JP2007038106A - Deodorization method - Google Patents

Deodorization method Download PDF

Info

Publication number
JP2007038106A
JP2007038106A JP2005224265A JP2005224265A JP2007038106A JP 2007038106 A JP2007038106 A JP 2007038106A JP 2005224265 A JP2005224265 A JP 2005224265A JP 2005224265 A JP2005224265 A JP 2005224265A JP 2007038106 A JP2007038106 A JP 2007038106A
Authority
JP
Japan
Prior art keywords
adsorbent
gas
porous carrier
metal halide
alkali metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005224265A
Other languages
Japanese (ja)
Inventor
Takeshi Yoshitome
剛 吉留
Keizo Furukawa
圭三 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Enviro Chemicals Ltd
Original Assignee
Japan Enviro Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Enviro Chemicals Ltd filed Critical Japan Enviro Chemicals Ltd
Priority to JP2005224265A priority Critical patent/JP2007038106A/en
Publication of JP2007038106A publication Critical patent/JP2007038106A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a deodorization method with which hydrogen sulfide and/or thiols (acidic gas), sulfides and/or disulfides (sulfur-based neutral gas), ammonia and/or amines (basic gas), and lower aldehydes from gases containing at least these four malodor components can be efficiently removed over a long period of time, and which can be excellently applied to an existing facility (apparatus). <P>SOLUTION: In this deodorization method, gases containing at least hydrogen sulfide and/or thiols, sulfides and/or disulfides, ammonia and/or amines, and lower aldehydes are first brought into contact with a first adsorbent formed by carrying halogens, nonvolatile acid and an alkaline metal halide on a porous carrier, then to a second absorbent formed by carrying saturated cyclic secondary amine and an alkaline metal halide or an alkaline earth metal halide on the porous carrier. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は脱臭方法に関し、詳しくは、硫化水素及び/又はメルカプタン類(酸性ガス)と、スルフィド類及び/又はジスルフィド類(硫黄系中性ガス)と、アンモニア及び/又はアミン類(塩基性ガス)と、低級アルデヒド類を少なくとも含む悪臭ガスに対して長期に亘って優れた脱臭効果を得ることができる脱臭方法に関する。   The present invention relates to a deodorizing method, and more specifically, hydrogen sulfide and / or mercaptans (acid gas), sulfides and / or disulfides (sulfur-based neutral gas), ammonia and / or amines (basic gas). And a deodorizing method capable of obtaining an excellent deodorizing effect over a long period against malodorous gas containing at least a lower aldehyde.

従来から、悪臭ガス中の悪臭成分(悪臭物質)を吸着除去する吸着剤としては、活性炭、活性白土、シリカゲル、活性アルミナ、粘土鉱物等の多孔性吸着材料が多く使用されている。また、かかる多孔性吸着材料自身の吸着性では、多種の悪臭物質に対して高い吸着量が得られないため、かかる多孔性吸着材料を担体として、これに悪臭物質と反応し得る1種又は2種以上の化合物を担持させることで、多種の悪臭物質に対する吸着効果(脱臭効果)を高めることが行われている。例えば、ヨウ化カリウム等の金属ハロゲン化物とリン酸等の無機酸を活性炭等に担持させた吸着剤(特許文献1)、臭素等のハロゲンとリン酸等の無機酸を活性炭等に担持させた吸着剤(特許文献2)、ヨウ化カリウム等の金属ハロゲン化物とリン酸等の無機酸と臭素等のハロゲンを活性炭に担持させた吸着剤(特許文献3)がある。また、多孔性吸着材料(担体)に担持させた化合物が互いに異なる複数の吸着剤を組み合わせたり、また、悪臭物質と反応し得る化合物を非担持の多孔性吸着材料(多孔性吸着材料単体)と、悪臭物質と反応し得る化合物を担持させた吸着剤とを組み合わせて使用することで複数の悪臭物質に対する除去効果を高める方法に関する技術も知られている(特許文献4)。   Conventionally, porous adsorbents such as activated carbon, activated clay, silica gel, activated alumina, and clay mineral have been used as adsorbents for adsorbing and removing malodorous components (bad odorous substances) in malodorous gases. In addition, the adsorptivity of the porous adsorbing material itself does not provide a high adsorption amount for various malodorous substances. Therefore, the porous adsorbing material is used as a carrier and can react with the malodorous substance. Adsorption effects (deodorizing effects) on various malodorous substances have been improved by supporting more than one kind of compound. For example, an adsorbent in which a metal halide such as potassium iodide and an inorganic acid such as phosphoric acid are supported on activated carbon (Patent Document 1), a halogen such as bromine and an inorganic acid such as phosphoric acid are supported on activated carbon or the like. There is an adsorbent (Patent Document 2) and an adsorbent (Patent Document 3) in which a metal halide such as potassium iodide, an inorganic acid such as phosphoric acid, and a halogen such as bromine are supported on activated carbon. In addition, a combination of a plurality of adsorbents with different compounds supported on a porous adsorbing material (carrier), or a compound capable of reacting with a malodorous substance is not supported on a porous adsorbing material (porous adsorbing material alone). A technique relating to a method for enhancing the effect of removing a plurality of malodorous substances by using in combination with an adsorbent carrying a compound capable of reacting with malodorous substances is also known (Patent Document 4).

ところで、ホルムアルデヒド、アセトアルデヒド等に代表される低級アルデヒド類は、特異な刺激臭を持つ有毒ガスで、ホルムアルデヒドは空気中の許容濃度が晢定値で0.5ppmであり、またアセトアルデヒドは悪臭物質に指定されている。ホルムアルデヒドの発生源としては、ホルムアルデヒドの製造工場、および尿素、メラミン、フェノール等とホルムアルデヒドを原料とした樹脂の製造工場のほか、これらの樹脂を使用する加工工場、さらにこれらの樹脂を使用した建材、家具等の各種加工製品の製造工場等が挙げられる。また消毒剤として使用する病院等のホルマリン、石油ストーブの不完全燃焼からも発生し、たばこの副流煙にも多く含まれると言われている。アセトアルデヒドの発生源としては、アセトアルデヒドおよびその誘導体の製造工場のほか、下水汚泥の加熱処理において発生したり、たばこの主流煙中にも含まれている。近年、これら低級アルデヒド類に対して、作業環境の改善および生活環境の向上の両面から、有害性と臭気が問題とされ、有効な除害対策が強く要望され、そのための吸着剤についても提案がなされている(例えば、特許文献5、6)。   By the way, lower aldehydes represented by formaldehyde, acetaldehyde, and the like are toxic gases having a unique irritating odor, and formaldehyde has an acceptable concentration in air of 0.5 ppm, and acetaldehyde is designated as a malodorous substance. ing. Formaldehyde generation sources include formaldehyde manufacturing plants, urea, melamine, phenol, etc. and resin manufacturing plants using formaldehyde as raw materials, processing plants using these resins, and building materials using these resins, Examples include manufacturing plants for various processed products such as furniture. It is also said to be generated from incomplete combustion of formalin and petroleum stoves used as disinfectants, and to be contained in a lot of sidestream smoke. As a source of acetaldehyde, it is generated in the heat treatment of sewage sludge, as well as in the mainstream smoke of cigarettes, in addition to the manufacturing plant of acetaldehyde and its derivatives. In recent years, these lower aldehydes have been considered to be harmful and odorous from both aspects of improving the working environment and living environment, and there has been a strong demand for effective detoxification measures, and adsorbents for that purpose have also been proposed. (For example, Patent Documents 5 and 6).

