JP2010240605A - Adsorbent for lower aldehydes and method for producing the adsorbent - Google Patents

Adsorbent for lower aldehydes and method for producing the adsorbent Download PDF

Info

Publication number
JP2010240605A
JP2010240605A JP2009093846A JP2009093846A JP2010240605A JP 2010240605 A JP2010240605 A JP 2010240605A JP 2009093846 A JP2009093846 A JP 2009093846A JP 2009093846 A JP2009093846 A JP 2009093846A JP 2010240605 A JP2010240605 A JP 2010240605A
Authority
JP
Japan
Prior art keywords
activated carbon
urea
ammonium sulfate
adsorbent
acidic ammonium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009093846A
Other languages
Japanese (ja)
Inventor
Norio Aibe
紀夫 相部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eiko KK
Original Assignee
Eiko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eiko KK filed Critical Eiko KK
Priority to JP2009093846A priority Critical patent/JP2010240605A/en
Publication of JP2010240605A publication Critical patent/JP2010240605A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an excellent adsorbent for lower aldehydes, which is thermally stable and environmentally safe, and efficiently adsorbs/removes lower aldehydes over a long time. <P>SOLUTION: The adsorbent for lower aldehydes is obtained by warming an extremely small amount of aqueous solution containing urea and acid ammonium sulfate to 30-90°C to dissolve them completely and sticking, per 1 g activated carbon, 150-800 mg urea and 10-300 mg acid ammonium sulfate to activated carbon. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、ホルムアルデヒド、アセトアルデヒドなどの低級アルデヒド類に対し優れた吸着性能を有し、使用期間中に添着薬品臭のしない吸着剤に関する。   The present invention relates to an adsorbent that has excellent adsorption performance for lower aldehydes such as formaldehyde and acetaldehyde, and does not cause an odor of chemicals during use.

ホルムアルデヒド、アセトアルデヒドなどの低級アルデヒド類は、いずれも特異な刺激臭を発する有害なガスである。ホルムアルデヒドは、空気中の許容濃度が0.3ppmと低く、かつ発ガン性を有すると言われている。また、アセトアルデヒドをはじめとしてC〜Cの脂肪族低級アルデヒド類は我が国では特定悪臭物質に指定され、いずれも嗅覚閾値が非常に低く悪臭公害を引き起こす物質である。
ホルムアルデヒドの発生源としては、ホルムアルデヒドの製造工場および尿素、メラミン、フェノールなどを原料とした樹脂の製造工場のほか、これらの樹脂の加工工場、さらにこれらの樹脂を使用した建材、家具など製造工場などが挙げられる。また、消毒剤としてのホルムアルデヒドや石油類の不完全燃焼排ガス、たばこの副流煙にも含まれている。最近では、室内においても新建材や家具などから発生するホルムアルデヒドが問題になっている。
アセトアルデヒドの発生源としては、アセトアルデヒドおよびその誘導体の製造工場のほか、下水汚泥の加熱処理時にも発生し、またたばこの主流煙中にも含まれている。
Lower aldehydes such as formaldehyde and acetaldehyde are harmful gases that emit unique irritating odors. Formaldehyde is said to have a carcinogenicity and an allowable concentration in air as low as 0.3 ppm. In addition, acetaldehyde and other C 1 -C 4 aliphatic lower aldehydes are designated as specific malodorous substances in Japan, and all of them are substances that have a very low olfactory threshold and cause odor pollution.
Formaldehyde generation sources include formaldehyde manufacturing plants, resin manufacturing plants made from urea, melamine, phenol, etc., processing plants for these resins, and manufacturing plants for building materials and furniture using these resins. Is mentioned. It is also contained in formaldehyde as a disinfectant, incomplete combustion exhaust gas of petroleum, and sidestream smoke of tobacco. Recently, formaldehyde generated from new building materials and furniture has become a problem even indoors.
As a source of acetaldehyde, it is generated at the time of heat treatment of sewage sludge in addition to the manufacturing plant of acetaldehyde and its derivatives, and is also contained in the mainstream smoke of cigarettes.

近年、これら低級アルデヒド類に対して、作業環境の改善および生活環境の向上などの観点から、有害物質や臭気などが問題視され、この観点から気体、特に空気中の低級アルデヒド類を効率よく除去する吸着剤の開発が強く要望されている。
従来から低級アルデヒド類の吸着剤としては、活性炭、活性アルミナ、シリカゲルなどが挙げられ、なかでも活性炭が広く使用されてきたが、これらの吸着剤自体は、その特性上、ホルムアルデヒド、アセトアルデヒドなどの低級アルデヒド類に対する吸着容量が小さく、寿命が短いという欠点がある。
この改善策として、前記の吸着剤などに低級アルデヒド類と反応する化合物、たとえば、尿素、脂肪族アミン類、芳香族アミン類などの有機化合物を担持させたものなどが提案されている。
In recent years, harmful substances and odors have been seen as problems with these lower aldehydes from the viewpoint of improving the working environment and living environment. From this viewpoint, gas, especially lower aldehydes in the air are efficiently removed. There is a strong demand for the development of adsorbents.
Conventionally, as adsorbents for lower aldehydes, activated carbon, activated alumina, silica gel and the like have been used, and among them, activated carbon has been widely used. However, these adsorbents themselves have lower properties such as formaldehyde and acetaldehyde. There are drawbacks in that the adsorption capacity for aldehydes is small and the lifetime is short.
As an improvement measure, a compound that reacts with the lower aldehydes, for example, an organic compound such as urea, aliphatic amines, aromatic amines, etc. supported on the adsorbent is proposed.

たとえば、尿素と硫酸アンモニウムなどを活性炭に担持した吸着剤(特許文献1)、ヤシガラ活性炭に尿素などの尿素系化合物の酸含有溶液を含浸、担持させた吸着剤(特許文献2)などが提案されている。
しかしながら、従来の技術による低級アルデヒド類吸着剤は、いずれも低級アルデヒド類の除去に対して満足できるものではなかった。
For example, an adsorbent in which urea and ammonium sulfate are supported on activated carbon (Patent Document 1), an adsorbent in which an acid-containing solution of a urea compound such as urea is impregnated and supported on coconut shell activated carbon (Patent Document 2), and the like have been proposed. Yes.
However, none of the conventional lower aldehyde adsorbents is satisfactory for the removal of lower aldehydes.

