JP2009247978A - Adsorbent for lower aldehydes - Google Patents

Adsorbent for lower aldehydes Download PDF

Info

Publication number
JP2009247978A
JP2009247978A JP2008098469A JP2008098469A JP2009247978A JP 2009247978 A JP2009247978 A JP 2009247978A JP 2008098469 A JP2008098469 A JP 2008098469A JP 2008098469 A JP2008098469 A JP 2008098469A JP 2009247978 A JP2009247978 A JP 2009247978A
Authority
JP
Japan
Prior art keywords
activated carbon
urea
adsorbent
derivative
formaldehyde
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008098469A
Other languages
Japanese (ja)
Inventor
Norio Aibe
紀夫 相部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eiko KK
Original Assignee
Eiko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eiko KK filed Critical Eiko KK
Priority to JP2008098469A priority Critical patent/JP2009247978A/en
Publication of JP2009247978A publication Critical patent/JP2009247978A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an adsorbent for lower aldehydes which is excellent in heat stability, has no odor of the carrier chemical and has excellent absorption abilities to efficiently adsorb and remove lower aldehydes for a long period of time. <P>SOLUTION: The adsorbent is prepared by impregnating the active carbon that has been subjected to the oxidation treatment in advance with urea or its derivative, thiourea or its derivative, or guanidine or its derivative and then heating the same at a temperature of 45-195°C. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、ホルムアルデヒド、アセトアルデヒドなどの低級アルデヒド類に対し優れた吸着性能を有し、使用期間中担持薬品臭のしない吸着剤に関する。   The present invention relates to an adsorbent that has excellent adsorption performance for lower aldehydes such as formaldehyde and acetaldehyde and does not cause a chemical odor during use.

ホルムアルデヒド、アセトアルデヒドなどの低級アルデヒド類は、いずれも特異な刺激臭を発する有害なガスである。ホルムアルデヒドは、空気中の許容濃度が0.3ppmと低く、かつ発ガン性を有すると言われている。また、アセトアルデヒドをはじめとしてC1〜Cの脂肪族低級アルデヒド類は我が国では特定悪臭物質に指定され、いずれも嗅覚閾値が非常に低く悪臭公害を引き起こす物質である。
ホルムアルデヒドの発生源としては、ホルムアルデヒドの製造工場および尿素、メラミン、フェノールなどを原料とした樹脂の製造工場のほか、これらの樹脂の加工工場、さらにこれらの樹脂を使用した建材、家具など製造工場などが挙げられる。また、消毒剤としてのホルムアルデヒドや石油類の不完全燃焼排ガス、たばこの副流煙にも含まれている。最近では、室内においても新建材や家具などから発生するホルムアルデヒドが問題になっている。
アセトアルデヒドの発生源としては、アセトアルデヒドおよびその誘導体の製造工場のほか、下水汚泥の加熱処理時にも発生し、またたばこの主流煙中にも含まれている。
Lower aldehydes such as formaldehyde and acetaldehyde are harmful gases that emit unique irritating odors. Formaldehyde is said to have a carcinogenicity and an allowable concentration in air as low as 0.3 ppm. In addition, C 1 -C 4 aliphatic lower aldehydes including acetaldehyde are designated as specific malodorous substances in Japan, and all of them are substances that have a very low olfactory threshold and cause odor pollution.
Formaldehyde generation sources include formaldehyde manufacturing plants, resin manufacturing plants made from urea, melamine, phenol, etc., processing plants for these resins, and manufacturing plants for building materials and furniture using these resins. Is mentioned. It is also contained in formaldehyde as a disinfectant, incomplete combustion exhaust gas of petroleum, and sidestream smoke of tobacco. Recently, formaldehyde generated from new building materials and furniture has become a problem even indoors.
As a source of acetaldehyde, it is generated at the time of heat treatment of sewage sludge in addition to a manufacturing factory for acetaldehyde and its derivatives, and is also contained in the mainstream smoke of cigarettes.

近年、これら低級アルデヒド類に対して、作業環境の改善および生活環境の向上などの観点から、有害物質や臭気などが問題視され、この観点から気体、特に空気中の低級アルデヒド類を効率よく除去する吸着剤の開発が強く要望されている。
従来から低級アルデヒド類の吸着剤としては、活性炭、活性アルミナ、シリカゲルなどが挙げられ、なかでも活性炭が広く使用されてきたが、これらの吸着剤自体は、その特性上、ホルムアルデヒド、アセトアルデヒドなどの低級アルデヒド類に対する吸着容量が小さく、寿命が短いという欠点がある。
この改善策として、前記の吸着剤に低級アルデヒド類と反応する化合物、たとえば、脂肪族アミン類、芳香族アミン類などの有機化合物を担持させたものや、触媒として白金族化合物を前記の吸着剤に担持させたものなどが提案されている。
In recent years, harmful substances and odors have been seen as problems with these lower aldehydes from the viewpoint of improving the working environment and living environment. From this viewpoint, gas, especially lower aldehydes in the air are efficiently removed. There is a strong demand for the development of adsorbents.
Conventionally, as adsorbents for lower aldehydes, activated carbon, activated alumina, silica gel and the like have been used, and among them, activated carbon has been widely used. There are drawbacks in that the adsorption capacity for aldehydes is small and the lifetime is short.
As an improvement measure, a compound that reacts with the lower aldehydes on the adsorbent, for example, an organic compound such as an aliphatic amine or an aromatic amine, or a platinum group compound as a catalyst is used as the adsorbent. The one supported on the substrate has been proposed.

