JP2008178788A - Adsorbent - Google Patents

Adsorbent Download PDF

Info

Publication number
JP2008178788A
JP2008178788A JP2007013507A JP2007013507A JP2008178788A JP 2008178788 A JP2008178788 A JP 2008178788A JP 2007013507 A JP2007013507 A JP 2007013507A JP 2007013507 A JP2007013507 A JP 2007013507A JP 2008178788 A JP2008178788 A JP 2008178788A
Authority
JP
Japan
Prior art keywords
adsorbent
porous body
hydrazide
water
adsorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007013507A
Other languages
Japanese (ja)
Inventor
Keiichi Ando
圭一 安藤
Yuichiro Hayashi
祐一郎 林
Yasuhiro Asada
康裕 浅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2007013507A priority Critical patent/JP2008178788A/en
Publication of JP2008178788A publication Critical patent/JP2008178788A/en
Pending legal-status Critical Current

Links

Landscapes

  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an adsorbent which is capable of effectively adsorbing and removing lower aliphatic aldehyde without re-scattering even under low-humidity environment with 5g/m<SP>3</SP>or low of absolute humidity. <P>SOLUTION: The adsorbent for low-humidity environment aldehyde is characterized by having a water-soluble hydrazide carried by a porous material of which the amount of equilibrium adsorption at 40% of the relative humidity is 0.1 mL/g or more and of which the amount of equilibrium adsorption at 95% of the relative humidity is 20% or more in the steam adsorption isotherm of 30°C. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、アルデヒド類、特にアセトアルデヒドに代表される低級脂肪族アルデヒドの吸着除去に優れた吸着剤に関し、特にエアフィルターに好適に用いられる吸着剤に関する。   The present invention relates to an adsorbent excellent in adsorbing and removing aldehydes, particularly lower aliphatic aldehydes typified by acetaldehyde, and more particularly to an adsorbent suitably used for an air filter.

空気中の汚染物質についてはその種類が多岐に渡るが、その中でも低級脂肪族アルデヒドは大きな問題となっている。例えば、タバコの煙や建築材、産業機械の排気ガスに含まれるアセトアルデヒドは、閾値、つまり臭いと感じる限界点が1.5μg/Lと極めて低濃度であり、少量でも悪臭の原因となる。またアルデヒドは、シックハウス症候群や化学物質過敏症などの主因物質としても問題視されており、厚生労働省は室内濃度指針値を定めて規制を促している。   There are various types of pollutants in the air, but among these, lower aliphatic aldehydes are a major problem. For example, acetaldehyde contained in tobacco smoke, building materials, and exhaust gas from industrial machinery has a very low concentration of 1.5 μg / L as a threshold, that is, a limit point where it is perceived as odor, and even a small amount causes bad odor. Aldehydes are also regarded as a major cause of sick house syndrome and chemical hypersensitivity, and the Ministry of Health, Labor and Welfare has urged regulations by setting indoor concentration guideline values.

空気中の悪臭成分の除去には、活性炭が一般に使用されているが、低級脂肪族アルデヒドの活性炭への平衡吸着量は他の悪臭成分に比べて著しく小さい。また活性炭は、一旦は悪臭成分をその細孔内に保持するものの、物理的に表面吸着している状態であるため、吸着平衡に達すると温湿度などの環境変化によって悪臭を再放出するという問題がある。   In order to remove malodorous components in the air, activated carbon is generally used. However, the equilibrium adsorption amount of the lower aliphatic aldehyde on the activated carbon is significantly smaller than other malodorous components. Activated carbon once holds malodorous components in its pores, but is physically adsorbed on the surface, so when it reaches adsorption equilibrium, it re-releases malodorous due to environmental changes such as temperature and humidity. There is.

そこでアルデヒドと化学反応するアニリンを添着した活性炭が、特許文献1、特許文献2に開示されている。しかし、アニリンは毒性を有し、接触や吸入などによって人体に中毒症状を引き起こすことから、人の手に触れる場面での使用には不向きである。   Therefore, Patent Document 1 and Patent Document 2 disclose activated carbon impregnated with aniline that chemically reacts with aldehyde. However, since aniline is toxic and causes toxic symptoms in the human body by contact or inhalation, it is not suitable for use in situations where it touches human hands.

このほか、特許文献3ではアミン−有機酸の塩を活性炭などの多孔性物質に添着して得られる吸着剤に燐酸を添着した多孔性物質を混合することにより低級脂肪族アルデヒドの除去性能が高められると開示されている。また、特許文献4では無機系吸着剤と活性炭の少なくとも一方にアミンを添着する方法が開示されている。しかしながら、これら文献に具体的に記載されている方法では、反応場となる水が存在しにくい環境、すなわち低湿度環境で薬剤とアルデヒドとが反応しづらい。すなわち、多孔質体に一般的なアミン系薬品を添着させてアルデヒドを化学吸着しようとする公知技術は多数存在しているが、化学反応に不利な低湿度環境においても実用的な効果が示される吸着剤は得られていない。   In addition, Patent Document 3 improves the removal performance of lower aliphatic aldehydes by mixing a porous material in which phosphoric acid is added to an adsorbent obtained by attaching an amine-organic acid salt to a porous material such as activated carbon. Is disclosed. Patent Document 4 discloses a method of adding an amine to at least one of an inorganic adsorbent and activated carbon. However, in the methods specifically described in these documents, it is difficult for the drug and the aldehyde to react in an environment in which water as a reaction field is unlikely to exist, that is, in a low humidity environment. In other words, there are many known techniques for chemically adsorbing aldehydes by attaching a general amine-based chemical to a porous material, but a practical effect is shown even in a low humidity environment that is disadvantageous for chemical reaction. Adsorbent is not obtained.

また、特許文献5では、アルデヒドの吸着性能の向上を目的として、吸湿性のあるエチレン尿素とアニリンまたは遷移金属の硝酸塩、塩化物塩、酢酸塩、燐酸塩を多孔質体に複合添着させる方法を開示している。しかしこの方法では、絶対湿度5g/m以下という低湿度環境下で使用する場合、エチレン尿素の吸湿性が十分発揮されないばかりか、もともと尿素化合物とアルデヒドとの反応性が速くないために、動的な条件下では十分な吸着性能が得られない。 In Patent Document 5, for the purpose of improving the adsorption performance of aldehyde, a method in which hygroscopic ethylene urea and aniline or transition metal nitrates, chlorides, acetates, and phosphates are compositely attached to a porous material. Disclosure. However, in this method, when used in a low humidity environment with an absolute humidity of 5 g / m 3 or less, not only the hygroscopicity of ethylene urea is not fully exhibited, but also the reactivity between urea compounds and aldehydes is not fast so Sufficient adsorption performance cannot be obtained under typical conditions.

特許文献6には、特定の細孔径、含水率を有する二酸化ケイ素に水溶性のポリアミンを担持させた消臭性接着剤が開示されている。しかし、ポリアミンは生理活性を有する化合物であるため、人体への影響が疑問視される。またこの消臭性接着剤は、静的な条件下での建材用途を想定した設計であり、例えばOA機器用のエアフィルターのように高温エアーが通気される動的な用途で使用すると、ポリアミン自体が臭気を発するという問題がある。   Patent Document 6 discloses a deodorant adhesive in which a water-soluble polyamine is supported on silicon dioxide having a specific pore size and water content. However, since polyamine is a compound having physiological activity, its influence on the human body is questioned. This deodorant adhesive is designed to be used for building materials under static conditions. For example, when used in dynamic applications where high-temperature air is vented, such as air filters for OA equipment, There is a problem that it itself emits an odor.