特開平9−313828号公報JP-A-9-313828 特開2006−272078号公報JP 2006-272078 A

本発明は、熱的に安定で、環境に対して安全であり、かつ低級アルデヒド類を長時間にわたり効率よく吸着除去することができる優れた低級アルデヒド類の吸着剤を提供することを目的としている。   An object of the present invention is to provide an excellent adsorbent for lower aldehydes that is thermally stable, safe for the environment, and can efficiently adsorb and remove lower aldehydes over a long period of time. .

本発明者は、前記従来技術の問題点に鑑み鋭意研究した結果、活性炭1g当たり尿素150〜800mgと酸性硫酸アンモニウム10〜300mgを添着させた吸着剤が、熱的に安定で、環境に対して安全であり、低級アルデヒド類を長期にわたり効率よく吸着除去することを見出した。尿素と酸性硫酸アンモニウムを添着する際に、これらの薬品を含む水溶液を30〜95℃に加温することにより、活性炭1g当たり100〜1000μLという極少量の水溶液で薬品必要量を完全に溶解できるので、所定量の尿素と酸性硫酸アンモニウムを活性炭に均一に、かつ簡単に添着することができ、しかも添着後乾燥工程なしにそのままの状態で低級アルデヒド類を非常によく吸着する吸着剤となる。   As a result of diligent research in view of the problems of the prior art, the present inventor found that an adsorbent in which 150 to 800 mg of urea and 10 to 300 mg of acidic ammonium sulfate were added per 1 g of activated carbon was thermally stable and safe for the environment. And found that the lower aldehydes can be efficiently adsorbed and removed over a long period of time. When adding urea and acidic ammonium sulfate, the required amount of chemicals can be completely dissolved in a very small amount of aqueous solution of 100 to 1000 μL per 1 g of activated carbon by heating the aqueous solution containing these chemicals to 30 to 95 ° C. Predetermined amounts of urea and acidic ammonium sulfate can be uniformly and easily attached to the activated carbon, and the adsorbent adsorbs the lower aldehyde very well as it is without any drying step after the addition.

本発明で使用される活性炭としては、木炭、コークス、石炭、ヤシ殻、樹脂などを原料として通常の方法により賦活されたものであれば、いかなるものでもよい。その形状は、破砕状、円柱状、球状、ハニカム状、繊維状などいかなるものでもよい。また、これらの活性炭の比表面積は、50m/g以上、好ましくは100〜2500m/gのものである。
活性炭は、予め酸化処理することにより低級アルデヒド類の吸着性能を著しく向上させることができる。活性炭を酸化する方法としては、たとえば、硝酸、窒素酸化物(NOx)、硫酸、硫黄酸化物(SOx)、三酸化硫黄、二酸化塩素、過酸化水素、オゾン、酸素含有ガス(たとえば、空気、燃焼排ガスなど)などの酸化剤で、液相あるいは気相で酸化するなどの方法が挙げられる。NOxやSOxなどの場合は、活性炭にNOxやSOx含有ガスの吸着、脱着を繰り返すなど方法で活性炭を酸化してもよい。また、酸素含有ガスによる気相酸化などのように活性炭に対する酸化力が弱い場合などでは、ガス中の酸素濃度にもよるが、常温以上の温度、たとえば、200℃以上、好ましくは200〜800℃、さらに好ましくは250〜600℃の温度で酸化処理を行うのが効率的である。また、大都市などの浄水場で行われているオゾン法高度浄水場で長年使用された使用済み活性炭は、液相におけるオゾン酸化でその表面に酸素含有基が多量に生成されており、このような活性炭は、本発明に有利に使用できる。
As the activated carbon used in the present invention, any activated carbon may be used as long as it is activated by a normal method using charcoal, coke, coal, coconut shell, resin, or the like as a raw material. The shape may be any shape such as a crushed shape, a columnar shape, a spherical shape, a honeycomb shape, and a fiber shape. The specific surface area of the activated carbons include, 50 m 2 / g or more, preferably 100~2500m 2 / g.
Activated carbon can be remarkably improved in the adsorption performance of lower aldehydes by oxidation treatment in advance. Examples of the method for oxidizing activated carbon include nitric acid, nitrogen oxide (NOx), sulfuric acid, sulfur oxide (SOx), sulfur trioxide, chlorine dioxide, hydrogen peroxide, ozone, oxygen-containing gas (for example, air, combustion) For example, oxidation may be performed in a liquid phase or a gas phase with an oxidizing agent such as exhaust gas. In the case of NOx, SOx, etc., the activated carbon may be oxidized by a method such as repeated adsorption and desorption of NOx and SOx-containing gas on the activated carbon. In addition, when the oxidizing power for activated carbon is weak, such as gas phase oxidation with an oxygen-containing gas, the temperature is higher than room temperature, for example, 200 ° C. or higher, preferably 200 to 800 ° C., depending on the oxygen concentration in the gas. More preferably, it is efficient to perform the oxidation treatment at a temperature of 250 to 600 ° C. In addition, spent activated carbon used for many years at ozone treatment plants used in water treatment plants in large cities, etc. has produced a large amount of oxygen-containing groups on its surface due to ozone oxidation in the liquid phase. Such activated carbon can be advantageously used in the present invention.

このような酸化処理によって活性炭表面に酸素含有基が生成する。本発明での酸化処理において、活性炭に対するこれらの酸化剤使用量は、処理方法や酸化条件(たとえば、処理温度、時間など)などにもよるが、通常、活性炭1g当り酸素原子換算量で10mg以上、好ましくは、20mg以上、より好ましくは、30〜2000mgである。
これらの酸化処理により、活性炭表面に、例えばカルボニル基、カルボキシル基、フェノール性水酸基などの酸素含有基が生成される。この表面酸素含有基は、酸素原子として活性炭全体の1重量%以上、好ましくは、2重量%以上より好ましくは3〜80重量%である。
Such an oxidation treatment produces oxygen-containing groups on the activated carbon surface. In the oxidation treatment of the present invention, the amount of these oxidizing agents used for activated carbon depends on the treatment method and oxidation conditions (for example, treatment temperature, time, etc.), but is usually 10 mg or more in terms of oxygen atom per gram of activated carbon. The amount is preferably 20 mg or more, and more preferably 30 to 2000 mg.
By these oxidation treatments, for example, oxygen-containing groups such as a carbonyl group, a carboxyl group, and a phenolic hydroxyl group are generated on the activated carbon surface. This surface oxygen-containing group is 1% by weight or more, preferably 2% by weight or more, more preferably 3 to 80% by weight of the activated carbon as oxygen atoms.

