JP6607422B1 - Formaldehyde scavenger - Google Patents

Formaldehyde scavenger Download PDF

Info

Publication number
JP6607422B1
JP6607422B1 JP2019019666A JP2019019666A JP6607422B1 JP 6607422 B1 JP6607422 B1 JP 6607422B1 JP 2019019666 A JP2019019666 A JP 2019019666A JP 2019019666 A JP2019019666 A JP 2019019666A JP 6607422 B1 JP6607422 B1 JP 6607422B1
Authority
JP
Japan
Prior art keywords
urea
formaldehyde
supported
formaldehyde scavenger
nitric acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019019666A
Other languages
Japanese (ja)
Inventor
孝章 下原
孝章 下原
Original Assignee
孝章 下原
孝章 下原
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 孝章 下原, 孝章 下原 filed Critical 孝章 下原
Priority to JP2019019666A priority Critical patent/JP6607422B1/en
Priority to JP2019123372A priority patent/JP2020124699A/en
Application granted granted Critical
Publication of JP6607422B1 publication Critical patent/JP6607422B1/en
Priority to PCT/JP2020/000324 priority patent/WO2020162091A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

【課題】環境大気や室内空気のような日常湿度状況下において、ホルムアルデヒドを長期にわたって効率的に捕捉できるホルムアルデヒド捕捉材を提供すること。【解決手段】多孔質炭素材料に尿素を担持させたホルムアルデヒド捕捉材であり、好ましくは、尿素と共に酸性試薬を担持させる。【選択図】図2The present invention provides a formaldehyde scavenger capable of capturing formaldehyde efficiently over a long period of time under daily humidity conditions such as ambient air and room air. A formaldehyde scavenger in which urea is supported on a porous carbon material, and preferably an acidic reagent is supported together with urea. [Selection] Figure 2

Description

本発明は、大気中などに存在するホルムアルデヒドを捕捉するホルムアルデヒド捕捉材に関する。   The present invention relates to a formaldehyde scavenger that traps formaldehyde present in the atmosphere or the like.

ホルムアルデヒド(HCHO)は、化学物質過敏症、アレルギー性の接触皮膚炎を引き起こす等の有害性が高いアレルゲンの1つである。ホルムアルデヒドは、合成原料として製造される他、石炭、重油等の燃焼、自動車排気ガスから排出される。また、自動車排気ガスから大気中に放出された炭化水素類から光化学反応で生成することが知られている。さらに、住宅家具や壁材などの樹脂や接着剤として、又はプラスチック類の原料等として多量に利用されている。ホルムアルデヒドは、揮発性が高いため、換気が不十分な住宅、車内等の居住空間では高濃度になりやすく、生活空間におけるアレルギーや健康影響を引き起こすシックハウスが大きな問題となっており、効果的な削減技術の確立が求められている。   Formaldehyde (HCHO) is one of allergens that are highly harmful, such as causing chemical sensitivity and allergic contact dermatitis. In addition to being produced as a synthetic raw material, formaldehyde is emitted from combustion of coal, heavy oil, etc., and automobile exhaust gas. In addition, it is known that it is produced by a photochemical reaction from hydrocarbons released into the atmosphere from automobile exhaust gas. Furthermore, they are used in large quantities as resins and adhesives for residential furniture and wall materials, or as raw materials for plastics. Formaldehyde has high volatility, so it tends to be highly concentrated in residential spaces with poor ventilation, living spaces such as in cars, etc., and sick houses that cause allergies and health effects in living spaces are a major problem and effective reduction Establishment of technology is required.

現在まで、その削減対策としては、ホルムアルデヒドを酸化分解し、無害化する酸化チタンや鉄イオンを、住宅の建材にコーティングする技術が注目されている(例えば、特許文献1参照)。しかし、酸化チタンは太陽光が必要であり、酸化チタン塗布面は通気性が悪く、空気との接触効率が極めて低いという問題がある。さらに、不完全酸化により未知の有害化学物質を生成、放出することが大きな問題である。   To date, as a reduction measure, a technique for coating a building material of a house with titanium oxide or iron ions that oxidize and decompose formaldehyde to render it harmless has attracted attention (for example, see Patent Document 1). However, titanium oxide requires sunlight, and the titanium oxide coated surface has poor air permeability and has a problem that contact efficiency with air is extremely low. Furthermore, the generation and release of unknown harmful chemical substances by incomplete oxidation is a major problem.

浄化技術としては、その他にも、活性炭、イグサ、茶カテキンなどを用いた捕捉材の研究が行われてきたが(例えば、特許文献2参照)、ホルムアルデヒドを長期にわったって効率的に捕捉できるものは開発されていない。   As other purification technologies, research has also been conducted on capture materials using activated carbon, rush, tea catechins, etc. (see, for example, Patent Document 2), which can capture formaldehyde efficiently over a long period of time. Has not been developed.

さらに、ホルムアルデヒドは、尿素に極僅かながら捕捉される性質を有することから、ペイント剤に尿素を混合した捕捉剤も検討されてきたが、湿度0%の状況下でホルムアルデヒドを極僅かに捕捉できるものの、日常の生活環境における湿度状況下(以下、日常湿度状況下ということがある)では、その性能はほとんど発揮されなかった。また、長期にわたってホルムアルデヒドを補足できるものではなかった。   Furthermore, since formaldehyde has a property of being trapped by urea in a slight amount, a trapping agent in which urea is mixed with a paint agent has been studied. However, although formaldehyde can be trapped very slightly in a situation of 0% humidity. Under the humidity conditions in the daily living environment (hereinafter, sometimes referred to as daily humidity conditions), the performance was hardly exhibited. Moreover, formaldehyde could not be supplemented for a long time.

特開2007−016460号公報JP 2007-016460 A 特開2002−126059号公報JP 2002-126059 A

本発明の課題は、環境大気や室内空気のような日常湿度状況下において、ホルムアルデヒドを長期にわたって効率的に捕捉できるホルムアルデヒド捕捉材を提供することにある。   An object of the present invention is to provide a formaldehyde scavenger capable of capturing formaldehyde efficiently over a long period of time under daily humidity conditions such as ambient air and room air.

