JP4484232B1 - Adsorbent for lower aldehydes and process for producing the same - Google Patents

Adsorbent for lower aldehydes and process for producing the same Download PDF

Info

Publication number
JP4484232B1
JP4484232B1 JP2009006589A JP2009006589A JP4484232B1 JP 4484232 B1 JP4484232 B1 JP 4484232B1 JP 2009006589 A JP2009006589 A JP 2009006589A JP 2009006589 A JP2009006589 A JP 2009006589A JP 4484232 B1 JP4484232 B1 JP 4484232B1
Authority
JP
Japan
Prior art keywords
urea
activated carbon
aqueous solution
acetaldehyde
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009006589A
Other languages
Japanese (ja)
Other versions
JP2010162477A (en
Inventor
紀夫 相部
Original Assignee
株式会社 永光
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 永光 filed Critical 株式会社 永光
Priority to JP2009006589A priority Critical patent/JP4484232B1/en
Application granted granted Critical
Publication of JP4484232B1 publication Critical patent/JP4484232B1/en
Publication of JP2010162477A publication Critical patent/JP2010162477A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

【課題】本発明は、熱的に安定で、環境に対して安全であり、かつ低級アルデヒド類を長時間にわたり効率よく吸着除去することができる優れた低級アルデヒド類の吸着剤を提供することを目的とする。
【解決手段】尿素および不揮発酸を含む極少量の水溶液を40〜95℃に加温・溶解して多孔質担体1g当たり尿素を150〜800mgおよび不揮発酸を10〜300mg添着することで前記課題を解決した。
【選択図】なし
The present invention provides an excellent adsorbent for lower aldehydes that is thermally stable, safe for the environment, and capable of efficiently adsorbing and removing lower aldehydes over a long period of time. Objective.
The above problem is solved by heating and dissolving a very small amount of an aqueous solution containing urea and non-volatile acid at 40 to 95 ° C., and adding 150 to 800 mg of urea and 10 to 300 mg of non-volatile acid per 1 g of a porous carrier. Settled.
[Selection figure] None

Description

本発明は、ホルムアルデヒド、アセトアルデヒドなどの低級アルデヒド類に対し優れた吸着性能を有し、使用期間中担持薬品臭のしない吸着剤に関する。   The present invention relates to an adsorbent that has excellent adsorption performance for lower aldehydes such as formaldehyde and acetaldehyde and does not cause a chemical odor during use.

ホルムアルデヒド、アセトアルデヒドなどのC〜Cの脂肪族低級アルデヒド類は、いずれも特異な刺激臭を発する有害なガスである。ホルムアルデヒドは、空気中の許容濃度が0.3ppmと低く、かつ、発ガン性を有すると言われている。また、アセトアルデヒドをはじめとするこれら低級アルデヒド類は我が国では特定悪臭物質に指定され、いずれも嗅覚閾値が非常に低く悪臭公害を引き起こす物質である。
ホルムアルデヒドの発生源としては、ホルムアルデヒドの製造工場および尿素、メラミン、フェノールなどを原料とした樹脂の製造工場のほか、これらの樹脂の加工工場、さらにこれらの樹脂を使用した建材、家具など製造工場などが挙げられる。また、消毒剤としてのホルムアルデヒドや石油類の不完全燃焼排ガス、たばこの副流煙にも含まれている。最近では、室内においても新建材や家具などから発生するホルムアルデヒドが問題になっている。
アセトアルデヒドの発生源としては、アセトアルデヒドおよびその誘導体の製造工場のほか、下水汚泥の加熱処理時にも発生し、またたばこの主流煙中にも含まれている。
C 1 -C 4 aliphatic lower aldehydes such as formaldehyde and acetaldehyde are all harmful gases that emit unique irritating odors. Formaldehyde is said to have an allowable concentration in air as low as 0.3 ppm and has carcinogenic properties. In addition, these lower aldehydes including acetaldehyde are designated as specific malodorous substances in Japan, and all of them are substances that have a very low olfactory threshold and cause odor pollution.
Formaldehyde generation sources include formaldehyde manufacturing plants, resin manufacturing plants made from urea, melamine, phenol, etc., processing plants for these resins, and manufacturing plants for building materials and furniture using these resins. Is mentioned. It is also contained in formaldehyde as a disinfectant, incomplete combustion exhaust gas of petroleum, and sidestream smoke of tobacco. Recently, formaldehyde generated from new building materials and furniture has become a problem even indoors.
As a source of acetaldehyde, it is generated at the time of heat treatment of sewage sludge in addition to a manufacturing factory for acetaldehyde and its derivatives, and is also contained in the mainstream smoke of cigarettes.

近年、これら低級アルデヒド類に対して、作業環境の改善および生活環境の向上などの観点から、有害物質や臭気などが問題視され、この観点から気体、特に空気中の低級アルデヒド類を効率よく除去する吸着剤の開発が強く要望されている。
従来から低級アルデヒド類の吸着剤としては、活性炭、活性アルミナ、シリカゲルなどが挙げられ、なかでも活性炭が広く使用されてきたが、これらの吸着剤自体は、その特性上、ホルムアルデヒド、アセトアルデヒドなどの低級アルデヒド類に対する吸着容量が小さく、寿命が短いという欠点がある。
この改善策として、前記の吸着剤に低級アルデヒド類と反応する化合物、たとえば、脂肪族アミン類、芳香族アミン類などの有機化合物を担持させたものや、触媒として白金族化合物を前記の吸着剤に担持させたものなどが提案されている。
In recent years, harmful substances and odors have been seen as problems with these lower aldehydes from the viewpoint of improving the working environment and living environment. From this viewpoint, gas, especially lower aldehydes in the air are efficiently removed. There is a strong demand for the development of adsorbents.
Conventionally, as adsorbents for lower aldehydes, activated carbon, activated alumina, silica gel and the like have been used, and among them, activated carbon has been widely used. There are drawbacks in that the adsorption capacity for aldehydes is small and the lifetime is short.
As an improvement measure, a compound that reacts with the lower aldehydes on the adsorbent, for example, an organic compound such as an aliphatic amine or an aromatic amine, or a platinum group compound as a catalyst is used as the adsorbent. The one supported on the substrate has been proposed.