本発明では、活性炭1g当たり尿素を150〜800mg、好ましくは200〜500mgと酸性硫酸アンモニウムを10〜300mg、好ましくは10〜200mgを添着するのが特徴の1つである。このようにすることによって、低級アルデヒド類の吸着性能が飛躍的に向上する。また、活性炭に尿素と酸性硫酸アンモニウムを添着する際にこれらの薬品を含む水溶液を30〜95℃に加温することも本発明の特徴の一つである。この加温によって活性炭1g当たり100〜1000μLという極少量の水溶液に薬品の必要量を完全に溶解できるので、水溶液を加温下で活性炭に接触させることによって、多量の尿素と酸性硫酸アンモニウムを短時間に活性炭に均一に添着することができ、かつ添着後乾燥しなくてもそのままで低級アルデヒド類を非常によく吸着する吸着剤となり得ることも本発明の大きな特徴である。
本発明に用いる酸性硫酸アンモニウムは、化学式(NH)HSOで表すことができるもので、市場での入手が可能であるが、硫酸と硫酸アンモニウムとの反応生成物、硫酸とアンモニア水と中和反応生成物をそのまま用いることできる。酸性硫酸アンモニウムとして中和反応生成物をそのまま使用する場合には、硫酸を中和反応に必要な理論量よりも過剰に用いることによって得られた吸着剤は、理論量を用いた場合よりも低級アルデヒドの吸着性能、特に初期の吸着性能が向上することも見出した。硫酸の過剰量は、理論量の1.2〜20倍量、好ましくは、1.2〜15倍量である。
In the present invention, 150 to 800 mg, preferably 200 to 500 mg of urea and 10 to 300 mg, preferably 10 to 200 mg of acidic ammonium sulfate are added per 1 g of activated carbon. By doing in this way, the adsorption | suction performance of a lower aldehyde is improved dramatically. It is also one of the features of the present invention that an aqueous solution containing these chemicals is heated to 30 to 95 ° C. when urea and acidic ammonium sulfate are added to activated carbon. This heating can completely dissolve the required amount of chemicals in a very small amount of aqueous solution of 100 to 1000 μL per gram of activated carbon. By bringing the aqueous solution into contact with activated carbon under heating, a large amount of urea and acidic ammonium sulfate can be dissolved in a short time. It is a major feature of the present invention that it can be uniformly attached to activated carbon and can be an adsorbent that adsorbs lower aldehydes very well without being dried after the addition.
The acidic ammonium sulfate used in the present invention can be represented by the chemical formula (NH 4 ) HSO 4 and can be obtained on the market. However, the reaction product of sulfuric acid and ammonium sulfate, sulfuric acid and aqueous ammonia, and neutralization reaction The product can be used as is. When the neutralization reaction product is used as it is as acidic ammonium sulfate, the adsorbent obtained by using sulfuric acid in excess of the theoretical amount necessary for the neutralization reaction is lower than the case where the theoretical amount is used. It has also been found that the adsorption performance, particularly the initial adsorption performance, is improved. The excess amount of sulfuric acid is 1.2 to 20 times, preferably 1.2 to 15 times the theoretical amount.

本発明の低級アルデヒド類吸着剤は、尿素と酸性硫酸アンモニウムを含む水溶液を30〜95℃に加温して活性炭にこれらの薬品を添着することによって容易に得られる。尿素と酸性硫酸アンモニウムを含む水溶液の加温は直接的あるいは間接的に行うことができる。尿素と酸性硫酸アンモニウムを含む水溶液を30〜95℃に加温する時間は、特に限定されず、尿素と酸性硫酸アンモニウムを含む水溶液の温度が所定の温度になればよい。尿素と酸性硫酸アンモニウムを含む水溶液の温度が95℃を越えるとこれらの薬品が変質したり、多量の水蒸気が発生したりするので好ましくない。また、30℃より低くなると薬品を完全に溶解させることが出来ない場合がある。   The lower aldehyde adsorbent of the present invention can be easily obtained by heating an aqueous solution containing urea and acidic ammonium sulfate to 30 to 95 ° C. and attaching these chemicals to activated carbon. Heating of an aqueous solution containing urea and acidic ammonium sulfate can be performed directly or indirectly. The time for heating the aqueous solution containing urea and acidic ammonium sulfate to 30 to 95 ° C. is not particularly limited as long as the temperature of the aqueous solution containing urea and acidic ammonium sulfate becomes a predetermined temperature. If the temperature of the aqueous solution containing urea and acidic ammonium sulfate exceeds 95 ° C., these chemicals are altered and a large amount of water vapor is generated, which is not preferable. Moreover, when it becomes lower than 30 degreeC, a chemical | medical agent may not be able to be dissolved completely.

本発明における除去対象の低級アルデヒド類は、炭素数が6以下で沸点が100℃以下のアルデヒド、例えばホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、アクロレイン、3−メチル−ブチルアルデヒドを指すが、代表的なものはホルムアルデヒドとアセトアルデヒドである。
本発明においては、上記のようにして得られたアルデヒド類吸着剤を空間内、装置内などに存在させて、アルデヒド類を効率よく除去する方法などが含まれる。アルデヒド類吸着剤を空間内に存在させる場合には、たとえば、アルデヒド類吸着剤をシート状などにしたり、建材に含ませたり、通常行われる方法などが挙げられる。また、装置内などに存在させる場合は、塔、容器などに充填したりして、これらにアルデヒド類を含むガスを通気する方法などが考えられる。
The lower aldehydes to be removed in the present invention refer to aldehydes having 6 or less carbon atoms and a boiling point of 100 ° C. or less, such as formaldehyde, acetaldehyde, propionaldehyde, acrolein, and 3-methyl-butyraldehyde. Formaldehyde and acetaldehyde.
The present invention includes a method for efficiently removing aldehydes by allowing the aldehyde adsorbent obtained as described above to exist in a space or in an apparatus. In the case where the aldehyde adsorbent is present in the space, for example, the aldehyde adsorbent may be formed into a sheet shape, included in a building material, or a method that is usually performed. Moreover, when it exists in an apparatus etc., the method etc. which fill a tower, a container, etc., and ventilate the gas containing aldehydes to these are considered.