本発明者らは、生活に悪影響を及ぼすホルムアルデヒドの捕捉手段について種々の検討を重ねた結果、繊維状活性炭(Activated Carbon Fiber;ACF)等の活性炭のような多孔質炭素材料に尿素を担持した材料を用いることにより、環境大気や室内空気のような日常湿度状況下において、ホルムアルデヒドを長期にわたって効率的に捕捉できることを見いだし、本発明を完成するに至った。さらに、尿素に加えて硝酸を担持させることにより、その捕捉能力がさらに向上することを見出した。   As a result of various investigations on formaldehyde trapping means that adversely affect life, the present inventors have made a material in which urea is supported on a porous carbon material such as activated carbon fiber (Activated Carbon Fiber; ACF). It has been found that formaldehyde can be efficiently captured over a long period of time under daily humidity conditions such as ambient air and room air, and the present invention has been completed. Furthermore, it discovered that the capture | capture capability was further improved by carrying | supporting nitric acid in addition to urea.

すなわち、本発明は、以下のとおりのものである。
[1]多孔質炭素材料に尿素を担持させたことを特徴とするホルムアルデヒド捕捉材。
[2]多孔質炭素材料にさらに酸性試薬を担持させたことを特徴とする[1]記載のホルムアルデヒド捕捉材。
[3]酸性試薬が、硝酸であることを特徴とする[2]記載のホルムアルデヒド捕捉材。
[4]多孔質炭素材料が、繊維状活性炭であることを特徴とする[1]〜[3]のいずれか記載のホルムアルデヒド捕捉材。
[5]多孔質炭素材料が、不活性ガス下で焼成されたものであることを特徴とする[1]〜[4]のいずれか記載のホルムアルデヒド捕捉材。
[6]多孔質炭素材料の焼成温度が、150〜1500℃、かつ焼成時間が0.5〜5時間であることを特徴とする[5]記載のホルムアルデヒド捕捉材。
[7][1]〜[6]のいずれか記載のホルムアルデヒド捕捉材を備えたことを特徴とするエアフィルター。
That is, the present invention is as follows.
[1] A formaldehyde trapping material, characterized in that urea is supported on a porous carbon material.
[2] The formaldehyde scavenger according to [1], wherein an acidic reagent is further supported on the porous carbon material.
[3] The formaldehyde scavenger according to [2], wherein the acidic reagent is nitric acid.
[4] The formaldehyde scavenger according to any one of [1] to [3], wherein the porous carbon material is fibrous activated carbon.
[5] The formaldehyde scavenger according to any one of [1] to [4], wherein the porous carbon material is fired under an inert gas.
[6] The formaldehyde scavenger according to [5], wherein the firing temperature of the porous carbon material is 150 to 1500 ° C. and the firing time is 0.5 to 5 hours.
[7] An air filter comprising the formaldehyde scavenger according to any one of [1] to [6].

本発明のホルムアルデヒド捕捉材は、環境大気や室内空気のような日常湿度状況下においても、ホルムアルデヒドを長期にわたって効率的に捕捉できる。   The formaldehyde trapping material of the present invention can trap formaldehyde efficiently over a long period even under daily humidity conditions such as ambient air and room air.

実施例におけるホルムアルデヒド通気試験(室内試験)に用いた装置の説明図である。It is explanatory drawing of the apparatus used for the formaldehyde aeration test (indoor test) in an Example. 室内試験(相対湿度0%)における、尿素を担持したホルムアルデヒド捕捉材(ピッチ系)の担持尿素濃度(尿素溶液濃度)とホルムアルデヒドの捕捉能力の関係を示す図である。It is a figure which shows the relationship between the urea concentration (urea solution density | concentration) of the formaldehyde capture | acquisition material (pitch type | system | group) which carry | supported urea, and the formaldehyde capture | capture ability in a laboratory test (relative humidity 0%). 本発明のホルムアルデヒド捕捉材のホルムアルデヒド捕捉の原理を説明する図である。It is a figure explaining the principle of formaldehyde capture | acquisition of the formaldehyde capture | acquisition material of this invention. 室内試験(相対湿度0%)における、多孔質炭素材料以外の材料(尿素担持、未担持)及び多孔質炭素材料(尿素未担持)のホルムアルデヒドの捕捉能力を示す図である。It is a figure which shows the trapping ability of formaldehyde of materials (urea carrying | supporting, unloading) other than a porous carbon material and a porous carbon material (urea unloading) in a laboratory test (relative humidity 0%). 室内試験(相対湿度0%)における、尿素及び硝酸を担持したホルムアルデヒド捕捉材(ピッチ系)のホルムアルデヒドの捕捉能力を示す図である。It is a figure which shows the capture | acquisition ability of formaldehyde of the formaldehyde capture | acquisition material (pitch type) which carry | supported urea and nitric acid in a laboratory test (relative humidity 0%). 室内試験(相対湿度0%)における、尿素及び硝酸を担持したホルムアルデヒド捕捉材(セルロース系)のホルムアルデヒドの捕捉能力を示す図である。It is a figure which shows the capture | acquisition ability of formaldehyde of the formaldehyde capture | acquisition material (cellulose type | system | group) which carry | supported urea and nitric acid in a laboratory test (relative humidity 0%). 室内試験(相対湿度40%)における、尿素を担持したホルムアルデヒド捕捉材(ピッチ系)のホルムアルデヒドの捕捉能力を示す図である。It is a figure which shows the capture | acquisition ability of formaldehyde of the formaldehyde capture | acquisition material (pitch type | system | group) which carry | supported urea in a laboratory test (relative humidity 40%). 室内試験(相対湿度40%)における、尿素及び硝酸を担持したホルムアルデヒド捕捉材(ピッチ系)のホルムアルデヒドの捕捉能力を示す図である。It is a figure which shows the capture | acquisition ability of formaldehyde of the formaldehyde capture | acquisition material (pitch type | system | group) which carry | supported urea and nitric acid in a laboratory test (relative humidity 40%).

