JP4063316B2 - Deodorization method - Google Patents

Deodorization method Download PDF

Info

Publication number
JP4063316B2
JP4063316B2 JP2007529283A JP2007529283A JP4063316B2 JP 4063316 B2 JP4063316 B2 JP 4063316B2 JP 2007529283 A JP2007529283 A JP 2007529283A JP 2007529283 A JP2007529283 A JP 2007529283A JP 4063316 B2 JP4063316 B2 JP 4063316B2
Authority
JP
Japan
Prior art keywords
porous body
ceramic porous
deodorizing
deodorizing method
acidic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007529283A
Other languages
Japanese (ja)
Other versions
JPWO2007077924A1 (en
Inventor
謹治 竹内
善忠 山岸
英雄 居上
Original Assignee
謹治 竹内
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 謹治 竹内 filed Critical 謹治 竹内
Application granted granted Critical
Publication of JP4063316B2 publication Critical patent/JP4063316B2/en
Publication of JPWO2007077924A1 publication Critical patent/JPWO2007077924A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/38Removing components of undefined structure
    • B01D53/40Acidic components
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/01Deodorant compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/38Removing components of undefined structure
    • B01D53/42Basic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/78Liquid phase processes with gas-liquid contact
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/10Magnesium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/847Vanadium, niobium or tantalum or polonium
    • B01J23/8472Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • B01J27/043Sulfides with iron group metals or platinum group metals
    • B01J35/56
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/04Clay; Kaolin
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/009Porous or hollow ceramic granular materials, e.g. microballoons
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/0068Ingredients with a function or property not provided for elsewhere in C04B2103/00
    • C04B2103/0076Deodorizing agents

Description

本発明は、例えば食品加工工場における有機物の腐敗、発酵、酸化等により発生する水溶性悪臭ガスの脱臭及び不飽和脂肪酸の除去や、肥料・飼料工場、畜舎、下水、し尿処理場、アスファルト再生プラント等における、有機物の腐敗、発酵、酸化等により発生する悪臭ガスの無害化方法に関する。更に詳しくは、例えば、食品工場や堆肥化施設で発生する、アンモニア、トリメチルアミン等のアンモニア系悪臭、酢酸やイソ吉草酸等の有機酸、脂肪酸類、アスファルト再生プラント等で発生する炭化水素類や含硫臭気物質、更にはオイルミスト等による悪臭の軽減を目的として、空気中に含まれる悪臭物質や有害物質を除去する方法に関する。   The present invention includes, for example, deodorization of water-soluble malodorous gas generated by decay, fermentation, oxidation, etc. of organic matter in food processing factories, removal of unsaturated fatty acids, fertilizer / feed factories, barns, sewage, human waste treatment plants, asphalt regeneration plants In particular, the present invention relates to a method for detoxifying malodorous gases generated by decay, fermentation, oxidation, etc. of organic matter. More specifically, for example, ammonia-based malodors such as ammonia and trimethylamine, organic acids such as acetic acid and isovaleric acid, fatty acids, hydrocarbons generated in asphalt regeneration plants, etc. The present invention relates to a method for removing malodorous substances and harmful substances contained in the air for the purpose of reducing malodorous substances such as sulfur odor substances and oil mist.

従来から、各種工場や処理場から排出される排ガスの脱臭方法として、対象とする原臭の種類、濃度、処理量、予算及び最終要求基準等により、洗浄法、吸着法、燃焼法、触媒燃焼法、酸化法、中和法、光触媒法、生物脱臭法、マスキング法等、様々な方法が実施されている。   Conventionally, as a method for deodorizing exhaust gas discharged from various factories and treatment plants, the cleaning method, adsorption method, combustion method, catalytic combustion, etc., depending on the type, concentration, treatment amount, budget and final requirement standards of the target odor Various methods such as a method, an oxidation method, a neutralization method, a photocatalytic method, a biological deodorization method, and a masking method have been implemented.

これら各種脱臭方法のうち、洗浄法は、建設費が安く済み、アンモニア臭の除去に適した方法で、低濃度、大風量の悪臭ガス処理に適している。このため、洗浄法は、肥料・飼料工場、鋳物工場、下水・し尿処理場等で広く採用されている。しかし、洗浄法は、水に溶け込んだアンモニアの除去及び洗浄に使用される多量の廃水処理にランニングコストが高くつくという問題がある。   Of these various deodorizing methods, the cleaning method is low in construction cost and suitable for removing the ammonia odor, and is suitable for the treatment of malodorous gases having a low concentration and a large air volume. For this reason, the cleaning method is widely used in fertilizer / feed factories, foundries, sewage / human waste treatment plants, and the like. However, the cleaning method has a problem in that running costs are high for removing a large amount of waste water used for removing and cleaning ammonia dissolved in water.

また、吸着法は、肥料・飼料工場、下水・し尿処理場等で採用されている方法である。吸着法には、吸着資材として活性炭を用いる方法と、イオン交換樹脂を用いる方法とがある。活性炭は、低濃度の混合悪臭ガスに対して用いられ、初期設備費は比較的少なくて済むが、アンモニア等の塩基性の悪臭には余り効果が認められない。一方、イオン交換樹脂を吸着資材として用いる場合、やや高濃度の悪臭に効果は認められるが、安定性に欠ける欠点がある。更に、吸着法では、吸着資材を頻繁に交換する必要がある。   The adsorption method is a method employed in fertilizer / feed factories, sewage / human waste treatment plants, and the like. The adsorption method includes a method using activated carbon as an adsorbing material and a method using an ion exchange resin. Activated carbon is used for low-concentration mixed malodor gas, and the initial equipment cost is relatively low, but it is not very effective for basic malodor such as ammonia. On the other hand, when an ion exchange resin is used as an adsorbing material, an effect is recognized for a slightly high concentration of bad odor, but there is a drawback of lacking stability. Furthermore, the adsorption method requires frequent replacement of the adsorbent material.

中和法は取扱が簡単であり、食品工場、化学工場、下水・し尿処理場等で採用されている。しかし、中和法は、アンモニアに効果が低く、適用範囲が限定される。更に、中和法は、中和用化学薬品(中和剤)が必要で、その補充等のためランニングコストも高くつく。   The neutralization method is easy to handle and is used in food factories, chemical factories, sewage and human waste treatment plants, and the like. However, the neutralization method has a low effect on ammonia and has a limited application range. Furthermore, the neutralization method requires a chemical for neutralization (neutralizing agent), and its running cost is high due to its replenishment.

このように、従来の脱臭方法のうち、洗浄法、吸着法及び中和法は、建設費が安価で維持管理も容易であるが、いずれの方法も、多量の処理水、吸着剤又は中和用化学薬品が必要で、建設費が比較的安価で維持管理も容易とはいうものの、処理原臭濃度が高くなるほど、それに比例して吸着剤の再生費用や中和剤補充のための費用等がランニングコストに跳ね返ってくる。   As described above, among the conventional deodorization methods, the cleaning method, the adsorption method, and the neutralization method have low construction costs and are easy to maintain and manage. Although chemicals are required, construction costs are relatively low, and maintenance is easy, the higher the raw odor concentration, the higher the cost of regeneration of the adsorbent and the cost of replenishing the neutralizing agent. Rebounds on running costs.

また、触媒燃焼法は、悪臭除去効率は非常に高く、高濃度の悪臭に適用される。しかし、触媒燃焼法は、設備費及びランニングコストが高くつくため、畜産業には適用されていない。   Further, the catalytic combustion method has a very high malodor removal efficiency and is applied to high-concentration malodor. However, the catalytic combustion method is not applied to the livestock industry because of high equipment costs and running costs.

酸化法は、小規模な装置向きであり、肥料・飼料工場、食品工場、石油化学工場、下水・し尿処理場等で採用されている。酸化法にはオゾン酸化法と塩素酸化法とがある。何れも含硫悪臭には効果があるが、アンモニアなど塩基性の悪臭に殆ど効果は認められない。   The oxidation method is suitable for small-scale equipment, and is used in fertilizer and feed factories, food factories, petrochemical factories, sewage and human waste treatment plants, and the like. The oxidation method includes an ozone oxidation method and a chlorine oxidation method. All are effective against sulfur-containing malodor, but almost no effect is observed on basic malodor such as ammonia.

また、光触媒法は、機械装置が高価で、コストパフォーマンスに劣り、かつ、大容量処理には向いていないため、低濃度、小風量の悪臭除去に限られ、厨房等の小規模施設に適用されているが、脱臭効果は低い。   In addition, the photocatalytic method is expensive for machinery, inferior in cost performance, and is not suitable for large-capacity processing. However, the deodorizing effect is low.

生物的脱臭法は、土壌と、そこに生息する土壌微生物の脱臭効果を利用するものであり、ほぼ全ての悪臭原に効果があり、化学工場以外のほぼ全てに適用可能である。また、生物的脱臭法は、設備費やランニングコストが安いという利点もある。しかし、生物的脱臭法は、施設に広い面積が必要とされ、また完全な脱臭は不可能で、悪臭濃度が高い場合には効果が認められない。   The biological deodorization method uses the deodorizing effect of soil and the soil microorganisms that inhabit it, and is effective for almost all malodorous fields, and can be applied to almost all other than chemical factories. In addition, the biological deodorization method has an advantage that equipment costs and running costs are low. However, the biological deodorization method requires a large area in the facility, and complete deodorization is impossible, and the effect is not recognized when the malodor concentration is high.

更に、マスキング法は、原臭ガスの除去ではなく、香水等の別の匂いで低濃度の悪臭を隠蔽させる方法で、根本的な解決法にはならず、用途が限定される。   Furthermore, the masking method is not a removal of the original odor gas but a method of concealing a low-concentration malodor with another odor such as a perfume, and is not a fundamental solution and has limited applications.