本発明のアルデヒド吸着剤は、それを使用する常温付近では、無臭で、かつ化学的及び熱的に安定な固体薬品である、尿素と酸性硫酸アンモニウムを活性炭に添着するので、熱的に安定で、環境に対して安全であり、かつ低級アルデヒド類を長時間にわたり効率よく吸着除去することができ、従来の低級アルデヒド吸着剤に比べて非常に優れた低級アルデヒド類の吸着剤である。   The aldehyde adsorbent of the present invention is thermally stable because it adds urea and acidic ammonium sulfate, which are odorless and chemically and thermally stable solid chemicals, to the activated carbon near the normal temperature at which it is used. It is an environment-friendly adsorbent for lower aldehydes, and can adsorb and remove lower aldehydes efficiently over a long period of time, which is very superior to conventional lower aldehyde adsorbents.

以下に実施例をあげて、本発明を具体的に説明する。   The present invention will be specifically described with reference to the following examples.

8〜32メッシュの瀝青炭系活性炭A(BET比表面積1150m/g)に対して下記のような処理を施して尿素と各種の無機塩を均一に添着した試料を作成した。
試料No.1:水400μLに尿素150mgと酸性硫酸アンモニウム200mgを入れ、80℃に加温してこれらを完全に溶解し、この水溶液に活性炭A1gを入れてよく混合し均一に添着して、大気中に12時間放置した。
試料No.2:No.1において、尿素500mgと酸性硫酸アンモニウム15mgを用い、95℃に加温して調製した。
試料No.3:試料No.1において、尿素300mgと酸性硫酸アンモニウム40mgを用い、60℃に加温して調製した。
試料No.4:試料No.1において、尿素150mgと酸性硫酸アンモニウム10mgを用い、35℃に加温して調製した。
試料No.5:試料No.1において、尿素350mgと酸性硫酸アンモニウム20mgを用い、70℃に加温して調製した。
試料No.6:試料No.1において、尿素200mgと酸性硫酸アンモニウム25mgを用い、40℃に加温して調製した。
試料No.7:試料No.1において、尿素150mgと硫酸アンモニウム15mgを用い、60℃に加温して調製した。
試料No.8:水2000μLに尿素150mgと酸性硫酸アンモニウム15mgを入れ、25℃でこれらを溶解して、活性炭A1gを浸漬し、24時間浸漬した後、ろ過して、100℃で3時間乾燥し、試料を調製した。
これらの各試料200mgを3Lのテトラバッグに量り込み、空気で満たした。各テトラバッグに所定量のアセトアルデヒド水溶液を注入して、各テトラバッグ中のアセトアルデヒド濃度(C)を650ppmとした。24時間後の各テトラバッグ中のアセトアルデヒド濃度(C)を測定した。アセトアルデヒド除去性能として次式で求めた値を表1に示した。
アセトアルデヒド除去性能=(1−C/C)×100(%)
The following treatment was applied to 8-32 mesh bituminous coal-based activated carbon A (BET specific surface area 1150 m 2 / g) to prepare a sample in which urea and various inorganic salts were uniformly added.
Sample No. 1: Into 400 μL of water, 150 mg of urea and 200 mg of acidic ammonium sulfate were added and heated to 80 ° C. to completely dissolve them. In this aqueous solution, 1 g of activated carbon A was mixed well and uniformly mixed. For 12 hours.
Sample No. 2: Prepared by heating to 95 ° C. using 500 mg of urea and 15 mg of acidic ammonium sulfate in No. 1.
Sample No. 3: Prepared by heating 300 ° C. and heating to 60 ° C. in sample No. 1, using 300 mg of urea and 40 mg of acidic ammonium sulfate.
Sample No. 4: Prepared by heating 150 mg of urea and 10 mg of acidic ammonium sulfate in sample No. 1 to 35 ° C.
Sample No. 5: Prepared by heating to 70 ° C. using 350 mg of urea and 20 mg of acidic ammonium sulfate in sample No. 1.
Sample No. 6: Sample No. 1 was prepared by using 200 mg of urea and 25 mg of acidic ammonium sulfate and heating to 40 ° C.
Sample No. 7: Sample No. 1 was prepared by heating to 60 ° C. using 150 mg of urea and 15 mg of ammonium sulfate.
Sample No. 8: Put 150 mg of urea and 15 mg of acidic ammonium sulfate in 2000 μL of water, dissolve them at 25 ° C., soak 1 g of activated carbon A, soak for 24 hours, filter, and dry at 100 ° C. for 3 hours. Samples were prepared.
200 mg of each of these samples was weighed into a 3 L tetrabag and filled with air. A predetermined amount of acetaldehyde aqueous solution was injected into each tetrabag to adjust the acetaldehyde concentration (C 0 ) in each tetrabag to 650 ppm. The acetaldehyde concentration (C) in each tetrabag after 24 hours was measured. The values obtained by the following formula as acetaldehyde removal performance are shown in Table 1.
Acetaldehyde removal performance = (1-C / C 0 ) × 100 (%)