このように低湿度環境および動的な環境においても低級脂肪族アルデヒドに対して高い吸着性能を示し、かつ再放出することなく、自身も臭気を発生させない吸着剤が要望されていた。
特公昭60−54095号公報 特開平3−98642号公報 特開平6−7418号公報 特開平8−191879号公報 特開平11−285619号公報 特開2000−281998号公報
Thus, there has been a demand for an adsorbent that exhibits high adsorption performance for lower aliphatic aldehydes in a low humidity environment and a dynamic environment, and that does not re-release and does not generate odors.
Japanese Patent Publication No. 60-54095 Japanese Patent Laid-Open No. 3-98642 JP-A-6-7418 JP-A-8-191879 JP-A-11-285619 JP 2000-281998 A

本発明は、低湿度環境であっても低級脂肪族アルデヒドの除去性能に優れ、さらエアーが流通している動的な条件下においても除去効率が高い実用的な吸着剤を提供することを目的とする。   An object of the present invention is to provide a practical adsorbent that is excellent in removal performance of lower aliphatic aldehydes even in a low humidity environment and that has high removal efficiency even under dynamic conditions where air is circulated. And

すなわち本発明は、30℃の水蒸気吸着等温線において、相対湿度40%RHでの平衡吸着量が0.1mL/g以上であり、かつ相対湿度40%RHでの平衡吸着量が相対湿度95%RHでの平衡吸着量の20%以上である多孔質体に、水溶性ヒドラジドを担持してなる吸着剤である。   That is, according to the present invention, in a water vapor adsorption isotherm at 30 ° C., the equilibrium adsorption amount at a relative humidity of 40% RH is 0.1 mL / g or more, and the equilibrium adsorption amount at a relative humidity of 40% RH is 95% relative humidity. It is an adsorbent obtained by supporting a water-soluble hydrazide on a porous body that is 20% or more of the equilibrium adsorption amount in RH.

本発明によれば、低湿度環境下および動的環境下においても脂肪族アルデヒド類を高効率に吸着し、かつ吸着容量も大きい吸着剤を提供することができる。   According to the present invention, it is possible to provide an adsorbent that adsorbs aliphatic aldehydes with high efficiency and a large adsorption capacity even in a low humidity environment and a dynamic environment.

本発明の吸着剤は、多孔質体に水溶性ヒドラジドを担持してなる。多孔質体により、処理エアと接触可能な表面積を得るとともに、水溶性ヒドラジドを十分な量で保持することができる。   The adsorbent of the present invention is formed by supporting a water-soluble hydrazide on a porous body. The porous body can obtain a surface area that can be contacted with the processing air and can hold a sufficient amount of water-soluble hydrazide.

本発明の吸着剤は、多孔質体が、30℃の水蒸気吸着等温線において、相対湿度40%RHでの平衡吸着量が0.1mL/g以上であり、かつ相対湿度40%RHでの平衡吸着量が相対湿度95%RHでの平衡吸着量の20%以上であることが重要である。かかる多孔質体を採用することにより、低湿度環境下においても十分な水分量を保持し、アルデヒドとヒドラジドとの化学反応による吸着を進行させることができる。水蒸気吸着等温線は、JIS K 1474:1991 5.1.2に規定される装置を使用して測定することができる。   The adsorbent of the present invention has an equilibrium adsorption amount of 0.1 mL / g or more at a relative humidity of 40% RH and an equilibrium at a relative humidity of 40% RH in a water vapor adsorption isotherm at 30 ° C. It is important that the adsorption amount is 20% or more of the equilibrium adsorption amount at a relative humidity of 95% RH. By adopting such a porous body, a sufficient amount of water can be maintained even in a low humidity environment, and adsorption by a chemical reaction between aldehyde and hydrazide can be advanced. The water vapor adsorption isotherm can be measured using an apparatus defined in JIS K 1474: 1991 5.1.2.

多孔質体としては、活性炭、活性アルミナ、シリカゲル、ゼオライト等が使用可能であるが、水溶性ヒドラジドを付着した後にもアルデヒドの吸着サイトが確保され、さらに毛管凝縮作用により低湿度環境下においても一定の水分を保持できる点で、平均細孔径が1nm〜10nmの多孔質体が好ましい。多孔質体の中では親水性の表面を持つシリカゲルが好ましく、またそれらシリカゲルの中でも平均細孔径3nm〜6nmのシリカゲルがより多くの水分を保持できる点で好ましい。   Activated carbon, activated alumina, silica gel, zeolite, etc. can be used as the porous material, but the aldehyde adsorption site is secured even after the water-soluble hydrazide is adhered, and it is constant even in a low humidity environment due to capillary condensation. The porous body whose average pore diameter is 1 nm-10 nm is preferable at the point which can hold | maintain this water | moisture content. Among the porous materials, silica gel having a hydrophilic surface is preferable, and among these silica gels, silica gel having an average pore diameter of 3 nm to 6 nm is preferable because it can retain more water.

多孔質体の平均細孔径が大きすぎると、毛管凝縮作用が小さくなり、低湿度環境下における水分保持能が低下する。また平均細孔径が大きいと比表面積が小さくなり、処理エアーと接触可能なヒドラジドの添着面積を確保することができない。比表面積を十分な大きさにしようとすると、多孔質体における空隙率が大きくなりすぎて機械的強度が低下し、ヒドラジドを添着させる過程で多孔質体の破壊が起こってしまう。   When the average pore diameter of the porous body is too large, the capillary condensation action is reduced, and the water retention ability in a low humidity environment is reduced. In addition, if the average pore diameter is large, the specific surface area becomes small, and it is impossible to secure a hydrazide attachment area that can come into contact with the processing air. If the specific surface area is made sufficiently large, the porosity in the porous body becomes too large, the mechanical strength is lowered, and the porous body is destroyed in the process of attaching hydrazide.

一方、平均細孔径が小さすぎると多孔質体の比表面積は増加するが、ヒドラジドが細孔内で目詰まりしやすくなり、アルデヒドの吸着サイトが減少してしまう。   On the other hand, if the average pore diameter is too small, the specific surface area of the porous body increases, but hydrazide is easily clogged in the pores, resulting in a decrease in aldehyde adsorption sites.

多孔質体の細孔径は、ばらつきが小さければ小さいほど好ましく、細孔径分布がシャープなシリカゲルが有効に利用できる。多孔質体の細孔径分布は、ガス吸着法で得られる吸着等温線データをB.J.H(Brrett. Joyner. Halenda)法やH.K.(Horbath- Kawazoe )法により解析することで求めることができる。   The pore diameter of the porous body is preferably as small as possible, and silica gel having a sharp pore diameter distribution can be used effectively. The pore size distribution of the porous material is obtained by analyzing the adsorption isotherm data obtained by the gas adsorption method by the BJH (Brrett. Joyner. Halenda) method or the HK (Horbath-Kawazoe) method. be able to.

多孔質体の比表面積は50m2/g〜600m2/gが好ましい。50m/g以下ではアルデヒドガスとの接触効率が低くなり十分な吸着性能が得られない。600m/g以上では、多孔質体の空隙率が大きくなりすぎて機械的強度が低下し、水溶性ヒドラジドを添着させる過程で破壊しやすくなる。 The specific surface area of the porous body is preferably 50m 2 / g~600m 2 / g. If it is 50 m 2 / g or less, the contact efficiency with the aldehyde gas is lowered, and sufficient adsorption performance cannot be obtained. If it is 600 m 2 / g or more, the porosity of the porous body becomes too large, the mechanical strength is lowered, and it becomes easy to break in the process of attaching the water-soluble hydrazide.