しかし、下水処理場の生物脱臭設備、汚泥焼却設備、し尿処理、焼却場のプラント設備
等から発生する排ガス中には、低級アルデヒド類の他、硫化水素及び/又はメルカプタン類(酸性ガス)、スルフィド類及び/又はジスルフィド類(硫黄系中性ガス)、アンモニア及び/又はアミン類(塩基性ガス)等の多種類の悪臭成分が含まれるが、このような低級アルデヒド類、硫化水素及び/又はメルカプタン類(酸性ガス)、スルフィド類及び/又はジスルフィド類(硫黄系中性ガス)、並びにアンモニア及び/又はアミン類(塩基性ガス)が共存する悪臭ガスから、これら全ての悪臭成分を充分に吸着除去できる吸着剤は見出されていない。また、これら多成分の悪臭成分除去には、3種類以上の吸着剤が用いられるのが通常であった。そこで、近年、上記課題の克服を目指して、吸着成分が異なる多孔質体を混合してなる複合臭気脱臭剤が提案されている(特許文献7)。しかし、このような吸着成分が異なる多孔質体を混合した複合臭気脱臭剤は、吸着対象となるガス成分の吸着帯の幅が必然的に長くなるため、十分な吸着帯の幅を確保しなければ、早期に悪臭成分がリークし、その量は微量で長期的にゆっくりと増大する。一方、十分な吸着帯の幅を確保した場合、脱臭設備が大型化となり、「環境配慮」への意識が強く求められる近時の社会状況を鑑みると、妥当なものとはいえない。また、ガスの臭気強度(閾値)はガスによって濃度が異なっており、例えば、低級アルデヒド類、メルカプタン類、スルフィド類の濃度数値は極めて低い。よって、このようなガスが含まれる系においては、微量でもすぐにリークが判明する吸着帯の短い吸着剤の方が好ましいが、単に吸着成分が異なる多孔質体(吸着剤)を混合したものでは、吸着帯の幅が必然的に長くなってしまうため、利用者の交換判断を迷走させることとなり、適切な吸着剤ではなかった。
However, in the exhaust gas generated from biological deodorization facilities at sewage treatment plants, sludge incineration facilities, human waste treatment, plant facilities at incineration plants, etc., in addition to lower aldehydes, hydrogen sulfide and / or mercaptans (acid gases), sulfides And / or disulfides (sulfur-based neutral gas), ammonia and / or amines (basic gas), and other types of malodorous components such as lower aldehydes, hydrogen sulfide and / or mercaptans. All these malodorous components are sufficiently removed by adsorption from odorous gases (acid gases), sulfides and / or disulfides (sulfur-based neutral gases), and odorous gases in which ammonia and / or amines (basic gases) coexist. No adsorbent that can be found has been found. Further, three or more kinds of adsorbents are usually used for removing these multi-component malodorous components. Therefore, in recent years, a composite odor deodorant obtained by mixing porous bodies having different adsorbing components has been proposed with the aim of overcoming the above problems (Patent Document 7). However, such a mixed odor deodorant mixed with porous materials with different adsorbing components inevitably increases the adsorbing band width of the gas component to be adsorbed, so a sufficient adsorbing band width must be secured. For example, malodorous components leak at an early stage, and the amount of the malodorous component increases slowly over a long period. On the other hand, if a sufficient width of the adsorbing zone is secured, the deodorization equipment becomes large, and it cannot be said that it is appropriate in view of the recent social situation where awareness of “environmental consideration” is strongly demanded. Further, the odor intensity (threshold value) of gas varies in concentration depending on the gas. For example, the concentration values of lower aldehydes, mercaptans, and sulfides are extremely low. Therefore, in a system containing such a gas, an adsorbent with a short adsorption band in which a leak can be found immediately even with a small amount is preferable, but a mixture of porous bodies (adsorbents) with different adsorbing components is not suitable. Since the width of the adsorption band is inevitably increased, the user's replacement judgment is lost, which is not an appropriate adsorbent.

なお、前記の特許文献4には、硫化水素及び/又はメルカプタン類、スルフィド類及び/又はジスルフィド類、アンモニア及び/又はアミン類が共存する悪臭ガスを、先ず活性炭と接触させ(第1処理)、次に酸を担持した活性炭又は粘土鉱物と接触させ(第2処理)、次に臭素又は塩素の存在下活性炭に接触させる(第3処理)方法によって、ほぼ完全に脱臭でき、また、悪臭ガスがこれらの悪臭成分に加え、低級アルデヒド類がさらに共存するものであっても、該低級アルデヒド類も除去できると謳われている。しかし、該文献記載の脱臭方法は、処理カラムへ充填する吸着剤を、ガス入り口側層、中間層及びガス出口側層の3層に分けて充填しなければならないため、脱臭設備が大型化し、また、吸着剤の総充填量が多くなるという問題がある。また、特に、低級アルデヒド類が共存した悪臭ガスを脱臭する場合には、早期に臭い漏れ(リーク)が発生し、また、活性炭の寿命が短くなって、吸着剤の早期交換が必要になり、さらに、低級アルデヒド類を十分に除去するには脱臭設備の更なる大型化が必要になるという問題がある。すなわち、低級アルデヒド類が共存したガスが流入すると、低級アルデヒド類は第1処理の活性炭で除去されるため、第1処理の活性炭は、硫化水素および/メルカプタン類と低級アルデヒド類を除去するよう働くことから過剰な負荷が第1処理の活性炭に掛かかり、その結果、吸着剤の早期交換が必要になり、また、該文献には、第1〜第3処理に加え、最後に活性炭による処理(第4処理)を行うことで完璧な脱臭が可能と謳われているが、第4処理の活性炭を設けると、脱臭装置はさらに大型化し、その結果、圧力損失が高くなり、運転維持コストが高くなるという問題を生する。
特開昭57−99334号公報 特開平06−126166号公報 特開2001−129392号公報 特開昭55−51422号公報 特開平4−358536号公報 特開2000−84406号公報 特開2005−152726号公報
In Patent Document 4, malodorous gas in which hydrogen sulfide and / or mercaptans, sulfides and / or disulfides, ammonia and / or amines coexist is first contacted with activated carbon (first treatment), Next, it can be almost completely deodorized by contacting with activated carbon or clay mineral carrying acid (second treatment) and then contacting with activated carbon in the presence of bromine or chlorine (third treatment). In addition to these malodorous components, even if a lower aldehyde further coexists, it is said that the lower aldehyde can also be removed. However, in the deodorization method described in the document, the adsorbent to be packed into the treatment column must be divided and packed into three layers of the gas inlet side layer, the intermediate layer, and the gas outlet side layer. There is also a problem that the total amount of adsorbent is increased. In particular, when deodorizing malodorous gas coexisting with lower aldehydes, odor leakage (leak) occurs at an early stage, and the life of the activated carbon is shortened, requiring early replacement of the adsorbent, Furthermore, there is a problem that further enlargement of the deodorizing equipment is required to sufficiently remove the lower aldehydes. That is, when a gas in which lower aldehydes coexist is introduced, lower aldehydes are removed by activated carbon in the first treatment, and thus activated carbon in the first treatment works to remove hydrogen sulfide and / or mercaptans and lower aldehydes. Therefore, an excessive load is applied to the activated carbon of the first treatment, and as a result, an early replacement of the adsorbent is required. In addition to the first to third treatments, the literature finally treats the activated carbon ( It is said that perfect deodorization is possible by performing the (fourth treatment). However, if the activated carbon of the fourth treatment is provided, the deodorization device is further increased in size, resulting in higher pressure loss and higher operation and maintenance costs. The problem of becoming.
JP 57-99334 A Japanese Patent Laid-Open No. 06-126166 JP 2001-129392 A JP-A-55-51422 JP-A-4-358536 JP 2000-84406 A JP 2005-152726 A

上記事情に鑑み、本発明が解決しようとする課題は、硫化水素及び/又はメルカプタン類(酸性ガス)、スルフィド類及び/又はジスルフィド類(硫黄系中性ガス)、アンモニア及び/又はアミン類(塩基性ガス)、並びに低級アルデヒド類を少なくとも含むガスからこれら4種の悪臭成分を効率よく長時間に亘り除去でき、しかも、脱臭設備の大型化を必要とせず、既設の設備(装置)への適用性にも優れる脱臭方法を提供することである。   In view of the above circumstances, the problem to be solved by the present invention is that hydrogen sulfide and / or mercaptans (acid gas), sulfides and / or disulfides (sulfur-based neutral gas), ammonia and / or amines (base) These four types of malodorous components can be removed efficiently from gas containing at least lower aldehydes over a long period of time, and it is not necessary to increase the size of deodorizing equipment, and can be applied to existing equipment (equipment). It is to provide a deodorizing method that is also excellent in properties.

上記課題を解決するために、本発明者等は鋭意研究を行った結果、硫化水素及び/又はメルカプタン類と、スルフィド類及び/又はジスルフィド類と、アンモニア及び/又はアミン類と、低級アルデヒド類を少なくとも含むガスを、特定の2種類の吸着剤に特定の順序で接触させることにより、2種類の吸着剤のみの使用でありながら、前記4種の悪臭成分を効率良くしかも長期に亘って除去できることを見出し、本発明を完成するに至った。   In order to solve the above-mentioned problems, the present inventors have conducted intensive research, and as a result, have found hydrogen sulfide and / or mercaptans, sulfides and / or disulfides, ammonia and / or amines, and lower aldehydes. By contacting at least a gas containing at least two specific types of adsorbents in a specific order, the four types of malodorous components can be efficiently removed over a long period of time while using only two types of adsorbents. As a result, the present invention has been completed.