しかしながら、有機化合物を担持させた吸着剤は、担持有機化合物の経時安定性、それら自体の有害性、臭気などに問題がある。たとえば、アニリン(沸点185℃)を常温付近で単に添着させたもの(特許文献1)は、アニリン自身が発ガン性の疑いがあり、かつ低級アルデヒド類の吸着に対して、経時的に不安定であるなどのために実用化に問題があった。また、活性炭に尿素系化合物の酸含有溶液を含浸、担持させたアルデヒド類吸着剤(特許文献2)やゼオライト、酸性白土、珪藻土、活性炭を尿素、チオ尿素などの水溶液に浸漬、担持させたアルデヒド類吸着剤(特許文献3)などが考案されているが、これらのアルデヒド類吸着剤の製造法は、活性炭などの多孔質担体1g当たり尿素の担持量が120mg以下であり、かつ、多孔質担体1g当たり2000μL以上の尿素水溶液を使用し、多孔質担体に含浸・浸漬する際の温度は常温付近であり、また、少なくとも50分間以上含浸・浸漬した後、多孔質担体を水溶液から分離し、さらに、100℃前後で2時間以上乾燥するこれらの工程が必須である。
触媒を担持させたものは、触媒が高価な上、常温では低級アルデヒド類の除去効果が低い。
このように従来の技術は、いずれも低級アルデヒド類の除去に対して満足できるものではなかった。
However, adsorbents carrying organic compounds have problems with the stability of the carried organic compounds over time, their own harmfulness, odor, and the like. For example, aniline (boiling point 185 ° C.) simply attached at room temperature (Patent Document 1) is suspected to be carcinogenic in aniline itself and is unstable over time against the adsorption of lower aldehydes. Because of this, there was a problem in practical use. Also, an aldehyde adsorbent (Patent Document 2) impregnated and supported with an acid-containing solution of a urea compound on activated carbon, or an aldehyde immersed in and supported on an aqueous solution of zeolite, acidic clay, diatomaceous earth, activated carbon, or urea. Adsorbents (Patent Document 3) and the like have been devised. The production method of these aldehyde adsorbents is such that the amount of urea supported per 1 g of porous carrier such as activated carbon is 120 mg or less, and the porous carrier A urea aqueous solution of 2000 μL or more per gram is used, and the temperature when impregnating / immersing in the porous carrier is around room temperature, and after impregnating / immersing for at least 50 minutes, the porous carrier is separated from the aqueous solution. These steps of drying at around 100 ° C. for 2 hours or more are essential.
The catalyst-supported catalyst is expensive and has a low effect of removing lower aldehydes at room temperature.
Thus, none of the conventional techniques are satisfactory for the removal of lower aldehydes.

特公昭60−54095号公報Japanese Patent Publication No. 60-54095 特開2006−272078号公報JP 2006-272078 A 特開2002−85535号公報JP 2002-85535 A

本発明は、熱的に安定で、環境に対して安全であり、かつ、C〜Cの脂肪族低級アルデヒド類を長時間にわたり効率よく吸着除去することができる優れた低級アルデヒド類の吸着剤を提供することを目的としている。 The present invention is excellent in adsorption of lower aldehydes that are thermally stable, safe for the environment, and capable of efficiently adsorbing and removing C 1 -C 4 aliphatic lower aldehydes over a long period of time. The purpose is to provide an agent.

本発明者は、前記の点を鑑み鋭意研究して、多孔質担体1g当たり尿素を150〜800mgおよび不揮発酸を10〜300mg添着した吸着剤が、熱的安定で、環境に対して安全であり、低級アルデヒド類を長期に渡り効率よく吸着除去することを見出した。尿素および不揮発酸を添着する際に、水溶液を40〜95℃に加温することで、多孔質担体1g当たり100〜800μLの極少量の水溶液で薬品必要量を完全に溶解できるので、所定量の尿素および不揮発酸を均一に、かつ、簡単に添着することができ、添着後そのままの状態で低級アルデヒド類を非常によく吸着・除去できる。   The present inventor has intensively studied in view of the above points, and the adsorbent impregnated with 150 to 800 mg of urea and 10 to 300 mg of non-volatile acid per 1 g of the porous carrier is thermally stable and safe for the environment. It was found that lower aldehydes can be efficiently adsorbed and removed over a long period of time. When adding urea and non-volatile acid, the required amount of chemical can be completely dissolved in a very small amount of aqueous solution of 100 to 800 μL per 1 g of porous carrier by heating the aqueous solution to 40 to 95 ° C. Urea and non-volatile acids can be uniformly and easily attached, and lower aldehydes can be adsorbed and removed very well as they are after the addition.

本発明で使用される多孔質担体としては、活性炭、活性白土、シリカゲル、活性アルミナ、珪藻土、粘土鉱物などが挙げられ、一般に市販されているものが利用できる。これらの多孔質担体の形状は、破砕状、円柱状、球状、ハニカム状、繊維状などいかなるものでもよい。また、これらの多孔質担体のBET比表面積は、50m/g以上、好ましくは100〜2500m/gのものである。
これらの多孔質担体の中でも疎水性であり、大気中の水分の影響を受けにくい活性炭が特に好ましい。活性炭としては、木炭、コークス、石炭、ヤシ殻、樹脂などを原料として通常の方法により賦活されたものであれば、いかなるものでもよい。
活性炭の表面を予め酸化処理することで低級アルデヒド類の吸着性能が向上する。活性炭の表面を予め酸化する方法としては、たとえば、硝酸、窒素酸化物(NOx)、硫酸、硫黄酸化物(SOx)、三酸化硫黄、二酸化塩素、過酸化水素、オゾン、酸素含有ガス(たとえば、空気、燃焼排ガスなど)などの酸化剤で、液相あるいは気相で酸化するなどの方法が挙げられる。NOxやSOxなどの場合は、活性炭にNOxやSOx含有ガスの吸着、脱着を繰り返すなど方法で活性炭を酸化してもよい。また、酸素含有ガスによる気相酸化などのように活性炭に対する酸化力が弱い場合などでは、ガス中の酸素濃度にもよるが、常温以上の温度、たとえば、200℃以上、好ましくは200〜800℃、さらに好ましくは250〜600℃の温度で行うのが効率的である。
Examples of the porous carrier used in the present invention include activated carbon, activated clay, silica gel, activated alumina, diatomaceous earth, clay mineral, and the like, and commercially available ones can be used. The shape of these porous carriers may be any shape such as a crushed shape, a cylindrical shape, a spherical shape, a honeycomb shape, and a fibrous shape. Further, BET specific surface area of these porous carrier, 50 m 2 / g or more, preferably 100~2500m 2 / g.
Among these porous carriers, activated carbon which is hydrophobic and hardly affected by moisture in the air is particularly preferable. The activated carbon may be any material as long as it is activated by a normal method using charcoal, coke, coal, coconut shell, resin, or the like as a raw material.
The adsorption performance of lower aldehydes is improved by previously oxidizing the surface of the activated carbon. Examples of the method for previously oxidizing the surface of activated carbon include nitric acid, nitrogen oxide (NOx), sulfuric acid, sulfur oxide (SOx), sulfur trioxide, chlorine dioxide, hydrogen peroxide, ozone, oxygen-containing gas (for example, Examples thereof include a method of oxidizing in a liquid phase or a gas phase with an oxidizing agent such as air or combustion exhaust gas. In the case of NOx, SOx, etc., the activated carbon may be oxidized by a method such as repeated adsorption and desorption of NOx and SOx-containing gas on the activated carbon. In addition, when the oxidizing power for activated carbon is weak, such as gas phase oxidation with an oxygen-containing gas, the temperature is higher than room temperature, for example, 200 ° C. or higher, preferably 200 to 800 ° C., depending on the oxygen concentration in the gas. More preferably, it is efficient to carry out at a temperature of 250 to 600 ° C.