多孔質体は粒子状の物である場合、その平均粒径が1〜5000μmであることが好ましい。より好ましくは75〜4000μmである。平均粒径が1μm未満では取扱いが困難なうえ、再凝集しやすいといった問題もあり好ましくない。また5000μmより大きいと、フィルターの吸着剤として限られた容積に充填して使用する場合、嵩張ってしまいガス吸着に必要な表面積が確保できない。平均粒径は多孔質体の粒度から算出される。粒度は、JIS K 0069:1992 6.2.5に記載される方法に従い、またJIS Z 8801−1:2006に規定される標準ふるいを使用して、その目開きを通過する割合を測定し、積算重量百分率で表される。なお、積算値50%の粒度を「平均粒径」とする。ただし、数μm程度の微粉になると,ふるいは目詰まりしてしまうので,液体に分散させ、回折光や散乱光を利用して粒度を測定する。     When the porous material is a particulate material, the average particle size is preferably 1 to 5000 μm. More preferably, it is 75-4000 micrometers. If the average particle size is less than 1 μm, handling is difficult and reaggregation tends to occur. On the other hand, if it is larger than 5000 μm, it is bulky when used in a limited volume as a filter adsorbent, and the surface area required for gas adsorption cannot be secured. The average particle size is calculated from the particle size of the porous body. The particle size is measured according to the method described in JIS K 0069: 1992 6.2.5 and using a standard sieve defined in JIS Z 8801-1: 2006, and the ratio of passing through the mesh is measured. Expressed as an integrated weight percentage. The particle size having an integrated value of 50% is defined as “average particle size”. However, if it becomes a fine powder of about several μm, the sieve becomes clogged, so it is dispersed in a liquid and the particle size is measured using diffracted light or scattered light.

多孔質体の表面には、耐水強度を上げる処理や、pHを変化させる処理など任意の後処理が施されていてもよい。   The surface of the porous body may be subjected to any post-treatment such as a treatment for increasing water resistance strength or a treatment for changing pH.

一方、本発明において用いられる水溶性ヒドラジドとは、酸のヒドロキシル基をヒドラジノ基(NH−NH−)で置換した化合物であって、水に可溶なものをいう。ここで「水溶性」とは、常温で中性の水に対し1質量%以上(10g/L)溶解することをいう。 On the other hand, the water-soluble hydrazide used in the present invention is a compound in which a hydroxyl group of an acid is substituted with a hydrazino group (NH 2 —NH—) and is soluble in water. Here, “water-soluble” means that 1% by mass or more (10 g / L) dissolves in neutral water at room temperature.

代表的な化合物群としてモノヒドラジド、ジヒドラジド、ヒドラジドイミド、ヒドラジジン、セミカルバジドなどが挙げられる。   Representative compound groups include monohydrazide, dihydrazide, hydrazide imide, hydrazidine, semicarbazide and the like.

モノヒドラジドは、一般式 R−CO−NHNH[式中、Rは水素原子、アルキル基又は置換基を有することのあるアリール基を示す]で表され、ホルムヒドラジド、アセトヒドラジド、1,5-ジフェニルカルボノヒドラジド、ベンゾヒドラジド、ペンタノヒドラジド、シクロヘキサンカルボヒドラジド、ベンゼンスルホノヒドラジド、チオベンゾヒドラジドなどが例示できる。 The monohydrazide is represented by the general formula R 1 —CO—NHNH 2 (wherein R 1 represents a hydrogen atom, an alkyl group or an aryl group which may have a substituent), and includes form hydrazide, acetohydrazide, 1, Examples include 5-diphenylcarbonohydrazide, benzohydrazide, pentanohydrazide, cyclohexanecarbohydrazide, benzenesulfonohydrazide, thiobenzohydrazide and the like.

ジヒドラジドは、一般式 HNHN−R−NHNH2[式中、Rは基−CO−又は基−CO−A−CO−を示す。Aはアルキレン基又はアリーレン基を示す]で表され、アジピン酸ジヒドラジド、セバシン酸ヒドラジド、テレフタル酸ジヒドラジド、ドデカン二酸ジヒドラジドなどが例示できる。 Dihydrazide has the general formula H 2 NHN—R 2 —NHNH 2 [wherein R 2 represents a group —CO— or a group —CO—A—CO—. A represents an alkylene group or an arylene group], and examples thereof include adipic acid dihydrazide, sebacic acid hydrazide, terephthalic acid dihydrazide, and dodecanedioic acid dihydrazide.

ヒドラジドイミドは、一般式 RC(=NH)NHNH[式中、Rは水素原子、アルキル基又は置換基を有することのあるアリール基を示す]で表され、ペンタンイミドヒドラジドが例示できる。 The hydrazide imide is represented by the general formula R 1 C (═NH) NHNH 2 [wherein R 1 represents a hydrogen atom, an alkyl group or an aryl group that may have a substituent], and examples thereof include pentaneimide hydrazide. .

ヒドラジジンは、別名ヒドラジドヒドラゾンとも呼ばれ、一般式RC(=NNH)NHNH[式中、Rは水素原子、アルキル基又は置換基を有することのあるアリール基を示す]で表され、ベンゾヒドラゾノヒドラジドを例示できる。 Hydrazine is also called hydrazide hydrazone, and is represented by the general formula R 1 C (= NNH 2 ) NHNH 2 [wherein R 1 represents a hydrogen atom, an alkyl group or an aryl group which may have a substituent]. And benzohydrazonohydrazide.

セミカルバジドは、カルバミン酸のヒドラジドであって、一般式 NH−CO−NHNH[式中、窒素原子および炭素原子にはアルキル基又はアリール基アリール基が置換されていてもよい]で表され、4,4-ジメチル‐1‐フェニルセミカルバジドなどが例示できる。 Semicarbazide is a hydrazide of carbamic acid, and is represented by the general formula NH 2 —CO—NHNH 2 (wherein the nitrogen atom and the carbon atom may be substituted with an alkyl group or an aryl group aryl group), An example is 4,4-dimethyl-1-phenyl semicarbazide.

これらの中でも、水に対する溶解性、低級脂肪族アルデヒドとの反応性、安全性、生産性、低臭気などを考慮に入れるとジヒドラジド化合物が好ましく、カルボン酸ジヒドラジドが特に好ましく、アジピン酸ジヒドラジドがより一層好ましい。   Of these, dihydrazide compounds are preferred, carboxylic acid dihydrazides are particularly preferred, and adipic acid dihydrazide is even more preferred in consideration of water solubility, reactivity with lower aliphatic aldehydes, safety, productivity, low odor and the like. preferable.

このような水溶性ヒドラジドは単独でなく2種以上含んでいてもよい。 水溶性ヒドラジドの担持量は、前記多孔質体1g当たり0.02〜1.00mmolである。担持量が少な過ぎると、アルデヒドガスの吸着能が得られない。また担持量が多過ぎると、細孔をヒドラジドが塞いでしまって有効な吸着サイトが得られないだけでなく、毛管凝縮による水分の保持もできないため、低湿度環境下における化学吸着能が著しく低くなる。   Such water-soluble hydrazides may be contained alone or in combination of two or more. The amount of water-soluble hydrazide supported is 0.02 to 1.00 mmol per 1 g of the porous body. If the supported amount is too small, the aldehyde gas adsorption ability cannot be obtained. If the loading is too large, hydrazide will clog the pores and not only provide an effective adsorption site, but also cannot retain moisture by capillary condensation, so the chemisorption capacity in a low humidity environment is extremely low. Become.

また、本発明の吸着剤には酸触媒を担持させることも好ましい。アルデヒド類のカルボニル炭素の電子を酸触媒が共有することによって、アルデヒド類のカルボニル炭素の求電子性を高くし、アルデヒド類に対する化学吸着能を向上させることができる。   Moreover, it is also preferable to carry | support an acid catalyst in the adsorbent of this invention. By sharing an electron of the carbonyl carbon of the aldehyde with the acid catalyst, the electrophilicity of the carbonyl carbon of the aldehyde can be increased, and the chemical adsorption ability for the aldehyde can be improved.