すなわち、本発明は以下の通りである。
(1)硫化水素及び/又はメルカプタン類と、スルフィド類及び/又はジスルフィド類と、アンモニア及び/又はアミン類と、低級アルデヒド類とを少なくとも含むガスを、先ずハロゲン、不揮発性酸およびアルカリ金属ハロゲン化物を多孔質担体に担持させた第1吸着剤に接触させ、次に飽和環状第二アミンとアルカリ金属又はアルカリ土類金属のハロゲン化物とを多孔質担体に担持させた第2吸着剤に接触させることを特徴とする脱臭方法、
(2)第1及び第2吸着剤の多孔質担体がともに活性炭である上記(1)記載の脱臭方法、及び
(3)第1吸着剤におけるハロゲンが臭素であり、不揮発性酸が硫酸であり、アルカリ金属ハロゲン化物がアルカリ金属ヨウ化物であり、第2吸着剤におけるアルカリ金属又はアルカリ土類金属のハロゲン化物がアルカリ金属又はアルカリ土類金属のヨウ化物である、上記(1)又は(2)記載の脱臭方法、
に関する。
That is, the present invention is as follows.
(1) A gas containing at least hydrogen sulfide and / or mercaptans, sulfides and / or disulfides, ammonia and / or amines, and lower aldehydes is firstly halogenated, nonvolatile acid and alkali metal halide. Is contacted with a first adsorbent supported on a porous carrier, and then a saturated cyclic secondary amine and an alkali metal or alkaline earth metal halide are brought into contact with a second adsorbent supported on the porous carrier. A deodorizing method characterized by
(2) The deodorization method according to (1) above, wherein the porous carriers of the first and second adsorbents are both activated carbon, and (3) the halogen in the first adsorbent is bromine and the non-volatile acid is sulfuric acid. (1) or (2) above, wherein the alkali metal halide is an alkali metal iodide, and the alkali metal or alkaline earth metal halide in the second adsorbent is an alkali metal or alkaline earth metal iodide. Deodorizing method as described,
About.

本発明の脱臭方法によれば、硫化水素及び/又はメルカプタン類(酸性ガス)、スルフィド類及び/又はジスルフィド類(硫黄系中性ガス)、アンモニア及び/又はアミン類(塩基性ガス)及び低級アルデヒド類を少なくとも含むガスから、これら4種の悪臭成分を効率よく長時間に亘り除去でき、優れた脱臭効果を得ることができる。また、2種類の吸着剤を使用するだけなので、処理カラムを大型化する必要がなく、よって、圧力損失の上昇や運転維持コストが高くなるという問題もない。   According to the deodorization method of the present invention, hydrogen sulfide and / or mercaptans (acid gas), sulfides and / or disulfides (sulfur-based neutral gas), ammonia and / or amines (basic gas), and lower aldehyde These four kinds of malodorous components can be efficiently removed over a long period of time from a gas containing at least a kind, and an excellent deodorizing effect can be obtained. Further, since only two kinds of adsorbents are used, there is no need to increase the size of the processing column, and there is no problem that the pressure loss increases and the operation and maintenance costs increase.

なお、本発明における「脱臭」とは、硫化水素及び/又はメルカプタン類(酸性ガス)、スルフィド類及び/又はジスルフィド類(硫黄系中性ガス)、アンモニア及び/又はアミン類(塩基性ガス)及び低級アルデヒド類を少なくとも含むガスから、少なくともこれら4種の悪臭成分が減量してこれら4種の悪臭成分の臭気が実質的に感じなくなることである。   In the present invention, “deodorization” refers to hydrogen sulfide and / or mercaptans (acid gas), sulfides and / or disulfides (sulfur-based neutral gas), ammonia and / or amines (basic gas) and That is, at least these four types of malodorous components are reduced from the gas containing at least the lower aldehydes, and the odors of these four types of malodorous components are not substantially felt.

以下、本発明をより詳細に説明する。
本発明の脱臭方法は、硫化水素及び/又はメルカプタン類と、スルフィド類及び/又はジスルフィド類と、アンモニア及び/又はアミン類と、低級アルデヒド類とを少なくとも含むガスを、先ずハロゲン、不揮発性酸およびアルカリ金属ハロゲン化物を多孔質担体に担持させた第1吸着剤に接触させ、次に飽和環状第二アミンとアルカリ金属又はアルカリ土類金属のハロゲン化物とを多孔質担体に担持させた第2吸着剤に接触させることが特徴である。
Hereinafter, the present invention will be described in more detail.
The deodorization method of the present invention comprises a gas containing at least hydrogen sulfide and / or mercaptans, sulfides and / or disulfides, ammonia and / or amines, and lower aldehydes, first halogen, nonvolatile acid and Second adsorption in which an alkali metal halide is contacted with a first adsorbent supported on a porous carrier, and then a saturated cyclic secondary amine and an alkali metal or alkaline earth metal halide are supported on the porous carrier. It is characterized by contacting with an agent.

<第1吸着剤>
本発明で使用する第1吸着剤は、多孔質担体に、ハロゲン、不揮発性酸およびアルカリ金属ハロゲン化物を担持させたものである。
<First adsorbent>
The first adsorbent used in the present invention is obtained by supporting a halogen, a nonvolatile acid and an alkali metal halide on a porous carrier.

多孔質担体としては、例えば、活性炭、活性白土、ゼオライト、シリカゲル、活性アルミナ、粘土鉱物などの種々の多孔性吸着材料が挙げられるが、中でも活性炭が好適に用いられる。   Examples of the porous carrier include various porous adsorbing materials such as activated carbon, activated clay, zeolite, silica gel, activated alumina, and clay mineral. Among these, activated carbon is preferably used.

活性炭を用いる場合、その原料としては、たとえば、木粉、ヤシ殻などの植物原料、無煙炭、石油ピッチ、コークス等の石炭、石油系原料、アクリル樹脂、フェノール樹脂、エポキシ樹脂、ポリエステル樹脂などの合成樹脂系原料などが挙げられるが、中でも、ヤシ殻から得られるヤシ殻炭や無煙炭、石油ピッチ、コークス等の石炭が好適である。これら活性炭原料は、たとえば、固定床、移動床、流動床などで賦活化される。賦活化は、たとえば、水蒸気、塩素、塩化水素、一酸化炭素、二酸化炭素、酸素等を用いるガス賦活、アルカリ、酸または塩化亜鉛などの薬品を用いる薬品賦活などがあるが、本発明に用いられる活性炭はそのいずれによって賦活化されたものでもよい。   When using activated carbon, the raw materials include, for example, plant raw materials such as wood powder and coconut shells, coal such as anthracite, petroleum pitch, coke, petroleum raw materials, acrylic resins, phenol resins, epoxy resins, polyester resins, etc. Among them, resin-based raw materials can be mentioned, and among them, coal such as coconut shell charcoal, anthracite coal, petroleum pitch, and coke obtained from coconut shell is preferable. These activated carbon raw materials are activated in, for example, a fixed bed, a moving bed, a fluidized bed, and the like. The activation includes, for example, gas activation using water vapor, chlorine, hydrogen chloride, carbon monoxide, carbon dioxide, oxygen, etc., and chemical activation using chemicals such as alkali, acid or zinc chloride, etc., which are used in the present invention. The activated carbon may be activated by any of them.

また、活性白土は、酸性白土あるいはフラースアースと呼ばれる粘土を硫酸処理して得られる吸着材料であり、モンモリロナイトを主成分とする。また、ゼオライトは、一般に含水アルミノケイ酸塩をいい、ケイ酸ナトリウムなどをシリカ源、水酸化アルミニウム等をアルミナ源として用い、これらと水酸化ナトリウム水溶液から作られるゲルを乾燥して得られる吸着材料であり、分子篩い作用と極性分子に選択性を有する。また、シリカゲルは、ケイ酸ナトリウム水溶液を硫酸で処理してゲル化し、硫酸ナトリウムを水洗除去して得られる吸着材料で、極性分子に選択性を有する。活性アルミナはアルミナ三水和物を加熱脱水して得られる吸着材料で、極性分子に選択性を有する。   Active clay is an adsorbing material obtained by treating sulfuric acid with clay called acid clay or fuller's earth, and contains montmorillonite as a main component. Zeolite generally refers to hydrous aluminosilicate, which is an adsorbent obtained by drying a gel made from sodium hydroxide aqueous solution with sodium silicate etc. as a silica source and aluminum hydroxide as an alumina source. Yes, with molecular sieving action and selectivity for polar molecules. Silica gel is an adsorbent material obtained by treating an aqueous sodium silicate solution with sulfuric acid to form a gel and washing and removing the sodium sulfate with water, and has selectivity for polar molecules. Activated alumina is an adsorbing material obtained by heating and dehydrating alumina trihydrate and has selectivity for polar molecules.

活性炭の粒子径は通常0.01〜15mm、好ましくは0.1〜10mmであり、活性炭は液体窒素温度条件下の窒素吸着によるBET比表面積が300〜3,000m/g、好ましくは500〜2,000m/gのものである。また、その細孔容積は通常0.1〜2.0ml/g、好ましくは0.2〜1.0ml/gであり、その平均細孔直径は通常0.1〜3.5nm、好ましくは0.5〜3.0nmである。 The particle diameter of the activated carbon is usually 0.01 to 15 mm, preferably 0.1 to 10 mm, and the activated carbon has a BET specific surface area of 300 to 3,000 m 2 / g, preferably 500 to 500, by nitrogen adsorption under liquid nitrogen temperature conditions. 2,000 m 2 / g. The pore volume is usually 0.1 to 2.0 ml / g, preferably 0.2 to 1.0 ml / g, and the average pore diameter is usually 0.1 to 3.5 nm, preferably 0. .5 to 3.0 nm.