このような酸化処理によって活性炭表面に酸素含有基が生成する。本発明での酸化処理において、活性炭に対するこれらの酸化剤使用量は、処理方法や酸化条件(たとえば、処理温度、時間など)などにもよるが、通常、活性炭1g当り酸素原子換算量で10mg以上、好ましくは、20mg以上、より好ましくは、30〜2000mgである。
これらの酸化処理により、活性炭表面に、例えばカルボニル基、カルボキシル基、フェノール性水酸基などの酸素含有基が生成する。この表面酸素含有基は、酸素原子として活性炭全体の1重量%以上、好ましくは、2〜25重量%以上、さらに好ましくは3〜20重量%である。
Such an oxidation treatment produces oxygen-containing groups on the activated carbon surface. In the oxidation treatment of the present invention, the amount of these oxidizing agents used for activated carbon depends on the treatment method and oxidation conditions (for example, treatment temperature, time, etc.), but is usually 10 mg or more in terms of oxygen atom per gram of activated carbon. The amount is preferably 20 mg or more, and more preferably 30 to 2000 mg.
By these oxidation treatments, oxygen-containing groups such as a carbonyl group, a carboxyl group, and a phenolic hydroxyl group are generated on the activated carbon surface. This surface oxygen-containing group is 1% by weight or more, preferably 2 to 25% by weight or more, more preferably 3 to 20% by weight of the activated carbon as oxygen atoms.

本発明で使用される不揮発酸は、50℃、1気圧の下、その蒸気圧が10mmHg以下のものをいう。たとえば、硫酸、燐酸、ホウ酸などの無機酸、グリコール酸、乳酸、リンゴ酸、酒石酸、クエン酸などの1〜3塩基オキシ酸などが挙げられる。これらの中で1〜3塩基オキシ酸が好ましい。
本発明では、多孔質担体1g当たり尿素を150〜800mg、好ましくは200〜500mg、および不揮発酸を10〜300mg、好ましくは30〜200mg添着するのが最大の特徴である。このようにすることによって、低級アルデヒド類の吸着性能が飛躍的に向上する。従来技術では、尿素の添着量は多孔質担体1g当たり高々120mgである。
また、多孔質担体に尿素および不揮発酸を添着する際にこれらを含む水溶液を40〜95℃に加温することも本発明の大きな特徴である。この加温によって多孔質担体1g当たり100〜800μLの極少量の水溶液に薬品必要量を完全に溶解できるので、加温下で多孔質担体に接触させることによって、多量の尿素および不揮発酸を瞬時に多孔質担体に均一に添着できて、かつ、添着後に乾燥しなくてもそのままで低級アルデヒド類を非常によく吸着する吸着剤を得ることができる。
The non-volatile acid used in the present invention is one having a vapor pressure of 10 mmHg or less at 50 ° C. and 1 atm. Examples thereof include inorganic acids such as sulfuric acid, phosphoric acid and boric acid, and 1 to 3 base oxyacids such as glycolic acid, lactic acid, malic acid, tartaric acid and citric acid. Of these, 1-3 base oxyacids are preferred.
The greatest feature of the present invention is that 150 to 800 mg, preferably 200 to 500 mg of urea and 10 to 300 mg, preferably 30 to 200 mg of non-volatile acid are added per 1 g of porous carrier. By doing in this way, the adsorption | suction performance of a lower aldehyde is improved dramatically. In the prior art, the amount of urea added is at most 120 mg per 1 g of porous carrier.
It is also a major feature of the present invention that an aqueous solution containing urea and non-volatile acid is heated to 40 to 95 ° C. when adding urea and non-volatile acid to the porous carrier. This heating can completely dissolve the required amount of chemical in a very small amount of an aqueous solution of 100 to 800 μL per gram of porous carrier, so that a large amount of urea and non-volatile acid can be instantaneously brought into contact with the porous carrier under heating. It is possible to obtain an adsorbent that can be uniformly attached to the porous carrier and adsorbs the lower aldehydes very well as it is without drying after the attachment.

従来技術では、活性炭などの多孔質担体に対して低濃度の尿素水溶液を多量に使用して、多孔質担体をこの水溶液に長時間(たとえば50分以上)常温付近で浸漬した後、固液分離し、100℃前後で2時間以上乾燥してはじめてアルデヒドの吸着剤が出来上がるが、アルデヒドの吸着性能は満足できるものではない。   In the prior art, a large amount of low-concentration urea aqueous solution is used for a porous carrier such as activated carbon, and the porous carrier is immersed in this aqueous solution for a long time (for example, 50 minutes or more) at room temperature, followed by solid-liquid separation. However, the aldehyde adsorbent can be obtained only after drying at around 100 ° C. for 2 hours or more, but the aldehyde adsorption performance is not satisfactory.