このように、現状では、悪臭を除去するための決定的な解決手法は、未だ無い。   Thus, at present, there is still no definitive solution for removing malodors.

また、水洗により触媒を再活性化する方法も提案されている。例えば、竪型筒体内に、ポーラスなセラミックス製ハニカム体に触媒金属を含浸させた酸化触媒層を設け、この触媒層の上方に散水ノズル、下方に熱風供給ノズルを配設するとともに、前記筒体の上部に排気管、下部に排ガス供給管、底部に排水管をそれぞれ取り付けた排ガス処理装置が提案されている(特許文献1参照。)。この排ガス処理装置では、アスファルト再生炉等から排出された、一酸化炭素、炭化水素等の有害物質、更にはカーボンピッチ等を含む200〜250℃の排ガスを、予熱して300〜400℃に昇温した後、排ガス供給管から筒体内に供給し、酸化触媒層を通過させることにより二酸化炭素、水素等の無害物質に変換し、筒体上部の排気管から排気する。そして、排ガス処理により触媒層が被毒されて触媒性能が低下した場合には、散水管から触媒層に洗浄水を散布して触媒層に付着しているダスト等を水洗した後、熱風供給ノズルから500〜700℃の熱風を供給して触媒層に付着しているカーボン、ピッチ等の残留加熱物を焼却除去して触媒を賦活させ、触媒の超寿命化を図るというものである。しかし、この排ガス処理装置は、アスファルト再生炉等から排出される一酸化炭素、炭化水素等の無害化には効果があるが、それ以外の、例えばアンモニア系悪臭や有機酸系悪臭の無害化(脱臭)は期待できない。また、散布される水は、排ガスの供給を停止して触媒を洗浄するために用いられて触媒の再活性化の作用を果たしているに過ぎず、悪臭の無害化に関与するものではない。更に、この排ガス処置装置では、触媒による無害化処理に先立ち、予熱により排ガスを300〜400℃にまで昇温する必要があり、燃料費等のランニングコストも高くつく。   A method of reactivating the catalyst by washing with water has also been proposed. For example, an oxidation catalyst layer in which a porous ceramic honeycomb body is impregnated with a catalyst metal is provided in a vertical cylinder, and a water spray nozzle is disposed above the catalyst layer, and a hot air supply nozzle is disposed below the catalyst layer. An exhaust gas treatment apparatus has been proposed in which an exhaust pipe is attached to the upper part, an exhaust gas supply pipe is attached to the lower part, and a drain pipe is attached to the bottom part (see Patent Document 1). In this exhaust gas treatment device, exhaust gas at 200 to 250 ° C. containing harmful substances such as carbon monoxide and hydrocarbons, carbon pitch, etc., discharged from an asphalt regeneration furnace, etc. is preheated and heated to 300 to 400 ° C. After being warmed, it is supplied into the cylinder from the exhaust gas supply pipe, is passed through the oxidation catalyst layer, is converted into a harmless substance such as carbon dioxide and hydrogen, and is exhausted from the exhaust pipe at the top of the cylinder. And when the catalyst layer is poisoned by exhaust gas treatment and the catalyst performance deteriorates, the washing water is sprayed from the water spray pipe to the catalyst layer to wash the dust adhering to the catalyst layer, and then the hot air supply nozzle From 500 to 700 ° C., hot air at 500 to 700 ° C. is supplied to incinerate and remove residual heating materials such as carbon and pitch attached to the catalyst layer to activate the catalyst, thereby extending the life of the catalyst. However, this exhaust gas treatment device is effective in detoxifying carbon monoxide, hydrocarbons, etc. discharged from asphalt regeneration furnaces, but other detoxification such as ammonia-based malodor and organic acid-based malodor ( Deodorization is not expected. Further, the sprayed water is used to stop the supply of exhaust gas and wash the catalyst, and serves only to reactivate the catalyst, and does not contribute to the detoxification of malodor. Furthermore, in this exhaust gas treatment device, it is necessary to raise the temperature of the exhaust gas to 300 to 400 ° C. by preheating prior to the detoxification treatment with the catalyst, and running costs such as fuel costs are high.

また、し尿処理施設等で硫化水素等の悪臭成分を除去するための脱臭装置として、下部に臭気ガス流出口を形成し、上部に脱臭ガス流出口を形成して脱臭塔を構成し、この脱臭塔の底部に、苛性ソーダを含んだ循環液を貯留した薬液循環槽を設け、脱臭塔内における臭気ガス流入口と脱臭ガス流出口との間に、前記薬液循環槽より循環供給される薬液を散水するスプレーノズルを設け、このスプレーノズルの下方に、直径又は長さ1cm以上の円柱状又は角柱状をなし、孔径100Å以上の孔を有するカーボンセラミック充填材層を設けて、脱臭塔内に流入した臭気ガス中の悪臭成分を除去するようにした脱臭装置が提案されている(特許文献2参照。)。しかし、この脱臭装置は、し尿処理施設等で発生する硫化水素を、苛性ソーダとの反応により無害化するものであり、カーボンセラミック充填材は単に前記反応を促進するための触媒に過ぎず、硫化水素以外のアンモニア系悪臭や有機酸系悪臭の除去(脱臭)効果は期待できない。   In addition, as a deodorizing device for removing malodorous components such as hydrogen sulfide in human waste treatment facilities, a deodorizing tower is formed by forming a deodorizing gas outlet at the bottom and a deodorizing gas outlet at the top. At the bottom of the tower, a chemical circulation tank that stores the circulating liquid containing caustic soda is installed, and the chemical liquid circulated from the chemical circulation tank is sprinkled between the odor gas inlet and the deodorized gas outlet in the deodorization tower. A spray nozzle is provided, and a carbon ceramic filler layer having a columnar or prismatic shape with a diameter or length of 1 cm or more and a hole with a hole diameter of 100 mm or more is provided below the spray nozzle and flows into the deodorization tower. There has been proposed a deodorizing apparatus that removes malodorous components in odorous gas (see Patent Document 2). However, this deodorizing device detoxifies hydrogen sulfide generated in human waste treatment facilities and the like by reaction with caustic soda, and the carbon ceramic filler is merely a catalyst for promoting the reaction, and hydrogen sulfide. It is not expected to remove (deodorize) ammonia-based malodor or organic acid-based malodor.

更に、廃アスファルト塊再生設備からでる排ガス中のアンモニア、メチルメルカプタン等の悪臭物質を無臭化するため、廃アスファルト塊再生設備の煙道に、Mg、SiO2、Al23、バインダを混合し、250〜300℃で半溶融晶結した、Mgを含むSiO2、Al23からなり、0.2nm〜20nm系の針状微細孔を無数に有するボール(球)、シリンダ(筒)、コーン(円錐)等各種形状に形成したソフトセラミックスを充填した触媒反応タワーと、前記セラミックスに適量の水を供給する供給手段を介設した廃アスファルト塊生成設備の煙道設備が提案されている(特許文献3参照。)。この煙道設備によれば、セラミックスの針状微細孔を水で濡らした状態で、悪臭物質を含む排ガスを接触させることで、イオン交換反応作用、分子分級効果及び酸化・還元作用により悪臭成分が崩壊・分解され更に無臭物質に変換・変性された後、無臭が針状微細孔から離れ、煙突を通じて大気に放散されるというものである。前記悪臭成分の無害物質への変換・変性については、前記セラミックスが、Mgを核とし、O(酸素原子)、Si(硅素)、OH(水酸基)、Al(アルミニウム)等が付いて、全体的にマトリックス(立体格子)を形成しているものと推定されており、前記針状微細孔に水が付着すると、水の分子(H2O)がマトリックスを構成するMg、Si、Al等の元素の触媒作用により、酸素イオンと水酸基イオンに分解し、且つ酸素(O2)が酸素イオンの形で針状微細孔に張り付いているところへ、臭気を含んだ排ガスが到達し、タール臭やゴム臭の元となる悪臭物質が酸化若しくは還元されて、結果的にH2OとCO2と電子(e)とに変化し、H2Oの一部は分解して無臭化作用を発揮すると説明されている。しかし、この煙道設備は、廃アスファルト塊処理設備から排出される排ガス中の悪臭物質の無害化に限定され、それ以外の、例えば食品工業や、し尿処理設備等から排出される、酸性ガス、アルカリ性ガス等の多様な悪臭物質を含む排ガスの無害化処理への適用については全く考慮されていない。更に、触媒反応タワーに充填されるセラミックスは、250〜300℃という低温で焼成した比較的軟らかいソフトセラミックスであり、あまり強度が大きくないため取り扱いに注意が必要で、また用途によっては耐久性が十分でない場合がある。Furthermore, Mg, SiO 2 , Al 2 O 3 , and binder are mixed in the flue of the waste asphalt lump regeneration facility to eliminate odorous substances such as ammonia and methyl mercaptan in the exhaust gas from the waste asphalt lump regeneration facility. A ball (sphere), cylinder (cylinder), which is made of SiO 2 containing Mg and semi-melt crystallized at 250 to 300 ° C., Al 2 O 3 , and has a myriad of 0.2 to 20 nm acicular micropores, There has been proposed a flue system for waste asphalt lump generation equipment provided with a catalytic reaction tower filled with soft ceramics formed into various shapes such as cones and supply means for supplying an appropriate amount of water to the ceramics ( (See Patent Document 3). According to this flue equipment, by contacting the exhaust gas containing malodorous substances with the ceramic needle-shaped micropores wetted with water, malodorous components are produced by the ion exchange reaction action, molecular classification effect and oxidation / reduction action. After being disintegrated and decomposed and further converted to an odorless substance, the odorless substance leaves the needle-shaped micropores and is released into the atmosphere through the chimney. Regarding the conversion / modification of the malodorous component into a harmless substance, the ceramic is generally composed of Mg as a nucleus, O (oxygen atom), Si (silicon), OH (hydroxyl), Al (aluminum), etc. the matrix are presumed to form a (three-dimensional lattice), when the water to the needle-like micropores are attached, Mg water molecules (H 2 O), etc. are constituting the matrix, Si, elements such as Al Due to the catalytic action, the exhaust gas containing odor arrives where oxygen (O 2 ) decomposes into oxygen ions and hydroxyl ions, and oxygen (O 2 ) sticks to the needle-shaped micropores in the form of oxygen ions. malodorous substances as a source of rubber smell is oxidized or reduced, resulting in changes to H 2 O and CO 2 and electrons (e), a part of the H 2 O exerts deodorization effect by decomposition Explained. However, this flue equipment is limited to detoxification of malodorous substances in the exhaust gas discharged from the waste asphalt lump processing equipment, and other than that, for example, acid gas discharged from the food industry, human waste processing equipment, etc. No consideration is given to application to detoxification treatment of exhaust gas containing various malodorous substances such as alkaline gas. Furthermore, the ceramic filled in the catalytic reaction tower is a relatively soft soft ceramic fired at a low temperature of 250 to 300 ° C., and its strength is not so great that it needs to be handled with care and has sufficient durability depending on the application. It may not be.