活性白土の粒子径は通常0.01〜15mm、好ましくは0.1〜10mmであり、活性白土は液体窒素温度条件下の窒素吸着によるBET比表面積が50〜500m/g、好ましくは100〜350m/gのものである。また、その細孔容積は通常0.5〜1.0ml/g、好ましくは0.6〜0.8ml/gであり、その平均細孔直径は通常5.0〜50.0nm、好ましくは8.0〜30.0nmである。
また、ゼオライトの粒子径は通常0.01〜15mm、好ましくは0.1〜10mmであり、ゼオライトは液体窒素温度条件下の窒素吸着によるBET比表面積が300〜1,000m/g、好ましくは400〜750m/gのものである。また、その細孔容積は通常0.2〜1.0ml/g、好ましくは0.4〜0.6ml/gであり、その平均細孔直径は通常0.2〜2.0nm、好ましくは0.4〜1.2nmである。
また、シリカゲルの粒子径は通常0.01〜15mm、好ましくは0.1〜10mmであり、シリカゲルは液体窒素温度条件下の窒素吸着によるBET比表面積が100〜1,000m/g、好ましくは300〜800m/gのものである。また、その細孔容積は通常0.1〜1.5ml/g、好ましくは0.3〜1.2ml/gであり、その平均細孔直径は通常0.5〜20.0nm、好ましくは1.0〜15.0nmである。
また、活性アルミナの粒子径は通常0.01〜15mm、好ましくは0.1〜10mmであり、活性アルミナは液体窒素温度条件下の窒素吸着によるBET比表面積が50〜500m/g、好ましくは100〜350m/gのものである。また、その細孔容積は通常0.1〜1.0ml/g、好ましくは0.3〜0.8ml/gであり、その平均細孔直径は通常1.0〜15.0nm、好ましくは4.0〜12.0nmである。
The particle size of the activated clay is usually 0.01 to 15 mm, preferably 0.1 to 10 mm, and the activated clay has a BET specific surface area of 50 to 500 m 2 / g, preferably 100 to 100, by nitrogen adsorption under liquid nitrogen temperature conditions. 350 m 2 / g. The pore volume is usually 0.5 to 1.0 ml / g, preferably 0.6 to 0.8 ml / g, and the average pore diameter is usually 5.0 to 50.0 nm, preferably 8 0.0-30.0 nm.
The particle diameter of the zeolite is usually 0.01 to 15 mm, preferably 0.1 to 10 mm, and the zeolite has a BET specific surface area of 300 to 1,000 m 2 / g by nitrogen adsorption under liquid nitrogen temperature conditions, preferably 400 to 750 m 2 / g. The pore volume is usually 0.2 to 1.0 ml / g, preferably 0.4 to 0.6 ml / g, and the average pore diameter is usually 0.2 to 2.0 nm, preferably 0. .4 to 1.2 nm.
The particle diameter of the silica gel is usually 0.01 to 15 mm, preferably 0.1 to 10 mm. The silica gel has a BET specific surface area of 100 to 1,000 m 2 / g by nitrogen adsorption under liquid nitrogen temperature conditions, preferably it is those of 300~800m 2 / g. The pore volume is usually 0.1 to 1.5 ml / g, preferably 0.3 to 1.2 ml / g, and the average pore diameter is usually 0.5 to 20.0 nm, preferably 1 0.0-15.0 nm.
The particle diameter of the activated alumina is usually 0.01 to 15 mm, preferably 0.1 to 10 mm, and the activated alumina has a BET specific surface area of 50 to 500 m 2 / g by nitrogen adsorption under liquid nitrogen temperature conditions, preferably 100 to 350 m 2 / g. The pore volume is usually 0.1 to 1.0 ml / g, preferably 0.3 to 0.8 ml / g, and the average pore diameter is usually 1.0 to 15.0 nm, preferably 4 0.0-12.0 nm.

第1吸着剤における多孔質担体の形状は、例えば、粉末状、破砕状、繊維状あるいは円柱状、球状、ハニカム状等に成型されたものであってもよい。多孔質担体の形状がハニカムである場合、そのセル数は好ましくは10〜1,500個/inch、より好ましくは25〜750個/inchであり、厚みは好ましくは5mm以上/個、より好ましくは7.5mm以上/個である。このようなセル数のハニカムは通気抵抗が小さいため、これらを複数個組み合わせても使用することも可能である。 The shape of the porous carrier in the first adsorbent may be, for example, a powder shape, a crushed shape, a fiber shape, a cylindrical shape, a spherical shape, a honeycomb shape, or the like. When the shape of the porous carrier is a honeycomb, the number of cells is preferably 10 to 1,500 cells / inch 2 , more preferably 25 to 750 cells / inch 2 , and the thickness is preferably 5 mm or more / piece, more Preferably it is 7.5 mm or more / piece. Since the honeycomb having such a number of cells has a low airflow resistance, a plurality of these can be used in combination.

多孔質担体に担持させるハロゲンとしては、例えば、臭素、ヨウ素等が挙げられるが、特に臭素が好ましい。多孔質担体にハロゲンを担持させる方法としては、ハロゲンが臭素の場合は、1)常温下で、液体である臭素(99%)もしくは臭素含有水溶液を気化させ、窒素等のキャリアーガスを用いて、容器内に充填した多孔質担体層に流通接触させる方法、2)常温下で臭素もしくは臭素含有水溶液に多孔質担体を浸漬し、必要に応じて乾燥する方法、3)噴霧器、散布器を用いて液体臭素または臭素含有水溶液を常温下で多孔質担体に直接散布もしくは窒素などのキァリアーガスを用いて噴霧し、必要に応じて乾燥する方法、4)臭素を多孔質担体と共に容器内に静置し、常温下で気化させ、含侵させる方法、等が挙げられ、また、ハロゲンがヨウ素の場合は、1)常温下でヨウ素をアルコール等の溶液に溶解し、多孔質担体を浸漬し、必要に応じて乾燥する方法、2)常温下でヨウ素をヨウ化カリウム水溶液に溶解し、噴霧器、散布器を用いて多孔質担体に散布または噴霧する方法、3)ヨウ素を多孔質担体と共に容器内に静置し、100℃に加温して気化させ、含侵させる方法、等が挙げられる。ハロゲンの担持量は多孔質担体重量当たり通常0.1〜30重量%、好ましくは1〜20重量%である。   Examples of the halogen carried on the porous carrier include bromine and iodine. Bromine is particularly preferable. As a method for supporting halogen on a porous carrier, when halogen is bromine, 1) vaporize bromine (99%) or a bromine-containing aqueous solution at room temperature and use a carrier gas such as nitrogen, A method of circulating contact with a porous carrier layer filled in a container, 2) A method of immersing the porous carrier in bromine or a bromine-containing aqueous solution at room temperature, and drying as necessary. 3) Using a sprayer or a sprayer A method in which liquid bromine or a bromine-containing aqueous solution is sprayed directly on a porous carrier at room temperature or sprayed with a carrier gas such as nitrogen and dried as necessary. 4) The bromine is left in a container together with the porous carrier, For example, when halogen is iodine, 1) Dissolve iodine in a solution such as alcohol at room temperature, immerse the porous carrier, and so on. 2) A method in which iodine is dissolved in an aqueous potassium iodide solution at room temperature and sprayed or sprayed onto a porous carrier using a sprayer or sprayer. 3) Iodine is left in a container together with the porous carrier. And vaporizing by heating to 100 ° C. and impregnation. The supported amount of halogen is usually 0.1 to 30% by weight, preferably 1 to 20% by weight, based on the weight of the porous carrier.

多孔質担体に担持させる不揮発性酸は、50℃において蒸気圧が10mmHg以下の酸であり、たとえば硫酸、リン酸、ホウ酸などの無機酸や、シュウ酸、クエン酸などの有機酸が挙げられるが、硫酸およびリン酸が好ましく、硫酸が特に好ましい。不揮発性酸の多孔質担体への担持方法としては、たとえば、1)多孔質担体を常温下で酸水溶液に浸漬し乾燥する方法、2)多孔質担体に常温下で酸水溶液を噴霧器または散布器を用いて直接散布、又は窒素等のキャリアーガスとともに噴霧し、乾燥する方法などがある。不揮発性酸の担持量は多孔質担体重量当たり通常1〜40重量%、好ましくは5〜30重量%である。   The non-volatile acid supported on the porous carrier is an acid having a vapor pressure of 10 mmHg or less at 50 ° C., and examples thereof include inorganic acids such as sulfuric acid, phosphoric acid and boric acid, and organic acids such as oxalic acid and citric acid. However, sulfuric acid and phosphoric acid are preferable, and sulfuric acid is particularly preferable. As a method for supporting the non-volatile acid on the porous carrier, for example, 1) a method of immersing and drying the porous carrier in an aqueous acid solution at room temperature, and 2) a sprayer or sprayer for the aqueous acid solution on the porous carrier at room temperature There is a method of spraying directly with a carrier gas or spraying with a carrier gas such as nitrogen and drying. The amount of the non-volatile acid supported is usually 1 to 40% by weight, preferably 5 to 30% by weight, based on the weight of the porous carrier.