本発明のホルムアルデヒド捕捉材は、多孔質炭素材料に尿素を担持させたことを特徴とする。本発明において多孔質炭素材料に尿素を担持しているとは、多孔質炭素材料に尿素が物理的及び/又は化学的に付着していることをいう。本発明の捕捉材においては、主として多孔質炭素材料の細孔内壁に尿素が担持される(図3参照)。   The formaldehyde scavenger of the present invention is characterized in that urea is supported on a porous carbon material. In the present invention, “supporting urea on the porous carbon material” means that urea is physically and / or chemically attached to the porous carbon material. In the capturing material of the present invention, urea is supported mainly on the pore inner walls of the porous carbon material (see FIG. 3).

本発明のホルムアルデヒド捕捉材は、日常湿度状況下においても、ホルムアルデヒドを長期にわたって効率的に捕捉できる。例えば、相対湿度10%以上、好ましくは20%以上、より好ましくは30%以上、さらに好ましくは40%以上の環境下においても有効である。したがって、本発明のホルムアルデヒド捕捉材は、日常環境下のガスや空気に含まれるホルムアルデヒドを除去するエアフィルターのフィルタ材料として好適であり、特に、空気清浄機、エアコン、除湿機等のエアフィルターのフィルタ材料として好適である。その他、カーテン、室内の壁、家具の内壁、自動車内のマット、椅子のシート等の生活用品の材料として用いることができる。   The formaldehyde trapping material of the present invention can trap formaldehyde efficiently over a long period even under daily humidity conditions. For example, it is effective even in an environment where the relative humidity is 10% or more, preferably 20% or more, more preferably 30% or more, and even more preferably 40% or more. Therefore, the formaldehyde scavenger of the present invention is suitable as a filter material for air filters that remove formaldehyde contained in gases and air in daily environments, and in particular, filters for air filters such as air purifiers, air conditioners, and dehumidifiers. Suitable as a material. In addition, it can be used as a material for daily necessities such as curtains, indoor walls, furniture inner walls, car mats, chair seats and the like.

<多孔質炭素材料>
本発明の多孔質炭素材料は、尿素を担持するための細孔を有している。多孔質炭素材料としては、繊維状、粒状、粉末状等の活性炭を挙げることができ、本発明の効果をより有効に発揮することができることから、繊維状活性炭(ACF)が好ましい。活性炭としては、ピッチ系、セルロース系、ポリアクリロニトリル系(PAN系)、フェノール樹脂系、植物由来系等いずれの由来のものであってもよいが、これらの中でも、本発明の効果をより有効に発揮することができることから、ピッチ系、セルロース系が好ましい。
<Porous carbon material>
The porous carbon material of the present invention has pores for supporting urea. Examples of the porous carbon material include fibrous, granular, and powdered activated carbon, and fibrous activated carbon (ACF) is preferable because the effects of the present invention can be more effectively exhibited. The activated carbon may be derived from any of pitch-based, cellulose-based, polyacrylonitrile-based (PAN-based), phenolic resin-based, plant-derived and the like, but among these, the effect of the present invention is more effectively achieved. Pitch and cellulose are preferable because they can be exhibited.

本発明の多孔質炭素材料は、例えば、比表面積が300〜3000m/g程度であることが好ましい。また、平均細孔径が、0.6〜6nm程度であることが好ましい。 The porous carbon material of the present invention preferably has a specific surface area of about 300 to 3000 m 2 / g, for example. Moreover, it is preferable that an average pore diameter is about 0.6-6 nm.

本発明の多孔質炭素材料は、未焼成のものであってもよいが、窒素ガス、アルゴンガス等の不活性ガス下で焼成されたものであることが好ましい。これにより、多孔質炭素材料が有する酸素元素(カルボキシル基、カルボニル基、ヘテロ環)や、窒素元素(ヘテロ環)や、水素元素を分解、離脱させ、炭素材料の疎水性、尿素との親和性、ホルムアルデヒドの捕捉性を向上させることができる。   The porous carbon material of the present invention may be unfired, but is preferably fired under an inert gas such as nitrogen gas or argon gas. As a result, the oxygen element (carboxyl group, carbonyl group, heterocycle), nitrogen element (heterocycle), and hydrogen element contained in the porous carbon material are decomposed and separated, making the carbon material hydrophobic and compatible with urea. , Formaldehyde scavenging ability can be improved.

焼成時間としては、多孔質材料に付着した酸素元素等を除去することができればよく、焼成温度にもよるが、例えば、0.5〜5時間程度が好ましく、0.5〜2時間がより好ましい。また、焼成温度としては、150〜1500℃が好ましく、300〜1500℃がより好ましく、300〜1200℃がさらに好ましい。   As the firing time, it is only necessary to be able to remove oxygen element or the like attached to the porous material, and depending on the firing temperature, for example, about 0.5 to 5 hours is preferable, and 0.5 to 2 hours is more preferable. . Moreover, as a calcination temperature, 150-1500 degreeC is preferable, 300-1500 degreeC is more preferable, 300-1200 degreeC is further more preferable.

<尿素>
本発明の尿素は、化学式(NHCOで示される物質であり、市販品を使用することができる。尿素は、他のアミン類と比べて価格が安く、かつ、安全性が高いため、これを含む本発明のホルムアルデヒド捕捉材は、エアフィルターのフィルタ材料や生活用品の材料として好適である。また、尿素は、種々のガスが含まれる環境下においても、かかるガスとの反応による新たな物質(ホルムアルデヒドを含む)生成が起きないことから、安全、無害であり、日常環境下における使用に好適である。
<Urea>
The urea of the present invention is a substance represented by the chemical formula (NH 2 ) 2 CO, and a commercially available product can be used. Since urea is cheaper than other amines and has high safety, the formaldehyde trapping material of the present invention including the urea is suitable as a filter material for air filters and a material for household goods. Urea is safe and harmless because it does not generate new substances (including formaldehyde) by reaction with such gases even in an environment containing various gases, and is suitable for use in everyday environments. It is.