Figure 2010240605
この結果から、本発明の吸着剤(No.1〜6)は、水400μLに尿素150〜500mgと酸性硫酸アンモニウム10〜200mgを入れ、35〜95℃に加温してこれらを完全に溶解し、活性炭A1gに均一に添着し、大気中で12時間放置して、得られた吸着剤である。これらの吸着剤のアセトアルデヒド除去性能は、すべて100%となり非常に良好であった。
これに対して、対照の吸着剤No.7は、尿素150mgと硫酸アンモニウム15mgを水400μLに入れ、60℃に加温してこれらを完全に溶解し、活性炭A1gに均一に添着し、大気中で12時間放置して得られたものであるが、アセトアルデヒドの除去性能は、85%と非常に低かった。
また、対照の吸着剤No.8は、従来技術よるアルデヒド吸着剤の調製法で、添着斑を防止するために、多量の水(2000μL)に尿素150mgと酸性硫酸アンモニウム15mgを入れ、25℃でこれらを溶解して、活性炭を24時間浸漬、ろ過、高温乾燥してでき上がったものである。従ってこの吸着剤は、ろ過操作により使用各品の一部が流出したため、活性炭Aに添着された尿素は95mg/g、酸性硫酸アンモニウムは9.1mg/gであった。即ち吸着剤No.8は本発明と同じ薬品を使用したにもかかわらず、水溶液量やその添着時の温度が異なるうえ、ろ過により薬品の一部が流出のために担着量も少なくなり、除去性能は75%と低下した。
Figure 2010240605
From this result, the adsorbent (Nos. 1 to 6) of the present invention is obtained by adding 150 to 500 mg of urea and 10 to 200 mg of acidic ammonium sulfate in 400 μL of water and heating them to 35 to 95 ° C. to completely dissolve them. The adsorbent obtained was uniformly attached to 1 g of activated carbon A and left in the atmosphere for 12 hours. The acetaldehyde removal performance of these adsorbents was 100% and was very good.
In contrast, the control adsorbent No. 7 was prepared by placing 150 mg of urea and 15 mg of ammonium sulfate in 400 μL of water, heating them to 60 ° C., completely dissolving them, and evenly adhering them to 1 g of activated carbon A. Although it was obtained by leaving it for 12 hours, the removal performance of acetaldehyde was very low at 85%.
In addition, the control adsorbent No. 8 is a preparation method of aldehyde adsorbent according to the prior art, and in order to prevent adhering spots, 150 mg of urea and 15 mg of acidic ammonium sulfate are put in a large amount of water (2000 μL), and these are added at 25 ° C. And activated carbon was immersed for 24 hours, filtered and dried at high temperature. Therefore, as for this adsorbent, since a part of each used product flowed out by filtration operation, urea adhering to activated carbon A was 95 mg / g, and acidic ammonium sulfate was 9.1 mg / g. That is, the adsorbent No. 8 uses the same chemical as that of the present invention, but the amount of aqueous solution and the temperature at the time of attachment are different, and the amount of adhering is reduced due to some of the chemical flowing out by filtration. Removal performance decreased to 75%.

実施例1の各試料50mgを3Lのテトラバッグに量り込み、空気で満たした。各テトラバッグに所定量のホルムアルデヒド水溶液を注入して、各テトラバッグ中のホルムアルデヒド濃度(C)を300ppmとした。24時間後の各テトラバッグ中のホルムアルデヒド濃度(C)を測定した。ホルムアルデヒド除去性能として次式で求めた値を表2に示した。
ホルムアルデヒド除去性能=(1−C/C)×100(%)
50 mg of each sample of Example 1 was weighed into a 3 L tetra bag and filled with air. A predetermined amount of an aqueous formaldehyde solution was injected into each tetra bag to adjust the formaldehyde concentration (C 0 ) in each tetra bag to 300 ppm. The formaldehyde concentration (C) in each tetrabag after 24 hours was measured. Table 2 shows the value obtained by the following formula as the formaldehyde removal performance.
Formaldehyde removal performance = (1-C / C 0 ) × 100 (%)

Figure 2010240605
この試験においても、実施例1と同様な結果が得られた。
Figure 2010240605
In this test, the same result as in Example 1 was obtained.

実施例1の瀝青炭系活性炭Aの各30gを55mmφの石英ガラス管に充填して、それぞれ250、400、500、および600℃の各温度でO−10.0vol%含有のNガスを線流速5cm/秒で20分間流通した後、Nガス中で常温まで冷却して、活性炭B、C、DおよびEを得た。
酸化処理をした活性炭B、C、DおよびEについて、次の方法で測定した表面酸化物又は酸素含有基に起因する表面酸素量は、それぞれ5.5重量%、8.9重量%、12.3重量%および16.1重量%であった。なお、酸化処理をしない活性炭Aの酸素量は0.7重量%であった。
By filling each 30g of bituminous coal-based activated carbon A Example 1 in a quartz glass tube 55Mmfai, lines the O 2 -10.0vol% content of N 2 gas at each temperature, respectively 250,400,500, and 600 ° C. After flowing for 20 minutes at a flow rate of 5 cm / sec, the mixture was cooled to room temperature in N 2 gas to obtain activated carbon B, C, D, and E.
For the activated carbons B, C, D and E subjected to oxidation treatment, the surface oxygen amounts attributable to the surface oxides or oxygen-containing groups measured by the following method were 5.5% by weight, 8.9% by weight, and 12. 3 wt% and 16.1 wt%. The oxygen content of the activated carbon A that was not oxidized was 0.7% by weight.

活性炭の表面酸素量の測定法
直径20mm×長さ1,000mmの石英カラムに試料活性炭3gを入れ、試料の前後は十分に乾燥させた石英ガラスウールに固定し、電気環状炉にセットした。また石英カラムにはゴム栓で前後に蓋をして窒素を導入するための孔と排出するための孔を空ける。100mL/分の流速で窒素を石英カラムに流しながら、100℃まで加熱昇温し、次いで、出口ガスをテトラバックに接続し、400℃/時間の昇温速度で900℃まで加熱昇温した。900℃になってから、さらに30分間900℃で保持した後、テトラバックを外し、捕集したガス量を測定するとともに、捕集されたガスにおけるCOとCO2の総濃度を、メタンコンバータ付きのFID検出器付ガスクロマトグラフィーで測定し、表面酸素量を算出した。
水400μLに尿素250mgと酸性硫酸アンモニウム40mgを入れ、80℃に加温してこれらを完全に溶解し、活性炭AおよびB、C、DおよびEの各1gに対して均一に添着し、大気中で12時間放置した。これらの各試料100mgを3Lのテトラバッグに量り込み、空気で満たした。各テトラバッグに所定量のアセトアルデヒド水溶液を注入して、各テトラバッグ中のアセトアルデヒド濃度(C)を650ppmとした。24時間後の各テトラバッグ中のアセトアルデヒド濃度(C)を測定した。アセトアルデヒド除去性能として次式で求めた値を表3に示した。
アセトアルデヒド除去性能=(1−C/C)×100(%)
Method for measuring surface oxygen content of activated carbon 3 g of sample activated carbon was put in a quartz column having a diameter of 20 mm and a length of 1,000 mm, and the sample was fixed on quartz glass wool that had been sufficiently dried before and after the sample, and set in an electric annular furnace. In addition, the quartz column has a hole for introducing nitrogen and a hole for discharging nitrogen by capping the front and back with rubber stoppers. While flowing nitrogen through the quartz column at a flow rate of 100 mL / min, the temperature was raised to 100 ° C., and then the outlet gas was connected to a tetra-buck and heated to 900 ° C. at a rate of 400 ° C./hour. After reaching 900 ° C., hold at 900 ° C. for another 30 minutes, then remove the tetraback, measure the amount of gas collected, and add the total concentration of CO and CO 2 in the collected gas with a methane converter. The amount of surface oxygen was calculated by gas chromatography with a FID detector.
In 400 μL of water, 250 mg of urea and 40 mg of acidic ammonium sulfate were added, heated to 80 ° C. to completely dissolve them, and uniformly attached to 1 g of each of activated carbon A and B, C, D and E, and in the atmosphere Left for 12 hours. 100 mg of each of these samples was weighed into a 3 L tetrabag and filled with air. A predetermined amount of acetaldehyde aqueous solution was injected into each tetrabag to adjust the acetaldehyde concentration (C 0 ) in each tetrabag to 650 ppm. The acetaldehyde concentration (C) in each tetrabag after 24 hours was measured. Table 3 shows values obtained by the following formula as acetaldehyde removal performance.
Acetaldehyde removal performance = (1-C / C 0 ) × 100 (%)