また、家庭、オフィス、病院内等の室内空間において、調理臭、食品臭、タバコ臭、体臭、ペット臭、トイレ臭、介護臭等の悪臭や、トルエン、キシレン、ホルムアルデヒド、パラジクロロベンゼン、クロルピリホス、エチルベンゼン、スチレン、フタル酸ブチル等の揮発性の有害物質を、連続的に、長期間にわたって除去して、空気を浄化するための気相反応方法として、ペルオキソチタン酸溶液を加熱して結晶化することにより得られるペルオキソ基を含有するアナターゼ型酸化チタン分散液を用いて製造された光触媒体に光を照射させつつ、光触媒体の表面に、断続的に水を塗布する気相反応方法が提案されている(特許文献4参照。)。しかし、この気相反応方法では、前記のような室内空間における悪臭等の有害物質は除去することはできても、例えば食品工場や、し尿処理設備で発生する、悪臭成分を高濃度で含有する排ガスの無害化は困難である。更に、このような光触媒を用いた処理方法の場合には、前記したように機械装置が高価でコストパフォーマンスに劣る、大容量処理には向いていない、といった問題がある。また、この気相反応方法では、水は触媒活性を再生するに過ぎず、悪臭成分の無害化には関与していない。
実開平3−54731号公報 特開平9−882号公報 特開2001−232153号公報 特開2002−301336号公報
Also, in indoor spaces such as homes, offices and hospitals, bad odors such as cooking odor, food odor, tobacco odor, body odor, pet odor, toilet odor, nursing odor, toluene, xylene, formaldehyde, paradichlorobenzene, chloropyrifos, ethylbenzene As a gas phase reaction method for purifying air by continuously removing volatile harmful substances such as styrene and butyl phthalate over a long period of time, the peroxotitanate solution is heated and crystallized. A gas phase reaction method has been proposed in which water is intermittently applied to the surface of a photocatalyst while irradiating the photocatalyst produced using an anatase-type titanium oxide dispersion containing a peroxo group obtained by (See Patent Document 4). However, this gas phase reaction method can remove harmful substances such as malodor in the indoor space as described above, but contains a high concentration of malodorous components generated in, for example, food factories and human waste processing facilities. Detoxification of exhaust gas is difficult. Furthermore, in the case of such a treatment method using a photocatalyst, there is a problem that the mechanical device is expensive and inferior in cost performance as described above and is not suitable for large-capacity treatment. In this gas phase reaction method, water only regenerates the catalytic activity and does not participate in detoxifying malodorous components.
Japanese Utility Model Publication No. 3-54731 JP-A-9-882 JP 2001-232153 A JP 2002-301336 A

本発明は、上記従来法が有する種々の問題に鑑み、高効率、低コストの脱臭方法を提供することを目的とする。   The present invention has been made in view of the various problems of the conventional methods described above, and an object thereof is to provide a high-efficiency, low-cost deodorization method.

上記の目的を達成するために、本発明者等は、既存の触媒法に代わり、セラミックスの構造上の有効性を最大限に引き出し、空気中の酸性又は塩基性の悪臭成分や有害成分(以下、これらをまとめて「原臭物質」ということもある。)を一次変性する環境を提供し、この一次変性した空気中の原臭物質をセラミックス多孔体と接触させることにより、高効率、低コストで脱臭可能な新たな脱臭方法を見出した。更に、本発明者らは、空気中の原臭物質をセラミックス上の活性点へ誘導し、セラミックスと接触させる媒体として水を採用することで、更に高効率で脱臭可能な脱臭方法を見出した。   In order to achieve the above object, the present inventors have made the best use of the structural effectiveness of ceramics in place of the existing catalytic method, and have acidic or basic malodorous and harmful components in the air (hereinafter referred to as the following). These are collectively referred to as “original odor substances.”) By providing an environment for primary modification and bringing the primary modified odor substances in the air into contact with the ceramic porous body, high efficiency and low cost We found a new deodorization method that can be deodorized with Furthermore, the present inventors have found a deodorizing method capable of deodorizing with higher efficiency by introducing an original odor substance in the air to an active point on the ceramic and employing water as a medium to be brought into contact with the ceramic.

即ち、本発明に係る脱臭方法は、悪臭成分又は有害成分を含む空気を、セラミックス多孔体からなる脱臭層を強制的に通過させることで、前記悪臭成分又は有害成分を除去し、無害化された空気として排出する脱臭方法であって、前記セラミックス多孔体が、連続貫通気孔を有するセラミックス多孔体に酸性物質又は塩基性物質を担持させたものであり、空気中の酸性成分は、前記塩基性物質を担持させたセラミックス多孔体を通過させることにより除去し、空気中の塩基性成分は、前記酸性物質を担持させたセラミックス多孔体を通過させることにより除去することを特徴とする。   That is, in the deodorizing method according to the present invention, air containing malodorous components or harmful components is forced to pass through a deodorizing layer made of a ceramic porous body, thereby removing the malodorous components or harmful components and detoxifying them. A deodorizing method for discharging as air, wherein the ceramic porous body is a ceramic porous body having continuous through pores, and an acidic substance or a basic substance is supported thereon, and the acidic component in the air is the basic substance. It is characterized in that the basic component in the air is removed by passing through the ceramic porous body carrying the acidic substance.

本発明に係る脱臭方法では、酸性の臭気は塩基性の雰囲気中で、塩基性の臭気は酸性の雰囲気中で、中和反応により一次変性する工程と、前記一次変性された臭気を、セラミックス多孔体を担体として前記悪臭成分又は有害成分に応じて前記セラミックス多孔体に担持させた塩基性物質や酸性物質と、更にはセラミックス多孔体と接触させて、空気中に含まれる悪臭成分又は有害成分を除去して無害化した空気として排出する。   In the deodorizing method according to the present invention, the step of primary modification by a neutralization reaction in an acidic atmosphere in a basic atmosphere and the basic odor in an acidic atmosphere, and the primary modified odor, A basic substance or an acidic substance carried on the ceramic porous body according to the malodorous component or harmful component as a carrier, and further contacted with the ceramic porous body, and the malodorous component or harmful component contained in the air It is discharged as detoxified air.

また、前記セラミックス多孔体として、鋳鉄スラグを用いると、良好な連続貫通気孔を有するセラミックス多孔体が得られるとともに、該スラグ中に含まれるMgO、MnO、FeO、CaO、SiO、Al23等の金属酸化物の作用により、空気中に含まれる原臭物質がより効率よく除去される。Further, when cast iron slag is used as the ceramic porous body, a ceramic porous body having good continuous through pores is obtained, and MgO, MnO, FeO, CaO, SiO, Al 2 O 3 and the like contained in the slag are obtained. The raw odor substance contained in the air is more efficiently removed by the action of the metal oxide.

また、前記セラミックス多孔体として、粒状、好ましくは球状のものを、通気可能なケースに充填して脱臭層とすることで、通気抵抗が低減され、また通気時のセラミックス多孔体の振動により、空気中の原臭物質との接触機会が増大し、原臭物質の除去効率が向上する。   In addition, the ceramic porous body is granular, preferably spherical, filled into a case that can be ventilated to form a deodorizing layer, thereby reducing the airflow resistance. The chance of contact with the raw odor substance increases, and the removal efficiency of the raw odor substance is improved.