しかしながら、有機化合物を担持させた吸着剤は、担持有機化合物の経時安定性、それら自体の有害性、臭気などに問題がある。たとえば、アニリン(沸点185℃)を常温付近で単に添着させたもの(特許文献1)は、アニリン自身が発ガン性の疑いがあり、かつ低級アルデヒド類の吸着に対して、経時的に不安定であるなどのために実用化に問題があった。また、活性炭に酸化処理を施した後に、ポリエチレンイミン(アンモニア臭を有する水溶液)あるいはp−アミノアセトアニリド(沸点267℃、毒性のある薬品)を常温付近で単に添着したもの(特許文献2)などが考案されているが、このようなアミン類を活性炭に常温付近で単に添着させた吸着剤は、一般に熱安定性に劣り、使用条件によっては添着されたアミン類の一部が活性炭から脱着するためにアミン類の臭気が漏れてきたり、吸着性能が低下したりする欠点があった。
触媒を担持させたものは、触媒が高価な上、常温では低級アルデヒド類の除去効果が低い。
このように従来の技術は、いずれも低級アルデヒド類の除去に対して満足できるものではなかった。
However, adsorbents carrying organic compounds have problems with the stability of the carried organic compounds over time, their own toxicity, odor, and the like. For example, aniline (boiling point 185 ° C.) simply attached at room temperature (Patent Document 1) is suspected of causing carcinogenicity, and is unstable over time against the adsorption of lower aldehydes. Because of this, there was a problem in practical use. Further, after the activated carbon is oxidized, polyethyleneimine (aqueous solution having an ammonia odor) or p-aminoacetanilide (boiling point 267 ° C., toxic chemical) is simply attached at around room temperature (Patent Document 2). Although it has been devised, adsorbents obtained by simply attaching such amines to activated carbon at around room temperature are generally inferior in thermal stability, and depending on the usage conditions, some of the attached amines may be desorbed from the activated carbon. In addition, there are drawbacks in that the odor of amines leaks or the adsorption performance decreases.
The catalyst-supported catalyst is expensive and has a low effect of removing lower aldehydes at room temperature.
Thus, none of the conventional techniques are satisfactory for the removal of lower aldehydes.

特公昭60−54095号公報Japanese Patent Publication No. 60-54095 特開平9−168736号公報Japanese Patent Laid-Open No. 9-168736

本発明は、熱安定性に優れ、担持薬品の臭気や漏出がなく、かつ低級アルデヒド類を長時間にわたり効率よく吸着除去することができる優れた低級アルデヒド類の吸着剤を提供することを目的としている。   An object of the present invention is to provide an excellent adsorbent for lower aldehydes that is excellent in thermal stability, has no odor or leakage of a supported chemical, and can efficiently adsorb and remove lower aldehydes over a long period of time. Yes.

本発明者は、前記の点を鑑み鋭意研究して、予め酸化処理した活性炭に尿素、チオ尿素、グアニジンおよびそれらの誘導体の少なくとも1種を含浸させた後、45〜195℃の温度で加熱して得られる吸着剤が、熱安定性に優れ、担持薬品の臭気や漏出がなく、低級アルデヒド類を長期に渡り効率よく吸着除去することを見出し、本発明を完成した。   The present inventor has intensively studied in view of the above points, impregnated activated carbon that has been previously oxidized with at least one of urea, thiourea, guanidine and derivatives thereof, and then heated at a temperature of 45 to 195 ° C. The adsorbent obtained in this way was found to be excellent in thermal stability, free from odor and leakage of the supported chemicals, and efficiently adsorbed and removed lower aldehydes over a long period of time, thereby completing the present invention.

本発明で使用される活性炭は、木炭、コークス、石炭、ヤシ殻、樹脂などを原料として通常の方法により賦活されたものであれば、いかなるものでもよい。その形状は、破砕状、円柱状、球状、ハニカム状、繊維状などで、その表面積は、100m/g以上、好ましくは150〜2500m/gのものである。 The activated carbon used in the present invention may be any as long as it is activated by a normal method using charcoal, coke, coal, coconut shell, resin, or the like as a raw material. Its shape is crushed, cylindrical, spherical, honeycomb, fiber, etc., its surface area is 100 m 2 / g or more, preferably 150~2500m 2 / g.