本発明の低級アルデヒド類吸着剤は、尿素および不揮発酸を含む水溶液を40〜95℃に加温して多孔質担体にこれらの薬品を添着することによって容易に得られる。尿素および不揮発酸を含む水溶液の加温は直接的あるいは間接的に通常の方法で行うことができる。尿素および不揮発酸を含む水溶液を40〜95℃に加温する時間は、特に限定されない。要は、尿素および不揮発酸を含む水溶液の温度が所定の温度になればよい。尿素および不揮発酸を含む水溶液の加温を95℃以上にするとこれらの薬品が変質したり、多量の水蒸気が発生したりするので好ましくない。   The lower aldehyde adsorbent of the present invention can be easily obtained by heating an aqueous solution containing urea and non-volatile acid to 40 to 95 ° C. and attaching these chemicals to the porous carrier. Warming of the aqueous solution containing urea and non-volatile acid can be performed directly or indirectly by a usual method. The time for heating the aqueous solution containing urea and non-volatile acid to 40 to 95 ° C. is not particularly limited. In short, it is sufficient that the temperature of the aqueous solution containing urea and the non-volatile acid becomes a predetermined temperature. If the temperature of the aqueous solution containing urea and non-volatile acid is set to 95 ° C. or higher, these chemicals are deteriorated and a large amount of water vapor is generated, which is not preferable.

本発明における除去対象の低級アルデヒド類は、炭素数が6以下で沸点が100℃以下のアルデヒド、例えばホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、アクロレイン、3−メチル−ブチルアルデヒドを指すが、代表的なものはホルムアルデヒドとアセトアルデヒドである。
本発明においては、上記のようにして得られたアルデヒド類吸着剤を空間内、装置内などに存在させて、アルデヒド類を効率よく除去する方法なども含まれる。アルデヒド類吸着剤を空間内に存在させる場合には、たとえば、アルデヒド類吸着剤をシート状などにしたり、建材に含ませたり、通常よく行われる方法などが挙げられる。また、装置内などに存在させる場合は、塔、容器などに充填したりして、これらにアルデヒド類を含むガスを通気する方法などが考えられる。
The lower aldehydes to be removed in the present invention refer to aldehydes having 6 or less carbon atoms and a boiling point of 100 ° C. or less, such as formaldehyde, acetaldehyde, propionaldehyde, acrolein, and 3-methyl-butyraldehyde. Formaldehyde and acetaldehyde.
The present invention also includes a method for efficiently removing aldehydes by allowing the aldehyde adsorbent obtained as described above to exist in a space or in an apparatus. In the case where the aldehyde adsorbent is present in the space, for example, the aldehyde adsorbent may be formed into a sheet shape, included in a building material, or a method that is usually performed. Moreover, when it exists in an apparatus etc., the method etc. which fill a tower, a container, etc., and ventilate the gas containing aldehydes to these are considered.

本発明のアルデヒド吸着剤は、それを使用する常温付近では、無臭でかつ化学的に安定な薬品である、尿素および不揮発酸を多孔質担体に添着するので、添着薬品の臭気や蒸気が漏れ出すようなことは全くなく、しかもアルデヒド類の吸着除去性能は、従来の低級アルデヒド吸着剤に比べて非常に優れており、かつ、安全で、熱劣化や経時劣化も非常に少なく良好である。   The aldehyde adsorbent of the present invention attaches urea and non-volatile acid, which are odorless and chemically stable chemicals, to the porous carrier in the vicinity of the room temperature where the aldehyde adsorbent is used. In addition, the adsorption and removal performance of aldehydes is very superior to that of conventional lower aldehyde adsorbents, and is safe and has very little thermal deterioration and deterioration over time.

以下に実施例及び比較例をあげて、本発明を具体的に説明する。   Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples.

8〜32メッシュの瀝青炭系活性炭A(BET比表面積1150m/g)に対して下記のような処理を施して尿素および不揮発酸を均一に添着した試料を作成した。
試料No.1:尿素120mgを燐酸で調整したpH1.5の水溶液5000μL(温度25℃)に完全に溶解した後、活性炭Aの1gを1時間浸漬した。ろ過した活性炭を100℃で2時間乾燥した。
試料No.2:水400μLに尿素150mgおよびクエン酸90mgを入れ、80℃に加温してこれらを完全に溶解した。この溶液を活性炭Aの1gに均一に添着し、大気中で12時間放置した。
試料No.3:尿素300mgおよびクエン酸90mgを使用し、水溶液の温度を60℃にした以外は試料No.2の調製法に準じた。
試料No.4:尿素500mgおよび酒石酸90mgを使用し、水溶液の温度を60℃にした以外は試料No.2の調製法に準じた。
試料No.5:尿素300mgおよび燐酸50mg(90%正燐酸30μL)を使用し、水溶液の温度を45℃にした以外は試料No.2の調製法に準じた。
試料No.6:尿素300mgおよび硫酸10mg(98%濃硫酸5.6μL)を使用し、水溶液の温度を40℃にした以外は試料No.2の調製法に準じた。
試料No.7:尿素300mgおよびリンゴ酸300mgを使用し、水溶液の温度を95℃にした以外は試料No.2の調製法に準じた。
これらの各試料200mgを3Lのテトラバッグに量り込み、空気で満たした。各テトラバッグに所定量のアセトアルデヒド水溶液を注入して、各テトラバッグ中のアセトアルデヒド濃度(C)を550ppmとした。24時間後の各テトラバッグ中のアセトアルデヒド濃度(C)を測定した。アセトアルデヒド除去性能として次式で求めた値を表1に示した。
アセトアルデヒド除去性能=(1−C/C)×100(%)
An 8-32 mesh bituminous coal-based activated carbon A (BET specific surface area 1150 m 2 / g) was subjected to the following treatment to prepare a sample in which urea and non-volatile acids were uniformly attached.
Sample No. 1: After 120 mg of urea was completely dissolved in 5000 μL of an aqueous solution of pH 1.5 adjusted with phosphoric acid (temperature 25 ° C.), 1 g of activated carbon A was immersed for 1 hour. The filtered activated carbon was dried at 100 ° C. for 2 hours.
Sample No. 2: 150 mg of urea and 90 mg of citric acid were placed in 400 μL of water and heated to 80 ° C. to completely dissolve them. This solution was uniformly applied to 1 g of activated carbon A and left in the atmosphere for 12 hours.
Sample No. 3: Sample No. 3 was used except that 300 mg of urea and 90 mg of citric acid were used, and the temperature of the aqueous solution was 60 ° C. According to the preparation method of 2.
Sample No. 4: Sample No. 5 was used except that 500 mg of urea and 90 mg of tartaric acid were used and the temperature of the aqueous solution was changed to 60 ° C. According to the preparation method of 2.
Sample No. 5: Sample No. 5 was used except that 300 mg of urea and 50 mg of phosphoric acid (30% orthophosphoric acid 30 μL) were used, and the temperature of the aqueous solution was 45 ° C. According to the preparation method of 2.
Sample No. 6: Sample No. 6 was used except that 300 mg of urea and 10 mg of sulfuric acid (5.6 μL of 98% concentrated sulfuric acid) were used, and the temperature of the aqueous solution was 40 ° C. According to the preparation method of 2.
Sample No. 7: Sample No. 7 was used except that 300 mg of urea and 300 mg of malic acid were used, and the temperature of the aqueous solution was 95 ° C. According to the preparation method of 2.
200 mg of each of these samples was weighed into a 3 L tetrabag and filled with air. A predetermined amount of acetaldehyde aqueous solution was injected into each tetrabag to adjust the acetaldehyde concentration (C 0 ) in each tetrabag to 550 ppm. The acetaldehyde concentration (C) in each tetrabag after 24 hours was measured. The values obtained by the following formula as acetaldehyde removal performance are shown in Table 1.
Acetaldehyde removal performance = (1-C / C 0 ) × 100 (%)