酸触媒の酸としては、プロトン供与体であるブレンステッド酸や、電子対受容体であるルイス酸を挙げることができる。ルイス酸としては例えば、珪素、アルミニウム、チタン、ジルコニウム、タングステン、モリブデン、スズ、鉄等の水酸化物もしくは酸化物、グラファイト、イオン交換樹脂等からなる担体に、硫酸根、五フッ化アンチモン、五フッ化タンタル、三フッ化ホウ素等を付着或いは担持したものを例示することができる。   Examples of the acid of the acid catalyst include Bronsted acid which is a proton donor and Lewis acid which is an electron pair acceptor. Examples of Lewis acids include hydroxides or oxides such as silicon, aluminum, titanium, zirconium, tungsten, molybdenum, tin, and iron, graphite, ion exchange resins, and the like, sulfate groups, antimony pentafluoride, five Examples include those in which tantalum fluoride, boron trifluoride or the like is attached or supported.

その他、pH調整剤、防腐剤、抗菌剤、変色防止剤等の各種の添加剤を使用用途に応じて多孔質体に担持することができる。たとえばアジピン酸ヒドラジドは光照射、空気中の酸素との接触が経時的に繰り返されることにより、分解して変色することがある。この変色は、多孔質体に水溶性ヒドラジドと等モルのポリエチレングリコールを添加することで防ぐことができる。ポリエチレングリコールはアルデヒドとヒドラジドの反応性を妨げることなく変色防止剤として働く。変色およびその抑制のメカニズムははっきりと解明されていないが、おそらくヒドラジドと会合状態で存在するポリエチレングリコールが、光照射による酸ヒドラジドのα-カルボニルのエネルギー吸収を緩和しているのであろうと推測される。   In addition, various additives such as pH adjusters, preservatives, antibacterial agents, and discoloration inhibitors can be supported on the porous body depending on the intended use. For example, adipic acid hydrazide may decompose and discolor due to repeated light irradiation and contact with oxygen in the air over time. This discoloration can be prevented by adding water-soluble hydrazide and equimolar polyethylene glycol to the porous body. Polyethylene glycol acts as a discoloration inhibitor without interfering with the reactivity of aldehyde and hydrazide. The mechanism of discoloration and its suppression is not clearly understood, but it is presumed that polyethylene glycol present in an associated state with hydrazide may moderate the energy absorption of α-carbonyl of acid hydrazide by light irradiation. .

上記したような本発明の吸着剤は多孔質体と水溶性ヒドラジドを溶解した水溶液を混合すれば、容易に得られる。細孔内に均一にヒドラジドを付着させるために、多孔質体を十分に浸漬できる量のヒドラジド水溶液を調製し、この中に多孔質体を1時間以上含浸付着させる必要がある。多孔質体は水溶液に含浸する前処理として、乾燥させてもよいし、あらかじめ加水しておいてもよい。   The adsorbent of the present invention as described above can be easily obtained by mixing a porous body and an aqueous solution in which water-soluble hydrazide is dissolved. In order to uniformly deposit hydrazide in the pores, it is necessary to prepare an amount of an aqueous hydrazide solution that can sufficiently immerse the porous body, and to impregnate and adhere the porous body in the pore for 1 hour or more. The porous body may be dried or pre-hydrated as a pretreatment for impregnating the aqueous solution.

ヒドラジドの担持量はヒドラジド水溶液の濃度を変えることで調整することができる。また含浸中はゆっくり攪拌してもよい。ヒドラジドが付着した後の複合体は任意の方法で濾別し、用いた水溶性ヒドラジドの分解温度より低い温度で乾燥させる。得られた複合体は例えば50℃〜120℃で熱乾燥し、本発明におけるアルデヒドガス吸着剤を得ることができる。   The amount of hydrazide supported can be adjusted by changing the concentration of the aqueous hydrazide solution. Moreover, you may stir slowly during impregnation. The complex after the hydrazide is deposited is filtered off by an arbitrary method and dried at a temperature lower than the decomposition temperature of the water-soluble hydrazide used. The obtained composite can be thermally dried at, for example, 50 ° C. to 120 ° C. to obtain the aldehyde gas adsorbent in the present invention.

多孔質体として通常透明なシリカゲルを用い、そのシリカゲルにたとえば水に難溶のアミン類を担持させると、吸着剤としてはそのアミン成分が析出付着して白色を帯びる。しかしながら本発明の吸着剤は、透明な外観を有するという特徴がある。これは多孔質体にわずかに含有される水分に水溶性ヒドラジドが溶け込んだ状態で保持されるため、ヒドラジド分子が無秩序な配列で存在し、光の乱反射が起こらないのであろうと推定する。   When normally transparent silica gel is used as the porous body and amines that are hardly soluble in water, for example, are supported on the silica gel, the amine component of the adsorbent is deposited and becomes white. However, the adsorbent of the present invention is characterized by having a transparent appearance. This is presumed that the water-soluble hydrazide is dissolved in the water slightly contained in the porous body, so that the hydrazide molecules are present in a disordered arrangement, and the irregular reflection of light does not occur.

本発明の吸着剤は、アルデヒドガスの吸着を必要とする種々の分野で利用することができ、特に低湿度の動的環境下においても他のVOCガスの阻害を受けずにアルデヒドを選択的に高効率に除去できる。これは低湿度下においても十分な水分を保持できる多孔質体に、アルデヒドとの反応性が高い水溶性のヒドラジドが担持されていることにより達成されるものである。つまり、多孔質体に含有される水分が反応場として有効に働き、ヒドラジドの反応性を促進させるものと考えられる。   The adsorbent of the present invention can be used in various fields that require adsorption of aldehyde gas. In particular, even in a low humidity dynamic environment, the sorbent can be selectively used without being inhibited by other VOC gases. It can be removed with high efficiency. This is achieved by supporting a water-soluble hydrazide having high reactivity with aldehydes on a porous body capable of holding sufficient moisture even under low humidity. That is, it is considered that the moisture contained in the porous body works effectively as a reaction field and promotes the reactivity of hydrazide.

特に電子写真装置の排気部は設備そのものが高温に曝されるため、水分が飛んで絶対湿度が低いエアーが供給される。本発明はこのような低湿度環境に設置されるフィルターに使用するアルデヒド吸着剤などにニーズがある。   In particular, since the equipment itself is exposed to a high temperature in the exhaust part of the electrophotographic apparatus, air is supplied and air having a low absolute humidity is supplied. The present invention has a need for an aldehyde adsorbent used for a filter installed in such a low humidity environment.

吸着対象のアルデヒド類としては、ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド等の脂肪族アルデヒドのほか、ベンズアルデヒド、パラメチルベンゾアルデヒド等の芳香族アルデヒドも挙げられ。そして、本発明は、特に反応性が低いために動的な条件での除去が困難であったアセトアルデヒドに対して湿度環境を選ばずに良好な化学吸着性能を発現する。   Examples of aldehydes to be adsorbed include aliphatic aldehydes such as formaldehyde, acetaldehyde, and propionaldehyde, and aromatic aldehydes such as benzaldehyde and paramethylbenzaldehyde. And this invention expresses favorable chemical adsorption performance with respect to acetaldehyde which was difficult to remove under dynamic conditions because of low reactivity, regardless of the humidity environment.

以下、実施例によって本発明の作用効果をより具体的に示すが、本発明の吸着剤は下記実施例のみに限定されるものではない。   Hereinafter, although an example shows the operation effect of the present invention more concretely, the adsorbent of the present invention is not limited only to the following example.