更に、原臭物質を含む空気とセラミックス多孔体との接触時に水分を介在させることで、より脱臭効率が向上する。即ち、この脱臭方法は、従来の脱臭方法である吸着法、中和法及び洗浄法の長所を併せ持つものであり、セラミックスの特徴である原臭物質(空気中に含まれる、アンモニア、トリメチルアミン、酢酸、イソ吉草酸、脂肪酸類、含硫臭気物質、オイルミスト、その他の悪臭成分や有害成分)の物理的な捕獲を容易ならしめ、セラミックス多孔体に担持させた酸性物質又は塩基性物質による酸性雰囲気又は塩基性雰囲気中での前記原臭物質の一次変性の媒体として、また同時に、原臭物質をセラミックス多孔体と接触させるための移動の媒体として、水を用いるものである。即ち、本発明では、従来のように触媒活性の再生のために単に水を加えるのではなく、例えば、0.5m/s〜4.0m/sの風速を常時維持した風力により、原臭物質を水を介してセラミックス多孔体上の触媒活性点へ強制的に流動移動させるという、従来にない高効率、低コストの新たな脱臭システムを提供するものである。   Furthermore, the deodorizing efficiency is further improved by interposing moisture at the time of contact between the air containing the raw odor substance and the porous ceramic body. In other words, this deodorization method has the advantages of the conventional deodorization methods of adsorption method, neutralization method and cleaning method, and the original odor substance (ammonia, trimethylamine, acetic acid contained in the air) which is characteristic of ceramics. , Isovaleric acid, fatty acids, sulfur-containing odorous substances, oil mist, other malodorous and harmful ingredients), and an acidic atmosphere with an acidic or basic substance carried on a ceramic porous body Alternatively, water is used as a medium for primary modification of the original odor substance in a basic atmosphere and at the same time as a transfer medium for bringing the original odor substance into contact with the ceramic porous body. That is, in the present invention, water is not simply added to regenerate the catalytic activity as in the prior art, but the raw odor substance is generated by, for example, wind power constantly maintaining a wind speed of 0.5 m / s to 4.0 m / s. A new deodorizing system with high efficiency and low cost, which is unprecedented, is provided by forcibly flowing and moving water to a catalytic active point on a ceramic porous body.

また、上記脱臭方法を実施するための脱臭装置は、一側側に吸気口を設け、他側側に排気口を設けた装置本体と、前記吸気口と排気口との間の装置本体内を複数の空間に区画するように設けた複数の脱臭層と、悪臭成分又は有害成分を含む空気を、前記装置本体内に供給し、前記脱臭層を強制的に通過させて無害化された空気として排出する送気手段とを備え、前記脱臭層が、連続貫通気孔を有するセラミックス多孔体であって、酸性物質又は塩基性物質を担持させたセラミックス多孔体からなることを特徴とする。前記脱臭装置の好ましい実施形態では、前記脱臭層のセラミックス多孔体に水を供給するための給水手段を備えている。   Further, a deodorizing apparatus for carrying out the above deodorizing method includes an apparatus main body having an intake port on one side and an exhaust port on the other side, and an inside of the apparatus main body between the intake port and the exhaust port. As air detoxified by supplying a plurality of deodorizing layers provided to partition into a plurality of spaces and air containing malodorous or harmful components into the device body and forcibly passing through the deodorizing layer. The deodorizing layer is a ceramic porous body having continuous through pores, and is made of a ceramic porous body carrying an acidic substance or a basic substance. In preferable embodiment of the said deodorizing apparatus, the water supply means for supplying water to the ceramic porous body of the said deodorizing layer is provided.

本発明に係る脱臭方法によれば、悪臭成分又は有害成分等を含む空気を、セラミックス多孔体からなる脱臭層を強制的に通過させるだけで、低コストで空気中に含まれる原臭物質を高効率で除去して無害な空気として排出することができる。従って、本発明によれば、工場等の作業環境、その周辺の住環境、ペットショップ等の店舗内の環境、更にはオフィス、住宅等の室内環境等を改善することができる。   According to the deodorizing method according to the present invention, it is possible to increase the raw odorous substance contained in the air at low cost simply by forcibly passing the air containing malodorous components or harmful components through the deodorizing layer made of the ceramic porous body. It can be efficiently removed and discharged as harmless air. Therefore, according to the present invention, it is possible to improve a working environment such as a factory, a surrounding living environment, an environment in a store such as a pet shop, and an indoor environment such as an office or a house.

また、酸化雰囲気及び還元雰囲気の別々の脱臭層において、アンモニア系、有機酸系及び含硫悪臭物質を除去することで、結果として塩基性及び酸性の原臭物質の両方を除去することができる。   Moreover, by removing ammonia-based, organic acid-based and sulfur-containing malodorous substances in separate deodorizing layers in an oxidizing atmosphere and a reducing atmosphere, both basic and acidic raw odorous substances can be removed as a result.

更に、原臭物質を含む空気を脱臭層のセラミックス多孔体と接触させる際に水を介在させることにより、水により原臭物質の一次変性の場をより多く提供すると共に、セラミックス多孔体上の無害化活性点との接触頻度を増大させることで、高効率の脱臭作用を実現しうる。即ち、水を媒体とすることで、一次変性に続く二次変性をセラミックス多孔体上で高頻度で行うことを可能とし、脱臭層から排出される空気中に臭気が少量リークされる可能性を、より低くすることができる。また、媒体として水を使用することで、酸化還元反応が促進され、結果として、アンモニア系、有機酸系、含硫悪臭物質及び脂肪酸等の全ての悪臭・有害成分の除去、即ち、混合悪臭の脱臭にも有効である。   Furthermore, by interposing water when the air containing the raw odor substance is brought into contact with the ceramic porous body of the deodorizing layer, water provides more sites for primary modification of the raw odor substance and is harmless on the ceramic porous body. A highly efficient deodorizing action can be realized by increasing the frequency of contact with the activated activating point. That is, by using water as a medium, secondary modification following primary modification can be performed on the ceramic porous body at a high frequency, and a small amount of odor can be leaked into the air discharged from the deodorizing layer. , Can be lower. In addition, the use of water as a medium promotes the oxidation-reduction reaction. As a result, removal of all malodorous and harmful components such as ammonia, organic acid, sulfur-containing malodorous substances and fatty acids, that is, mixed malodor It is also effective for deodorization.

更には、無害化機能を促進する物質として、酸性の臭気には、例えばpH8.0〜10.0の固体塩基性物質を、また塩基性の臭気には、例えばpH3.0〜5.0の固体酸性物質を使用することで、酸性又は塩基性の雰囲気の創出に多量の水を必要とせず、廃水処理コストも低く抑えることができる。また、水が、原臭物質をセラミックス多孔体上の無害化活性点への移送機能を奏することで、脱臭能の維持に中和剤を必要とせず、しかも、常温処理が可能であり、原臭物質の除去に光エネルギーや熱エネルギーを必要とせず、低コストで脱臭可能である。   Further, as a substance that promotes the detoxifying function, for example, a solid basic substance having a pH of 8.0 to 10.0 is used for an acidic odor, and a pH 3.0 to 5.0 is used for a basic odor. By using a solid acidic substance, a large amount of water is not required to create an acidic or basic atmosphere, and wastewater treatment costs can be kept low. In addition, since the water has a function of transferring the raw odor substance to the detoxifying active site on the ceramic porous body, it does not require a neutralizing agent to maintain the deodorizing ability, and can be treated at room temperature. It does not require light energy or heat energy to remove odorous substances and can be deodorized at low cost.

また、一次変性工程の前にオイルミスト除去工程を設けることで、エマルジョン状の不飽和脂肪酸やオイルミストを効率よく多量に吸着し、除去することができ、且つ予め前記オイルミスト等の除去を行うことで、それに続く、脱臭層における原臭物質の除去効率も向上する。   In addition, by providing an oil mist removal step before the primary denaturation step, it is possible to efficiently adsorb and remove a large amount of unsaturated fatty acids and oil mist in the form of emulsion, and remove the oil mist and the like in advance. Thus, the subsequent removal efficiency of the raw odor substance in the deodorizing layer is also improved.

本発明による脱臭方法は、廃水中へは臭気物質や有害物質は殆ど混入しないので、廃水処理に要するコストはゼロに等しく、環境負荷の少ない持続的な処理法である。   The deodorization method according to the present invention is a continuous treatment method with almost no odorous substances and harmful substances mixed in the wastewater, so that the cost for wastewater treatment is equal to zero and the environmental load is small.

本発明方法の実施に使用する脱臭装置の一実施形態の模式図(平断面図)である。It is a schematic diagram (plane sectional drawing) of one Embodiment of the deodorizing apparatus used for implementation of the method of this invention. 実施例に使用した脱臭装置の平断面図である。It is a plane sectional view of the deodorizing device used for the example. 実施例に使用した他の脱臭装置の平断面図である。It is a plane sectional view of the other deodorizing apparatus used for the Example. 実施例に使用した更に他の脱臭装置の平断面図である。It is a plane sectional view of the other deodorizing device used for the example.

符号の説明Explanation of symbols

1 脱臭装置、2 脱臭装置本体、3 脱臭層、4 セラミックス多孔体、5 止水栓、6 散水ノズル、7 排水口、8 排水管。   DESCRIPTION OF SYMBOLS 1 Deodorizing device, 2 Deodorizing device main body, 3 Deodorizing layer, 4 Ceramic porous body, 5 Water stop cock, 6 Sprinkling nozzle, 7 Drain outlet, 8 Drain pipe.

本発明に係る脱臭方法は、悪臭成分又は有害成分を含む空気(以下、「臭気ガス」または「原ガス」ということもある。)を、セラミックス多孔体からなる脱臭層を強制的に通過させて前記悪臭成分又は有害成分を除去する脱臭方法である。本発明方法の処理対象となる臭気ガス中の悪臭成分又は有害成分としては、アンモニア、トリメチルアミン、酢酸、イソ吉草酸、脂肪酸類、含硫臭気物質、オイルミスト、その他の悪臭成分や有害成分等、特に限定はない。   The deodorization method according to the present invention forcibly passes air containing malodorous or harmful components (hereinafter sometimes referred to as “odor gas” or “raw gas”) through a deodorization layer made of a ceramic porous body. It is a deodorizing method for removing the malodorous component or harmful component. The malodorous or harmful components in the odor gas to be treated by the method of the present invention include ammonia, trimethylamine, acetic acid, isovaleric acid, fatty acids, sulfur-containing odorous substances, oil mist, other malodorous and harmful components, There is no particular limitation.