Figure 0004484232
この結果から、活性炭1gに対して低濃度(24mg/mL)の尿素水溶液を多量(5mL)に使用して、活性炭をこの水溶液に1時間浸漬した後、固液分離し、100℃で2時間乾燥してはじめてアルデヒド吸着剤(試料No.1)ができあがるが、この従来技術のアルデヒド吸着剤はアセトアルデヒドの除去性能は非常に低い。これに対して、本発明の吸着剤は、40〜95℃に加温した、高濃度(375〜1240mg/mL)の尿素水溶液を極少量(約0.4mL)使用して瞬時に活性炭に均一に添着するので、アセトアルデヒドの除去性能は95〜100%となり非常に良好であった。
Figure 0004484232
From this result, a low concentration (24 mg / mL) aqueous urea solution was used in a large amount (5 mL) with respect to 1 g of activated carbon, and after immersing the activated carbon in this aqueous solution for 1 hour, it was subjected to solid-liquid separation and at 100 ° C for 2 hours. An aldehyde adsorbent (sample No. 1) is completed only after drying, but this prior art aldehyde adsorbent has very low acetaldehyde removal performance. On the other hand, the adsorbent of the present invention is instantly uniform on activated carbon using a very small amount (about 0.4 mL) of a high concentration (375 to 1240 mg / mL) aqueous urea solution heated to 40 to 95 ° C. Therefore, the removal performance of acetaldehyde was 95-100%, which was very good.

実施例1の各試料100mgを3Lのテトラバッグに量り込み、空気で満たした。各テトラバッグに所定量のホルムアルデヒド水溶液を注入して、各テトラバッグ中のホルムアルデヒド濃度(C)を200ppmとした。24時間後の各テトラバッグ中のホルムアルデヒド濃度(C)を測定した。ホルムアルデヒド除去性能として次式で求めた値を表2に示した。
ホルムアルデヒド除去性能=(1−C/C)×100(%)
100 mg of each sample of Example 1 was weighed into a 3 L tetra bag and filled with air. A predetermined amount of an aqueous formaldehyde solution was injected into each tetrabag to adjust the formaldehyde concentration (C 0 ) in each tetrabag to 200 ppm. The formaldehyde concentration (C) in each tetrabag after 24 hours was measured. Table 2 shows the value obtained by the following formula as the formaldehyde removal performance.
Formaldehyde removal performance = (1-C / C 0 ) × 100 (%)

Figure 0004484232
この結果からも、従来技術の吸着剤はホルムアルデヒドの除去性能は非常に低く、これに対して本発明の吸着剤のホルムアルデヒドの除去性能は100%であり、非常に良好であることがわかる。
Figure 0004484232
This result also shows that the adsorbent of the prior art has a very low formaldehyde removal performance, whereas the adsorbent of the present invention has an excellent formaldehyde removal performance of 100%.

市販の活性白土(和光純薬)に水を加えてよく練合し、1mmφの円柱状に成型し、これを100℃で乾燥し、さらに空気中にて450℃で1時間焼成した。このようにして得られた活性白土焼成ペッレトB(BET比表面積450m/g)に対して下記のような処理を施して尿素および不揮発酸を均一に添着した試料を作成した。
試料No.8:尿素120mgを燐酸で調整したpH1.5の水溶液5000μL(温度25℃)に完全に溶解した後、活性白土焼成ペッレトBの1gを1時間浸漬した。ろ過した活性白土焼成ペッレトを100℃で2時間乾燥した。
試料No.9:水400μLに尿素150mgおよび燐酸50mg(90%正燐酸30μL)を入れ、80℃に加温してこれらを完全に溶解し、活性白土焼成ペッレトBの1gに均一に添着し、大気中で12時間放置した。
試料No.10:尿素300mgおよびクエン酸80mgを使用した以外は試料No.9の調製法に準じた。
これらの各試料400mgを3Lのテトラバッグに量り込み、空気で満たした。各テトラバッグに所定量のアセトアルデヒド水溶液を注入して、各テトラバッグ中のアセトアルデヒド濃度(C)を550ppmとした。24時間後の各テトラバッグ中のアセトアルデヒド濃度(C)を測定した。アセトアルデヒド除去性能として次式で求めた値を表3に示した。
アセトアルデヒド除去性能=(1−C/C)×100(%)
Water was added to a commercially available activated clay (Wako Pure Chemicals), kneaded well, formed into a 1 mmφ cylindrical shape, dried at 100 ° C., and further fired at 450 ° C. for 1 hour in air. The activated clay baked pellets B (BET specific surface area 450 m 2 / g) thus obtained were subjected to the following treatment to prepare a sample in which urea and non-volatile acids were uniformly attached.
Sample No. 8: After completely dissolving 120 mg of urea in 5000 μL of an aqueous solution of pH 1.5 adjusted with phosphoric acid (temperature 25 ° C.), 1 g of activated clay calcined pellet B was immersed for 1 hour. The filtered activated clay calcined pellets were dried at 100 ° C. for 2 hours.
Sample No. 9: Put urea 150 mg and phosphoric acid 50 mg (90% orthophosphoric acid 30 μL) in 400 μL of water, heat to 80 ° C. to completely dissolve them, and evenly adhere to 1 g of activated clay baked pellets B in the atmosphere. Left for 12 hours.
Sample No. 10: Sample No. except that 300 mg of urea and 80 mg of citric acid were used. The preparation method of 9 was followed.
400 mg of each of these samples was weighed into a 3 L tetrabag and filled with air. A predetermined amount of acetaldehyde aqueous solution was injected into each tetrabag to adjust the acetaldehyde concentration (C 0 ) in each tetrabag to 550 ppm. The acetaldehyde concentration (C) in each tetrabag after 24 hours was measured. Table 3 shows values obtained by the following formula as acetaldehyde removal performance.
Acetaldehyde removal performance = (1-C / C 0 ) × 100 (%)