多孔質担体に担持させるアルカリ金属ハロゲン化物のアルカリ金属としては、たとえばナトリウム、カリウム、リチウムなどが挙げられるが、カリウムが好ましく、ハロゲンとしては、臭素、ヨウ素などが挙げられるが、ヨウ素が好ましい。好ましいアルカリ金属ハロゲン化物の具体例としては、例えば、ヨウ化カリウム、ヨウ化ナトリウムなどが挙げられ、ヨウ化カリウムが特に好ましい。アルカリ金属ハロゲン化物の多孔質担体への担持方法としては、たとえば、1)多孔質担体を常温下アルカリ金属ハロゲン化物の水溶液に浸漬して、乾燥する方法、2)多孔質担体に常温下アルカリ金属ハロゲン化物の水溶液を噴霧器または散布器を用いて直接散布又は窒素等のキャリアーガスとともに噴霧する方法、等が挙げられる。アルカリ金属ハロゲン化物の担持量は、多孔質担体重量当たり通常0.01〜5重量%、好ましくは0.1〜1重量%である。   Examples of the alkali metal of the alkali metal halide supported on the porous carrier include sodium, potassium, and lithium. Potassium is preferable, and examples of the halogen include bromine and iodine, and iodine is preferable. Specific examples of preferred alkali metal halides include, for example, potassium iodide and sodium iodide, and potassium iodide is particularly preferred. Examples of the method of supporting the alkali metal halide on the porous carrier include: 1) a method of immersing the porous carrier in an aqueous solution of an alkali metal halide at room temperature and drying; 2) alkali metal at room temperature on the porous carrier. Examples thereof include a method in which an aqueous solution of halide is directly sprayed using a sprayer or a sprayer or sprayed with a carrier gas such as nitrogen. The supported amount of alkali metal halide is usually 0.01 to 5% by weight, preferably 0.1 to 1% by weight, based on the weight of the porous carrier.

第1の吸着剤は、多孔質担体に、ハロゲン、不揮発性酸およびアルカリ金属ハロゲン化物を同時にまたは順次担持させることで得ることができ、その際、ハロゲン、不揮発性酸およびアルカリ金属ハロゲン化物の担持は、二種以上を同時に行ってもよく、任意の順序で順次行っても良い。   The first adsorbent can be obtained by supporting a halogen, a non-volatile acid and an alkali metal halide on a porous carrier simultaneously or sequentially. At that time, the support of the halogen, non-volatile acid and alkali metal halide is supported. These may be performed in two or more simultaneously or sequentially in any order.

本発明において、第1吸着剤は、ハロゲン、不揮発性酸およびアルカリ金属ハロゲン化物が、それぞれ多孔質担体に均一に担持されているのが好ましい。ここに「均一」とは、吸着剤の試料を任意に抽出した場合、その試料の担持物質の含量が実質的に等しいことをいう。担持物質をそれぞれを単独に担持させた多孔質担体を層状に組み合わせたり、また混合したものでは当該均一を達成できない。   In the present invention, the first adsorbent is preferably such that halogen, non-volatile acid and alkali metal halide are each uniformly supported on a porous carrier. Here, “homogeneous” means that when a sample of the adsorbent is arbitrarily extracted, the content of the support material in the sample is substantially equal. Uniformity cannot be achieved by combining or mixing porous carriers in which the supporting substances are individually supported, or in a mixture.

<第2吸着剤>
本発明で使用する第2吸着剤は、多孔質担体に、飽和環状第二アミンと、アルカリ金属又はアルカリ土類金属のハロゲン化物を担持させたものである。
<Second adsorbent>
The second adsorbent used in the present invention is obtained by supporting a saturated cyclic secondary amine and an alkali metal or alkaline earth metal halide on a porous carrier.

第2吸着剤における多孔質担体は、前記第1吸着剤の多孔質担体に使用される多孔性吸着材と同様の多孔性吸着材料で構成され、活性炭が特に好ましく使用される。多孔性吸着材料の好ましい形態、性状も、第1吸着剤の多孔質担体におけるそれと基本的に同じである。   The porous carrier in the second adsorbent is composed of a porous adsorbing material similar to the porous adsorbent used in the porous carrier of the first adsorbent, and activated carbon is particularly preferably used. The preferred form and properties of the porous adsorbent material are basically the same as those in the porous carrier of the first adsorbent.

飽和環状第二アミンとしては、好ましくは五員環もしくは六員環の飽和環状第二アミンが用いられる。五員環の飽和環状第二アミンとしては、例えば、ピロリジン、チアゾリジン等が用いられ、六員環の飽和環状第二アミンとしては、例えば、ピペリジン、ピペラジン、N−メチルピペラジン、モルホリン、チオモルホリン等が用いられる。六員環の飽和環状第二アミンが好ましく、特に好ましくは、ピペリジン、ピペラジン、モルホリンである。   As the saturated cyclic secondary amine, a 5-membered or 6-membered saturated cyclic secondary amine is preferably used. Examples of the 5-membered saturated cyclic secondary amine include pyrrolidine and thiazolidine. Examples of the 6-membered saturated cyclic secondary amine include piperidine, piperazine, N-methylpiperazine, morpholine, and thiomorpholine. Is used. Six-membered saturated cyclic secondary amines are preferable, and piperidine, piperazine, and morpholine are particularly preferable.

多孔質担体に飽和環状第二アミンを担持させる方法としては、用いるアミンが水に可溶であるか否かにより、各々次のような方法が挙げられる。水に可溶な飽和環状第二アミンの場合:1)アミンをあらかじめ水に溶解せしめ、多孔質担体をこの水溶液に浸漬する方法、2)多孔質担体を撹拌混合しながら該化合物の水溶液を噴霧または散布する方法、3)粉末状の多孔質担体と該アミンの水溶液を混合し、必要に応じてバインダーを添加して造粒、成型する方法、等が挙げられる。一方、水に不溶な飽和環状第二アミンを使用する場合、4)粉末状の多孔質担体と粉末状のアミンをあらかじめ混合しておき、水、バインダーを加えて造粒、成型する方法、5)水にアミンおよびバインダーを加えてあらかじめスラリーを調製し、このスラリーを多孔質担体に噴霧または散布して混合する方法、等が挙げられる。前記担持方法において、必要に応じて用いられるバインダーとしては、例えばカルボキシメチルセルロース、ポリビニールアルコール、アラビヤゴム等があり、使用量は少ないほど望ましい。多孔質担体に対する飽和環状第二アミンの添加量(担持量)は、多孔質担体重量当たり通常1〜50重量%、好ましくは5〜20重量%である。   Examples of the method for supporting the saturated cyclic secondary amine on the porous carrier include the following methods depending on whether or not the amine to be used is soluble in water. In the case of a saturated cyclic secondary amine soluble in water: 1) A method in which an amine is previously dissolved in water, and a porous carrier is immersed in this aqueous solution. 2) An aqueous solution of the compound is sprayed while stirring and mixing the porous carrier. Or, a method of spraying, 3) a method of mixing a powdery porous carrier and an aqueous solution of the amine, adding a binder as necessary, and granulating and molding. On the other hand, when using a saturated cyclic secondary amine that is insoluble in water, 4) a method in which a powdered porous carrier and a powdered amine are mixed in advance, and then granulated and molded by adding water and a binder; ) A method in which an amine and a binder are added to water to prepare a slurry in advance, and the slurry is sprayed or dispersed on a porous carrier and mixed. In the loading method, examples of the binder used as necessary include carboxymethyl cellulose, polyvinyl alcohol, arabic rubber, and the like. The addition amount (supported amount) of the saturated cyclic secondary amine to the porous carrier is usually 1 to 50% by weight, preferably 5 to 20% by weight, based on the weight of the porous carrier.

アルカリ金属またはアルカリ土類金属のハロゲン化物を形成するアルカリ金属としては、例えばリチウム、ナトリウム、カリウム等が挙げられ、好ましくはカリウムであり、アルカリ土類金属としては例えばマグネシウム、カルシウム等が挙げられ、好ましくはカルシウムである。また、ハロゲンとしては、例えばヨウ素、臭素等が挙げられ、好ましくはヨウ素である。このようなアルカリ金属およびアルカリ土類金属のハロゲン化物は、前記の飽和環状第二アミンの担持方法と同様の方法で多孔質担体へ担持される。多孔質担体に対する該ハロゲン化物の添加量(担持量)は、多孔質担体重量当たり通常0.5〜20重量%、好ましくは1〜10重量%である。   Examples of the alkali metal forming the alkali metal or alkaline earth metal halide include lithium, sodium, potassium and the like, preferably potassium, and the alkaline earth metal includes magnesium, calcium and the like, Preferably it is calcium. Examples of the halogen include iodine and bromine, and iodine is preferable. Such alkali metal and alkaline earth metal halides are supported on the porous carrier in the same manner as the method for supporting the saturated cyclic secondary amine. The added amount (supported amount) of the halide to the porous carrier is usually 0.5 to 20% by weight, preferably 1 to 10% by weight, based on the weight of the porous carrier.