活性炭を予め酸化する方法としては、たとえば、硝酸、窒素酸化物(NOx)、硫酸、硫黄酸化物(SOx)、三酸化硫黄、二酸化塩素、過酸化水素、オゾン、酸素含有ガス(たとえば、空気、燃焼排ガスなど)などの酸化剤で、液相あるいは気相で酸化するなどの方法が挙げられる。NOxやSOxなどの場合は、活性炭にNOxやSOx含有ガスの吸着、脱着を繰り返すなど方法で活性炭を酸化してもよい。また、酸素含有ガスによる気相酸化などのように活性炭に対する酸化力が弱い場合などでは、ガス中の酸素濃度にもよるが、常温以上の温度、たとえば、200℃以上、好ましくは200〜800℃、さらに好ましくは250〜600℃の温度で行うのが効率的である。   Examples of the method for previously oxidizing the activated carbon include nitric acid, nitrogen oxide (NOx), sulfuric acid, sulfur oxide (SOx), sulfur trioxide, chlorine dioxide, hydrogen peroxide, ozone, oxygen-containing gas (for example, air, Examples thereof include a method of oxidizing in a liquid phase or a gas phase with an oxidizing agent such as combustion exhaust gas. In the case of NOx or SOx, the activated carbon may be oxidized by a method such as repeated adsorption and desorption of NOx or SOx-containing gas on the activated carbon. In addition, when the oxidizing power for activated carbon is weak, such as gas phase oxidation with an oxygen-containing gas, the temperature is higher than room temperature, for example, 200 ° C. or higher, preferably 200 to 800 ° C., depending on the oxygen concentration in the gas. More preferably, it is efficient to carry out at a temperature of 250 to 600 ° C.

このような酸化処理によって活性炭表面に酸素含有基が生成する。本発明での酸化処理において、活性炭に対するこれらの酸化剤使用量は、処理方法や酸化条件(たとえば、処理温度、時間など)などにもよるが、通常、活性炭1g当り酸素原子換算量で10mg以上、好ましくは、20mg以上、より好ましくは、30〜2000mgである。   Such an oxidation treatment produces oxygen-containing groups on the activated carbon surface. In the oxidation treatment of the present invention, the amount of these oxidizing agents used for activated carbon depends on the treatment method and oxidation conditions (for example, treatment temperature, time, etc.), but is usually 10 mg or more in terms of oxygen atom per gram of activated carbon. The amount is preferably 20 mg or more, and more preferably 30 to 2000 mg.

これらの酸化処理により、活性炭表面に、例えばカルボニル基、カルボキシル基、フェノール性水酸基などの酸素含有基が生成する。この表面酸素含有基は、酸素原子として活性炭全体の1重量%以上、好ましくは、2重量%以上より好ましくは3〜80重量%である。   By these oxidation treatments, oxygen-containing groups such as a carbonyl group, a carboxyl group, and a phenolic hydroxyl group are generated on the activated carbon surface. This surface oxygen-containing group is 1% by weight or more, preferably 2% by weight or more, more preferably 3 to 80% by weight of the activated carbon as oxygen atoms.

本発明で用いられる尿素の誘導体としては、ビーレット、ウレイド、モノメチロール尿素、ジメチロール尿素、セミカルバチドなどが挙げられ、又、チオ尿素の誘導体としては、チオセミカルバチド、グアニルチオ尿素など挙げられ、また、グアニジン誘導体としてはシアノグアニジン、塩酸グアニジン、硝酸グアニジン、炭酸グアニジン、燐酸グアニジン、スルファミン酸グアニジンなどグアニジンの塩類、重炭酸アミノグアニジン、塩酸アミノグアニジン、硫酸アミノグアニジンなどの酸アミノグアニジン等が挙げられる。
尿素またはその誘導体、チオ尿素又はその誘導体、グアニジン又はその誘導体を活性炭に含浸させる量は、活性炭1gに対して0.1ミリモル以上が好ましく、特に0.5〜8.0ミリモルが好ましい。
Examples of urea derivatives used in the present invention include beret, ureido, monomethylol urea, dimethylol urea, semicarbide and the like, and examples of thiourea derivatives include thiosemicarbazide and guanylthiourea, Examples of the guanidine derivatives include guanidine salts such as cyanoguanidine, guanidine hydrochloride, guanidine nitrate, guanidine carbonate, guanidine phosphate, and guanidine sulfamate, and acid aminoguanidines such as aminoguanidine bicarbonate, aminoguanidine hydrochloride, and aminoguanidine sulfate.
The amount of activated carbon impregnated with urea or a derivative thereof, thiourea or a derivative thereof, or guanidine or a derivative thereof is preferably 0.1 mmol or more, particularly preferably 0.5 to 8.0 mmol, with respect to 1 g of activated carbon.

尿素又はその誘導体、チオ尿素又はその誘導体、グアニジン又はその誘導体を活性炭に含浸するに際しては、尿素又はその誘導体、チオ尿素又はその誘導体、グアニジン又はその誘導体をあらかじめ水、酸水溶液(たとえば硫酸、硝酸、燐酸など)、アルコール類などに溶解して活性炭に含浸する。水やこれらの酸水溶液、アルコール類にあまり溶解しない化合物の場合は懸濁液の状態で含浸してもよい。   When impregnating activated carbon with urea or a derivative thereof, thiourea or a derivative thereof, guanidine or a derivative thereof, urea or a derivative thereof, thiourea or a derivative thereof, guanidine or a derivative thereof is previously added with water, an acid aqueous solution (for example, sulfuric acid, nitric acid, Phosphoric acid, etc.) and alcohol are dissolved and impregnated into activated carbon. In the case of a compound that is not very soluble in water, aqueous acid solutions or alcohols, it may be impregnated in a suspension state.