[測定方法]
(1)水蒸気吸着等温線の測定方法
多孔質体を約100mg採取し、2時間180℃で加熱真空排気を行った。次に真空ライン内で飽和水蒸気圧下1晩放置した。その後、真空排気を常温30℃で行って、日本BEL社製 装置名BELSORP 18 PLUST−Tを用いて定容法により、吸着水分量を水蒸気の相対圧0.00〜1.00の範囲で徐々に高めながら30点測定し、上記サンプルの水蒸気吸着等温線を作成した。
[Measuring method]
(1) Method for measuring water vapor adsorption isotherm About 100 mg of a porous material was sampled and heated and evacuated at 180 ° C. for 2 hours. Next, it was left overnight in a vacuum line under saturated water vapor pressure. Then, vacuum evacuation was performed at room temperature of 30 ° C., and the amount of adsorbed water was gradually increased in a range of relative pressure of water vapor of 0.00 to 1.00 by a constant volume method using a device name BELSORP 18 PLOST-T manufactured by Japan BEL. The sample was measured at 30 points while raising the water vapor adsorption isotherm of the sample.

なお、後述する表2に示す多孔質体の30℃の水蒸気平衡吸着量特性は次式で示されるものである。
A:30℃、相対湿度40%RHでの水蒸気平衡吸着量(mL/g)
B:[(A)/(30℃、相対湿度95RH%での水蒸気平衡吸着量)×100](%)
(2)平均細孔径およびBET比表面積の測定方法
多孔質体を約100mg採取し、180℃で2時間真空乾燥の後、秤量した。マイクロメリティックス社製自動比表面積装置、装置名ジェミニ2375を使用し、液体窒素の沸点(−195.8℃)における窒素ガスの吸着量を相対圧0.02〜1.00の範囲で徐々に高めながら40点測定し、上記サンプルの窒素吸着等温線を作製した。相対圧0.02〜1.00での結果をBETプロットし、重量当りのBET比表面積(m2/g)を求めた。また、窒素吸着等温泉のBET法により、多孔質体の細孔容積(mL/g)を求め、下記式より多孔質体の平均細孔径(D)を算出した。
D=4×V/S×10
〔V:細孔容積(mL/g)、S:比表面積(m2/g)〕
(3)アセトアルデヒドの吸着能力(ワンパス除去効率)の評価
直径45mmの円筒型のサンプルホルダに吸着剤を高さ10mmとなるよう充填し、ここに温度23℃、絶対湿度2g/m(相対湿度10%RH)のドライエアーを0.16m/secの速度で30分間通気して試験系を十分に乾燥させた。さらに上流側から、標準ガスボンベによりアセトアルデヒドを上流濃度20volppmとなるように供給しながら上記ドライエアーを通気した。サンプルホルダの上流側と下流側とにおいてエアーをサンプリングし、赤外吸光式連続モニターを使用してそれぞれのアセトアルデヒド濃度を経時的に測定し、これから下記式より通気開始5分、10分、15分、20分後のワンパス除去効率を算出した。
ワンパス除去効率(%)=(1−(下流側濃度/上流側濃度))×100
(4)アセトアルデヒドの再放出性評価
直径45mmの円筒型のサンプルホルダに吸着剤を高さ10mmで充填し、ここに温度23℃、絶対湿度2g/m(相対湿度10%RH)のドライエアーを0.16m/secの速度で30分間送風して試験系を十分に乾燥させた。さらに上流側から、標準ガスボンベによりアセトアルデヒドを上流濃度33volppmとなるように供給し、25分間通気したところで、アセトアルデヒドの供給を止めた。サンプルを密閉して一旦試験系から取り外し、上記のドライエアーを5分間流し、試験系(サンプル上流および下流)に付着したアセトアルデヒドをエアーブローで清掃した。再びサンプルをセットして、上記ドライエアーを15分間通気した。通気開始5分、10分、15分後の下流側アセトアルデヒド濃度を赤外吸光式連続モニターで測定した。
In addition, the 30 degreeC water vapor | steam equilibrium adsorption amount characteristic of the porous body shown in Table 2 mentioned later is shown by following Formula.
A: Water vapor equilibrium adsorption amount (mL / g) at 30 ° C. and relative humidity 40% RH
B: [(A) / (water vapor equilibrium adsorption amount at 30 ° C., relative humidity 95RH%) × 100] (%)
(2) Measuring method of average pore diameter and BET specific surface area About 100 mg of a porous material was sampled and weighed after vacuum drying at 180 ° C. for 2 hours. Using an automatic specific surface area device manufactured by Micromeritics, the device name Gemini 2375, the adsorption amount of nitrogen gas at the boiling point of liquid nitrogen (-195.8 ° C.) is gradually increased in the range of relative pressure of 0.02 to 1.00. The sample was measured at 40 points while increasing the temperature to obtain a nitrogen adsorption isotherm of the sample. The results at a relative pressure of 0.02 to 1.00 were BET-plotted to determine the BET specific surface area (m 2 / g) per weight. Moreover, the pore volume (mL / g) of the porous body was obtained by the BET method of hot springs such as nitrogen adsorption, and the average pore diameter (D) of the porous body was calculated from the following formula.
D = 4 × V / S × 10 4
[V: pore volume (mL / g), S: specific surface area (m 2 / g)]
(3) Evaluation of acetaldehyde adsorption capacity (one-pass removal efficiency) A cylindrical sample holder having a diameter of 45 mm was filled with an adsorbent to a height of 10 mm, and the temperature was 23 ° C. and the absolute humidity was 2 g / m 3 (relative humidity). 10% RH) air was blown at a speed of 0.16 m / sec for 30 minutes to sufficiently dry the test system. Further, the dry air was ventilated from the upstream side while supplying acetaldehyde at an upstream concentration of 20 volppm by a standard gas cylinder. Air is sampled on the upstream and downstream sides of the sample holder, and each acetaldehyde concentration is measured over time using an infrared absorption type continuous monitor. From the following formula, aeration starts 5 minutes, 10 minutes, 15 minutes The one-pass removal efficiency after 20 minutes was calculated.
One-pass removal efficiency (%) = (1− (downstream concentration / upstream concentration)) × 100
(4) Evaluation of acetaldehyde re-release property A cylindrical sample holder with a diameter of 45 mm is filled with an adsorbent at a height of 10 mm, and this is dry air at a temperature of 23 ° C. and an absolute humidity of 2 g / m 3 (relative humidity of 10% RH). Was blown at a speed of 0.16 m / sec for 30 minutes to sufficiently dry the test system. Further, acetaldehyde was supplied from the upstream side with a standard gas cylinder so as to have an upstream concentration of 33 vol ppm, and when aerated for 25 minutes, the supply of acetaldehyde was stopped. The sample was sealed and once removed from the test system, and the above dry air was allowed to flow for 5 minutes, and the acetaldehyde adhering to the test system (upstream and downstream of the sample) was cleaned with an air blow. The sample was set again and the dry air was vented for 15 minutes. The downstream acetaldehyde concentration at 5 minutes, 10 minutes and 15 minutes after the start of aeration was measured with an infrared absorption type continuous monitor.

(5)アルデヒドガス負荷後の臭気官能評価方法
アセトアルデヒドの吸着能力評価終了後のサンプルを試験系から取り外し、サンプルから発生する臭気を6段階臭気官能評価判定基準(表1)に従い、パネラー4人(A〜D)で判定した。
(5) Odor sensory evaluation method after loading with aldehyde gas Remove the sample after completion of the acetaldehyde adsorption capacity evaluation from the test system and remove the odor generated from the sample according to the 6-step odor sensory evaluation criteria (Table 1). A to D).

Figure 2008178788
Figure 2008178788

[実施例1]
次のものを用い、本発明の吸着剤を得た。
[Example 1]
The adsorbent of the present invention was obtained using the following.