本発明のホルムアルデヒド捕捉材における尿素含有量としては、本発明の効果を有効に発揮できる量であれば特に制限されるものではなく、例えば、多孔質炭素材料1gに対して、50〜300mgが好ましく、50〜200mgがより好ましく、120〜180mgがさらに好ましい。   The urea content in the formaldehyde scavenger of the present invention is not particularly limited as long as it can effectively exert the effects of the present invention. For example, 50 to 300 mg is preferable with respect to 1 g of the porous carbon material. 50 to 200 mg is more preferable, and 120 to 180 mg is more preferable.

<酸性試薬>
本発明のホルムアルデヒド捕捉材においては、尿素に加えて酸性試薬を多孔質炭素材料に担持させることが好ましい。これにより、ホルムアルデヒドをより効果的、かつ長期にわたって捕捉することができる。
<Acid reagent>
In the formaldehyde scavenger of the present invention, it is preferable to carry an acidic reagent on the porous carbon material in addition to urea. Thereby, formaldehyde can be captured more effectively and over a long period of time.

本発明の酸性試薬としては、硝酸、塩酸、硫酸、酢酸等を例示することができる。これらの中でも、本発明の効果をより有効に発揮することができることから、硝酸が好ましい。   Examples of the acidic reagent of the present invention include nitric acid, hydrochloric acid, sulfuric acid, acetic acid and the like. Among these, nitric acid is preferable because the effects of the present invention can be more effectively exhibited.

本発明のホルムアルデヒド捕捉材における酸性試薬の含有量としては、担持された尿素に対して、10〜60mol%が好ましく、20〜40mol%がより好ましく、30〜40mol%がさらに好ましい。酸性試薬として硝酸を用いる場合、その含有量としては、例えば、多孔質炭素材料1gに対して、20〜100mgが好ましく、20〜70mgがより好ましく、30〜60mgがさらに好ましい。   The content of the acidic reagent in the formaldehyde scavenger of the present invention is preferably 10 to 60 mol%, more preferably 20 to 40 mol%, still more preferably 30 to 40 mol% with respect to the supported urea. When nitric acid is used as the acidic reagent, the content thereof is preferably 20 to 100 mg, more preferably 20 to 70 mg, and still more preferably 30 to 60 mg, with respect to 1 g of the porous carbon material.

<担持方法>
多孔質炭素材料に尿素、酸性試薬等の担持試薬を担持(添着)させる方法としては、担持試薬を溶解させた溶液(担持試薬溶液)に多孔質炭素材料を浸漬する方法や、担持試薬溶液を多孔質炭素材料に噴霧する方法等を挙げることができる。多孔質炭素材料の細孔内壁に担持試薬を均一かつ十分に担持させることができる点から、浸漬する方法が好ましい。浸漬時間としては、所望の量を担持できれば特に制限されるものではなく、例えば、1〜72時間程度であり、6〜24時間程度が好ましい。尿素及び酸性試薬の両者を用いる場合、別々の溶液を用いて別個に担持させてもよいし、両者を溶解した溶液を用いて一度に担持させてもよい。
<Supporting method>
As a method for supporting (attaching) a supporting reagent such as urea or an acidic reagent on the porous carbon material, a method of immersing the porous carbon material in a solution (supporting reagent solution) in which the supporting reagent is dissolved, or a supporting reagent solution can be used. Examples include a method of spraying on a porous carbon material. The dipping method is preferred because the supported reagent can be uniformly and sufficiently supported on the inner walls of the pores of the porous carbon material. The immersion time is not particularly limited as long as a desired amount can be supported, and is, for example, about 1 to 72 hours, and preferably about 6 to 24 hours. When both urea and acidic reagent are used, they may be supported separately using separate solutions, or may be supported at once using a solution in which both are dissolved.

溶液を調製する際の溶媒としては、尿素及び酸性試薬が溶解するものであれば特に制限されるものではなく、水や水溶性有機溶媒を挙げることができる。安全性等の点から、水、含水エタノールが好ましい。   The solvent for preparing the solution is not particularly limited as long as urea and an acidic reagent can be dissolved, and examples thereof include water and water-soluble organic solvents. From the viewpoint of safety and the like, water and hydrous ethanol are preferable.

ここで、担持試薬溶液の尿素濃度としては、0.1〜20w/v%が好ましく、1〜10w/v%がより好ましく、1〜5w/v%がさらに好ましく、1〜3w/v%が特に好ましい。また、酸性試薬濃度としては、0.1〜10v/v%が好ましく、0.3〜8v/v%がより好ましく、0.5〜5v/v%がさらに好ましく、0.5〜3v/v%が特に好ましい。   Here, the urea concentration of the supported reagent solution is preferably 0.1 to 20 w / v%, more preferably 1 to 10 w / v%, further preferably 1 to 5 w / v%, and 1 to 3 w / v%. Particularly preferred. Moreover, as an acidic reagent density | concentration, 0.1-10 v / v% is preferable, 0.3-8 v / v% is more preferable, 0.5-5 v / v% is further more preferable, 0.5-3 v / v % Is particularly preferred.

本発明のホルムアルデヒド捕捉材は、相対湿度40%の実施例の条件下で、破過時間が5時間以上であることが好ましく、7時間以上であることがより好ましく、10時間以上であることがさらに好ましく、30時間以上であることが特に好ましい。   In the formaldehyde scavenger of the present invention, the breakthrough time is preferably 5 hours or more, more preferably 7 hours or more, and more preferably 10 hours or more under the conditions of the example of relative humidity 40%. More preferably, it is particularly preferably 30 hours or more.

本発明の実施例を以下に示すが、本発明の範囲はこれに限定されるものではない。   Examples of the present invention are shown below, but the scope of the present invention is not limited thereto.