多孔質担体への飽和環状第二アミンとハロゲン化物の担持はどちらかを先に担持させてもよく、また同時に担持させてもよい。   Either a saturated cyclic secondary amine or a halide may be supported on the porous support first, or may be supported simultaneously.

本発明において、第2吸着剤は、飽和環状第二アミンと、アルカリ金属又はアルカリ土類金属のハロゲン化物が、それぞれ多孔質担体に均一に担持されていることが好ましい。ここに「均一」とは、前記で述べた「均一」と同義であり、担持物質をそれぞれを単独に担持させた多孔質担体を層状に組み合わせたり、また混合したものでは当該均一を達成できない。   In the present invention, the second adsorbent is preferably such that a saturated cyclic secondary amine and an alkali metal or alkaline earth metal halide are each uniformly supported on a porous carrier. Here, “uniform” is synonymous with the above-mentioned “uniform”, and the uniformity cannot be achieved by combining or mixing porous carriers each carrying a carrier material alone.

<吸着剤と被処理ガスとの接触処理>
本発明では、(1)硫化水素及び/又はメルカプタン類(酸性ガス)と、(2)スルフィド類及び/又はジスルフィド類(イオウ系中性ガス)と、(3)アンモニア及び/又はアミン類(塩基性ガス)と、(4)低級アルデヒド類とを少なくとも含む被処理ガスを、先ず第1吸着剤に接触させ、次に第2吸着剤に接触させることが重要である。かかる順序で処理をすることで、優れた脱臭効果が得られる。すなわち、上記(1)〜(4)の4種の悪臭成分を含む被処理ガス(悪臭ガス)を、先ず第1吸着剤に接触させ、次に第2吸着剤に接触させる手順で処理すると、後述の実施例1、2に示されるように、長期に亘って被処理ガス(悪臭ガス)をそれが実質的に無臭となるように脱臭することができる。なお、(4)の低級アルデヒド類としては、ホルムアルデヒド、アセトアルデヒドが代表的であるが、プロピオンアルデヒド、アクロレイン、n−ブチルアルデヒド、i−ブチルアルデヒド、3−メチル−ブチルアルデヒド、クロトンアルデヒド等についても本発明の脱臭方法で脱臭可能である。第1吸着剤と第2吸着剤はそれぞれ別個の処理槽(カラム)に充填して使用してもよいが、単一の処理カラムのガス入り口側に第1吸着剤を充填し、ガス出口側に第2吸着剤を充填したカートリッジにして使用することで、既設の脱臭装置への適用が容易になり、また、脱臭装置のコンパクト化を図ることができる。
<Contact treatment between adsorbent and gas to be treated>
In the present invention, (1) hydrogen sulfide and / or mercaptans (acid gas), (2) sulfides and / or disulfides (sulfur neutral gas), and (3) ammonia and / or amines (base) Gas) and (4) a gas to be treated containing at least a lower aldehyde is first brought into contact with the first adsorbent and then brought into contact with the second adsorbent. By performing the treatment in this order, an excellent deodorizing effect can be obtained. That is, when the gas to be treated (bad odor gas) containing the four kinds of malodorous components (1) to (4) is first contacted with the first adsorbent and then treated with the second adsorbent, As shown in Examples 1 and 2 to be described later, it is possible to deodorize the gas to be treated (bad odor gas) over a long period of time so that it becomes substantially odorless. As the lower aldehydes of (4), formaldehyde and acetaldehyde are typical, but propionaldehyde, acrolein, n-butyraldehyde, i-butyraldehyde, 3-methyl-butyraldehyde, crotonaldehyde and the like are also present. It can be deodorized by the deodorizing method of the invention. The first adsorbent and the second adsorbent may be used by being filled in separate processing tanks (columns), but the first adsorbent is filled on the gas inlet side of a single processing column, and the gas outlet side By using it as a cartridge filled with the second adsorbent, it can be easily applied to an existing deodorizing apparatus, and the deodorizing apparatus can be made compact.

被処理ガス(悪臭ガス)を先ず第2吸着剤に接触させ、次に第1吸着剤に接触させる順序で処理した場合、後述の比較例1に示されるように、初期は良好な脱臭効果が得られるが、次第に低級アルデヒド類が吸着除去されずにリークするようになり、処理後ガスが臭気を帯びるようになる。これは、被処理ガスに第2吸着剤を先に接触させると、第2吸着剤に担持されている飽和環状第二アミンは硫化水素やメチルメルカプタンのイオウ系中性ガスとも反応性を示す(すなわち、吸着能を有する)ことから、第2吸着剤中の飽和環状第二アミンが硫化水素やメチルメルカプタンとの反応によって消費され、飽和環状第二アミンが低級アルデヒド類の吸着に対して有効に機能しなくなり、第2吸着剤で吸着されなかった低級アルデヒド類は、アセトアルデヒド吸着機能が乏しい第1吸着剤を素通りしてしまうためと考えられる。   When the gas to be treated (bad odor gas) is first contacted with the second adsorbent and then processed in the order of contact with the first adsorbent, a good deodorizing effect is initially obtained as shown in Comparative Example 1 described later. Although it is obtained, the lower aldehyde gradually leaks without being removed by adsorption, and the treated gas becomes odorous. This is because when the second adsorbent is first brought into contact with the gas to be treated, the saturated cyclic secondary amine supported on the second adsorbent exhibits reactivity with sulfur-based neutral gases such as hydrogen sulfide and methyl mercaptan ( In other words, the saturated cyclic secondary amine in the second adsorbent is consumed by reaction with hydrogen sulfide or methyl mercaptan, and the saturated cyclic secondary amine is effective for the adsorption of lower aldehydes. It is considered that the lower aldehydes that do not function and are not adsorbed by the second adsorbent pass through the first adsorbent having a poor acetaldehyde adsorption function.

また、処理槽(カラム)内に第2吸着剤のみを充填し、第2吸着剤のみでガス処理を行った場合、第2吸着剤には硫化メチル、二硫化メチル等のイオウ系中性ガスを触媒的に酸化するためのハロゲンが含まれていないため、イオウ系中性ガスが吸着除去されずにリークし、また、アンモニアやアミン類等の塩基性ガスを化学的に吸着し得る不揮発性酸が含まれていないため、塩基性ガスも吸着除去されずにリークしてしまう。一方、処理槽(カラム)内に第1吸着剤のみを充填し、第1吸着剤のみでガス処理を行った場合、第1吸着剤には低級アルデヒド類を触媒的に酸化するための担持物を有していないため、低級アルデヒド類が吸着除去されずにリークしてしまう。   In addition, when the treatment tank (column) is filled with only the second adsorbent and the gas treatment is performed only with the second adsorbent, sulfur-based neutral gas such as methyl sulfide or methyl disulfide is used as the second adsorbent. Contains no halogen to catalytically oxidize, so sulfur neutral gas leaks without being removed by adsorption, and non-volatile that can chemically adsorb basic gases such as ammonia and amines Since no acid is contained, the basic gas leaks without being removed by adsorption. On the other hand, when the treatment tank (column) is filled with only the first adsorbent and the gas treatment is performed only with the first adsorbent, the first adsorbent is a support for catalytically oxidizing lower aldehydes. Therefore, the lower aldehydes leak without being removed by adsorption.

本発明において、被処理ガスの処理空間(吸着剤との接触処理)における空間速度は、被処理ガス中の悪臭成分濃度、吸着剤の形状等によっても異なるが、好ましくは50〜10,000hr−1程度であり、より好ましくは360〜7,200hr−1程度である。また、接触温度は好ましくは−10〜60℃、より好ましくは0〜50℃である。 In the present invention, the space velocity in the processing space of the processing gas (contact treatment with the adsorbent) is malodorous components concentration in the treated gas, varies depending on the shape or the like of the adsorbent, preferably 50~10,000Hr - It is about 1 , More preferably, it is about 360-7,200hr < -1 >. The contact temperature is preferably −10 to 60 ° C., more preferably 0 to 50 ° C.

本発明で使用する第1及び第2吸着剤は、乾燥時や使用時に刺激臭を発することもなく、多孔質担体が活性炭の場合も発火点が低くなることもない。したがって、本発明の脱臭方法は水処理場、下水処理場、し尿処理場、焼却場等の種々の施設や場所で実施することができ、しかも、2種類の吸着剤の使用で済むため、設備を特に増設することなく、既設の設備、装置にて実施することができる。   The first and second adsorbents used in the present invention do not emit an irritating odor during drying or use, and the ignition point is not lowered even when the porous carrier is activated carbon. Therefore, the deodorization method of the present invention can be carried out in various facilities and places such as a water treatment plant, a sewage treatment plant, a human waste treatment plant, an incineration plant and the like, and since only two kinds of adsorbents are used, Can be implemented with existing facilities and equipment without any additional installation.