水溶性ヒドラジドとしてアジピン酸ジヒドラジド(日本化成社製)12gを秤量し、これを常温にて200mLの蒸留水に溶解させた。得られたアジピン酸ジヒドラジド水溶液に下記多孔質体100gを含浸させて、1時間ゆっくり撹拌した。次にこの多孔質体を自然濾過により濾別し、乾燥温度100℃で1時間乾燥させて吸着剤を得た。吸着剤の調製条件をまとめて表2に示す。   As a water-soluble hydrazide, 12 g of adipic acid dihydrazide (manufactured by Nippon Kasei Co., Ltd.) was weighed and dissolved in 200 mL of distilled water at room temperature. The obtained aqueous solution of adipic acid dihydrazide was impregnated with 100 g of the following porous material, and stirred slowly for 1 hour. Next, this porous body was separated by natural filtration and dried at a drying temperature of 100 ° C. for 1 hour to obtain an adsorbent. Table 2 summarizes the conditions for preparing the adsorbent.

得られた吸着剤に関し、アセトアルデヒドの吸着能力、再放出性、負荷後の臭気を評価した。結果を表3〜表5に示す。   The obtained adsorbent was evaluated for acetaldehyde adsorption capacity, re-release property, and odor after loading. The results are shown in Tables 3-5.

(多孔質体)
多孔質体として、細孔容積0.3mL/g、比表面積550m/g、平均細孔径3nm、粒径0.85〜1.70mmである富士シリシア化学社製「CARiACT Q−3」を用いた。
(Porous body)
As a porous body, “CariACT Q-3” manufactured by Fuji Silysia Chemical Ltd. having a pore volume of 0.3 mL / g, a specific surface area of 550 m 2 / g, an average pore diameter of 3 nm, and a particle diameter of 0.85 to 1.70 mm is used. It was.

[実施例2]
多孔質体を次のものに変更し、水溶性ヒドラジドの担持量を変更した以外は実施例1と同様にして吸着剤を得た。なお条件をまとめて表2に示す。
[Example 2]
An adsorbent was obtained in the same manner as in Example 1 except that the porous body was changed to the following and the amount of water-soluble hydrazide supported was changed. The conditions are summarized in Table 2.

得られた吸着剤に関し、アセトアルデヒドの吸着能力、再放出性、負荷後の臭気を評価した。結果を表3〜表5に示す。   The obtained adsorbent was evaluated for acetaldehyde adsorption capacity, re-release property, and odor after loading. The results are shown in Tables 3-5.

(多孔質体)
多孔質体として、細孔容積0.6mL/g、比表面積450m/g、平均細孔径6nm、粒径1.70〜4.00mmである富士シリシア化学社製「CARiACT Q−6」を用いた。
(Porous body)
As a porous body, “CariACT Q-6” manufactured by Fuji Silysia Chemical Ltd. having a pore volume of 0.6 mL / g, a specific surface area of 450 m 2 / g, an average pore diameter of 6 nm, and a particle diameter of 1.70 to 4.00 mm is used. It was.

[実施例3]
多孔質体を次のものに変更し、水溶性ヒドラジドの担持量を変更した以外は実施例1と同様にして吸着剤を得た。なお条件をまとめて表2に示す。
得られた吸着剤に関し、アセトアルデヒドの吸着能力、再放出性、負荷後の臭気を評価した。結果を表3〜表5に示す。
[Example 3]
An adsorbent was obtained in the same manner as in Example 1 except that the porous body was changed to the following and the amount of water-soluble hydrazide supported was changed. The conditions are summarized in Table 2.
The obtained adsorbent was evaluated for acetaldehyde adsorption capacity, re-release property, and odor after loading. The results are shown in Tables 3-5.

(多孔質体)
多孔質体として、細孔容積1.0mL/g、比表面積300m/g、平均細孔径10nm、粒径1.70〜4.00mmである富士シリシア化学社製「CARiACT Q−10」を用いた。
(Porous body)
As a porous body, “CariACT Q-10” manufactured by Fuji Silysia Chemical Ltd. having a pore volume of 1.0 mL / g, a specific surface area of 300 m 2 / g, an average pore diameter of 10 nm, and a particle diameter of 1.70 to 4.00 mm is used. It was.

[比較例1]
多孔質体を次のものに変更し、水溶性ヒドラジドの担持量を変更した以外は実施例1と同様にして吸着剤を得た。なお条件をまとめて表2に示す。
[Comparative Example 1]
An adsorbent was obtained in the same manner as in Example 1 except that the porous body was changed to the following and the amount of water-soluble hydrazide supported was changed. The conditions are summarized in Table 2.

得られた吸着剤に関し、アセトアルデヒドの吸着能力、再放出性、負荷後の臭気を評価した。結果を表3〜表5に示す。   The obtained adsorbent was evaluated for acetaldehyde adsorption capacity, re-release property, and odor after loading. The results are shown in Tables 3-5.

(多孔質体)
多孔質体として、平均細孔径が1.1nm、比表面積1450m/g、粒径0.85〜1.70mmであるクラレケミカル社製活性炭「クラレコールGG10/20」を用いた。
(Porous body)
As the porous body, activated carbon “Kuraray Coal GG10 / 20” manufactured by Kuraray Chemical Co., Ltd. having an average pore diameter of 1.1 nm, a specific surface area of 1450 m 2 / g, and a particle diameter of 0.85 to 1.70 mm was used.

[比較例2]
多孔質体を次のものに変更し、水溶性ヒドラジドの担持量を変更した以外は実施例1と同様にして吸着剤を得た。なお条件をまとめて表2に示す。
[Comparative Example 2]
An adsorbent was obtained in the same manner as in Example 1 except that the porous body was changed to the following and the amount of water-soluble hydrazide supported was changed. The conditions are summarized in Table 2.

得られた吸着剤に関し、アセトアルデヒドの吸着能力、再放出性、負荷後の臭気を評価した。結果を表3〜表5に示す。   The obtained adsorbent was evaluated for acetaldehyde adsorption capacity, re-release property, and odor after loading. The results are shown in Tables 3-5.

(多孔質体)
多孔質体として、細孔容積1.0ml/g、比表面積200m/g、平均細孔径15nm、粒径1.70〜4.00mmである富士シリシア化学社製「CARiACT Q−15」を用いた。
(Porous body)
As a porous body, “CariACT Q-15” manufactured by Fuji Silysia Chemical Ltd. having a pore volume of 1.0 ml / g, a specific surface area of 200 m 2 / g, an average pore diameter of 15 nm, and a particle diameter of 1.70 to 4.00 mm is used. It was.

[比較例3]
水溶性ヒドラジドを用いず、次の多孔質体をもって吸着剤とした。この吸着剤に関し、アセトアルデヒドの吸着能力、再放出性、負荷後の臭気を評価した。結果を表3〜表5に示す。
[Comparative Example 3]
Without using water-soluble hydrazide, the following porous material was used as an adsorbent. With respect to this adsorbent, the acetaldehyde adsorption capacity, re-release property, and odor after loading were evaluated. The results are shown in Tables 3-5.

(多孔質体)
多孔質体として、細孔容積0.3mL/g、比表面積550m/g、平均細孔径3nm、粒径0.85〜1.70mmである富士シリシア化学社製「CARiACT Q−3」を用いた。
(Porous body)
As a porous body, “CariACT Q-3” manufactured by Fuji Silysia Chemical Ltd. having a pore volume of 0.3 mL / g, a specific surface area of 550 m 2 / g, an average pore diameter of 3 nm, and a particle diameter of 0.85 to 1.70 mm is used. It was.

[比較例4]
水溶性ヒドラジドを用いず、次の多孔質体をもって吸着剤とした。この吸着剤に関し、アセトアルデヒドの吸着能力、再放出性、負荷後の臭気を評価した。結果を表3〜表5に示す。
[Comparative Example 4]
Without using water-soluble hydrazide, the following porous material was used as an adsorbent. With respect to this adsorbent, the acetaldehyde adsorption capacity, re-release property, and odor after loading were evaluated. The results are shown in Tables 3-5.