Figure 2010240605
表3から明らかなように活性炭を酸素酸化処理することによって、アセトアルデヒドの除去性能が著しく向上することがわかる。
Figure 2010240605
As is apparent from Table 3, it can be seen that the removal performance of acetaldehyde is remarkably improved by subjecting the activated carbon to oxygen oxidation treatment.

内径94mmφのアクリル製カラムに8〜32メッシュのヤシ殻系活性炭F(BET比表面積1200m/g)100mLをステンレス金網容器に入れて、活性炭充填層を形成した。この活性炭層にオゾン約180ppm含有の空気を流量5L/分で25日間流通し、気相でのオゾン酸化処理活性炭Gを得た。活性炭FおよびGの表面酸素量は、それぞれ0.5重量%および12.5重量%であった。
活性炭FおよびGについて実施例3と同様な方法で、水400μLに尿素250mgと酸性硫酸アンモニウム25mgを入れ、80℃に加温してこれらを完全に溶解し、活性炭FおよびGの各1gに対して均一に添着し、大気中で12時間放置した。
このようにして得られた各試料100mgについて、実施例3と同様な方法でアセトアルデヒド除去性能を測定した。その結果を表4に示した。
100 mL of 8-32 mesh coconut shell activated carbon F (BET specific surface area 1200 m 2 / g) was placed in an acrylic column having an inner diameter of 94 mmφ in a stainless wire mesh container to form an activated carbon packed bed. Air containing about 180 ppm of ozone was circulated through the activated carbon layer at a flow rate of 5 L / min for 25 days to obtain ozone-oxidized activated carbon G in the gas phase. The surface oxygen amounts of the activated carbons F and G were 0.5% by weight and 12.5% by weight, respectively.
For activated carbon F and G, in the same manner as in Example 3, 250 mg of urea and 25 mg of acidic ammonium sulfate were added to 400 μL of water and heated to 80 ° C. to completely dissolve them. It was uniformly applied and left in the atmosphere for 12 hours.
About 100 mg of each sample thus obtained, the acetaldehyde removal performance was measured in the same manner as in Example 3. The results are shown in Table 4.

Figure 2010240605
表4からも明らかなとおり、活性炭をオゾン酸化することによってアセトアルデヒド除去性能が向上する。
Figure 2010240605
As apparent from Table 4, the acetaldehyde removal performance is improved by ozone oxidation of the activated carbon.

500mLのビーカーに5重量%の過酸化水素水100mLを入れ、80℃の水浴中で80℃に加熱した。この過酸化水素水に実施例1の瀝青炭系活性炭A10gを入れて攪拌しながら30分間酸化した。酸化後の活性炭をろ過して100℃で乾燥した。酸化処理をした活性炭Hの表面酸素量は、8.5重量%であった。
活性炭FおよびGについて実施例3と同様な方法で、水400μLに尿素300mgと酸性硫酸アンモニウム40mgを入れ、80℃に加温してこれらを完全に溶解し、活性炭AおよびHの各1gに対して均一に添着し、大気中で12時間放置した。
このようにして得られた各試料100mgについて、実施例3と同様な方法でアセトアルデヒド除去性能を測定した。その結果を表5に示した。
A 500 mL beaker was charged with 100 mL of 5 wt% hydrogen peroxide and heated to 80 ° C in an 80 ° C water bath. In this hydrogen peroxide solution, 10 g of the bituminous coal-based activated carbon A of Example 1 was added and oxidized for 30 minutes while stirring. The oxidized activated carbon was filtered and dried at 100 ° C. The surface oxygen amount of the activated carbon H subjected to the oxidation treatment was 8.5% by weight.
For activated carbons F and G, in the same manner as in Example 3, 300 mg of urea and 40 mg of acidic ammonium sulfate were placed in 400 μL of water and heated to 80 ° C. to completely dissolve them. It was uniformly applied and left in the atmosphere for 12 hours.
About 100 mg of each sample thus obtained, the acetaldehyde removal performance was measured in the same manner as in Example 3. The results are shown in Table 5.

Figure 2010240605
表5から明らかなように、過酸化水素酸化処理による効果が発揮されていることが明らかである。
Figure 2010240605
As is clear from Table 5, it is clear that the effect of the hydrogen peroxide oxidation treatment is exhibited.

実施例1の8〜32メッシュの瀝青炭系活性炭Aをオゾン法高度浄水処理場で3年間使用し、液相でオゾン酸化された活性炭を110℃で1時間乾燥した。この使用済み活性炭Iの表面酸素量は25.6重量%であった。
活性炭Aおよび活性炭Iについて実施例3と同様な方法で、水400μLに尿素300mgと酸性硫酸アンモニウム40mgを入れ、80℃に加温してこれらを完全に溶解し、活性炭Aおよび活性炭Iの各1gに対して均一に添着し、大気中で12時間放置した。
このようにして得られた各試料100mgについて、実施例3と同様な方法でアセトアルデヒド除去性能を測定した。その結果を表6に示した。
The 8-32 mesh bituminous coal-based activated carbon A of Example 1 was used in an ozone process advanced water purification plant for 3 years, and the activated carbon oxidized in the liquid phase was dried at 110 ° C. for 1 hour. The surface oxygen content of this used activated carbon I was 25.6% by weight.
For activated carbon A and activated carbon I, in the same manner as in Example 3, 300 mg of urea and 40 mg of acidic ammonium sulfate were added to 400 μL of water and heated to 80 ° C. to completely dissolve them. On the other hand, it was uniformly applied and left in the atmosphere for 12 hours.
About 100 mg of each sample thus obtained, the acetaldehyde removal performance was measured in the same manner as in Example 3. The results are shown in Table 6.