本発明の脱臭方法を実施するための脱臭装置の一実施形態を、図1に示す。なお、図1に示す装置の形態は、本発明の実施に使用される脱臭装置を限定するものではない。   An embodiment of a deodorizing apparatus for carrying out the deodorizing method of the present invention is shown in FIG. In addition, the form of the apparatus shown in FIG. 1 does not limit the deodorizing apparatus used for implementation of this invention.

図例の脱臭装置1は、装置本体2の一方(図中、右側)から他方(図中、左側)に向けて、処理対象である臭気ガス(悪臭成分や有害成分を含む空気)を強制的に通過させて、臭気ガス中に含まれる悪臭成分や有害成分等の原臭物質を除去し、無害化された状態の空気として装置本体2から排気する。   The deodorizing apparatus 1 shown in the figure forces odor gas (air containing odorous components and harmful components) to be processed from one side (right side in the figure) to the other side (left side in the figure) of the apparatus body 2. The raw odor substances such as malodorous components and harmful components contained in the odor gas are removed and exhausted from the apparatus main body 2 as detoxified air.

装置本体2は、ステンレス等の耐腐食性材料からなる箱状で、その一側に吸気口を設け、他側側に排気口を設けてあり、その内部には、複数の脱臭層3が、吸気側と排気側との間の装置本体2内を複数の空間に区画するように設けてある。脱臭層3は、両面が金網等により覆われた、通気可能なケース内に、セラミック多孔体4を充填してある。また、各脱臭層3間の空間には、図示しない給水手段に連結された散水ノズル6を脱臭層3に向けて設けてある。なお、図中、符号5で示すものは止水栓であり、符号7で示すものは排水管8に連なる排水口である。排水管8は、給水手段に接続して、水を循環使用するようにしてもよい。また、図例の脱臭装置1は、横型であるが、竪型でもよく、傾斜していてもよい。   The apparatus body 2 is a box made of a corrosion-resistant material such as stainless steel, provided with an intake port on one side thereof and an exhaust port on the other side thereof, and a plurality of deodorizing layers 3 are provided therein. The apparatus main body 2 between the intake side and the exhaust side is provided so as to be partitioned into a plurality of spaces. The deodorizing layer 3 is filled with a ceramic porous body 4 in a gas-permeable case whose both surfaces are covered with a metal mesh or the like. Further, in the space between the deodorizing layers 3, a watering nozzle 6 connected to a water supply means (not shown) is provided toward the deodorizing layer 3. In the figure, the reference numeral 5 indicates a water stop cock, and the reference numeral 7 indicates a drain outlet connected to the drain pipe 8. The drain pipe 8 may be connected to a water supply means to circulate and use water. Moreover, although the deodorizing apparatus 1 of the example is a horizontal type, it may be a saddle type or may be inclined.

この脱臭装置1による脱臭操作は、例えば食品加工工場からの排ガスや、し尿処理場で発生する排ガス、アスファルト再生プラントからの排出ガス等、各種悪臭成分や有害成分を含む空気(臭気ガス)を、シロッコファン等の吸気手段により吸気して、装置本体2内に強制的に導入し、脱臭層3のセラミックス多孔体4を通過する際に、散水ノズル6から供給される水により湿潤状態にあるセラミックス多孔体4の表面、孔隙又は気孔の表面に接触することで、空気中の原臭物質が、水を媒体として、酸性の臭気は塩基性の雰囲気中で、塩基性の臭気は酸性の雰囲気中で、それぞれ変性され、かつセラミックス多孔体と接触することで、空気中から悪臭物質や有害物質が除去され、無害化された状態の空気が装置本体2から排気される。   The deodorizing operation by the deodorizing apparatus 1 includes, for example, air (odor gas) containing various malodorous components and harmful components such as exhaust gas from a food processing factory, exhaust gas generated at a human waste treatment plant, and exhaust gas from an asphalt regeneration plant. Ceramics that are inhaled by the water supplied from the watering nozzle 6 when sucked by the suction means such as a sirocco fan, forcibly introduced into the apparatus main body 2 and passing through the ceramic porous body 4 of the deodorizing layer 3 By contacting the surface of the porous body 4, the pores or the pores, the raw odor substance in the air uses water as a medium, the acidic odor is in a basic atmosphere, and the basic odor is in an acidic atmosphere. Thus, the deodorized substances and harmful substances are removed from the air by being modified and contacting with the ceramic porous body, and the detoxified air is exhausted from the apparatus main body 2.

本発明における脱臭のメカニズムは、以下のようなものであると考えられる。即ち、処理対象である臭気ガスは、先ず、セラミックス多孔体に担持された塩基性物質又は酸性物質に接触し、酸性の臭気は前記塩基性物質による塩基性の雰囲気中で、塩基性の臭気は前記酸性物質による酸性の雰囲気中で、中和反応により速やかに一次変性される。更に、本発明では、前記のようにして一次変性された臭気ガスが、セラミックス多孔体に含まれる触媒金属や、セラミックス多孔体を担体として添着された前記塩基性物資や酸性物質と接触して、臭気ガス中に含まれる原臭物質が除去される。   The mechanism of deodorization in the present invention is considered as follows. That is, the odor gas to be treated first comes into contact with a basic substance or an acidic substance supported on the ceramic porous body, and the acidic odor is in a basic atmosphere of the basic substance, and the basic odor is In the acidic atmosphere with the acidic substance, it is quickly primary denatured by a neutralization reaction. Furthermore, in the present invention, the odor gas primarily modified as described above comes into contact with the catalytic metal contained in the ceramic porous body, or the basic material or acidic substance attached using the ceramic porous body as a carrier, The raw odor substance contained in the odor gas is removed.

前記脱臭層3を構成するセラミックス多孔体4は、連続貫通気孔を有するセラミックス多孔体に塩基性物質又は酸性物質を担持させたものである。   The ceramic porous body 4 constituting the deodorizing layer 3 is obtained by supporting a basic substance or an acidic substance on a ceramic porous body having continuous through pores.

前記セラミックス多孔体の製造方法としては、例えば、セラミックス原料である粘土と発泡剤を混合し、水を加えて混練した後、所定の形状に成形し、焼成する。   As the method for producing the ceramic porous body, for example, clay and foaming agent, which are ceramic raw materials, are mixed, mixed with water, kneaded, molded into a predetermined shape, and fired.

前記セラミックス多孔体4は、例えば、バナジウム、鉄、白金及びニッケル等の触媒金属を含有するものであることがより好ましい。これら触媒金属は、セラミックス原料中に含有されていてもよいし、また焼成したセラミックス多孔体を担体として触媒金属を添着するようにしてもよい。   More preferably, the ceramic porous body 4 contains a catalyst metal such as vanadium, iron, platinum, or nickel. These catalytic metals may be contained in the ceramic raw material, or the catalytic metal may be attached using the fired ceramic porous body as a carrier.

また、本発明のセラミックス多孔体4のより好ましいものとしては、鋳鉄スラグと可塑性粘土に水分を加えて混合、混練した組成物を、所望の形状に成形し、乾燥した後、900〜1150℃の範囲の温度で発泡、焼成したものが挙げられる。好ましくは、鋳鉄製品の製造時に生成される非晶質のスラグを破砕篩別して0.25〜2.0mmの粒度範囲に調整したものを50〜80重量%と、可塑性粘土を20〜50重量%の割合で混合した混合物100重量部に対して水を12〜25重量部加えて混合、混練した組成物を、所望の形状に成形し、乾燥した後、900〜1150℃の範囲の温度で発泡、焼成したものである。   Moreover, as a more preferable thing of the ceramic porous body 4 of this invention, after shape | molding and drying the composition which added the water | moisture content to the cast iron slag and the plastic clay, knead | mixed and dried, it is 900-1150 degreeC. Examples include foamed and fired at a temperature in the range. Preferably, the amorphous slag produced during the production of cast iron products is crushed and sieved to a particle size range of 0.25 to 2.0 mm and 50 to 80% by weight, and plastic clay is 20 to 50% by weight. A composition obtained by adding 12 to 25 parts by weight of water to 100 parts by weight of the mixture mixed and mixed and kneaded is molded into a desired shape, dried, and then foamed at a temperature in the range of 900 to 1150 ° C. , Fired.

前記鋳鉄スラグを用いたセラミックス多孔体は、例えば特開2002−47075号公報に開示されたものである。より詳しくは、ダクタイル鋳鉄製品の製造時に生成される非晶質のスラグを破砕篩別して、0.25〜2.0mmの粒度範囲に整粒したものを、個々の粒子が可塑性粘土によって包まれた状態となるように成形し、これを900〜1150℃の温度範囲で加熱することにより、個々のスラグ粒子を、個々として発泡させ、かつ、相互に焼結させたもので、連続貫通気孔を有するセラミックス多孔体である。   The ceramic porous body using the cast iron slag is disclosed in, for example, Japanese Patent Application Laid-Open No. 2002-47075. More specifically, the amorphous slag produced during the manufacture of the ductile cast iron product is crushed and sieved, and the particles are sized to a particle size range of 0.25 to 2.0 mm. The slag particles are individually foamed and sintered with each other, and have continuous through-holes, by molding in a state and heating in a temperature range of 900 to 1150 ° C. It is a ceramic porous body.

