05〜8mg原子である。
尿素とアルカリ金属塩を活性炭に含浸するに際しては、尿素とアルカリ金属塩をあらかじめ水、酸水溶液(たとえば硫酸、硝酸、燐酸、硫酸、C1〜C6のカルボン酸などの酸の水溶液)又はアルコール類などに溶解して活性炭に含浸する。水やこれらの酸又はその水溶液、アルコール類にあまり溶解しない化合物の場合は懸濁液の状態で含浸してもよい。
The impregnation amount of 1 g of activated carbon of an alkali metal salt is preferably 0.01 mg atom or more, particularly 0.05 to 8 mg atom as an alkali metal.
When the activated carbon is impregnated with urea and an alkali metal salt, the urea and the alkali metal salt are previously mixed with water, an acid aqueous solution (for example, an aqueous solution of an acid such as sulfuric acid, nitric acid, phosphoric acid, sulfuric acid, C 1 -C 6 carboxylic acid) or alcohol. Dissolve in the activated carbon and impregnate activated carbon In the case of a compound that is not very soluble in water, these acids or their aqueous solutions, or alcohols, they may be impregnated in a suspension state.

尿素とアルカリ金属塩を含浸させた後、45〜195℃、好ましくは50〜190℃、特に好ましくは100〜150℃で加熱する。この加熱は空気、不活性ガス又は燃焼排ガス中などで行うことができる。加熱時間は10〜500分程度、好ましくは20〜240分程度である。加熱温度を195℃以上にすると含浸薬品が昇華または分解して低級アルデヒドの吸着性能が低下してしまうので好ましくない。   After impregnating with urea and an alkali metal salt, heating is performed at 45 to 195 ° C, preferably 50 to 190 ° C, particularly preferably 100 to 150 ° C. This heating can be performed in air, inert gas or combustion exhaust gas. The heating time is about 10 to 500 minutes, preferably about 20 to 240 minutes. A heating temperature of 195 ° C. or higher is not preferable because the impregnating chemical sublimates or decomposes and lowers the lower aldehyde adsorption performance.

本発明における除去対象の低級アルデヒド類は、炭素数が6以下で沸点が100℃以下のアルデヒド、例えばホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、アクロレイン、3−メチル−ブチルアルデヒドを指すが、代表的なものはホルムアルデヒドとアセトアルデヒドである。
本発明においては、上記のようにして得られたアルデヒド類吸着剤を空間内、装置内などに存在させて、アルデヒド類を効率よく除去する方法なども含まれる。アルデヒド類吸着剤を空間内に存在させる場合には、たとえば、アルデヒド類吸着剤をシート状などにしたり、建材に含ませたり、通常よく行われる方法などが挙げられる。また、装置内などに存在させる場合は、塔、容器などに充填したりして、これらにアルデヒド類を含むガスを通気する方法などが考えられる。
The lower aldehydes to be removed in the present invention refer to aldehydes having 6 or less carbon atoms and a boiling point of 100 ° C. or less, such as formaldehyde, acetaldehyde, propionaldehyde, acrolein, and 3-methyl-butyraldehyde. Formaldehyde and acetaldehyde.
The present invention also includes a method for efficiently removing aldehydes by allowing the aldehyde adsorbent obtained as described above to exist in a space or in an apparatus. In the case where the aldehyde adsorbent is present in the space, for example, the aldehyde adsorbent may be formed into a sheet form, included in a building material, or a method that is usually performed. Moreover, when it exists in an apparatus etc., the method etc. which fill a tower, a container, etc., and ventilate the gas containing aldehydes to these are considered.

本発明のアルデヒド吸着剤は、常温において無臭で、かつ、化学的に安定な固体薬品である、尿素とアルカリ金属塩を活性炭に含浸させ、45〜195℃の温度で加熱して調製するので、アルデヒド吸着剤を使用する常温付近では含浸薬品の蒸気が漏れ出すようなこともなく、しかも化学的に安定であり、アルデヒド類の吸着除去性能が良好で、かつ、経時劣化もなく、従来のアルデヒド吸着剤に比べて非常に優れている。   The aldehyde adsorbent of the present invention is prepared by impregnating activated carbon with urea and an alkali metal salt, which is an odorless and chemically stable solid chemical at room temperature, and heating at a temperature of 45 to 195 ° C. In the vicinity of room temperature using an aldehyde adsorbent, the impregnating chemical vapor does not leak, and is chemically stable, adsorbing and removing aldehydes is good, and there is no deterioration over time. Very superior to adsorbents.