本発明の低級アルデヒド類吸着剤は、予め酸化処理した活性炭に尿素又はその誘導体、チオ尿素又はその誘導体、グアニジン又はその誘導体を含浸させた後、45〜195℃の温度で加熱する。この加熱は空気、不活性ガス又は燃焼排ガス中などで行うことができる。加熱時間は10〜500分程度、好ましくは20〜240分程度である。加熱温度を195℃以上にすると含浸薬品が昇華または分解して低級アルデヒドの吸着性能が著しく低下してしまうので好ましくない。   The lower aldehyde adsorbent of the present invention is heated at a temperature of 45 to 195 ° C. after impregnating activated carbon previously oxidized with urea or a derivative thereof, thiourea or a derivative thereof, guanidine or a derivative thereof. This heating can be performed in air, inert gas or combustion exhaust gas. The heating time is about 10 to 500 minutes, preferably about 20 to 240 minutes. A heating temperature of 195 ° C. or higher is not preferable because the impregnating chemical sublimates or decomposes and the adsorption performance of the lower aldehyde is remarkably lowered.

本発明における除去対象の低級アルデヒド類は、炭素数が6以下で沸点が100℃以下のアルデヒド、例えばホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、アクロレイン、3−メチル−ブチルアルデヒドを指すが、代表的なものはホルムアルデヒドとアセトアルデヒドである。
本発明においては、上記のようにして得られたアルデヒド類吸着剤を空間内、装置内などに存在させて、アルデヒド類を効率よく除去する方法なども含まれる。アルデヒド類吸着剤を空間内に存在させる場合には、たとえば、アルデヒド類吸着剤をシート状などにしたり、建材に含ませたり、通常よく行われる方法などが挙げられる。また、装置内などに存在させる場合は、塔、容器などに充填したりして、これらにアルデヒド類を含むガスを通気する方法などが考えられる。
The lower aldehydes to be removed in the present invention refer to aldehydes having 6 or less carbon atoms and a boiling point of 100 ° C. or less, such as formaldehyde, acetaldehyde, propionaldehyde, acrolein, and 3-methyl-butyraldehyde. Formaldehyde and acetaldehyde.
The present invention also includes a method for efficiently removing aldehydes by allowing the aldehyde adsorbent obtained as described above to exist in a space or in an apparatus. In the case where the aldehyde adsorbent is present in the space, for example, the aldehyde adsorbent may be formed into a sheet shape, included in a building material, or a method that is usually performed. Moreover, when it exists in an apparatus etc., the method etc. which fill a tower, a container, etc., and ventilate the gas containing aldehydes to these are considered.

本発明のアルデヒド吸着剤は、それを使用する常温付近では、無臭でかつ化学的に安定な固体薬品である、尿素又はその誘導体、チオ尿素又はその誘導体、グアニジン又はその誘導体を酸化処理した活性炭に含浸させ、45〜195℃の温度で加熱するので、含浸薬品の蒸気が漏れ出すようなことはなく、しかもアルデヒド類の吸着除去性能は、従来の低級アルデヒド吸着剤に比べて非常に優れている。   The aldehyde adsorbent of the present invention is a solid chemical that is odorless and chemically stable near normal temperature in which the aldehyde adsorbent is used, such as urea or a derivative thereof, thiourea or a derivative thereof, and activated carbon obtained by oxidizing guanidine or a derivative thereof. Since it is impregnated and heated at a temperature of 45 to 195 ° C., the vapor of the impregnating chemical does not leak out, and the adsorption removal performance of aldehydes is very excellent compared to conventional lower aldehyde adsorbents. .

以下に実施例及び比較例をあげて、本発明を具体的に説明する。   The present invention will be specifically described below with reference to examples and comparative examples.