Figure 0004484232
この結果から、実施例1と同様、活性白土焼成ペレット1gに対して低濃度(24mg/mL)の尿素水溶液を多量(5mL)に使用して、1時間浸漬した後、固液分離し、100℃で2時間乾燥した吸着剤(試料No.8)のアセトアルデヒド除去性能は非常に低いのに対して、本発明の吸着剤は、80℃に加温した、高濃度(375〜700mg/mL)の尿素水溶液を極少量(約0.4mL)に使用して瞬時に活性白土焼成ペレット1gに均一に添着した後、放置したもので、アセトアルデヒドの除去性能は100%となり非常に良好である。
Figure 0004484232
From this result, as in Example 1, a low concentration (24 mg / mL) aqueous urea solution was used in a large amount (5 mL) with respect to 1 g of activated clay baked pellets, immersed for 1 hour, solid-liquid separated, and 100 The adsorbent (sample No. 8) dried at 2 ° C. for 2 hours has very low acetaldehyde removal performance, whereas the adsorbent of the present invention is heated to 80 ° C. at a high concentration (375 to 700 mg / mL). A very small amount (about 0.4 mL) of urea aqueous solution was instantly uniformly attached to 1 g of activated clay calcined pellets and then left standing, and the acetaldehyde removal performance was 100%, which is very good.

8〜32メッシュのヤシ殻系活性炭C(BET比表面積1200m/g)の各30gを55mmφの石英ガラス管に充填して、それぞれ250、400、500、および600℃の各温度でO−10.0vol%含有のNガスを線流速5cm/秒で20分間流通した後、Nガス中で常温まで冷却して、活性炭D、E、FおよびGを得た。
酸化処理をした活性炭D、E、FおよびGについて、次の方法で測定した表面酸化物又は酸素含有基の酸素量は、それぞれ5.5重量%、8.9重量%、12.3重量%および16.1重量%であった。なお、酸化処理をしない活性炭Cの酸素量は0.7重量%であった。
「活性炭の表面酸化物の測定法」
直径20mm×長さ1000mmの石英カラムに試料活性炭3gを入れ、試料の前後は十分に乾燥させた石英ガラスウールに固定し、電気環状炉にセットした。また石英カラムにはゴム栓で前後に蓋をして窒素を導入するための孔と排出するための孔を空ける。100mL/分の流速で窒素を石英カラムに流しながら、100℃まで加熱昇温し、次いで、出口ガスをテトラバックに接続し、400℃/時間の昇温速度で900℃まで加熱昇温した。900℃になってから、さらに30分間900℃で保持した後、テトラバックを外し、捕集したガス量を測定するとともに、捕集されたガスにおけるCOとCO2の総濃度を、メタンコンバータ付きのFID検出器付ガスクロマトグラフィーで測定し、表面酸素の含量を算出した。
これらの各活性炭1gに対して水400μLに尿素300mgおよびクエン酸80mgを溶解した80℃の水溶液を用いて均一に添着し、大気中で12時間放置した。
このようにして得られたこれらの吸着剤各100mgを3Lのテトラバッグに量り込み、空気で満たした。各テトラバッグに所定量のアセトアルデヒド水溶液を注入して、各テトラバッグ中のアセトアルデヒド濃度(C)を550ppmとした。24時間後の各テトラバッグ中のアセトアルデヒド濃度(C)を測定した。アセトアルデヒド除去性能として次式で求めた結果を表4に示した。
アセトアルデヒド除去性能=(1−C/C)×100(%)
Each 30 g of 8-32 mesh coconut shell activated carbon C (BET specific surface area 1200 m 2 / g) was filled into a 55 mmφ quartz glass tube, and O 2 − at each temperature of 250, 400, 500, and 600 ° C. after flowing for 20 minutes at 10.0 vol% content of N 2 gas linear flow rate of 5 cm / sec, and cooled to room temperature in N 2 gas, to give activated carbon D, E, F and G.
For the activated carbons D, E, F and G subjected to oxidation treatment, the amounts of oxygen in the surface oxides or oxygen-containing groups measured by the following methods were 5.5% by weight, 8.9% by weight and 12.3% by weight, respectively. And 16.1% by weight. The oxygen content of the activated carbon C that was not oxidized was 0.7% by weight.
"Measurement method of surface oxide of activated carbon"
3 g of sample activated carbon was placed in a quartz column having a diameter of 20 mm and a length of 1000 mm, and the sample was fixed on quartz glass wool that had been sufficiently dried before and after the sample and set in an electric annular furnace. In addition, the quartz column has a hole for introducing nitrogen and a hole for discharging nitrogen by capping the front and back with rubber stoppers. While flowing nitrogen through the quartz column at a flow rate of 100 mL / min, the temperature was raised to 100 ° C., and then the outlet gas was connected to a tetra-buck and heated to 900 ° C. at a rate of 400 ° C./hour. After reaching 900 ° C., hold at 900 ° C. for another 30 minutes, then remove the tetraback, measure the amount of gas collected, and add the total concentration of CO and CO 2 in the collected gas with a methane converter. The surface oxygen content was calculated by gas chromatography with FID detector.
1 g of each activated carbon was uniformly added using an aqueous solution at 80 ° C. in which 300 mg of urea and 80 mg of citric acid were dissolved in 400 μL of water, and left in the atmosphere for 12 hours.
100 mg of each of these adsorbents thus obtained was weighed into a 3 L tetrabag and filled with air. A predetermined amount of acetaldehyde aqueous solution was injected into each tetrabag to adjust the acetaldehyde concentration (C 0 ) in each tetrabag to 550 ppm. The acetaldehyde concentration (C) in each tetrabag after 24 hours was measured. Table 4 shows the results obtained by the following formula as the acetaldehyde removal performance.
Acetaldehyde removal performance = (1-C / C 0 ) × 100 (%)

Figure 0004484232
この結果から、酸化処理してない活性炭Cでも本発明の方法で尿素およびクエン酸を極少量の80℃の水溶液を用いて瞬時に添着することによって、かなりアセトアルデヒドの吸着性能を発揮できるが、この活性炭を200〜600℃の酸素気流中で表面酸化することによって、アセトアルデヒドの吸着性能は飛躍的に向上することがわかる。
Figure 0004484232
From this result, even with activated carbon C that has not been oxidized, the adsorption performance of acetaldehyde can be considerably exhibited by instantaneously adding urea and citric acid with a very small amount of an 80 ° C. aqueous solution by the method of the present invention. It can be seen that the adsorption performance of acetaldehyde is dramatically improved by subjecting the activated carbon to surface oxidation in an oxygen stream at 200 to 600 ° C.