Figure 2010240605
オゾン法高度浄水処理場で使用された活性炭には、表面酸素量が賦与されており、アセトアルデヒド除去性能を著しく向上させることが確認できた。
Figure 2010240605
The activated carbon used in the ozone process advanced water treatment plant was given a surface oxygen content, and it was confirmed that the acetaldehyde removal performance was remarkably improved.

2660μLの水に3モル/Lの硫酸1161μL(HSOとして341mg含有)と5モル/Lのアンモニア水696μL(NHOHとして122mg含有)を加え常温で5分間攪拌して中和反応を完結させ、酸性硫酸アンモニウム400mgを生成させた。この水溶液に尿素3000mgを入れ、80℃に加温した後、2mmφの無煙炭系円柱状活性炭J(BET比表面積950m/g)の10gに添着し、大気中で12時間放置した試料No.9を調製した。
この試料200mgについて、実施例1と同様な方法でアセトアルデヒド除去性能を測定した結果、アセトアルデヒド除去率は、100%であった。この試料は、実施例1の試料No.3(活性炭1g当たりに尿素300mgと酸性硫酸アンモニウム40mgを添着したもの)と同様に非常に優れたアセトアルデヒド除去性能を発揮した。
1162 μL of 3 mol / L sulfuric acid (containing 341 mg as H 2 SO 4 ) and 696 μL of 5 mol / L aqueous ammonia (containing 122 mg as NH 4 OH) were added to 2660 μL of water, and the mixture was stirred at room temperature for 5 minutes for neutralization reaction. Upon completion, 400 mg of acidic ammonium sulfate was produced. After adding 3000 mg of urea to this aqueous solution and heating to 80 ° C., the sample was attached to 10 g of 2 mmφ anthracite-based cylindrical activated carbon J (BET specific surface area 950 m 2 / g) and left in the atmosphere for 12 hours. Was prepared.
With respect to 200 mg of this sample, the acetaldehyde removal performance was measured by the same method as in Example 1. As a result, the acetaldehyde removal rate was 100%. This sample exhibited very excellent acetaldehyde removal performance in the same manner as the sample No. 3 of Example 1 (in which 300 mg of urea and 40 mg of acidic ammonium sulfate were added per 1 g of activated carbon).

実施例7において、3モル/Lの硫酸1161μL(HSOとして341mg含有)の代わりに3モル/Lの硫酸1625μL(HSOとして478mg含有)を用いた。本実施例では、硫酸量を中和反応に必要な理論量の1.4倍量として、実施例7と同様に試料No.10を調製した。本試料と実施例7の試料No.9の各100mgを3Lのテトラバッグに量り込み、空気で満たした。各テトラバッグに所定量のアセトアルデヒド水溶液を注入して、各テトラバッグ中のアセトアルデヒド濃度(C)を650ppmとした。3時間後と24時間後の各テトラバッグ中のアセトアルデヒド濃度(C)をそれぞれ測定した。アセトアルデヒド除去性能として3時間値と24時間値を次式で求めて、表7に示した。
アセトアルデヒド除去性能=(1−C/C)×100(%)
In Example 7, it was used (478 mg containing as H 2 SO 4) 3 moles / L of 1625μL sulfate in place of 3 mol / L of 1161μL sulfate (341 mg containing as H 2 SO 4). In this example, sample No. 10 was prepared in the same manner as in Example 7 with the sulfuric acid amount being 1.4 times the theoretical amount necessary for the neutralization reaction. 100 mg of each of this sample and sample No. 9 of Example 7 was weighed into a 3 L tetra bag and filled with air. A predetermined amount of acetaldehyde aqueous solution was injected into each tetrabag to adjust the acetaldehyde concentration (C 0 ) in each tetrabag to 650 ppm. The acetaldehyde concentration (C) in each tetrabag after 3 hours and 24 hours was measured. The 3-hour value and 24-hour value as acetaldehyde removal performance were determined by the following formula and are shown in Table 7.
Acetaldehyde removal performance = (1-C / C 0 ) × 100 (%)

Figure 2010240605
本結果から、硫酸を中和反応に必要な理論量よりも1.4倍量過剰に用いることによって、出来上がった吸着剤は、理論量を用いた場合よりもアセトアルデヒドの吸着性能、特に初期の吸着性能(3時間値)が非常に向上することが判明した。
Figure 2010240605
From this result, by using sulfuric acid in excess of the theoretical amount necessary for the neutralization reaction by 1.4 times, the resulting adsorbent has better acetaldehyde adsorption performance, especially the initial adsorption than the theoretical amount. It was found that the performance (3 hour value) was greatly improved.

実施例7と同様の方法で、3920μLの水に3モル/Lの硫酸580μL(HSOとして171mg含有)と硫酸アンモニウム229mgを加え常温で5分間攪拌して反応を完結させ、酸性硫酸アンモニウム400mgを生成させた。この水溶液に尿素3000mgを入れ、80℃に加温した後、2mmφの無煙炭系円柱状活性炭J(BET比表面積950m/g)の10gに添着し、大気中で12時間放置した試料No.11を調製した。
この試料200mgについて、実施例8と同様な方法でアセトアルデヒド除去性能として3時間値と24時間値を測定した。その結果、3時間値の除去率は、98%で、24時間値の除去率は、100%で、いずれも良好であった。
In the same manner as in Example 7, 580 μL of 3 mol / L sulfuric acid (containing 171 mg as H 2 SO 4 ) and 229 mg of ammonium sulfate were added to 3920 μL of water and stirred at room temperature for 5 minutes to complete the reaction, and 400 mg of acidic ammonium sulfate was added. Generated. After adding 3000 mg of urea to this aqueous solution and heating to 80 ° C., it was attached to 10 g of 2 mmφ anthracite columnar activated carbon J (BET specific surface area 950 m 2 / g), and left in the atmosphere for 12 hours Sample No. 11 Was prepared.
About 200 mg of this sample, a 3-hour value and a 24-hour value were measured as acetaldehyde removal performance in the same manner as in Example 8. As a result, the removal rate for the 3-hour value was 98%, and the removal rate for the 24-hour value was 100%.