8〜32メッシュの瀝青炭系活性炭A(BET比表面積1150m/g)の各30gを55mmφの石英ガラス管に充填して、それぞれ250、400、500、および600℃の各温度でO−10.0vol%含有のNガスを線流速5cm/秒で20分間流通した後、Nガス中で常温まで冷却して、活性炭B、C、DおよびEを得た。
酸化処理をした活性炭B、C、DおよびEについて、次の方法で測定した表面酸化物又は酸素含有基の酸素濃度は、それぞれ5.5重量%、8.9重量%、12.3重量%および16.1重量%であった。なお、酸化処理をしない活性炭Aの酸素濃度は0.7重量%であった。
「活性炭の表面酸化物の測定法」
直径20mm×長さ1,000mmの石英カラムに試料活性炭3gを入れ、試料の前後は十分に乾燥させた石英ガラスウールに固定し、電気環状炉にセットした。また石英カラムにはゴム栓で前後に蓋をして窒素を導入するための孔と排出するための孔を空ける。100ml/分の流速で窒素を石英カラムに流しながら、100℃まで加熱昇温し、次いで、出口ガスをテトラバックに接続し、400℃/時間の昇温速度で900℃まで加熱昇温した。900℃になってから、さらに30分間900℃で保持した後、テトラバックを外し、捕集したガス量を測定するとともに、捕集されたガスにおけるCOとCO2の総濃度を、メタンコンバータ付きのFID検出器付ガスクロマトグラフィーで測定し、表面酸素の含量を算出した。
これらの各活性炭2gに尿素120mg/ml水溶液2mlを均一に含浸させた。尿素の活性炭への含浸量は、いずれも活性炭1g当たり120mgであった。このようにして得られた尿素含浸活性炭を110℃で30分間加熱した。これらを乳鉢で微粉砕し、各100mgを3Lのテトラバッグに量り込み、空気で満たした。各テトラバッグに所定量のホルマリン水溶液を注入して、各テトラバッグ中のホルムアルデヒド濃度を150ppmとした。60分後の各テトラバッグ中のホルムアルデヒド濃度を測定した結果は表1に示す通りである。
Each 30 g of 8-32 mesh bituminous coal-based activated carbon A (BET specific surface area 1150 m 2 / g) was filled into a 55 mmφ quartz glass tube, and O 2 -10 at respective temperatures of 250, 400, 500, and 600 ° C., respectively. N 2 gas containing 0.0 vol% was circulated for 20 minutes at a linear flow rate of 5 cm / sec, and then cooled to room temperature in N 2 gas to obtain activated carbon B, C, D, and E.
For the activated carbons B, C, D and E subjected to oxidation treatment, the oxygen concentration of the surface oxide or oxygen-containing group measured by the following method was 5.5% by weight, 8.9% by weight and 12.3% by weight, respectively. And 16.1% by weight. The oxygen concentration of the activated carbon A that was not oxidized was 0.7% by weight.
"Measurement method of surface oxide of activated carbon"
3 g of sample activated carbon was placed in a quartz column having a diameter of 20 mm and a length of 1,000 mm, and the sample was fixed on quartz glass wool that had been sufficiently dried before and after the sample and set in an electric annular furnace. In addition, the quartz column has a hole for introducing nitrogen and a hole for discharging nitrogen by capping the front and back with rubber stoppers. While flowing nitrogen through the quartz column at a flow rate of 100 ml / min, the temperature was raised to 100 ° C., and then the outlet gas was connected to a tetra-buck and heated to 900 ° C. at a rate of 400 ° C./hour. After reaching 900 ° C., hold at 900 ° C. for another 30 minutes, then remove the tetraback, measure the amount of gas collected, and add the total concentration of CO and CO 2 in the collected gas with a methane converter. The surface oxygen content was calculated by gas chromatography with FID detector.
2 g of each activated carbon was uniformly impregnated with 2 ml of a 120 mg / ml aqueous solution of urea. The amount of urea impregnated into activated carbon was 120 mg per 1 g of activated carbon. The urea-impregnated activated carbon thus obtained was heated at 110 ° C. for 30 minutes. These were finely pulverized in a mortar, and 100 mg each was weighed into a 3 L tetra bag and filled with air. A predetermined amount of formalin aqueous solution was injected into each tetrabag to adjust the formaldehyde concentration in each tetrabag to 150 ppm. The results of measuring the formaldehyde concentration in each tetrabag after 60 minutes are as shown in Table 1.

Figure 2009247978
Figure 2009247978

20Lのホーロー容器に実施例1の瀝青炭系活性炭Aの20gと水10Lを入れ、これらを常温で攪拌しながら、8重量%の過酸化水素水4Lを15mL/分で滴下した。過酸化水素水を滴下後も攪拌を5時間継続した。過酸化水素酸化後に水切りし、110℃で乾燥して、過酸化水素酸化活性炭Fを得た。
この活性炭の表面酸化物又は酸素含有基の酸素濃度は、それぞれ8.5重量%、であった。
これら活性炭AおよびFの2gにスルファミン酸グアニジン180mg/ml含有水溶液2mlを均一に噴霧した。スルファミン酸グアニジンの活性炭への含浸量は、いずれも活性炭1g当たり180mgであった。このようにして得られたスルファミン酸グアニジン含浸活性炭を105℃で40分間加熱した。これらを乳鉢で微粉砕し、各100mgを3Lのテトラバッグに量り込み、空気で満たし、実施例1と同様な方法で、ホルムアルデヒド除去テストをした。その結果を表2に示した。
20 g of bituminous coal-based activated carbon A of Example 1 and 10 L of water were placed in a 20 L enamel container, and 4 L of 8 wt% hydrogen peroxide water was added dropwise at 15 mL / min while stirring them at room temperature. Stirring was continued for 5 hours after the hydrogen peroxide solution was added dropwise. After hydrogen peroxide oxidation, drained and dried at 110 ° C. to obtain hydrogen peroxide oxidized activated carbon F.
The oxygen concentration of the surface oxide or oxygen-containing group of this activated carbon was 8.5% by weight, respectively.
2 ml of these activated carbons A and F were uniformly sprayed with 2 ml of an aqueous solution containing 180 mg / ml guanidine sulfamate. The amount of guanidine sulfamate impregnated on activated carbon was 180 mg per 1 g of activated carbon. The guanidine sulfamate impregnated activated carbon thus obtained was heated at 105 ° C. for 40 minutes. These were finely pulverized in a mortar, each 100 mg was weighed into a 3 L tetra bag and filled with air, and a formaldehyde removal test was conducted in the same manner as in Example 1. The results are shown in Table 2.