500mLのビーカーに5重量%の過酸化水素水100mLを入れ、80℃の水浴中で80℃に加熱した。この過酸化水素水に実施例1の瀝青炭系活性炭Aの10gを入れて攪拌しながら30分間酸化した。酸化後の活性炭をろ過して100℃で乾燥した。酸化処理をした活性炭Hの表面酸素量は、8.5重量%であった。なお、未酸化の活性炭Aのそれは、0.9重量%である。
活性炭AおよびHの1gに対して水400μLに尿素300mgおよび酒石酸100mgを溶解した80℃の水溶液を用いて均一に添着し、大気中で12時間放置した。
このようにして得られたこれらの吸着剤各100mgを3Lのテトラバッグに量り込み、空気で満たした。各テトラバッグに所定量のアセトアルデヒド水溶液を注入して、各テトラバッグ中のアセトアルデヒド濃度(C)を550ppmとした。24時間後の各テトラバッグ中のアセトアルデヒド濃度(C)を測定した。アセトアルデヒド除去性能として次式で求めた結果を表5に示した。
アセトアルデヒド除去性能=(1−C/C)×100(%)
A 500 mL beaker was charged with 100 mL of 5 wt% hydrogen peroxide and heated to 80 ° C. in an 80 ° C. water bath. In this hydrogen peroxide solution, 10 g of the bituminous coal-based activated carbon A of Example 1 was added and oxidized for 30 minutes while stirring. The oxidized activated carbon was filtered and dried at 100 ° C. The surface oxygen amount of the activated carbon H subjected to the oxidation treatment was 8.5% by weight. The unoxidized activated carbon A is 0.9% by weight.
An aqueous solution at 80 ° C. in which 300 mg of urea and 100 mg of tartaric acid were dissolved in 400 μL of water per 1 g of activated carbon A and H was uniformly added, and left in the atmosphere for 12 hours.
100 mg of each of these adsorbents thus obtained was weighed into a 3 L tetrabag and filled with air. A predetermined amount of acetaldehyde aqueous solution was injected into each tetrabag to adjust the acetaldehyde concentration (C 0 ) in each tetrabag to 550 ppm. The acetaldehyde concentration (C) in each tetrabag after 24 hours was measured. Table 5 shows the results obtained by the following formula as acetaldehyde removal performance.
Acetaldehyde removal performance = (1-C / C 0 ) × 100 (%)

Figure 0004484232
この結果からも、酸化処理の効果が発揮されていることが明らかである。
Figure 0004484232
From this result, it is clear that the effect of the oxidation treatment is exhibited.

内径94mmφのアクリル製カラムに実施例4のヤシ殻系活性炭C100mLをステンレス金網容器に入れて、活性炭充填層を形成した。この活性炭層にオゾン約180ppm含有の空気を流量5L/分で2日間流通し、気相でのオゾン酸化処理活性炭Iを得た。この活性炭の表面酸素量は8.0重量%であった。
活性炭CおよびIについて実施例5と同様な方法で、それぞれ活性炭CおよびIの1gに対して水400μLに尿素300mgおよび乳酸50mgを溶解した80℃の水溶液を用いて均一に添着し、大気中で12時間放置した。
このようにして得られたこれらの吸着剤各100mgを3Lのテトラバッグに量り込み、空気で満たした。各テトラバッグに所定量のアセトアルデヒド水溶液を注入して、各テトラバッグ中のアセトアルデヒド濃度(C)を550ppmとした。24時間後の各テトラバッグ中のアセトアルデヒド濃度(C)を測定した。アセトアルデヒド除去性能として次式で求めた結果を表6に示した。
アセトアルデヒド除去性能=(1−C/C)×100(%)
100 mL of coconut shell activated carbon C of Example 4 was placed in a stainless steel wire mesh container in an acrylic column having an inner diameter of 94 mmφ to form an activated carbon packed layer. Air containing about 180 ppm of ozone was passed through the activated carbon layer at a flow rate of 5 L / min for 2 days to obtain ozone-oxidized activated carbon I in the gas phase. The surface oxygen content of this activated carbon was 8.0% by weight.
Activated carbons C and I were uniformly added using an aqueous solution at 80 ° C. in which 300 mg of urea and 50 mg of lactic acid were dissolved in 400 μL of water for 1 g of activated carbons C and I, respectively, in the same manner as in Example 5. Left for 12 hours.
100 mg of each of these adsorbents thus obtained was weighed into a 3 L tetrabag and filled with air. A predetermined amount of acetaldehyde aqueous solution was injected into each tetrabag to adjust the acetaldehyde concentration (C 0 ) in each tetrabag to 550 ppm. The acetaldehyde concentration (C) in each tetrabag after 24 hours was measured. Table 6 shows the results obtained by the following formula as the acetaldehyde removal performance.
Acetaldehyde removal performance = (1-C / C 0 ) × 100 (%)

Figure 0004484232
Figure 0004484232

Claims (5)