前記鋳鉄スラグの化学成分は、例えば特開平10−7433号(特許第2899954号)公報に開示されたガラス組成物と同様であり、SiO2を35〜45重量%、Al23を10〜15重量%、MgOを1〜5重量%、その他、MnO、CaO、S等を含み、かつ(CaO+MgO)/SiO2の重量比が0.9〜1.2であり、Al23/SiO2の比が0.25〜0.35である。具体的には、例えば、SiO2を40〜41重量%、Al23を13重量%、MnOを1.5〜2.5重量%、FeOを0.5〜1.0重量%、CaOを39〜40重量%、MgOを2重量%、Sを0.4〜1.0重量%程度、それぞれ含有するものである。The chemical component of the cast iron slag is the same as the glass composition disclosed in, for example, Japanese Patent Laid-Open No. 10-7433 (Patent No. 2899954), and is composed of 35 to 45% by weight of SiO 2 and 10 to 10% of Al 2 O 3 . 15% by weight, 1% to 5% by weight of MgO, other components such as MnO, CaO, S and the like, and the weight ratio of (CaO + MgO) / SiO 2 is 0.9 to 1.2, Al 2 O 3 / SiO 2 The ratio of 2 is 0.25 to 0.35. Specifically, for example, a SiO 2 40-41 wt%, the Al 2 O 3 13 wt%, the MnO 1.5 to 2.5 wt%, the FeO 0.5 to 1.0 wt%, CaO 39 to 40% by weight, MgO 2% by weight, and S 0.4 to 1.0% by weight.

前記のような鋳鉄スラグを可塑性粘土と混合し、水で混練し、個々のスラグ粒子が可塑性粘土によって包まれた状態となるように成形し、900〜1150℃の温度範囲で焼成することで、個々のスラグ粒子を個として発泡させ、かつ、相互に焼結させることで、連続貫通気孔を有する、本発明に使用するセラミックス多孔体が得られる。これは、前記のような特定の化学組成をもったガラス質スラグが700℃を超えて加熱されると、SiO2−Al23−CaO等の結晶の拆出が起こると共に、これと併行して低粘度の液相を分相し、分解揮発成分であるSO3は、鉄、マンガンと結合した形でガラス相内に存在し、温度の上昇によるガラス相の粘度の低下により、潜在蓄積されたガス成分が900℃付近で発泡し、発泡体を形成するものと考えられている。Cast iron slag as described above is mixed with plastic clay, kneaded with water, shaped so that individual slag particles are wrapped in plastic clay, and fired at a temperature range of 900-1150 ° C. A ceramic porous body used in the present invention having continuous through pores is obtained by foaming individual slag particles as individual pieces and sintering them individually. Parallel thereto, when the vitreous slag with a specific chemical composition as is heated above 700 ° C., with拆出of SiO 2 -Al 2 O 3 -CaO such crystals takes place, and this The liquid phase with low viscosity is phase-separated, and the decomposition volatile component SO 3 is present in the glass phase in a form combined with iron and manganese, and is accumulated due to a decrease in the viscosity of the glass phase due to an increase in temperature. It is considered that the gas component is foamed around 900 ° C. to form a foam.

前記スラグの粒度は、大きいほど発泡倍率は高くなり、0.25mm未満の微粒では充分に発泡しないことがある。また、個々のスラグ粒子を包み込む原料は、スラグ粒子が発泡する900℃付近で焼結し、スラグとの反応系に適する木節粘土、蛙目粘土、ベントナイトなどの可塑性粘土である。可塑性粘土は最低20重量%が必要であるが、50重量%を超えると発泡倍率が大きく低下するため、粘土の配合比率は20〜50重量%とする。この可塑性粘土は、セラミックスの混練物を成形する際の成形結合剤を兼ねる。   The larger the particle size of the slag, the higher the expansion ratio, and fine particles of less than 0.25 mm may not sufficiently foam. Moreover, the raw material which wraps each slag particle is plastic clay, such as Kibushi clay, Sasame clay, and bentonite, which sinters at around 900 ° C. where the slag particles foam and is suitable for a reaction system with slag. The plastic clay needs to be at least 20% by weight, but if it exceeds 50% by weight, the expansion ratio is greatly reduced, so the blending ratio of the clay is 20 to 50% by weight. This plastic clay also serves as a molding binder when molding a ceramic kneaded material.

前記鋳鉄スラグと可塑性粘土との混合物に加える水の量は、前記混合物100重量部に対して12〜25重量部、より好ましくは13〜15重量部である。混練物の成形方法は特に限定されなず、粒状に成形する場合には、混練物を押出機から適宜長さの棒状に押し出し、マルメライザー等の造粒機で整形する方法や、混練物をオムニミキサー内で攪拌しながら造粒する方法等を採用することができる。   The amount of water added to the mixture of cast iron slag and plastic clay is 12 to 25 parts by weight, more preferably 13 to 15 parts by weight with respect to 100 parts by weight of the mixture. The molding method of the kneaded product is not particularly limited, and when molding into a granule, a method of extruding the kneaded product into a bar having an appropriate length from an extruder and shaping with a granulator such as a malmerizer, A method of granulating while stirring in an omni mixer can be employed.

前記セラミックス多孔体の好ましい焼成条件としては、前記鋳鉄スラグと可塑性粘土に水を加えて混合、混練した組成物を、所望の形状に成形した後、含水率1%以下に乾燥し、その後、常温〜700℃迄は、成形体の大きさや厚みに応じて充分な均一加熱を行なう。これは、700℃を超えた温度から鋳鉄スラグの結晶化が始まり分相して液相が生成される間が、発泡機構の重要な温度範囲であるので、それまでに、成形生地を表面から内部まで、ほぼ均一に畜熱し、粘土結晶水の脱水を行なう必要があるからである。しかる後、700〜1000℃の温度範囲では、20〜40℃/分の昇温速度で急速に加熱し、個々のスラグ粒子を一気に発泡させる。更にその後、1000〜1150℃の温度で焼結させる。より好ましくは、700℃を超えて発泡開始の約850℃迄は、加熱昇温速度を10℃/分程度とゆっくり加熱して表面と内部の温度の均一化を図り、850℃から1000℃迄の間は昇温速度を高めて、急速な粘性の低下を図り、スラグ粒子の発泡と粒子溶着を一挙に行なうことが好ましい。なお、昇温速度は、セラミックス成形体の大きさや厚みによって、適宜調整する。1000℃以上の温度域では、加熱温度の上昇によって成形体の強度を高めることが出来る。   As a preferable firing condition of the ceramic porous body, a composition obtained by adding water to the cast iron slag and the plastic clay, mixing and kneading is formed into a desired shape, dried to a moisture content of 1% or less, and then at room temperature. Up to ˜700 ° C., sufficient uniform heating is performed according to the size and thickness of the molded body. This is an important temperature range of the foaming mechanism during which the crystallization of cast iron slag starts from a temperature exceeding 700 ° C. and phase separation and liquid phase is generated. This is because it is necessary to heat up the inside almost uniformly and to dehydrate the clay crystal water. Thereafter, in the temperature range of 700 to 1000 ° C., the slag particles are rapidly heated at a rate of temperature increase of 20 to 40 ° C./min to foam each slag particle at once. Thereafter, sintering is performed at a temperature of 1000 to 1150 ° C. More preferably, from 700 ° C. up to about 850 ° C. at which foaming starts, the heating rate is about 10 ° C./min. To achieve uniform surface and internal temperature, from 850 ° C. to 1000 ° C. During this period, it is preferable to increase the rate of temperature rise to rapidly reduce the viscosity, and to perform foaming and particle welding of the slag particles all at once. The temperature increase rate is appropriately adjusted according to the size and thickness of the ceramic molded body. In the temperature range of 1000 ° C. or higher, the strength of the molded body can be increased by increasing the heating temperature.

本発明の脱臭方法では、酸性の臭気は塩基性の雰囲気中で、塩基性の臭気は酸性の雰囲気中で、臭気を中和反応により一次変性する。   In the deodorization method of the present invention, an acidic odor is primarily modified by a neutralization reaction in a basic atmosphere, and a basic odor is acidic in an acidic atmosphere.

本発明では、前記セラミックス多孔体4に塩基性物質を担持させておくことで、該セラミックス多孔体を通過する空気中の酢酸等の酸性の原臭物質を、塩基性の雰囲気中で一次変性する。例えば、前記セラミックス多孔体4にpH8.0〜10.0の固体塩基性物質を担持させて脱臭層3として用いる。前記固体塩基性物質の好ましいものとしては、活性マグネシアが挙げられ、酢酸基を持つ臭気成分に特に好適なものである。具体的には、酸化マグネシウムをシリカゾル水溶液に分散したスラリーをセラミックス多孔体に含浸し、200〜250℃の温度で乾燥してセラミックス多孔体に担持させる。前記シリカゾルとしては、リチウムシリケート水溶液を用いることが好ましい。セラミックス多孔体に担持された固体塩基性物質の主成分は、5MgO・MgSO4・8H2Oからなるマグネシアオキシサルファイドである。更に、強い還元作用を示す木炭及び硫酸カルシウム(CaSO4)を少量添加したスラリーをセラミック担持体の気孔内に含浸添着してもよい。MgO成分は酢酸と極めて反応が良く、酢酸マグネシウムイオンを生成した後、CaSのイオウイオン(S-)によって原臭物質を還元し、分解すると考えられる。
In the present invention, a basic substance is supported on the ceramic porous body 4 so that an acidic raw odor substance such as acetic acid in the air passing through the ceramic porous body is primarily modified in a basic atmosphere. . For example, a solid basic substance having a pH of 8.0 to 10.0 is supported on the ceramic porous body 4 and used as the deodorizing layer 3. Preferred examples of the solid basic substance include active magnesia, which is particularly suitable for an odor component having an acetate group. Specifically, a ceramic porous body is impregnated with a slurry in which magnesium oxide is dispersed in an aqueous silica sol solution, dried at a temperature of 200 to 250 ° C., and supported on the ceramic porous body. As the silica sol, an aqueous lithium silicate solution is preferably used. The main component of the solid basic substance supported on the ceramic porous body is magnesia oxysulfide composed of 5MgO · MgSO 4 · 8H 2 O. Further, a slurry containing a small amount of charcoal and calcium sulfate (CaSO 4 ) exhibiting a strong reducing action may be impregnated into the pores of the ceramic support. The MgO component reacts very well with acetic acid, and after producing magnesium acetate ions, it is considered that the raw odor substance is reduced and decomposed by sulfur ions (S ) of CaS.