(多孔質体)
多孔質体として、細孔容積0.6mL/g、比表面積450m/g、平均細孔径6nm、粒径1.70〜4.00mmである富士シリシア化学社製「CARiACT Q−6」を用いた。
(Porous body)
As a porous body, “CariACT Q-6” manufactured by Fuji Silysia Chemical Ltd. having a pore volume of 0.6 mL / g, a specific surface area of 450 m 2 / g, an average pore diameter of 6 nm, and a particle diameter of 1.70 to 4.00 mm is used. It was.

[比較例5]
アジピン酸ジヒドラジドに代えてテトラエチレンペンタミン(東ソー社製)を使用し、水溶性ヒドラジドの担持量を変更した以外は実施例1と同様にして吸着剤を得た。なお条件をまとめて表2に示す。
[Comparative Example 5]
An adsorbent was obtained in the same manner as in Example 1 except that tetraethylenepentamine (manufactured by Tosoh Corporation) was used instead of adipic acid dihydrazide and the amount of water-soluble hydrazide supported was changed. The conditions are summarized in Table 2.

得られた吸着剤に関し、アセトアルデヒドの吸着能力、再放出性、負荷後の臭気を評価した。結果を表3〜表5に示す。   The obtained adsorbent was evaluated for acetaldehyde adsorption capacity, re-release property, and odor after loading. The results are shown in Tables 3-5.

Figure 2008178788
Figure 2008178788

Figure 2008178788
Figure 2008178788

Figure 2008178788
Figure 2008178788

Figure 2008178788
Figure 2008178788

実施例1,2は、測定開始5分後の除去効率が95%以上であり、初期除去効率が高い。20分経過後も90%以上の除去効率を維持していることから吸着性能の低下も緩やかであり、長寿命なことが分かる。   In Examples 1 and 2, the removal efficiency 5 minutes after the start of measurement is 95% or more, and the initial removal efficiency is high. Since the removal efficiency of 90% or more is maintained even after 20 minutes, it can be seen that the decrease in adsorption performance is gradual and the life is long.

実施例3は、実施例1,2と比較すると担持体に使用した多孔質体の水蒸気平衡吸着特性が低い分、アルデヒドの除去効率は若干劣るものの、吸着性能、再放出性、官能評価とも十分なレベルである。   In Example 3, compared with Examples 1 and 2, the porous body used for the carrier had a low water vapor equilibrium adsorption characteristic, and although the aldehyde removal efficiency was slightly inferior, adsorption performance, re-release property, and sensory evaluation were sufficient. The level.

比較例1は、相対湿度40%RHでの水蒸気平衡吸着量(mL/g)が0.029で、かつ相対湿度40%RHでの平衡吸着量が相対湿度95%RHでの平衡吸着量の2.5%である活性炭を担持体として、アジピン酸ヒドラジドを添着させたものである。同活性炭は大半の細孔径がミクロ孔領域に分布しており、高いアセトアルデヒドの除去効率を示すが、再放出性が高いという欠点がある。負荷後の臭気評価からも明らかである。これは低湿度環境下では活性炭の含水量が少な過ぎるため、物理吸着のみが寄与し、添着薬剤の化学吸着機能が発揮されていなことが推定される。   In Comparative Example 1, the equilibrium adsorption amount (mL / g) at a relative humidity of 40% RH is 0.029, and the equilibrium adsorption amount at a relative humidity of 40% RH is the equilibrium adsorption amount at a relative humidity of 95% RH. Adipic acid hydrazide is impregnated with 2.5% activated carbon as a carrier. The activated carbon has most pore diameters distributed in the micropore region and exhibits high acetaldehyde removal efficiency, but has the disadvantage of high re-release properties. It is clear from the odor evaluation after loading. This is presumed that, in a low-humidity environment, the water content of the activated carbon is too small, so that only physical adsorption contributes and the chemical adsorption function of the adsorbing drug is not exhibited.

比較例2は、平均細孔径が15nmのシリカゲルを多孔質体としてアジピン酸ジヒドラジドを添着したものであり、吸着性能が極めて低い結果となった。これはシリカゲルの平均細孔径が大きいことにより毛管凝縮による水分保持が不十分となり、低湿度環境下では化学吸着特性が発揮されないためだと推定される。   In Comparative Example 2, silica gel having an average pore diameter of 15 nm was used as a porous material and adipic acid dihydrazide was impregnated, and the adsorption performance was extremely low. This is presumably because the moisture retention due to capillary condensation is insufficient due to the large average pore diameter of silica gel, and the chemisorption characteristics are not exhibited in a low humidity environment.

また、比較例3、4は、実施例1、2と同じ多孔質体を多孔質体で、かつ、水溶性ヒドラジドを無添着とした。これらは除去効率こそ高い性能を示すが、多孔質体の物理吸着特性のみでアルデヒドを吸着しているため、再放出性が高い。実際に負荷後の臭気レベルも高いものであった。   In Comparative Examples 3 and 4, the same porous body as in Examples 1 and 2 was a porous body, and water-soluble hydrazide was not added. These have high removal efficiency, but have high re-releasing properties because aldehyde is adsorbed only by the physical adsorption characteristics of the porous material. Actually, the odor level after loading was also high.

比較例5は、水溶性ヒドラジドに代えて水溶性ポリアミンであるテトラエチレンペンタミンを担持させたものである。ポリアミン化合物のアルデヒドに対する化学反応性がヒドラジド対比で低いことに起因して、本発明の吸着剤に比較して除去効率が低い。またアセトアルデヒドの再放出濃度が低いにもかかわらず、負荷後の臭気レベルが高い結果となったのは、担持したポリアミン自体の揮散による発臭が原因である。   In Comparative Example 5, tetraethylenepentamine, which is a water-soluble polyamine, was supported instead of the water-soluble hydrazide. Due to the low chemical reactivity of polyamine compounds to aldehydes relative to hydrazide, the removal efficiency is lower than that of the adsorbent of the present invention. Moreover, although the re-release concentration of acetaldehyde was low, the result of the high odor level after loading was due to odor due to volatilization of the supported polyamine itself.

以上の結果から、本発明の吸着剤が低湿度環境における動的な条件下において優れたアルデヒド吸着性能を示めし、さらに一旦吸着したアルデヒドを再放出させないという特徴を有することが分かる。   From the above results, it can be seen that the adsorbent of the present invention exhibits excellent aldehyde adsorption performance under dynamic conditions in a low-humidity environment, and further has a feature that the aldehyde once adsorbed is not re-released.

本発明の吸着剤は、自動車や鉄道車両等の車室内のアルデヒドガスを吸着するための吸着剤、健康住宅、ペット対応マンション、高齢者入所施設、病院、オフィス等で使用される空気清浄機用フィルター、エアコン用フィルター、ビル空調用フィルター、産業用クリーンルーム用フィルター等のエアフィルターに用いる吸着剤として使用できる。特に電子写真装置に設置される排気フィルターは、機器の使用温度が高温であるために、絶対湿度が低いエアーが通気される。このような低湿度環境での使用が想定されるフィルターの吸着剤として本発明のアルデヒド吸着剤が好ましく使用できる。   The adsorbent of the present invention is an adsorbent for adsorbing aldehyde gas in the passenger compartment of automobiles, railway vehicles, etc., for air cleaners used in healthy houses, pet-friendly condominiums, elderly entrance facilities, hospitals, offices, etc. It can be used as an adsorbent for air filters such as filters, air conditioner filters, building air conditioner filters, and industrial clean room filters. In particular, an exhaust filter installed in an electrophotographic apparatus is ventilated with air having a low absolute humidity because the operating temperature of the apparatus is high. The aldehyde adsorbent of the present invention can be preferably used as an adsorbent for a filter assumed to be used in such a low humidity environment.