Figure 2009247978
表2から明らかなように、たとえスルファミン酸グアニジンを含浸させた活性炭でも、元となる活性炭が酸化処理されていないとホルムアルデヒドに対する吸着性能は不十分である。一方酸化処理した活性炭を原料とした場合は、ホルムアルデヒドに対する優れた吸着性能が発揮された。
Figure 2009247978
As can be seen from Table 2, even if the activated carbon impregnated with guanidine sulfamate is not oxidized, the adsorption performance for formaldehyde is insufficient. On the other hand, when oxidized activated carbon was used as a raw material, excellent adsorption performance for formaldehyde was exhibited.

内径94mmφのアクリル製カラムに8〜32メッシュのヤシ殻系活性炭G(BET比表面積1200m/g)100mlをステンレス金網容器に入れて、活性炭充填層を形成した。この活性炭層にオゾン約180ppm含有の空気を流量5L/分で25日間流通し、気相でのオゾン酸化処理活性炭Hを得た。この活性炭の表面酸化物又は酸素含有基の酸素濃度は、それぞれ12.5重量%であった。
活性炭GおよびHについて実施例1と同様な方法で、各活性炭2gに尿素55mg/ml含有水溶液2mlを均一に噴霧して含浸した。尿素の活性炭への含浸量は、いずれも活性炭1g当たり55mgであった。このようにして得られた尿素含浸活性炭を40℃、50℃、100℃、150℃、190℃及び200℃の各温度で60分間加熱した。これらを乳鉢で微粉砕し、各100mgを3Lのテトラバッグに量り込み、空気で満たし、実施例1と同様な方法で、ホルムアルデヒド除去テストをした。その結果を表2に示した。
100 ml of 8-32 mesh coconut shell activated carbon G (BET specific surface area 1200 m 2 / g) was placed in an acrylic column having an inner diameter of 94 mmφ in a stainless wire mesh container to form an activated carbon packed bed. Air containing about 180 ppm of ozone was circulated through the activated carbon layer at a flow rate of 5 L / min for 25 days to obtain ozone-oxidized activated carbon H in the gas phase. The oxygen concentration of the surface oxide or oxygen-containing group of this activated carbon was 12.5% by weight.
In the same manner as in Example 1 for the activated carbons G and H, 2 g of each activated carbon was impregnated by uniformly spraying 2 ml of an aqueous solution containing 55 mg / ml of urea. The amount of urea impregnated into the activated carbon was 55 mg per gram of activated carbon. The urea-impregnated activated carbon thus obtained was heated at 40 ° C., 50 ° C., 100 ° C., 150 ° C., 190 ° C. and 200 ° C. for 60 minutes. These were finely pulverized in a mortar, each 100 mg was weighed into a 3 L tetra bag and filled with air, and a formaldehyde removal test was conducted in the same manner as in Example 1. The results are shown in Table 2.

Figure 2009247978
表3から明らかなように、原料活性炭が酸化処理されていないと加熱温度が40℃から200℃のいずれにおいても、ホルムアルデヒドに対する吸着性能は不十分である。また、たとえ原料活性炭が酸化処理されていてしかもチオ尿素を含浸させた活性炭でも、含浸後の加熱温度が40℃や200℃といった場合ではホルムアルデヒドに対する吸着性能は不十分である。一方酸化処理した活性炭を原料とした場合は、50℃から190℃の間の温度でホルムアルデヒドに対する優れた吸着性能が発揮された。
Figure 2009247978
As is apparent from Table 3, if the raw activated carbon is not oxidized, the adsorption performance for formaldehyde is insufficient at any heating temperature of 40 ° C. to 200 ° C. Even if the activated carbon is oxidized and impregnated with thiourea, the adsorption performance for formaldehyde is insufficient when the heating temperature after impregnation is 40 ° C. or 200 ° C. On the other hand, when oxidized activated carbon was used as a raw material, excellent adsorption performance for formaldehyde was exhibited at a temperature between 50 ° C. and 190 ° C.

内径94mmφ×1000mmLのアクリル製カラム(下部にシリコン栓挿入)に実施例1の瀝青炭系活性炭Aの100gと蒸留水600mlを入れ、カラム下部からガラスボールフィルターを通してオゾン約180ppm含有の空気を流量5L/分で120日間流通し、液相でのオゾン酸化処理活性炭Iを得た。この活性炭の表面酸化物又は酸素含有基の酸素濃度は、それぞれ15.6重量%であった。
活性炭AおよびIの各活性炭10gにチオ尿素55mg/ml含有水溶液10mlを均一に噴霧して含浸させた。チオ尿素の活性炭への含浸量は、いずれも活性炭1g当たり150mgであった。このようにして得られたチオ尿素含浸活性炭を40℃、50℃、100℃、150℃、190℃及び200℃の各温度で50分間加熱した。これらを乳鉢で微粉砕し、各100mgを3Lのテトラバッグに量り込み、空気で満たした。各テトラバッグに所定量のアセトアルデヒド水溶液を注入して、各テトラバッグ中のアセトアルデヒド濃度を150ppmとした。60分後の各テトラバッグ中のアセトアルデヒド濃度を測定した結果は表1に示す通りである。
100 g of bituminous coal-based activated carbon A of Example 1 and 600 ml of distilled water were placed in an acrylic column (with a silicon stopper inserted in the lower part) having an inner diameter of 94 mmφ × 1000 mmL, and air containing about 180 ppm of ozone was passed from the lower part of the column through a glass ball filter at a flow rate of 5 L / The mixture was distributed for 120 days to obtain ozone-oxidized activated carbon I in the liquid phase. The oxygen concentration of the surface oxide or oxygen-containing group of this activated carbon was 15.6% by weight.
10 g of each activated carbon of activated carbon A and I was impregnated by uniformly spraying 10 ml of an aqueous solution containing 55 mg / ml thiourea. The amount of thiourea impregnated into activated carbon was 150 mg per 1 g of activated carbon. The thiourea impregnated activated carbon thus obtained was heated at 40 ° C., 50 ° C., 100 ° C., 150 ° C., 190 ° C. and 200 ° C. for 50 minutes. These were finely pulverized in a mortar, and 100 mg each was weighed into a 3 L tetra bag and filled with air. A predetermined amount of acetaldehyde aqueous solution was injected into each tetrabag to adjust the acetaldehyde concentration in each tetrabag to 150 ppm. The results of measuring the acetaldehyde concentration in each tetrabag after 60 minutes are shown in Table 1.