本発明に係る低級アルデヒドの吸着剤は、ホルムアルデヒドやアセトアルデヒドなどのアルデヒド類が発生する工場、医療施設、下水処理場、喫煙室などで用いることにより、それらの低級アルデヒド類を極めて効率よく吸着除去することができる。   The lower aldehyde adsorbent according to the present invention is used in factories, medical facilities, sewage treatment plants, smoking rooms, and the like where aldehydes such as formaldehyde and acetaldehyde are generated, so that these lower aldehydes are adsorbed and removed very efficiently. be able to.

Claims (6)

活性炭1g当たり尿素を150〜800mg及び酸性硫酸アンモニウムを10〜300mg添着させた低級アルデヒド類吸着剤。 A lower aldehyde adsorbent containing 150 to 800 mg of urea and 10 to 300 mg of acidic ammonium sulfate per gram of activated carbon. 活性炭が予め酸化処理した活性炭である請求項1記載の低級アルデヒド類吸着剤。 2. The lower aldehyde adsorbent according to claim 1, wherein the activated carbon is activated carbon previously oxidized. 酸性硫酸アンモニウムが、硫酸と水酸化アンモニウムとの中和反応生成物である請求項1記載の低級アルデヒド類吸着剤。 The lower aldehyde adsorbent according to claim 1, wherein the acidic ammonium sulfate is a neutralization reaction product of sulfuric acid and ammonium hydroxide. 硫酸と水酸化アンモニウムとの中和反応生成物が水酸化アンモニウムに対して硫酸を理論量の1.2〜20倍量使用したものである請求項3記載の低級アルデヒド類吸着剤。 4. The lower aldehyde adsorbent according to claim 3, wherein the neutralization reaction product of sulfuric acid and ammonium hydroxide uses sulfuric acid in an amount of 1.2 to 20 times the theoretical amount with respect to ammonium hydroxide. 活性炭に、尿素と酸性硫酸アンモニウムを溶解した30〜95℃の水溶液を接触させて、活性炭1g当たり尿素150〜800mgと酸性硫酸アンモニウム10〜300mgを添着させる低級アルデヒド類吸着剤の製造法。 A method for producing a lower aldehyde adsorbent in which an activated carbon is contacted with an aqueous solution of 30 to 95 ° C. in which urea and acidic ammonium sulfate are dissolved, and 150 to 800 mg of urea and 10 to 300 mg of acidic ammonium sulfate are added per 1 g of activated carbon. 活性炭1g当たり、尿素150〜800mgと酸性硫酸アンモニウム10〜300mgを溶解した100〜1000μLの水溶液を30〜95℃に加温して接触させる請求項5記載の低級アルデヒド類吸着剤の製造法。 The method for producing a lower aldehyde adsorbent according to claim 5, wherein 100 to 1000 µL of an aqueous solution in which 150 to 800 mg of urea and 10 to 300 mg of acidic ammonium sulfate are dissolved is heated to 30 to 95 ° C per 1 g of activated carbon.
JP2009093846A 2009-04-08 2009-04-08 Adsorbent for lower aldehydes and method for producing the adsorbent Pending JP2010240605A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009093846A JP2010240605A (en) 2009-04-08 2009-04-08 Adsorbent for lower aldehydes and method for producing the adsorbent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009093846A JP2010240605A (en) 2009-04-08 2009-04-08 Adsorbent for lower aldehydes and method for producing the adsorbent

Publications (1)

Publication Number Publication Date
JP2010240605A true JP2010240605A (en) 2010-10-28

Family

ID=43094276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009093846A Pending JP2010240605A (en) 2009-04-08 2009-04-08 Adsorbent for lower aldehydes and method for producing the adsorbent

Country Status (1)

Country Link
JP (1) JP2010240605A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012230096A (en) * 2011-04-13 2012-11-22 Eiko:Kk Method of adsorbing radioactive cesium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012230096A (en) * 2011-04-13 2012-11-22 Eiko:Kk Method of adsorbing radioactive cesium

Similar Documents

Publication Publication Date Title
JP2008238163A (en) Removal method of mercury vapor in gas
JP4452935B1 (en) Lower aldehyde adsorbent and process for producing the same
JP2009056449A (en) Lower aldehyde adsorbent
JP4484232B1 (en) Adsorbent for lower aldehydes and process for producing the same
JP2010201360A (en) Adsorbent for lower aldehydes and method for producing the same
JP2010172871A (en) Adsorbent of lower aldehydes and method for manufacturing the same
JP4139486B2 (en) Lower aldehyde adsorbent
JP2006272078A (en) Absorbent for aldehydes, its manufacturing method and method for removing aldehyde in gas using adsorbent
JP2010240605A (en) Adsorbent for lower aldehydes and method for producing the adsorbent
JP2009247978A (en) Adsorbent for lower aldehydes
JP2005288380A (en) Gas processing method
JP2010137113A (en) Adsorbent for lower aldehyde, and method of producing the same
CN108889298A (en) The preparation method of the coal-tar base carbon material catalyst of nitrogen oxides and mercury in removing coal-fired flue-gas can be combined
JP4278495B2 (en) Compound odor deodorant
JP3634263B2 (en) Method for producing deodorant
CN102273730A (en) Absorbent for reducing content of hydrocyanic acid in mainstream smoke of cigarette and preparation method thereof
JP4617622B2 (en) Production method of adsorbent
JP2009279522A (en) Oxide catalyst and method for preparing oxide catalyst, as well as deodorant and deodorizing filter
JP2010017679A (en) Absorbent of lower aldehyde
JP6512855B2 (en) Composition for supporting iodine, deodorant prepared using the composition, method for producing the same, and method for deodorizing using the same
CN204017610U (en) A kind of equipment for treating industrial waste gas
JP2010005584A (en) Adsorbent for lower aldehydes
JP3318607B2 (en) New selective NH3 deodorization method
JP4778695B2 (en) Deodorizing adsorbent
JP4728614B2 (en) Deodorizing adsorbent and deodorizing method