Claims (2)

30℃の水蒸気吸着等温線において、相対湿度40%RHでの平衡吸着量が0.1mL/g以上であり、かつ相対湿度40%RHでの平衡吸着量が相対湿度95%RHでの平衡吸着量の20%以上である多孔質体に、水溶性ヒドラジドを担持してなる吸着剤。 In the water vapor adsorption isotherm at 30 ° C., the equilibrium adsorption amount at a relative humidity of 40% RH is 0.1 mL / g or more, and the equilibrium adsorption amount at a relative humidity of 40% RH is an equilibrium adsorption at a relative humidity of 95% RH. An adsorbent obtained by supporting a water-soluble hydrazide on a porous body of 20% or more of the amount. 前記多孔質体が、平均細孔径が1〜10nmのシリカゲルである、請求項1に記載の吸着剤。 The adsorbent according to claim 1, wherein the porous body is silica gel having an average pore diameter of 1 to 10 nm.
JP2007013507A 2007-01-24 2007-01-24 Adsorbent Pending JP2008178788A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007013507A JP2008178788A (en) 2007-01-24 2007-01-24 Adsorbent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007013507A JP2008178788A (en) 2007-01-24 2007-01-24 Adsorbent

Publications (1)

Publication Number Publication Date
JP2008178788A true JP2008178788A (en) 2008-08-07

Family

ID=39723096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007013507A Pending JP2008178788A (en) 2007-01-24 2007-01-24 Adsorbent

Country Status (1)

Country Link
JP (1) JP2008178788A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010248334A (en) * 2009-04-14 2010-11-04 Mitsubishi Gas Chemical Co Inc Oxygen-absorbing resin composition
JP2012045527A (en) * 2010-08-30 2012-03-08 Nippon Steel Corp Deodorization treatment device and deodorization treatment method
WO2013118714A1 (en) * 2012-02-09 2013-08-15 東亞合成株式会社 Deodorant against aldehyde-based gases and process for manufacturing same
KR20160102434A (en) 2013-12-24 2016-08-30 도아고세이가부시키가이샤 Aldehyde-gas-adsorbing liquid and gas-adsorbing processed product using same
KR20170078635A (en) 2014-10-31 2017-07-07 도아고세이가부시키가이샤 Deodorizer, deodorizing processed product produced using same, method for producing deodorizer, and method for producing deodorizing processed product
WO2019020965A1 (en) * 2017-07-28 2019-01-31 Commissariat A L'energie Atomique Et Aux Energies Alternatives Preparation of new aldehyde and/or ketone traps and filters
JP2020075123A (en) * 2018-11-06 2020-05-21 大阪ガスケミカル株式会社 Odorant adsorbent

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010248334A (en) * 2009-04-14 2010-11-04 Mitsubishi Gas Chemical Co Inc Oxygen-absorbing resin composition
JP2012045527A (en) * 2010-08-30 2012-03-08 Nippon Steel Corp Deodorization treatment device and deodorization treatment method
CN104254346B (en) * 2012-02-09 2017-11-24 东亚合成株式会社 Gaseous aldehyde deodorant and its manufacture method
WO2013118714A1 (en) * 2012-02-09 2013-08-15 東亞合成株式会社 Deodorant against aldehyde-based gases and process for manufacturing same
KR20140130456A (en) * 2012-02-09 2014-11-10 도아고세이가부시키가이샤 Deodorant against aldehyde-based gases and process for manufacturing same
CN104254346A (en) * 2012-02-09 2014-12-31 东亚合成株式会社 Deodorant against aldehyde-based gases and process for manufacturing same
JPWO2013118714A1 (en) * 2012-02-09 2015-05-11 東亞合成株式会社 Aldehyde gas deodorant and method for producing the same
US9302023B2 (en) 2012-02-09 2016-04-05 Toagosei Co., Ltd. Aldehyde gas deodorant and method for producing same
KR102054023B1 (en) 2012-02-09 2019-12-09 도아고세이가부시키가이샤 Deodorant against aldehyde-based gases and process for manufacturing same
US9993801B2 (en) 2013-12-24 2018-06-12 Toagosei Co., Ltd. Aldehyde-gas-adsorbing liquid and gas-adsorbing processed product using same
KR20160102434A (en) 2013-12-24 2016-08-30 도아고세이가부시키가이샤 Aldehyde-gas-adsorbing liquid and gas-adsorbing processed product using same
KR20170078635A (en) 2014-10-31 2017-07-07 도아고세이가부시키가이샤 Deodorizer, deodorizing processed product produced using same, method for producing deodorizer, and method for producing deodorizing processed product
US10143765B2 (en) 2014-10-31 2018-12-04 Toagosei Co., Ltd. Deodorizer, deodorizing processed product produced using same, method for producing deodorizer, and method for producing deodorizing processed product
WO2019020965A1 (en) * 2017-07-28 2019-01-31 Commissariat A L'energie Atomique Et Aux Energies Alternatives Preparation of new aldehyde and/or ketone traps and filters
FR3069534A1 (en) * 2017-07-28 2019-02-01 Commissariat A L'energie Atomique Et Aux Energies Alternatives PREPARATION OF NEW SENSORS AND FILTERS OF ALDEHYDES AND / OR KETONES
US20200230542A1 (en) * 2017-07-28 2020-07-23 Commissariat A L'energie Atomique Et Aux Energies Alternatives Preparation of new aldehyde and/or ketone traps and filters
US11571650B2 (en) * 2017-07-28 2023-02-07 Commissariat A L'energie Atomique Et Aux Energies Alternatives Preparation of new aldehyde and/or ketone traps and filters
US11904268B2 (en) * 2017-07-28 2024-02-20 Commissariat A L'energie Atomique Et Aux Energies Alternatives Preparation of new aldehyde and/or ketone traps and filters
JP2020075123A (en) * 2018-11-06 2020-05-21 大阪ガスケミカル株式会社 Odorant adsorbent
JP7426215B2 (en) 2018-11-06 2024-02-01 大阪ガスケミカル株式会社 Odor substance adsorbent

Similar Documents

Publication Publication Date Title
JP2008178788A (en) Adsorbent
JP6070850B2 (en) Gas adsorbent, gas adsorbing sheet and air filter
JP7018625B2 (en) Odor reducer
JP4554004B2 (en) Lower aldehyde adsorbent
JP3526592B2 (en) Method for producing deodorant
JP5420434B2 (en) Composite gas adsorbent, composite gas adsorbent composition, and adsorption filter using the same
JP2010058075A (en) Material and sheet for removing aldehyde
JP2007289934A (en) Catalyst body and air conditioner using the same
JPH0523588A (en) Composite adsorbent
JP2007014857A (en) Adsorbent and its production method
JP5229784B2 (en) Tobacco deodorant filter
JP2000140633A (en) Gaseous aldehyde absorbing granular porous body
JP2009247978A (en) Adsorbent for lower aldehydes
JP2003093872A (en) Adsorbent and its preparing method
JP2007175598A (en) Aldehydes gas removing agent
JPH09113475A (en) Sensitivity-drop preventive agent for combustible-gas sensor
JP3180997B2 (en) Odor gas adsorbent
JPH05317703A (en) Malodorous gas adsorptive agent
JP2003236374A (en) Adsorbing material and method for manufacturing the same
JP5528234B2 (en) Sulfur odor deodorant
JP2012056822A (en) Adjuvant-adhering active carbon
JP4923571B2 (en) Aldehyde gas scavenger
JP2010125401A (en) Aldehyde removing material
JP2014195569A (en) Aldehyde remover and aldehyde removal filter
JP2858283B2 (en) Aliphatic aldehyde adsorbent