以下に実施例と比較例を示して、本発明をより具体的に説明する。
実施例1
吸着剤A(本発明における第1吸着剤)
4〜6Meshの粒状ヤシ殻活性炭(BET法による比表面積が1150m/g、細孔容積が0.52mL/gで、平均細孔直径1.8nmである4mm円柱状ヤシ殻活性炭)10.0kg/1バッチを添着機に仕込み、臭素0.40kg を均一に添着し、臭素添着炭とした。次に精製水1.72kgにヨウ化カリウム0.02kg、47%硫酸2.41kgを加えて完全に溶解し、ヨウ化カリウム−硫酸水溶液4.13kgを調製した。臭素添着炭をよく攪拌しながら、ヨウ化カリウム-硫酸水溶液をシャワー状に均一に散布し、添着を行ったものを吸着剤Aとした。
吸着剤B(本発明における第2吸着剤)
精製水1.00kgにヨウ化カリウム0.2kgを加えて完全に溶解し、ヨウ化カリウム添着水溶液1.2kgを調製した。ヨウ化カリウム添着水溶液にモルホリン1.00kgを溶解し、モルホリン-ヨウ化カリウム水溶液2.20kgとした。次に4〜6Meshの粒状活性炭(BET法による比表面積が1100m/g、細孔容積が0.51mL/gで、平均細孔直径が1.7nmである4mm円柱状ヤシ殻活性炭)10.0kg/1バッチを添着機に仕込みよく攪拌しながら、モルホリン-ヨウ化カリウム水溶液をシャワー状に均一に散布し、添着を行ったものを吸着剤Bとした。
直径10cmの塩ビ製カラムのガス入口側に吸着剤Aを2.4L、ガス出口側に吸着剤Bを2.4L充填した。このカラムに硫化水素5ppm、メチルメルカプタン0.8ppm、アンモニア2ppm、トリメチルアミン0.3ppm、硫化メチル0.18ppm、二硫化メチル0.02ppm、アセトアルデヒド0.3ppmを含有する25℃の大気(相対湿度80%)を線流速0.3m/sec.で流通し、カラム出口のガス臭気を調査するとともに、リーク成分をガスクロで判別した。その結果を表1に示す。
なお、ガス臭気の調査は悪臭防止法で定められている嗅覚測定方法に準じて行った。
すなわち、3つの袋を用意し、1つの袋はカラム出口から得られたガスで満たし、残りの2つの袋は無臭空気で満たす。そして、6人のパネルが、用意された3つの袋のなかからカラム出口から得られたガスで満たされた袋を当てる。6人のパネルすべて、ガス出口から得られたガスの袋を当てた(正解した)ときに、カラム出口より臭気が漏れ出したと判断した。そして、この時、対象となるリーク成分を悪臭防止防止法で定められている特定悪臭物質の測定の方法に準じて判別した。
Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples.
Example 1
Adsorbent A (first adsorbent in the present invention)
4-6Mesh granular coconut shell activated carbon (4mm cylindrical coconut shell activated carbon with BET method specific surface area of 1150m 2 / g, pore volume of 0.52mL / g, average pore diameter of 1.8nm) 10.0kg / batch Was added to the impregnation machine, and 0.40 kg of bromine was uniformly impregnated to obtain bromine-impregnated charcoal. Next, 0.02 kg of potassium iodide and 2.41 kg of 47% sulfuric acid were added to 1.72 kg of purified water and dissolved completely to prepare 4.13 kg of potassium iodide-sulfuric acid aqueous solution. Adsorbent A was obtained by uniformly spraying a potassium iodide-sulfuric acid aqueous solution in a shower-like manner while thoroughly stirring the bromine-impregnated carbon.
Adsorbent B (second adsorbent in the present invention)
To 1.00 kg of purified water, 0.2 kg of potassium iodide was added and completely dissolved to prepare 1.2 kg of an aqueous potassium iodide solution. 1.00 kg of morpholine was dissolved in an aqueous solution containing potassium iodide to obtain 2.20 kg of an aqueous morpholine-potassium iodide solution. Next, granular activated carbon of 4 to 6 mesh (4 mm cylindrical coconut shell activated carbon with a specific surface area by BET method of 1100 m 2 / g, pore volume of 0.51 mL / g, and average pore diameter of 1.7 nm) 10.0 kg / 1 Adsorbent B was obtained by uniformly spraying a morpholine-potassium iodide aqueous solution in a shower-like manner while charging the batch into an adhering machine and stirring well.
A vinyl column of 10 cm diameter was packed with 2.4 L of adsorbent A on the gas inlet side and 2.4 L of adsorbent B on the gas outlet side. This column contains 25 ° C air (relative humidity 80%) containing 5 ppm hydrogen sulfide, 0.8 ppm methyl mercaptan, 2 ppm ammonia, 0.3 ppm trimethylamine, 0.18 ppm methyl sulfide, 0.02 ppm methyl disulfide, and 0.3 ppm acetaldehyde. m / sec. The gas odor at the outlet of the column was investigated and the leak component was determined by gas chromatography. The results are shown in Table 1.
The gas odor was investigated in accordance with the olfactory measurement method stipulated in the Odor Control Law.
That is, three bags are prepared, one bag is filled with the gas obtained from the column outlet, and the remaining two bags are filled with odorless air. Then, a panel of six persons hits a bag filled with the gas obtained from the column outlet from among the three bags prepared. All six panels judged that odor had leaked from the column outlet when the gas bag obtained from the gas outlet was applied (correct answer). At this time, the target leak component was determined according to the method for measuring a specific malodorous substance stipulated by the Malodor Prevention Law.

実施例2
吸着剤Bの代わりに、4〜6Meshの粒状活性炭(BET比表面積1100m/g)にモルホリン10重量%、臭化カルシウム2重量%を均一に担持し吸着剤B’(本発明における第2吸着剤)を使用した以外は、実施例1と同様にして大気の吸着剤への接触処理を行い、カラム出口ガス臭気の調査とリーク成分の判別を行った。その結果を表1に示す。
Example 2
Instead of the adsorbent B, 4-6 mesh granular activated carbon (BET specific surface area 1100 m 2 / g) is uniformly loaded with 10% by weight of morpholine and 2% by weight of calcium bromide, and adsorbent B ′ (second adsorption in the present invention). In the same manner as in Example 1, the contact treatment with the adsorbent in the atmosphere was performed in the same manner as in Example 1 to investigate the column outlet gas odor and determine the leak component. The results are shown in Table 1.

比較例1
カラムのガス入口側に吸着剤Bを充填し、カラムのガス出口側に吸着剤Aを充填し、その他は実施例1と同様にして大気の吸着剤への接触処理を行い、カラム出口ガス臭気の調査とリーク成分の判別を行った。その結果を表1に示す。
Comparative Example 1
Adsorbent B is packed on the gas inlet side of the column, adsorbent A is packed on the gas outlet side of the column, and the rest is subjected to contact treatment with the adsorbent in the atmosphere in the same manner as in Example 1, and the column outlet gas odor And the leakage component was determined. The results are shown in Table 1.

比較例2
吸着剤A、吸着剤Bを各2.4Lずつを均一に混合して、カラムに充填し、その他は実施例1と同様にして大気の吸着剤への接触処理を行い、カラム出口ガス臭気の調査とリーク成分の判別を行った。その結果を表1に示す。
Comparative Example 2
Adsorbent A and Adsorbent B are mixed in a uniform amount of 2.4 L each and packed into the column, and the rest is subjected to contact treatment with the adsorbent in the atmosphere in the same manner as in Example 1, and the column outlet gas odor Investigation and discrimination of leak components were performed. The results are shown in Table 1.

比較例3
吸着剤A及び吸着剤Bを充填したカラムの代わりに、直径10cmの塩ビ製カラムに吸着剤Bを4.8L充填したカラム(すなわち、ガス入口側及びガス出口側のいずれにも吸着剤Bが充填したカラム)を使用した以外は、実施例1と同様にして大気の吸着剤への接触処理を行い、カラム出口ガス臭気の調査とリーク成分の判別を行った。その結果を表1に示す。
Comparative Example 3
Instead of the column filled with the adsorbent A and the adsorbent B, a column made of 4.8 L of the adsorbent B in a 10 cm diameter vinyl column (that is, the adsorbent B is present on both the gas inlet side and the gas outlet side). Except for using a packed column), the contact treatment with the atmospheric adsorbent was performed in the same manner as in Example 1, and the column outlet gas odor was investigated and the leak component was determined. The results are shown in Table 1.

比較例4
吸着剤A及び吸着剤Bを充填したカラムの代わりに、直径10cmの塩ビ製カラムに吸着剤Aを4.8L充填したカラム(すなわち、ガス入口側及びガス出口側のいずれにも吸着剤Aが充填したカラム)を使用した以外は、実施例1と同様にして大気の吸着剤への接触処理を行い、カラム出口ガス臭気の調査とリーク成分の判別を行った。その結果を表1に示す。
Comparative Example 4
Instead of the column filled with the adsorbent A and the adsorbent B, a column made by packing 4.8 L of the adsorbent A into a vinyl chloride column having a diameter of 10 cm (that is, the adsorbent A is present on both the gas inlet side and the gas outlet side). Except for using a packed column), the contact treatment with the atmospheric adsorbent was performed in the same manner as in Example 1, and the column outlet gas odor was investigated and the leak component was determined. The results are shown in Table 1.