以下に実施例及び比較例をあげて、本発明を具体的に説明する。   Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples.

8〜32メッシュの瀝青炭系活性炭A(BET比表面積1150m/g)の各2gに尿素167mg/ml水溶液、尿素167mg・炭酸カリ40mg/ml水溶液、尿素167mg・燐酸二水素カリ60mg/ml、尿素167mg・燐酸水素二カリ77mg/ml、尿素167mg・第三燐酸カリ94mg/ml、尿素167mg・燐酸二水素ナトリウ51mg/ml、尿素167mg・クエン酸三カリ−130mg/ml、尿素167mg・クエン酸三ナトリウム−110mg/ml、尿素167mg・硫酸水素ナトリウム−65mgmg/ml、尿素167mg・硫酸水素カリ−70mg/ml、尿素167mg・重炭酸ナトリウム−49mg/mlのそれぞれ各2mlを均一に含浸させた。活性炭への薬品含浸量は、活性炭1g当たりの薬品量は、次表の通りであった。このようにして得られた薬品含浸活性炭をそれぞれ110℃で30分間加熱した。これらを乳鉢で微粉砕し、各100mgを3Lのテトラバッグに量り込み、空気で満たした。各テトラバッグに所定量のホルマリン水溶液を注入して、各テトラバッグ中のホルムアルデヒド濃度を300ppmとした。3時間後の各テトラバッグ中のホルムアルデヒド濃度を測定した結果は表1に示す通りである。 8g to 32 mesh bituminous coal-based activated carbon A (BET specific surface area 1150m 2 / g) 2g each, urea 167mg / ml aqueous solution, urea 167mg · potassium carbonate 40mg / ml aqueous solution, urea 167mg · potassium dihydrogen phosphate 60mg / ml, urea 167 mg, dipotassium hydrogen phosphate 77 mg / ml, urea 167 mg, potassium triphosphate 94 mg / ml, urea 167 mg, sodium dihydrogen phosphate 51 mg / ml, urea 167 mg, tripotassium citrate-130 mg / ml, urea 167 mg, tricitrate Sodium-110 mg / ml, urea 167 mg / sodium hydrogen sulfate-65 mg mg / ml, urea 167 mg / potassium hydrogen sulfate-70 mg / ml, urea 167 mg / sodium bicarbonate-49 mg / ml were each impregnated uniformly. Regarding the amount of chemical impregnation into activated carbon, the amount of chemical per gram of activated carbon was as shown in the following table. The chemical impregnated activated carbon thus obtained was heated at 110 ° C. for 30 minutes. These were finely pulverized in a mortar, and 100 mg each was weighed into a 3 L tetra bag and filled with air. A predetermined amount of formalin aqueous solution was injected into each tetrabag to adjust the formaldehyde concentration in each tetrabag to 300 ppm. The results of measuring the formaldehyde concentration in each tetrabag after 3 hours are as shown in Table 1.

Figure 2010005584
Figure 2010005584

8〜32メッシュのヤシ殻系活性炭(BET比表面積1200m/g)Mに尿素60mg/ml水溶液、尿素60mg・炭酸カリ14mg/ml水溶液、尿素60mg・炭酸カリ28mg/ml水溶液、尿素60mg・炭酸カリ56mg/ml水溶液、尿素60mg・燐酸二水素カリ14mg/ml、尿素60mg・燐酸水素二カリ10mg/ml、尿素60mg・第三燐酸カリ10mg/ml、尿素60mg・燐酸二水素ナトリウ12mg/ml、尿素60mg・クエン酸三カリ15mgのそれぞれ各2mlを均一に含浸させた。活性炭への薬品含浸量は、活性炭1g当たりの薬品量は、次表の通りであった。このようにして得られた薬品含浸活性炭をそれぞれ100℃で30分間加熱した。これらを乳鉢で微粉砕し、各100mgを3Lのテトラバッグに量り込み、空気で満たした。各テトラバッグに所定量のホルマリン水溶液を注入して、各テトラバッグ中のホルムアルデヒド濃度を300ppmとした。3時間後の各テトラバッグ中のホルムアルデヒド濃度を測定した結果は表2に示す通りである。 8-32 mesh coconut shell activated carbon (BET specific surface area 1200 m 2 / g) M with urea 60 mg / ml aqueous solution, urea 60 mg / potassium carbonate 14 mg / ml aqueous solution, urea 60 mg / potassium carbonate 28 mg / ml aqueous solution, urea 60 mg / carbonic acid Potassium 56 mg / ml aqueous solution, urea 60 mg / potassium dihydrogen phosphate 14 mg / ml, urea 60 mg / potassium dihydrogen phosphate 10 mg / ml, urea 60 mg / potassium triphosphate 10 mg / ml, urea 60 mg / sodium dihydrogen phosphate 12 mg / ml, 2 ml each of 60 mg of urea and 15 mg of tripotassium citrate were impregnated uniformly. Regarding the amount of chemical impregnation into activated carbon, the amount of chemical per gram of activated carbon was as shown in the following table. The chemical impregnated activated carbon thus obtained was heated at 100 ° C. for 30 minutes. These were finely pulverized in a mortar, and 100 mg each was weighed into a 3 L tetra bag and filled with air. A predetermined amount of formalin aqueous solution was injected into each tetrabag to adjust the formaldehyde concentration in each tetrabag to 300 ppm. The results of measuring the formaldehyde concentration in each tetrabag after 3 hours are shown in Table 2.