1.ホルムアルデヒド捕捉材(試料)の調製
<多孔質炭素材料の調製>
多孔性炭素材料として、賦活処理が異なる石炭ピッチ系ACFであるOG5A、OG15A(共に大阪ガスケミカル株式会社製)を用いた。具体的には、OG5Aを窒素ガス気流下で300℃で1時間、800℃で1時間焼成したもの(OG5A−H300、OG5A−H800)、及びOG15Aを1100℃で1時間焼成したもの(OG15A−H1100)を調製した。
また、多孔質炭素材料として、セルロース系ACFであるS1600(STACF社(中国上海)製)を用いた。具体的には、S1600を窒素ガス気流下で1100℃で1時間焼成したもの(S1600−H1100)を調製した。
1. Preparation of formaldehyde scavenger (sample) <Preparation of porous carbon material>
As the porous carbon material, OG5A and OG15A (both manufactured by Osaka Gas Chemical Co., Ltd.), which are coal pitch ACFs having different activation treatments, were used. Specifically, OG5A fired at 300 ° C. for 1 hour and 800 ° C. for 1 hour under a nitrogen gas stream (OG5A-H300, OG5A-H800), and OG15A fired at 1100 ° C. for 1 hour (OG15A- H1100) was prepared.
In addition, S1600 (manufactured by STACF (Shanghai, China)) which is a cellulosic ACF was used as the porous carbon material. Specifically, S1600 baked at 1100 ° C. for 1 hour under a nitrogen gas stream (S1600-H1100) was prepared.

<担持試薬溶液の調製>
担持試薬溶液として、所定濃度(w/v%)の尿素水溶液と、所定濃度(w/v%)の尿素及び所定濃度(v/v%)の硝酸の混合水溶液を調製した。
<Preparation of supported reagent solution>
As a supported reagent solution, a urea aqueous solution having a predetermined concentration (w / v%) and a mixed aqueous solution of urea having a predetermined concentration (w / v%) and nitric acid having a predetermined concentration (v / v%) were prepared.

<ホルムアルデヒド捕捉材の調製>
調製したACFを各担持試薬溶液に24時間浸漬させ、ACFに担持試薬を含浸させた。含浸後、ろ過を行い、さらに、75℃で24時間減圧乾燥させて、目的とするホルムアルデヒド捕捉材(試料)を得た。
以下、例えば、尿素1w/v%の溶液で調製したOG5A−H300を、OG5A−H300(尿素1%)と称し、尿素1w/v%及び硝酸2v/v%の混合溶液で調製したOG5A−H300を、OG5A−H300(尿素1%+硝酸2%)と称する。
<Preparation of formaldehyde scavenger>
The prepared ACF was immersed in each supported reagent solution for 24 hours, and the ACF was impregnated with the supported reagent. After impregnation, filtration was performed, and further, drying was performed under reduced pressure at 75 ° C. for 24 hours to obtain a target formaldehyde scavenger (sample).
Hereinafter, for example, OG5A-H300 prepared with a urea 1 w / v% solution is referred to as OG5A-H300 (urea 1%), and OG5A-H300 prepared with a mixed solution of urea 1 w / v% and nitric acid 2 v / v%. Is referred to as OG5A-H300 (1% urea + 2% nitric acid).

2.試験
<室内におけるホルムアルデヒド通気試験>
(試験方法)
室内におけるホルムアルデヒド通気試験を以下のように行った。
試料は、それぞれ内径8mmのガラス管内に0.05g量充填し、相対湿度(RH)0%の乾きガス状況下(バブリング水通過なし)及び40%の加湿ガス状況下(バブリング水通過)において、酸素21%を含む10ppmのホルムアルデヒドを100ml/分でガラス管内の試料に通気させた(図1)。試料通気後のホルムアルデヒドの濃度は検知管(株式会社ガステック製、No.91L、No.92L)により測定した。
2. Test <Indoor formaldehyde ventilation test>
(Test method)
An indoor formaldehyde aeration test was conducted as follows.
Each sample was filled in an amount of 0.05 g in a glass tube having an inner diameter of 8 mm, and the relative humidity (RH) was 0% in a dry gas condition (no bubbling water passage) and 40% in a humidified gas situation (bubbling water passage). 10 ppm formaldehyde containing 21% oxygen was bubbled through the sample in the glass tube at 100 ml / min (FIG. 1). The concentration of formaldehyde after aeration of the sample was measured with a detector tube (manufactured by Gastec Corporation, No. 91L, No. 92L).

(結果)
[相対湿度(RH)0%]
OG15A−H1100(尿素1%)、OG15A−H1100(尿素2%)、OG15A−H1100(尿素5%)、OG15A−H1100(尿素10%)について、RH0%におけるホルムアルデヒド通気試験を行った結果を図2に示す。
(result)
[Relative humidity (RH) 0%]
FIG. 2 shows the results of a formaldehyde aeration test conducted at RH 0% for OG15A-H1100 (urea 1%), OG15A-H1100 (urea 2%), OG15A-H1100 (urea 5%), and OG15A-H1100 (urea 10%). Shown in

図2に示すように、尿素水溶液の濃度が1、2、5w/v%と高くなるにつれて通気から破過開始までの時間(破過開始時間)は長くなり、捕捉能力は向上しているが、10w/v%になると破過開始時間は1w/v%のものより短くなった。尿素水溶液の濃度が10w/v%において破過開始時間が短くなるのは、図3に示すように、ホルムアルデヒドは多孔質炭素材料の細孔に担持された尿素に捕捉されるが(図3中(a))、細孔の一部が尿素で塞がれるためと考えられる(図3中(b))。したがって、尿素の担持量は、多孔質炭素材料の細孔の大きさ等を考慮して決定することが好ましい。   As shown in FIG. 2, as the concentration of the urea aqueous solution increases to 1, 2, 5 w / v%, the time from the ventilation to the breakthrough start (breakthrough start time) becomes longer, and the capturing ability is improved. At 10 w / v%, the breakthrough start time was shorter than that of 1 w / v%. When the concentration of the aqueous urea solution is 10 w / v%, the breakthrough start time is shortened, as shown in FIG. 3, while formaldehyde is trapped by urea supported in the pores of the porous carbon material (in FIG. 3). (A)) It is considered that part of the pores are blocked with urea ((b) in FIG. 3). Therefore, the amount of urea supported is preferably determined in consideration of the size of the pores of the porous carbon material.