Figure 2007038106
Figure 2007038106

表1から、硫化水素及び/又はメルカプタン類(酸性ガス)、スルフィド類及び/又はジスルフィド類(硫黄系中性ガス)、アンモニア及び/又はアミン類(塩基性ガス)、並びに低級アルデヒド類を含む悪臭ガスを、先ず、ハロゲン、不揮発性酸およびアルカリ金属ハロゲン化物を多孔質担体に担持させた第1吸着剤(吸着剤A)に接触させ、次に、飽和環状第二アミンとアルカリ金属又はアルカリ土類金属のハロゲン化物とを多孔質担体に担持させた第2吸着剤(吸着剤B、B’)に接触させる順序で処理したときのみ、効果的に脱臭がなされて、その優れた脱臭性能が長期間維持されることが分かる。
From Table 1, malodor containing hydrogen sulfide and / or mercaptans (acid gas), sulfides and / or disulfides (sulfur-based neutral gas), ammonia and / or amines (basic gas), and lower aldehydes The gas is first brought into contact with a first adsorbent (adsorbent A) in which a halogen, a non-volatile acid and an alkali metal halide are supported on a porous carrier, and then a saturated cyclic secondary amine and an alkali metal or alkaline earth. Deodorization is effectively performed only when the metal halide is contacted with the second adsorbent (adsorbents B and B ′) supported on the porous carrier and the excellent deodorizing performance is obtained. It can be seen that it is maintained for a long time.

Claims (3)

硫化水素及び/又はメルカプタン類と、スルフィド類及び/又はジスルフィド類と、アンモニア及び/又はアミン類と、低級アルデヒド類とを少なくとも含むガスを、先ずハロゲン、不揮発性酸およびアルカリ金属ハロゲン化物を多孔質担体に担持させた第1吸着剤に接触させ、次に飽和環状第二アミンとアルカリ金属又はアルカリ土類金属のハロゲン化物とを多孔質担体に担持させた第2吸着剤に接触させることを特徴とする脱臭方法。   A gas containing at least hydrogen sulfide and / or mercaptans, sulfides and / or disulfides, ammonia and / or amines, and lower aldehydes is first porous with halogen, non-volatile acid and alkali metal halide. Contacting with a first adsorbent supported on a carrier, and then contacting a saturated cyclic secondary amine and an alkali metal or alkaline earth metal halide with a second adsorbent supported on a porous carrier. Deodorizing method. 第1及び第2吸着剤の多孔質担体がともに活性炭である請求項1記載の脱臭方法。   The deodorizing method according to claim 1, wherein the porous carriers of the first and second adsorbents are both activated carbon. 第1吸着剤におけるハロゲンが臭素であり、不揮発性酸が硫酸であり、アルカリ金属ハロゲン化物がアルカリ金属ヨウ化物であり、第2吸着剤におけるアルカリ金属又はアルカリ土類金属のハロゲン化物がアルカリ金属又はアルカリ土類金属のヨウ化物である、請求項1又は2記載の脱臭方法。





The halogen in the first adsorbent is bromine, the non-volatile acid is sulfuric acid, the alkali metal halide is an alkali metal iodide, and the alkali metal or alkaline earth metal halide in the second adsorbent is an alkali metal or The deodorizing method according to claim 1, wherein the deodorizing method is an alkaline earth metal iodide.





JP2005224265A 2005-08-02 2005-08-02 Deodorization method Pending JP2007038106A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005224265A JP2007038106A (en) 2005-08-02 2005-08-02 Deodorization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005224265A JP2007038106A (en) 2005-08-02 2005-08-02 Deodorization method

Publications (1)

Publication Number Publication Date
JP2007038106A true JP2007038106A (en) 2007-02-15

Family

ID=37796581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005224265A Pending JP2007038106A (en) 2005-08-02 2005-08-02 Deodorization method

Country Status (1)

Country Link
JP (1) JP2007038106A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100852641B1 (en) 2007-07-11 2008-08-18 환경플라즈마(주) Apparatus and method for simultaneous removal of aldehydes and sulfur compounds using bisulfites and oxidation catalyst slurry
JP2008229545A (en) * 2007-03-22 2008-10-02 Toyota Central R&D Labs Inc Sulfur-based gas removing material and its manufacturing method
WO2010107983A1 (en) * 2009-03-18 2010-09-23 Purafil, Inc. Dry scrubbing air filtration media
JP2011092939A (en) * 2010-12-21 2011-05-12 Japan Enviro Chemicals Ltd Adsorbent
KR101648551B1 (en) * 2015-09-01 2016-08-16 (주)쓰리에이씨 A porous absorbent using micro-capsulated absorbing material and a manufacturing method of it

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5551422A (en) * 1978-10-11 1980-04-15 Takeda Chem Ind Ltd Deodorization
JPH04358536A (en) * 1990-11-30 1992-12-11 Takeda Chem Ind Ltd Adsorbent of lower aldehydes
JPH05115748A (en) * 1991-10-25 1993-05-14 Matsushita Electric Ind Co Ltd Removal of malodor
JP2001129392A (en) * 1999-11-08 2001-05-15 Takeda Chem Ind Ltd Adsorbent
JP2001178291A (en) * 1999-12-27 2001-07-03 Takeda Chem Ind Ltd Method for deodorizing animal rearing room
JP2005152726A (en) * 2003-11-21 2005-06-16 Cataler Corp Combined odor deodorant

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5551422A (en) * 1978-10-11 1980-04-15 Takeda Chem Ind Ltd Deodorization
JPH04358536A (en) * 1990-11-30 1992-12-11 Takeda Chem Ind Ltd Adsorbent of lower aldehydes
JPH05115748A (en) * 1991-10-25 1993-05-14 Matsushita Electric Ind Co Ltd Removal of malodor
JP2001129392A (en) * 1999-11-08 2001-05-15 Takeda Chem Ind Ltd Adsorbent
JP2001178291A (en) * 1999-12-27 2001-07-03 Takeda Chem Ind Ltd Method for deodorizing animal rearing room
JP2005152726A (en) * 2003-11-21 2005-06-16 Cataler Corp Combined odor deodorant

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008229545A (en) * 2007-03-22 2008-10-02 Toyota Central R&D Labs Inc Sulfur-based gas removing material and its manufacturing method
KR100852641B1 (en) 2007-07-11 2008-08-18 환경플라즈마(주) Apparatus and method for simultaneous removal of aldehydes and sulfur compounds using bisulfites and oxidation catalyst slurry
WO2010107983A1 (en) * 2009-03-18 2010-09-23 Purafil, Inc. Dry scrubbing air filtration media
CN102369051A (en) * 2009-03-18 2012-03-07 普拉菲尔有限公司 Dry scrubbing air filtration media
US8247346B2 (en) 2009-03-18 2012-08-21 Purafil, Inc. Dry scrubbing air filtration media
JP2011092939A (en) * 2010-12-21 2011-05-12 Japan Enviro Chemicals Ltd Adsorbent
KR101648551B1 (en) * 2015-09-01 2016-08-16 (주)쓰리에이씨 A porous absorbent using micro-capsulated absorbing material and a manufacturing method of it

Similar Documents

Publication Publication Date Title
JP4063316B2 (en) Deodorization method
Tao et al. Removal of methanol from pulp and paper mills using combined activated carbon adsorption and photocatalytic regeneration
JP2007038106A (en) Deodorization method
JP2010201360A (en) Adsorbent for lower aldehydes and method for producing the same
JP2006272078A (en) Absorbent for aldehydes, its manufacturing method and method for removing aldehyde in gas using adsorbent
JPH0439368B2 (en)
JP2010172871A (en) Adsorbent of lower aldehydes and method for manufacturing the same
JP2005288380A (en) Gas processing method
JP4278495B2 (en) Compound odor deodorant
JP2002095927A (en) Deodorizing method
JP3358382B2 (en) Deodorant
WO2016031474A1 (en) Adsorbent
JP2950683B2 (en) Air purifier and air purifier
JP7038023B2 (en) Dry incinerator system equipped with a drying device
JPH0810315A (en) Air cleaning agent and deodorizing filter using the same for air cleaner
JPH1199194A (en) Deodorizing composition, deodorizing device and deodorizing method with it
JP2017064048A (en) Deodorant and deodorant filter with the deodorant
JP4606013B2 (en) Compound odor deodorant
JP2016154640A (en) Deodorant filter
KR19990080619A (en) Photo Regenerative Deodorant and Deodorizing Method
CA3108671A1 (en) Process for the removal of heavy metals from liquids
JP2011212539A (en) Deodorizing system and method of using deodorizing system
JP5441836B2 (en) Compound odor deodorant
JP3029807B2 (en) Deodorant and deodorizing equipment
JP2000176278A (en) Composition for adsorptive treatment and adsorptive treating device using the same, and filter for purifying air, and adsorptive treating method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110517

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111011