Figure 2009247978
表4から明らかなように、原料活性炭が酸化処理されていないと加熱温度が40℃から200℃のいずれにおいても、ホルムアルデヒドに対する吸着性能は不十分である。またたとえ原料活性炭が酸化処理されていて、しかもチオ尿素を含浸させた活性炭でも、含浸後の加熱が40℃や200℃といった場合ではホルムアルデヒドに対する吸着性能は不十分である。一方酸化処理した活性炭を原料とした場合は、50℃から190℃の間の温度でホルムアルデヒドに対する優れた吸着性能が発揮された。
Figure 2009247978
As is apparent from Table 4, if the raw activated carbon is not oxidized, the adsorption performance for formaldehyde is insufficient at any heating temperature of 40 ° C. to 200 ° C. Even if the activated carbon is oxidized and the activated carbon is impregnated with thiourea, the adsorption performance for formaldehyde is insufficient when the heating after impregnation is 40 ° C. or 200 ° C. On the other hand, when oxidized activated carbon was used as a raw material, excellent adsorption performance for formaldehyde was exhibited at a temperature between 50 ° C. and 190 ° C.

実施例の18〜32メッシュの瀝青炭系活性炭Aをオゾン法高度浄水処理場で約3年使用し、液相でオゾン酸化された活性炭Jを常温で風乾して、含水率を35重量%にした。この活性炭Jの2g(乾燥品基準)に実施例1及び実施例4と同様な方法で尿素およびチオ尿素を含浸した。活性炭1g当たりの尿素およびチオ尿素の含浸量はそれぞれ90mgおよび95mgであった。尿素含浸活性炭Kおよびチオ尿素含浸活性炭を115℃で20分間加熱した。このようにして得られた各活性炭について、実施例1と同様な方法で、ホルムアルデヒド除去テストをした。その結果を表5に示した。   Example 18-32 mesh bituminous coal-based activated carbon A was used in an ozone method advanced water treatment plant for about 3 years, and activated carbon J that was ozone-oxidized in the liquid phase was air-dried at room temperature to a moisture content of 35% by weight. . 2 g (on a dry product basis) of this activated carbon J was impregnated with urea and thiourea in the same manner as in Examples 1 and 4. The impregnation amounts of urea and thiourea per gram of activated carbon were 90 mg and 95 mg, respectively. Urea-impregnated activated carbon K and thiourea-impregnated activated carbon were heated at 115 ° C. for 20 minutes. Each activated carbon thus obtained was subjected to a formaldehyde removal test in the same manner as in Example 1. The results are shown in Table 5.

Figure 2009247978
表5から明らかなように、たとえ尿素やチオ尿素を含浸させた活性炭でも、元となる活性炭が酸化処理されていないとホルムアルデヒドに対する吸着性能は不十分である。一方酸化処理した活性炭を原料とした場合は、ホルムアルデヒドに対する優れた吸着性能が発揮された。
Figure 2009247978
As is apparent from Table 5, even with activated carbon impregnated with urea or thiourea, the adsorption performance for formaldehyde is insufficient unless the original activated carbon is oxidized. On the other hand, when oxidized activated carbon was used as a raw material, excellent adsorption performance for formaldehyde was exhibited.

本発明の低級アルデヒド吸着剤は、熱安定性に優れ、担持薬品の臭気がなく、かつ、低級アルデヒド類を長時間にわたり効率よく吸着除去し優れた吸着能を有ししでいるので、ホルムアルデヒドの製造工場および尿素、メラミン、フェノールなどを原料とした樹脂の製造工場のほか、これらの樹脂の加工工場、さらにこれらの樹脂を使用した建材、家具など製造工場やアセトアルデヒドおよびその誘導体の製造工場のほか、下水汚泥の加熱処理場などで、低級アルデヒド類の吸着剤として使用することができる。   The lower aldehyde adsorbent of the present invention is excellent in thermal stability, has no odor of supported chemicals, and has an excellent adsorptive capacity by efficiently adsorbing and removing lower aldehydes over a long period of time. In addition to manufacturing factories and manufacturing factories for resins made from urea, melamine, phenol, etc., processing factories for these resins, manufacturing factories for building materials and furniture using these resins, and a manufacturing plant for acetaldehyde and its derivatives It can be used as an adsorbent for lower aldehydes in heat treatment plants for sewage sludge.