また、本発明では、セラミックス多孔体4に酸性物質を担持させておくことで、該セラミックス多孔体を通過する空気中のアンモニア等の塩基性の原臭物質を、酸性の雰囲気中で一次変性する。例えば、前記セラミックス多孔体4に、pH3.0〜5.0の固体酸性物質を担持させたものを脱臭層3として用いる。前記固体酸性物質としては、例えば、酸性白土、モンモリロナイト、カロリナイト、ハロイサイト等の二次元層状構造からなる粘土鉱物が挙げられる。更に、前記二次元層状構造からなる粘土鉱物を、300〜600℃の範囲の温度に加熱して層間水を脱水させた後、酸処理したものが好適に使用される。より詳しくは、前記脱水した粘土鉱物を、水素イオン濃度(PH)2〜5程度に調整された硫酸、硝酸、リン酸等の無機酸の水溶液に分散して含浸液とし、この含浸液に前記セラミックス多孔体を浸漬して含浸し、150〜250℃で乾燥してpH3.0〜5.0に酸処理する。   In the present invention, the basic porous odor substance such as ammonia in the air passing through the ceramic porous body is primarily modified in an acidic atmosphere by supporting the acidic substance on the ceramic porous body 4. . For example, a material in which a solid acidic substance having a pH of 3.0 to 5.0 is supported on the ceramic porous body 4 is used as the deodorizing layer 3. Examples of the solid acidic substance include clay minerals having a two-dimensional layered structure such as acidic clay, montmorillonite, kaolinite, and halloysite. Furthermore, the clay mineral which consists of the said two-dimensional layer structure is heated to the temperature of the range of 300-600 degreeC, and after dehydrating interlayer water, what was acid-treated is used suitably. More specifically, the dehydrated clay mineral is dispersed in an aqueous solution of an inorganic acid such as sulfuric acid, nitric acid, phosphoric acid or the like adjusted to a hydrogen ion concentration (PH) of about 2 to 5, and the impregnating liquid contains the impregnating liquid. The ceramic porous body is immersed and impregnated, dried at 150 to 250 ° C., and acid-treated to pH 3.0 to 5.0.

更に、前記セラミックス多孔体4としては、その表面、孔隙若しくは気孔内面に、吸着機能を有する炭素を含むものがより好ましい。このような炭素を含み、固体酸性物質を担持させたセラミックス多孔体の具体例としては、例えば、酸性白土、モンモリロナイト、カロリナイト、ハロイサイト等の二次元層状構造からなる粘土鉱物を、300〜600℃の範囲の温度に加熱して層間水を脱水させた気孔内に、石油類や植物油類等を含浸させた後、600〜700℃、あるいは800〜1000℃の範囲の温度で焼成し、気孔内に活性炭素膜を形成させ疎水性を向上させた粘土鉱物を得る。この、表面に活性炭素を含む粘土鉱物を、水素イオン濃度(PH)2〜5程度に調整された硫酸、硝酸、リン酸等の無機酸の水溶液に分散して含浸液とし、この含浸液に前記多孔質セラミックスを浸漬して含浸し、150〜250℃で乾燥してpH3.0〜5.0に酸処理する。この、表面に炭素を有する固体酸性物質を担持させたセラミック多孔体は、気孔がマクロ孔とミクロ孔とからなり、疎水性であるが、悪臭成分である有機化合物との親和性が高く、悪臭成分の迅速な吸着作用を発揮する。炭素膜によって吸着された成分は、気孔を通って母体である多孔質セラミックス表面の活性点へ移行し、無害化される。   Further, the ceramic porous body 4 is more preferably one containing carbon having an adsorption function on the surface, pores or pore inner surfaces. As a specific example of such a porous ceramic body containing carbon and supporting a solid acidic substance, for example, a clay mineral composed of a two-dimensional layered structure such as acidic clay, montmorillonite, carolinite, halloysite, etc. is used at 300 to 600 ° C. After impregnating petroleum or vegetable oil into the pores dehydrated with interlayer water by heating to a temperature in the range of 600 to 700 ° C., or firing at a temperature in the range of 800 to 1000 ° C., the pores An activated carbon film is formed on the surface to obtain a clay mineral with improved hydrophobicity. This clay mineral containing activated carbon on the surface is dispersed in an aqueous solution of an inorganic acid such as sulfuric acid, nitric acid, phosphoric acid or the like adjusted to a hydrogen ion concentration (PH) of about 2 to 5 to obtain an impregnating solution. The porous ceramic is immersed and impregnated, dried at 150 to 250 ° C., and acid-treated to pH 3.0 to 5.0. This porous ceramic body carrying a solid acidic substance having carbon on its surface is composed of macropores and micropores, and is hydrophobic, but has a high affinity with organic compounds that are malodorous components and has a bad odor. Demonstrates rapid adsorption of components. The component adsorbed by the carbon film passes through the pores and moves to the active point on the surface of the porous ceramic as a base material, and is rendered harmless.

次に、脱臭層3のセラミックス多孔体4への水分の供給方法について説明する。本発明の脱臭方法においては、臭気ガス(原臭物質を含む空気)を乾燥状態で脱臭層3のセラミックス多孔体4と接触させてもよいが、接触の際に水分を介在させると脱臭効率が更に向上する。水分を介在させる方法としては、脱臭層3に水を供給してセラミックス多孔体4を濡らす方法と、臭気を加湿状態で脱臭層3へ供給する方法とがあるが、いずれでもよい。臭気ガスを加湿して供給する場合は、その湿度を50%以上、好ましくは50〜70%とする。セラミックス多孔体4に供給する水は、水道水を用いることが好ましい。これは、一般に水道水には塩素イオンが含まれており、セラミックス多孔体4表面における酸化還元反応を促進すると考えられるからである。通常、この水道水の含有塩素量は調整不要で、塩素量に関係なく使用することが出来る。供給方法としては、セラミックス多孔体4に、直接、点滴注水で水を供給してもよいし、図1に示す如く、散水ノズル6(噴霧ノズル)により行うこともできる。更に、水の散布に、マイクロミストノズルを使用することもできる。水の供給量は、1時間当たりセラミックス多孔体の容量1に対して1/3容量を標準とする。   Next, a method for supplying moisture to the ceramic porous body 4 of the deodorizing layer 3 will be described. In the deodorization method of the present invention, odor gas (air containing the original odor substance) may be brought into contact with the ceramic porous body 4 of the deodorization layer 3 in a dry state. However, if moisture is interposed at the time of contact, deodorization efficiency is improved. Further improvement. As a method of interposing moisture, there are a method of supplying water to the deodorizing layer 3 to wet the porous ceramic body 4 and a method of supplying odor to the deodorizing layer 3 in a humidified state, either of which may be used. When humidifying and supplying odor gas, the humidity shall be 50% or more, Preferably it is 50 to 70%. It is preferable to use tap water as the water supplied to the ceramic porous body 4. This is because tap water is generally contained in tap water, and it is considered that the redox reaction on the surface of the ceramic porous body 4 is promoted. Usually, the amount of chlorine contained in the tap water does not need to be adjusted and can be used regardless of the amount of chlorine. As a supply method, water may be directly supplied to the ceramic porous body 4 by drip water injection, or as shown in FIG. 1, it may be performed by a water spray nozzle 6 (spray nozzle). Furthermore, a micro mist nozzle can also be used for water dispersion. The supply amount of water is 1/3 volume as a standard with respect to 1 volume of the ceramic porous body per hour.

本発明の脱臭方法は、図1に示すように、複数の脱臭層3を直列に連結して、適宜水を介在させた固体塩基性物質又は固体酸性物質による一次変性工程と、セラミックス多孔体との接触による悪臭成分又は有害成分の無害化工程を複数回繰り返して行うこともできるが、必ずしも複数回繰り返す必要はない。また、前記固体塩基性物質を担持させたセラミックス多孔体による処理工程と、前記固体酸性物質を担持させたセラミックス多孔体による処理工程との両方を直列に設けることで、一度の脱臭操作で酸性及び塩基性の両成分を空気中から除去化することができる。   As shown in FIG. 1, the deodorization method of the present invention includes a primary modification step using a solid basic substance or a solid acidic substance in which a plurality of deodorizing layers 3 are connected in series and water is appropriately interposed, and a ceramic porous body. Although the step of detoxifying the malodorous or harmful component by the contact may be repeated a plurality of times, it is not necessarily repeated a plurality of times. In addition, by providing both the treatment step with the ceramic porous body carrying the solid basic substance and the treatment step with the ceramic porous body carrying the solid acidic substance in series, the acidic and Both basic components can be removed from the air.