Figure 2010005584
Figure 2010005584

8〜32メッシュの瀝青炭系活性炭Aの2gに尿素167mg/ml水溶液および尿素−167mg・燐酸二水素カリ−60mg/mlのそれぞれ各2mlを均一に含浸させた。活性炭1g当たりの薬品量は、前者が尿素167mgで、後者が尿素167mg・燐酸二水素カリ60mgであった。このようにして得られた薬品含浸活性炭をそれぞれ40℃、50℃、100℃、150℃、190℃、および200℃の各温度で、60分間加熱した。これらを乳鉢で微粉砕し、各100mgを3Lのテトラバッグに量り込み、空気で満たした。各テトラバッグに所定量のホルマリン水溶液を注入して、各テトラバッグ中のホルムアルデヒド濃度を300ppmとした。3時間後の各テトラバッグ中のホルムアルデヒド濃度を測定した結果は表3に示す通りである。   2 g of 8-32 mesh bituminous coal-based activated carbon A was uniformly impregnated with 2 ml each of urea 167 mg / ml aqueous solution and urea-167 mg / potassium dihydrogen phosphate-60 mg / ml. Regarding the amount of chemicals per 1 g of activated carbon, the former was 167 mg of urea, and the latter was 167 mg of urea / 60 mg of potassium dihydrogen phosphate. The chemical impregnated activated carbon thus obtained was heated at 40 ° C., 50 ° C., 100 ° C., 150 ° C., 190 ° C., and 200 ° C. for 60 minutes, respectively. These were finely pulverized in a mortar, and 100 mg each was weighed into a 3 L tetra bag and filled with air. A predetermined amount of formalin aqueous solution was injected into each tetrabag to adjust the formaldehyde concentration in each tetrabag to 300 ppm. The results of measuring the formaldehyde concentration in each tetrabag after 3 hours are shown in Table 3.

Figure 2010005584
Figure 2010005584

表3から明らかなように、活性炭に尿素のみ単独含浸した吸着剤(対照)は、ホルムアルデヒドをほとんど吸着除去できない。また、尿素および燐酸二水素カリを混合含浸した吸着剤うち加熱温度が40℃や200℃の吸着剤では、ホルムアルデヒドをある程度吸着除去できるが性能は不十分である。これに対して、尿素および燐酸二水素カリを混合含浸した吸着剤うち加熱温度が50〜200℃である吸着剤(本発明)は、ホルムアルデヒドに対して非常に優れた吸着性能が発揮された。   As is clear from Table 3, the adsorbent (control) in which only activated urea was impregnated into activated carbon hardly adsorbed and removed formaldehyde. Further, among adsorbents mixed and impregnated with urea and potassium dihydrogen phosphate, adsorbents having a heating temperature of 40 ° C. or 200 ° C. can adsorb and remove formaldehyde to some extent, but performance is insufficient. On the other hand, among the adsorbents mixed and impregnated with urea and potassium dihydrogen phosphate, the adsorbent having a heating temperature of 50 to 200 ° C. (the present invention) exhibited very excellent adsorption performance for formaldehyde.

本発明の低級アルデヒド吸着剤は、熱安定性に優れ、担持薬品の臭気がなく、かつ、低級アルデヒド類を長時間にわたり効率よく吸着除去し優れた吸着能を有ししでいるので、ホルムアルデヒドの製造工場および尿素、メラミン、フェノールなどを原料とした樹脂の製造工場のほか、これらの樹脂の加工工場、さらにこれらの樹脂を使用した建材、家具など製造工場やアセトアルデヒドおよびその誘導体の製造工場のほか、下水汚泥の加熱処理場などで、低級アルデヒド類の吸着剤として使用することができる。   The lower aldehyde adsorbent of the present invention is excellent in thermal stability, has no odor of supported chemicals, and has an excellent adsorbing ability by efficiently removing and removing lower aldehydes over a long period of time. In addition to manufacturing factories and manufacturing factories for resins made from urea, melamine, phenol, etc., processing factories for these resins, manufacturing factories for building materials and furniture using these resins, and a manufacturing plant for acetaldehyde and its derivatives It can be used as an adsorbent for lower aldehydes in heat treatment plants for sewage sludge.