Claims (2)

予め酸化処理した活性炭に、尿素、チオ尿素、グアニジンおよびそれらの誘導体の少なくとも1種を含浸させた後、45〜195℃の温度で加熱して得られる低級アルデヒド類の吸着剤。   An adsorbent for lower aldehydes obtained by impregnating activated carbon previously oxidized with at least one of urea, thiourea, guanidine and derivatives thereof and heating at a temperature of 45 to 195 ° C. 予め酸化処理した活性炭に、尿素、チオ尿素、スルファミン酸グアニジンの少なくとも1種を含浸させた後、45〜195℃の温度で加熱して得られる請求項1記載の低級アルデヒド類の吸着剤。   The adsorbent for lower aldehydes according to claim 1, which is obtained by impregnating at least one of urea, thiourea and guanidine sulfamate into activated carbon which has been previously oxidized, and then heating at a temperature of 45 to 195 ° C.
JP2008098469A 2008-04-04 2008-04-04 Adsorbent for lower aldehydes Pending JP2009247978A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008098469A JP2009247978A (en) 2008-04-04 2008-04-04 Adsorbent for lower aldehydes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008098469A JP2009247978A (en) 2008-04-04 2008-04-04 Adsorbent for lower aldehydes

Publications (1)

Publication Number Publication Date
JP2009247978A true JP2009247978A (en) 2009-10-29

Family

ID=41309163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008098469A Pending JP2009247978A (en) 2008-04-04 2008-04-04 Adsorbent for lower aldehydes

Country Status (1)

Country Link
JP (1) JP2009247978A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105056909A (en) * 2015-07-30 2015-11-18 天津霍普环保科技有限公司 Adsorbent for purifying organic waste gas, and preparation method thereof
CN111841498A (en) * 2019-04-29 2020-10-30 3M创新有限公司 Guanidine salt modified activated carbon for removing aldehyde, preparation method thereof, composite filter screen comprising guanidine salt modified activated carbon and air purification device
CN117244525A (en) * 2023-11-16 2023-12-19 成都达奇科技股份有限公司 Modified activated carbon with high formaldehyde adsorption rate and preparation method thereof
CN117244525B (en) * 2023-11-16 2024-04-30 成都达奇科技股份有限公司 Modified activated carbon with high formaldehyde adsorption rate and preparation method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105056909A (en) * 2015-07-30 2015-11-18 天津霍普环保科技有限公司 Adsorbent for purifying organic waste gas, and preparation method thereof
CN111841498A (en) * 2019-04-29 2020-10-30 3M创新有限公司 Guanidine salt modified activated carbon for removing aldehyde, preparation method thereof, composite filter screen comprising guanidine salt modified activated carbon and air purification device
CN111841498B (en) * 2019-04-29 2023-03-24 3M创新有限公司 Guanidine salt modified activated carbon for removing aldehyde, preparation method thereof, composite filter screen comprising guanidine salt modified activated carbon and air purification device
CN117244525A (en) * 2023-11-16 2023-12-19 成都达奇科技股份有限公司 Modified activated carbon with high formaldehyde adsorption rate and preparation method thereof
CN117244525B (en) * 2023-11-16 2024-04-30 成都达奇科技股份有限公司 Modified activated carbon with high formaldehyde adsorption rate and preparation method thereof

Similar Documents

Publication Publication Date Title
JP4824494B2 (en) Air treatment filters and related methods
JP2009056449A (en) Lower aldehyde adsorbent
JP2010201360A (en) Adsorbent for lower aldehydes and method for producing the same
JP4554004B2 (en) Lower aldehyde adsorbent
JP4484232B1 (en) Adsorbent for lower aldehydes and process for producing the same
JP4452935B1 (en) Lower aldehyde adsorbent and process for producing the same
JP2010172871A (en) Adsorbent of lower aldehydes and method for manufacturing the same
JP2008178788A (en) Adsorbent
JP4139486B2 (en) Lower aldehyde adsorbent
JP2009247978A (en) Adsorbent for lower aldehydes
JP2006272078A (en) Absorbent for aldehydes, its manufacturing method and method for removing aldehyde in gas using adsorbent
JP2005288380A (en) Gas processing method
JP2010137113A (en) Adsorbent for lower aldehyde, and method of producing the same
JP4278495B2 (en) Compound odor deodorant
JP2010240605A (en) Adsorbent for lower aldehydes and method for producing the adsorbent
JP2010005584A (en) Adsorbent for lower aldehydes
JP4617622B2 (en) Production method of adsorbent
JP2010017679A (en) Absorbent of lower aldehyde
JP2007038076A (en) Nitrogen dioxide remover
JPH05317703A (en) Malodorous gas adsorptive agent
JP4778695B2 (en) Deodorizing adsorbent
JP4728614B2 (en) Deodorizing adsorbent and deodorizing method
CN105597682A (en) Normal-temperature formaldehyde-removing modified activated carbon and preparation method thereof
JP3180997B2 (en) Odor gas adsorbent
JPS63147542A (en) Air cleaning agent