比較例として、(1)合成ゼオライト(HS-320:富士フイルム社製)(未担持)、(2)合成ゼオライト(尿素2%)、(3)OG15A(未担持)、(4)OG15A−H1100(未担持)、(6)石英ウール(尿素2%)についても、同様に試験を行った。その結果を図4に示す。なお、あわせて実施例に係る(5)OG15A−H1100(尿素2%)の結果も示す。   As comparative examples, (1) synthetic zeolite (HS-320: manufactured by Fujifilm) (unsupported), (2) synthetic zeolite (urea 2%), (3) OG15A (unsupported), (4) OG15A-H1100 (Unsupported) (6) Quartz wool (urea 2%) was also tested in the same manner. The result is shown in FIG. In addition, the result of (5) OG15A-H1100 (urea 2%) according to the example is also shown.

図4に示すように、(1)合成ゼオライト(未担持)及び(2)合成ゼオライト(尿素2%)は、僅かにホルムアルデヒドを捕捉したが、何れも破過開始時間は0時間であった。微細孔をもつゼオライトに尿素を担持してもその捕捉能力は殆どないことがわかった。なお、合成ゼオライトに尿素及び硝酸を担持したものについても、同様に、破過開始時間は0時間であった(不図示)。   As shown in FIG. 4, (1) synthetic zeolite (unsupported) and (2) synthetic zeolite (urea 2%) slightly trapped formaldehyde, but both had a breakthrough start time of 0 hours. It was found that there was almost no trapping capability even when urea was supported on zeolite with fine pores. In addition, about the thing which carry | supported urea and nitric acid on the synthetic zeolite, the breakthrough start time was 0 hour similarly (not shown).

また、(3)OG15A(未担持)及び(4)OG15A−H1100(未担持)も、僅かにホルムアルデヒドを捕捉したが、何れも破過開始時間は約10分と非常に短かった。
(6)石英ウール(尿素2%)は、ホルムアルデヒドをまったく捕捉(除去)できなかった。
In addition, (3) OG15A (unsupported) and (4) OG15A-H1100 (unsupported) also slightly captured formaldehyde, but both had a very short breakthrough start time of about 10 minutes.
(6) Quartz wool (urea 2%) could not capture (remove) formaldehyde at all.

次に、(3)OG15A−H1100(尿素2%+硝酸1%)及び(4)OG15A−H1100(尿素3%+硝酸1%)について、RH0%におけるホルムアルデヒド通気試験を行った結果を図5に示す。なお、比較例として、(1)OG15A−H1100(未担持)と、参考例(ポジティブコントロール)として、(2)OG15A−H1100(尿素2%)の結果もあわせて示す。   Next, FIG. 5 shows the results of a formaldehyde aeration test conducted at RH 0% for (3) OG15A-H1100 (urea 2% + nitric acid 1%) and (4) OG15A-H1100 (urea 3% + nitric acid 1%). Show. In addition, the results of (1) OG15A-H1100 (unsupported) as a comparative example and (2) OG15A-H1100 (urea 2%) as a reference example (positive control) are also shown.

図5に示すように、尿素に加えて硝酸を担持した(3)OG15A−H1100(尿素2%+硝酸1%)は、その捕捉効果が24時間持続しており、(2)OG15A−H1100(尿素2%)の16.6時間よりもさらに捕捉効果が持続していた。さらに、(4)OG15A−H1100(尿素3%+硝酸1%)は、その捕捉効果が39時間持続しており、(3)OG15A−H1100(尿素2%+硝酸1%)の24時間よりもさらに捕捉効果が持続していた。   As shown in FIG. 5, (3) OG15A-H1100 (2% urea + 1% nitric acid) supporting nitric acid in addition to urea has a scavenging effect that lasts for 24 hours. (2) OG15A-H1100 ( The scavenging effect lasted more than 16.6 hours of urea (2%). Furthermore, (4) OG15A-H1100 (urea 3% + nitric acid 1%) has a scavenging effect that lasts for 39 hours, compared to (3) OG15A-H1100 (urea 2% + nitric acid 1%) for 24 hours. Furthermore, the capture effect was sustained.

次に、ピッチ系ACFに代えて、セルロース系ACFであるS1600−H1100(尿素3%+硝酸1%)について、RH0%におけるホルムアルデヒド通気試験を行った結果を図6に示す。あわせてピッチ系OG15A−H1100(尿素3%+硝酸1%)の結果を示す。   Next, FIG. 6 shows the results of a formaldehyde aeration test conducted at 0% RH on S1600-H1100 (urea 3% + nitric acid 1%) which is a cellulose ACF instead of the pitch ACF. In addition, the results of pitch-based OG15A-H1100 (urea 3% + nitric acid 1%) are shown.

図6に示すように、多孔質炭素材料としてピッチ系ACFを用いた場合と同様、セルロース系ACFにおいても、ホルムアルデヒドを長期にわたって捕捉できることがわかる。   As shown in FIG. 6, it is understood that formaldehyde can be captured over a long period of time in the cellulose ACF as well as in the case of using the pitch ACF as the porous carbon material.

[相対湿度(RH)40%]
OG15A−H1100(尿素2%)について、RH40%におけるホルムアルデヒド通気試験を行った結果を図7に示す。RH0%の場合の結果もあわせて示す。
[Relative humidity (RH) 40%]
FIG. 7 shows the results of a formaldehyde aeration test conducted at RH 40% for OG15A-H1100 (urea 2%). The results for RH 0% are also shown.