多孔質担体1g当たり尿素を150〜800mgおよび不揮発酸を10〜300mg添着させた低級アルデヒド類吸着剤。 A lower aldehyde adsorbent in which 150 to 800 mg of urea and 10 to 300 mg of nonvolatile acid are impregnated per 1 g of a porous carrier. 不揮発酸が1〜3塩基オキシ酸である請求項1記載の低級アルデヒド類吸着剤。 The lower aldehyde adsorbent according to claim 1, wherein the non-volatile acid is a 1 to 3 base oxyacid. 多孔質担体が活性炭である請求項1記載の低級アルデヒド類吸着剤。 The lower aldehyde adsorbent according to claim 1, wherein the porous carrier is activated carbon. 活性炭が予め酸化処理した活性炭である請求項3記載の低級アルデヒド類吸着剤。 The lower aldehyde adsorbent according to claim 3, wherein the activated carbon is activated carbon previously oxidized. 多孔質担体1gに対し尿素150〜800mgおよび不揮発酸10〜300mgを含む40〜95℃に加熱した水溶液100〜800μLを接触させ添着する低級アルデヒド類吸着剤の製造法。 A method for producing a lower aldehyde adsorbent, in which 100 to 800 µL of an aqueous solution heated to 40 to 95 ° C containing 150 to 800 mg of urea and 10 to 300 mg of non-volatile acid is brought into contact with 1 g of a porous carrier.
JP2009006589A 2009-01-15 2009-01-15 Adsorbent for lower aldehydes and process for producing the same Active JP4484232B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009006589A JP4484232B1 (en) 2009-01-15 2009-01-15 Adsorbent for lower aldehydes and process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009006589A JP4484232B1 (en) 2009-01-15 2009-01-15 Adsorbent for lower aldehydes and process for producing the same

Publications (2)

Publication Number Publication Date
JP4484232B1 true JP4484232B1 (en) 2010-06-16
JP2010162477A JP2010162477A (en) 2010-07-29

Family

ID=42351843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009006589A Active JP4484232B1 (en) 2009-01-15 2009-01-15 Adsorbent for lower aldehydes and process for producing the same

Country Status (1)

Country Link
JP (1) JP4484232B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010201360A (en) * 2009-03-04 2010-09-16 Eiko:Kk Adsorbent for lower aldehydes and method for producing the same
CN102101040A (en) * 2011-01-28 2011-06-22 河北亚太环境科技发展股份有限公司 Polyfunctional formaldehyde adsorption material

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111818995B (en) 2018-03-01 2024-01-26 3M创新有限公司 Urea impregnated zeolite adsorbent and method of making same
JP6607422B1 (en) * 2019-02-06 2019-11-20 孝章 下原 Formaldehyde scavenger
WO2020162091A1 (en) * 2019-02-06 2020-08-13 孝章 下原 Formaldehyde scavenger

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01230541A (en) * 1987-12-07 1989-09-14 Wormald Us Inc Reduction of solidification and vapor of aldehyde leaked substance
JPH11285633A (en) * 1998-04-03 1999-10-19 Azumi Roshi Kk Adsorption remover for lower aliphatic aldehydes
JP2001000524A (en) * 1999-06-22 2001-01-09 Takeda Chem Ind Ltd Adsorbent of lower aldehydes
JP2001232189A (en) * 2000-02-22 2001-08-28 Kuraray Chem Corp Porous adsorbent and filter
JP2002102639A (en) * 2000-09-28 2002-04-09 Nikko Plant:Kk Treatment method and apparatus for lower aldehyde
JP2006272078A (en) * 2005-03-28 2006-10-12 Fuso Unitec Kk Absorbent for aldehydes, its manufacturing method and method for removing aldehyde in gas using adsorbent

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01230541A (en) * 1987-12-07 1989-09-14 Wormald Us Inc Reduction of solidification and vapor of aldehyde leaked substance
JPH11285633A (en) * 1998-04-03 1999-10-19 Azumi Roshi Kk Adsorption remover for lower aliphatic aldehydes
JP2001000524A (en) * 1999-06-22 2001-01-09 Takeda Chem Ind Ltd Adsorbent of lower aldehydes
JP2001232189A (en) * 2000-02-22 2001-08-28 Kuraray Chem Corp Porous adsorbent and filter
JP2002102639A (en) * 2000-09-28 2002-04-09 Nikko Plant:Kk Treatment method and apparatus for lower aldehyde
JP2006272078A (en) * 2005-03-28 2006-10-12 Fuso Unitec Kk Absorbent for aldehydes, its manufacturing method and method for removing aldehyde in gas using adsorbent

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010201360A (en) * 2009-03-04 2010-09-16 Eiko:Kk Adsorbent for lower aldehydes and method for producing the same
CN102101040A (en) * 2011-01-28 2011-06-22 河北亚太环境科技发展股份有限公司 Polyfunctional formaldehyde adsorption material

Also Published As

Publication number Publication date
JP2010162477A (en) 2010-07-29

Similar Documents

Publication Publication Date Title
JP4484232B1 (en) Adsorbent for lower aldehydes and process for producing the same
JP2009056449A (en) Lower aldehyde adsorbent
JP4452935B1 (en) Lower aldehyde adsorbent and process for producing the same
JP2010201360A (en) Adsorbent for lower aldehydes and method for producing the same
JP2010172871A (en) Adsorbent of lower aldehydes and method for manufacturing the same
JP2006272078A (en) Absorbent for aldehydes, its manufacturing method and method for removing aldehyde in gas using adsorbent
JP2015134318A (en) Acidic gas adsorption and removal filter
JP4139486B2 (en) Lower aldehyde adsorbent
JP2010137113A (en) Adsorbent for lower aldehyde, and method of producing the same
JP2009247978A (en) Adsorbent for lower aldehydes
JP3634263B2 (en) Method for producing deodorant
JP3138749B2 (en) Method for producing carbides having deodorizing ability, ion exchange ability, and catalytic ability using plant materials
JP2010240605A (en) Adsorbent for lower aldehydes and method for producing the adsorbent
CN108889298A (en) The preparation method of the coal-tar base carbon material catalyst of nitrogen oxides and mercury in removing coal-fired flue-gas can be combined
JP4278495B2 (en) Compound odor deodorant
JP2010017679A (en) Absorbent of lower aldehyde
JPH08252304A (en) Deodorizing activated carbon and its manufacture
JP5303123B2 (en) Adsorbent and combustible gas treatment method
JP3250773B2 (en) Aliphatic aldehyde adsorbent
JP2015051392A (en) Regeneration method of lower aldehyde adsorbent
JP3318607B2 (en) New selective NH3 deodorization method
JP2010005584A (en) Adsorbent for lower aldehydes
JP5069838B2 (en) Method for producing activated carbon for deodorizer and activated carbon for deodorizer
TWI314473B (en) High activity chemical filter, its preparation and use in removing hazard gas by adsorption
CN105597682A (en) Normal-temperature formaldehyde-removing modified activated carbon and preparation method thereof

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100317

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100319

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4484232

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140402

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250