Claims (3)

活性炭に、尿素と、炭酸、燐酸、硫酸またはC1〜C6のカルボン酸のアルカリ金属塩とを含浸させた後、45〜195℃の温度で加熱して得られる低級アルデヒド類の吸着剤。 An adsorbent for lower aldehydes obtained by impregnating activated carbon with urea and an alkali metal salt of carbonic acid, phosphoric acid, sulfuric acid or a C 1 -C 6 carboxylic acid and then heating at a temperature of 45 to 195 ° C. アルカリ金属塩が炭酸の塩である請求項1記載の低級アルデヒド類の吸着剤。   The adsorbent for lower aldehydes according to claim 1, wherein the alkali metal salt is a carbonate. アルカリ金属塩が燐酸の塩である請求項1記載の低級アルデヒド類の吸着剤。   The adsorbent for lower aldehydes according to claim 1, wherein the alkali metal salt is a salt of phosphoric acid.
JP2008170621A 2008-06-30 2008-06-30 Adsorbent for lower aldehydes Pending JP2010005584A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008170621A JP2010005584A (en) 2008-06-30 2008-06-30 Adsorbent for lower aldehydes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008170621A JP2010005584A (en) 2008-06-30 2008-06-30 Adsorbent for lower aldehydes

Publications (1)

Publication Number Publication Date
JP2010005584A true JP2010005584A (en) 2010-01-14

Family

ID=41586660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008170621A Pending JP2010005584A (en) 2008-06-30 2008-06-30 Adsorbent for lower aldehydes

Country Status (1)

Country Link
JP (1) JP2010005584A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020517455A (en) * 2017-04-21 2020-06-18 メッドクレア アクティエボラーグ A device for the catalytic decomposition of nitrous oxide in gas streams.

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020517455A (en) * 2017-04-21 2020-06-18 メッドクレア アクティエボラーグ A device for the catalytic decomposition of nitrous oxide in gas streams.
US11565062B2 (en) 2017-04-21 2023-01-31 Medclair AB Apparatus for catalytic decomposition of nitrous oxide in a gas stream
JP7474301B2 (en) 2017-04-21 2024-04-24 メッドクレア アクティエボラーグ Apparatus for the catalytic decomposition of nitrous oxide in a gas stream.

Similar Documents

Publication Publication Date Title
US5206204A (en) Absorbent for lower aldehydes
JP4554004B2 (en) Lower aldehyde adsorbent
JP4452935B1 (en) Lower aldehyde adsorbent and process for producing the same
JP2009056449A (en) Lower aldehyde adsorbent
JP2010201360A (en) Adsorbent for lower aldehydes and method for producing the same
JP6851834B2 (en) Aldehyde adsorbent
JP4139486B2 (en) Lower aldehyde adsorbent
JP2010172871A (en) Adsorbent of lower aldehydes and method for manufacturing the same
JP2010137113A (en) Adsorbent for lower aldehyde, and method of producing the same
JP2010162477A (en) Adsorbent for lower aldehydes and method of manufacturing the same
JP2008178788A (en) Adsorbent
JP2006272078A (en) Absorbent for aldehydes, its manufacturing method and method for removing aldehyde in gas using adsorbent
JP2004105854A (en) Adsorbing material and method for production thereof
JP2010005584A (en) Adsorbent for lower aldehydes
JP2009247978A (en) Adsorbent for lower aldehydes
JP2007038106A (en) Deodorization method
JP2010017679A (en) Absorbent of lower aldehyde
JP5341871B2 (en) Aldehyde adsorbent and method for producing the same
WO2016031474A1 (en) Adsorbent
JP2010240605A (en) Adsorbent for lower aldehydes and method for producing the adsorbent
JP3250773B2 (en) Aliphatic aldehyde adsorbent
JPH05317703A (en) Malodorous gas adsorptive agent
JP4952570B2 (en) Adsorbent for aldehyde removal
JPH10192703A (en) Adsorbent
JP3180997B2 (en) Odor gas adsorbent