図7に示すように、OG15A−H1100(尿素2%)は、RH40%でも破過時間は10時間と長く、長期にホルムアルデヒドを捕捉できた。   As shown in FIG. 7, OG15A-H1100 (urea 2%) had a long breakthrough time of 10 hours even at RH 40%, and was able to capture formaldehyde for a long time.

OG15A−H1100(尿素2%+硝酸3%)について、RH40%におけるホルムアルデヒド通気試験を行った結果を図8に示す。RH0%の場合の結果もあわせて示す。   FIG. 8 shows the results of a formaldehyde aeration test conducted at RH 40% for OG15A-H1100 (urea 2% + nitric acid 3%). The results for RH 0% are also shown.

図8に示すように、OG15A−H1100(尿素2%+硝酸3%)は、RH40%の条件下で破過時間は17時間であった。通常は湿度の影響により捕捉率が低下し、破過時間も短くなるが、RH0%のとき(12時間)よりも破過時間が延びており、予想外の結果が得られた。   As shown in FIG. 8, OG15A-H1100 (urea 2% + nitric acid 3%) had a breakthrough time of 17 hours under the condition of RH 40%. Usually, the capture rate decreased due to the influence of humidity, and the breakthrough time was shortened, but the breakthrough time was longer than when RH was 0% (12 hours), and an unexpected result was obtained.

現在、日常湿度状況下でホルムアルデヒドを十分に捕捉できる材料はほとんどないのが現状であるが、本発明のホルムアルデヒド捕捉材は、日常湿度状況下でホルムアルデヒドを十分に捕捉できるものであることから、エアフィルター等への実用化が期待できる。   At present, there is almost no material that can sufficiently capture formaldehyde under daily humidity conditions, but the formaldehyde capturing material of the present invention can sufficiently capture formaldehyde under daily humidity conditions. Expected to be put to practical use in filters.

本発明のホルムアルデヒド捕捉材は、有害性の高いアレルゲンの1つであるホルムアルデヒドを吸着できることから、産業上有用である。

The formaldehyde scavenger of the present invention is industrially useful because it can adsorb formaldehyde, which is one of highly harmful allergens.

Claims (4)

不活性ガス下で焼成された繊維状活性炭の主として細孔内壁に尿素及び硝酸を担持させたホルムアルデヒド捕捉材であって、
前記尿素が、前記繊維状活性炭1gに対して50〜200mg担持されると共に、前記硝酸が、前記繊維状活性炭1gに対して20〜70mg担持されている
ことを特徴とするホルムアルデヒド捕捉材。
A formaldehyde scavenger in which urea and nitric acid are supported mainly on the pore inner walls of fibrous activated carbon calcined under an inert gas,
A formaldehyde scavenger, wherein 50 to 200 mg of urea is supported on 1 g of fibrous activated carbon and 20 to 70 mg of nitric acid is supported on 1 g of fibrous activated carbon.
請求項記載のホルムアルデヒド捕捉材を備えたことを特徴とするエアフィルター。 An air filter comprising the formaldehyde scavenger according to claim 1 . 尿素濃度1〜10w/v%及び硝酸濃度0.3〜8v/v%の混合溶液に、不活性ガス下で焼成された繊維状活性炭を浸漬し、ろ過した後、乾燥して、前記繊維状活性炭の主として細孔内壁に尿素及び硝酸を担持させることを特徴とするホルムアルデヒド捕捉材の製造方法。   The fibrous activated carbon calcined under an inert gas is immersed in a mixed solution having a urea concentration of 1 to 10 w / v% and a nitric acid concentration of 0.3 to 8 v / v%, filtered, dried, and then the fibrous A method for producing a formaldehyde scavenger, characterized in that urea and nitric acid are supported on the inner wall of pores of activated carbon. 請求項記載のホルムアルデヒド捕捉材を製造することを特徴とする請求項記載のホルムアルデヒド捕捉材の製造方法。 Method for manufacturing a formaldehyde scavenger material according to claim 3, wherein the producing formaldehyde scavenger material according to claim 1, wherein.
JP2019019666A 2019-02-06 2019-02-06 Formaldehyde scavenger Active JP6607422B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019019666A JP6607422B1 (en) 2019-02-06 2019-02-06 Formaldehyde scavenger
JP2019123372A JP2020124699A (en) 2019-02-06 2019-07-02 Formaldehyde scavenger
PCT/JP2020/000324 WO2020162091A1 (en) 2019-02-06 2020-01-08 Formaldehyde scavenger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019019666A JP6607422B1 (en) 2019-02-06 2019-02-06 Formaldehyde scavenger

Publications (1)

Publication Number Publication Date
JP6607422B1 true JP6607422B1 (en) 2019-11-20

Family

ID=68611021

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019019666A Active JP6607422B1 (en) 2019-02-06 2019-02-06 Formaldehyde scavenger
JP2019123372A Pending JP2020124699A (en) 2019-02-06 2019-07-02 Formaldehyde scavenger

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2019123372A Pending JP2020124699A (en) 2019-02-06 2019-07-02 Formaldehyde scavenger

Country Status (1)

Country Link
JP (2) JP6607422B1 (en)

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09122485A (en) * 1995-11-02 1997-05-13 Mitsubishi Heavy Ind Ltd Active carbon fiber for denitrification and extreme depth denitrification
JPH09313828A (en) * 1996-05-31 1997-12-09 Matsushita Electric Works Ltd Filter
JPH10323565A (en) * 1997-05-26 1998-12-08 Osaka Gas Co Ltd Activated carbon fiber for flue gas desulfurization and desulfurization method using the same
JPH11285633A (en) * 1998-04-03 1999-10-19 Azumi Roshi Kk Adsorption remover for lower aliphatic aldehydes
JPH11347109A (en) * 1998-06-05 1999-12-21 Toyo Riken Kk Formaldehyde absorbent
JP2001000524A (en) * 1999-06-22 2001-01-09 Takeda Chem Ind Ltd Adsorbent of lower aldehydes
JP2001232189A (en) * 2000-02-22 2001-08-28 Kuraray Chem Corp Porous adsorbent and filter
JP2006272078A (en) * 2005-03-28 2006-10-12 Fuso Unitec Kk Absorbent for aldehydes, its manufacturing method and method for removing aldehyde in gas using adsorbent
JP2010162477A (en) * 2009-01-15 2010-07-29 Eiko:Kk Adsorbent for lower aldehydes and method of manufacturing the same
JP2010172871A (en) * 2009-02-02 2010-08-12 Eiko:Kk Adsorbent of lower aldehydes and method for manufacturing the same
JP2010201360A (en) * 2009-03-04 2010-09-16 Eiko:Kk Adsorbent for lower aldehydes and method for producing the same
JP2011088124A (en) * 2009-10-26 2011-05-06 Mitsubishi Heavy Ind Ltd Activated carbon fiber activation treatment method for exhaust gas treatment and activated carbon fiber for exhaust gas treatment
WO2016031474A1 (en) * 2014-08-27 2016-03-03 大阪ガスケミカル株式会社 Adsorbent
CN107349761A (en) * 2017-08-31 2017-11-17 无锡风正科技有限公司 A kind of long-acting formaldehyde catching material and preparation method thereof
CN107694525A (en) * 2017-11-08 2018-02-16 广州立白企业集团有限公司 A kind of MOF formed absorbents with clear function of removing formaldehyde and preparation method thereof

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09122485A (en) * 1995-11-02 1997-05-13 Mitsubishi Heavy Ind Ltd Active carbon fiber for denitrification and extreme depth denitrification
JPH09313828A (en) * 1996-05-31 1997-12-09 Matsushita Electric Works Ltd Filter
JPH10323565A (en) * 1997-05-26 1998-12-08 Osaka Gas Co Ltd Activated carbon fiber for flue gas desulfurization and desulfurization method using the same
JPH11285633A (en) * 1998-04-03 1999-10-19 Azumi Roshi Kk Adsorption remover for lower aliphatic aldehydes
JPH11347109A (en) * 1998-06-05 1999-12-21 Toyo Riken Kk Formaldehyde absorbent
JP2001000524A (en) * 1999-06-22 2001-01-09 Takeda Chem Ind Ltd Adsorbent of lower aldehydes
JP2001232189A (en) * 2000-02-22 2001-08-28 Kuraray Chem Corp Porous adsorbent and filter
JP2006272078A (en) * 2005-03-28 2006-10-12 Fuso Unitec Kk Absorbent for aldehydes, its manufacturing method and method for removing aldehyde in gas using adsorbent
JP2010162477A (en) * 2009-01-15 2010-07-29 Eiko:Kk Adsorbent for lower aldehydes and method of manufacturing the same
JP2010172871A (en) * 2009-02-02 2010-08-12 Eiko:Kk Adsorbent of lower aldehydes and method for manufacturing the same
JP2010201360A (en) * 2009-03-04 2010-09-16 Eiko:Kk Adsorbent for lower aldehydes and method for producing the same
JP2011088124A (en) * 2009-10-26 2011-05-06 Mitsubishi Heavy Ind Ltd Activated carbon fiber activation treatment method for exhaust gas treatment and activated carbon fiber for exhaust gas treatment
WO2016031474A1 (en) * 2014-08-27 2016-03-03 大阪ガスケミカル株式会社 Adsorbent
CN107349761A (en) * 2017-08-31 2017-11-17 无锡风正科技有限公司 A kind of long-acting formaldehyde catching material and preparation method thereof
CN107694525A (en) * 2017-11-08 2018-02-16 广州立白企业集团有限公司 A kind of MOF formed absorbents with clear function of removing formaldehyde and preparation method thereof

Also Published As

Publication number Publication date
JP2020124699A (en) 2020-08-20

Similar Documents

Publication Publication Date Title
JP7344270B2 (en) Surface-modified carbon and adsorbents for improved efficiency in removing gaseous pollutants
TWI826408B (en) A catalyst for catalyzing formaldehyde oxidation and the preparation and use of the same
JP6070850B2 (en) Gas adsorbent, gas adsorbing sheet and air filter
JP6349736B2 (en) Acid gas adsorption / removal filter
WO2007004614A1 (en) Adsorbent and process for producing the same
JP2013512090A (en) Amino acid salt articles and methods of making and using the same
JP6607422B1 (en) Formaldehyde scavenger
JP2011083693A (en) Material for adsorbing/decomposing volatile organic compound
WO2020162091A1 (en) Formaldehyde scavenger
JP2007014857A (en) Adsorbent and its production method
JP2023004943A (en) Deodorization filter, and air cleaner including the same
US20160089659A1 (en) Photocatalytic filter for degrading mixed gas and manufacturing method thereof
JPH11285633A (en) Adsorption remover for lower aliphatic aldehydes
JP5017779B2 (en) Organic compound adsorption remover and method for producing the same
JP2000317271A (en) Adsorbent
WO2007091669A1 (en) Catalyst for oxidizing mercury metal, exhaust gas purifying catalyst comprising catalyst for oxidizing mercury metal, and method for producing same
JP2002066255A (en) Treatment material, treatment element, treatment apparatus, and treatment method of waste gas
JP7311288B2 (en) catalytic filter
JP2003236374A (en) Adsorbing material and method for manufacturing the same
JP2007014858A (en) Adsorbent and its production method
KR102369193B1 (en) Manufacturing method of metal-impregnated material through room temperature oxidation
JP2001198457A (en) Adsorbent, its preparing method and filter material
JP2017148764A (en) Aldehyde removing catalyst composition, manufacturing method therefor and a removing method of aldehyde gas
JP2007175598A (en) Aldehydes gas removing agent
JP4760599B2 (en) Aldehyde gas removal filter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190214

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190214

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191009

R150 Certificate of patent or registration of utility model

Ref document number: 6607422

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250