脱臭層3の前記セラミックス多孔体4は、ブロック状であってもよいが、粒状である方が、臭気ガス中の原臭物質との接触面積が大きく、また、通過する空気によるセラミックス多孔体4の振動により、原臭物質とセラミックス多孔体4上の活性点との接触頻度が増大し、かつ通気抵抗も低下することから、脱臭効率がよい。前記セラミックス多孔体4は、少なくとも50%以上の空隙率を有する、または、比表面積が3m2/g以上であることが、通気抵抗、脱臭効率の点で好ましい。気孔が小さく比表面積が大きくなるほど通過する空気中の原臭物質との接触面積は大きくなり反応点は増大するが、気孔が小さすぎると、例え空隙率が大きくても通気抵抗が増大し、かえって脱臭効率を低下させる結果となる。前記粒状のセラミックス多孔体の大きさや形状は特に制限はないが、ケースへの充填効率、通気抵抗、取り扱い性等の観点から、直径又は長さが2mm〜20mm、更に好ましくは3.5mm〜15mmであることが好ましく、形状も特に限定されないが、球状であることが、充填効率、均一充填等の観点から好ましい。The ceramic porous body 4 of the deodorizing layer 3 may be in the form of a block, but in the granular form, the contact area with the original odor substance in the odor gas is larger, and the ceramic porous body 4 due to the air passing through it is larger. Due to this vibration, the contact frequency between the raw odor substance and the active point on the ceramic porous body 4 is increased, and the ventilation resistance is also reduced, so that the deodorizing efficiency is good. The ceramic porous body 4 preferably has a porosity of at least 50% or a specific surface area of 3 m 2 / g or more from the viewpoint of ventilation resistance and deodorization efficiency. The smaller the pores and the larger the specific surface area, the larger the contact area with the raw odor substance in the air that passes through and the reaction point increases, but if the pores are too small, even if the porosity is large, the ventilation resistance increases, on the contrary. As a result, the deodorization efficiency is lowered. The size and shape of the granular ceramic porous body are not particularly limited, but the diameter or length is 2 mm to 20 mm, more preferably 3.5 mm to 15 mm, from the viewpoint of filling efficiency into the case, ventilation resistance, handling properties, and the like. The shape is not particularly limited, but a spherical shape is preferable from the viewpoint of filling efficiency, uniform filling, and the like.

前記脱臭層3に対する臭気ガスの供給速度は、0.3m/s〜4.0m/s、更には0.5m/s〜2.5m/sの範囲内とすることが好ましい。供給速度が小さいと処理効率が悪く、またセラミックス多孔体4の深部への臭気の浸透が実現されず、脱臭効率が低下する。その一方で、供給速度が大きすぎると無害化反応が不十分であったり、通気抵抗が増大して処理効率が低下する恐れがある。また、脱臭層3の容量、通気面積等は、必要とされる処理量、臭気ガス中の原臭物質濃度等により適宜設定できる。   The supply rate of the odor gas to the deodorizing layer 3 is preferably in the range of 0.3 m / s to 4.0 m / s, more preferably 0.5 m / s to 2.5 m / s. When the supply speed is low, the processing efficiency is poor, and the penetration of the odor into the deep part of the ceramic porous body 4 is not realized, so that the deodorization efficiency is lowered. On the other hand, if the supply rate is too high, the detoxification reaction may be insufficient, or the ventilation resistance may increase and the processing efficiency may decrease. Moreover, the capacity | capacitance of the deodorizing layer 3, an aeration area, etc. can be suitably set with the processing amount required, the raw | natural odor substance density | concentration in odor gas, etc.

なお、エマルジョン状の不飽和脂肪酸やオイルミストを含む排ガスの処理に際しては、前記セラミックス多孔体4を通過させる前に、予めオイルミストを除去しておくことで、脱臭効率が向上する。オイルミスト除去工程としては、例えば、前記酸性物質や塩基性物質を担持させていないセラミックス多孔体や石膏添着のセラミックス層等を用いることができるが、これらに限定されるものではない。   In the treatment of exhaust gas containing an unsaturated fatty acid in the form of emulsion or oil mist, the deodorization efficiency is improved by removing the oil mist in advance before passing through the ceramic porous body 4. As the oil mist removing step, for example, a ceramic porous body that does not carry the acidic substance or basic substance, a gypsum-attached ceramic layer, or the like can be used, but is not limited thereto.

以下、実施例及び比較例によって本発明を更に詳しく説明するが、本発明はこれらにより、何ら限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention further in detail, this invention is not limited at all by these.

1.セラミックス多孔体A
(セラミックス多孔体の製造)
粘土と発泡剤とを混合し、水を加えて混練し、造粒機(マルメライザー)にて直径3.5〜15mmの球状に成形し、乾燥した。これを焼成し、鉄(Fe)、バナジウム(V)等の金属を含む粒(球)状セラミックス多孔体A(無処理セラミックス多孔体)を得た。このセラミックス多孔体Aの比表面積は1.7m2/gであった。
1. Ceramic porous body A
(Manufacture of porous ceramics)
Clay and a foaming agent were mixed, added with water, kneaded, formed into a spherical shape having a diameter of 3.5 to 15 mm with a granulator (Malmerizer), and dried. This was fired to obtain a granular (spherical) ceramic porous body A (untreated ceramic porous body) containing a metal such as iron (Fe) or vanadium (V). The specific surface area of this ceramic porous body A was 1.7 m 2 / g.

(酸性系処理)
前記粒状セラミックス多孔体Aを、酸性白土を含み、PH2〜5程度に調整された硫酸水溶液に浸漬して含浸し、pH3.0〜5.0に酸処理し、乾燥して、鉄(Fe)、バナジウム(V)、硫黄(S)等を含む、PH4.65の酸性系担持セラミックスAを得た。この酸性系担持セラミックスAの比表面積は47.0m2/g、比重は0.59であった。
(Acid treatment)
The granular ceramic porous body A is immersed in a sulfuric acid aqueous solution containing acid clay and adjusted to a pH of about 2 to 5, impregnated, acid-treated to pH 3.0 to 5.0, dried, and iron (Fe) Thus, an acidic supported ceramic A having a pH of 4.65 containing vanadium (V), sulfur (S) and the like was obtained. The acidic supported ceramic A had a specific surface area of 47.0 m 2 / g and a specific gravity of 0.59.

(Mg系処理)
前記粒状セラミックス多孔体Aを、マグネシア(MgO)を含む硫酸マグネシウム水溶液に含浸し、乾燥して、鉄(Fe)、バナジウム(V)等に加え、硫黄(S)、マグネシウム(Mg)等を含むMg系担持セラミックスAを得た。
(Mg-based treatment)
The granular ceramic porous body A is impregnated with a magnesium sulfate aqueous solution containing magnesia (MgO), dried, and contains sulfur (S), magnesium (Mg), etc. in addition to iron (Fe), vanadium (V), etc. An Mg-based supported ceramic A was obtained.

(実施例1)
悪臭発生装置により濃度調整されたアンモニアとトリメチルアミンの混合悪臭の通気量を変化させた場合の原臭除去率を調べた。
内径5cm、高さ70cmの実験塔に、前記酸性系担持セラミックスAを196.25mL(10cmの層高)充填した実験用脱臭塔に、10VVM、20VVM、30VVM及び50VVMで通気し、1時間後の入口濃度と出口濃度を(株)ガステック製のガステック検知管、アンモニアNo.3L((1)〜30ppm;1回の吸引時間約1分)、アミン類No.180L((0.5)〜10ppm;1回の吸引時間約1分)により、定法に従い測定した。臭気の除去率を表1に示す。
Example 1
The original odor removal rate was examined when the aeration amount of mixed malodor of ammonia and trimethylamine whose concentration was adjusted by the malodor generator was changed.
An experimental deodorizing tower filled with 196.25 mL (10 cm layer height) of the above acidic support ceramics A in an experimental tower having an inner diameter of 5 cm and a height of 70 cm was aerated at 10 VVM, 20 VVM, 30 VVM, and 50 VVM, and 1 hour later. The inlet concentration and outlet concentration were measured using a gas tech detector tube manufactured by Gastec Co., Ltd., ammonia no. 3 L ((1) to 30 ppm; one suction time of about 1 minute), amine No. 180 L ((0.5) to 10 ppm; one suction time of about 1 minute) was measured according to a conventional method. Table 1 shows the odor removal rate.

Figure 0004063316
Figure 0004063316

表1に示すとおり、通気量10VVM、20VVMではアンモニア及びトリメチルアミンを100%除去できた。また、通気量30VVMではアンモニアの除去率は78%、トリメチルアミンの除去率は56%、通気量50VVMでは、夫々33%と13%であった。   As shown in Table 1, ammonia and trimethylamine could be removed 100% when the airflow was 10 VVM and 20 VVM. In addition, the removal rate of ammonia was 78%, the removal rate of trimethylamine was 56% at an air flow rate of 30 VVM, and 33% and 13% at an air flow rate of 50 VVM, respectively.

(実施例2)
前記実験用脱臭塔内に充填した酸性系担持セラミックスA、196.25mL(層高10cm)に、水100mLを実験開始時に浸透させた以外は実施例1と同様にして、濃度調整されたアンモニアとトリメチルアミンの混合臭を1時間通気した。臭気の除去率を表2に示す。
(Example 2)
In the same manner as in Example 1, except that 100 mL of water was infiltrated into 196.25 mL (layer height: 10 cm) of acid-supported ceramics A packed in the experimental deodorization tower, The mixed odor of trimethylamine was aerated for 1 hour. Table 2 shows the odor removal rate.

Figure 0004063316
Figure 0004063316

表2に示すように、前記酸性系担持セラミックスAに水を浸透させた場合、通気量10VVM、20VVM、30VVM及び50VVMのいずれの場合も、アンモニア及びトリメチルアミンの混合臭は、ガステック検知管で計測する限り、いずれも100%の除去率を示し、水を介在させない実施例1に比べて除去効率が向上した。   As shown in Table 2, when water is infiltrated into the acidic supported ceramic A, the mixed odor of ammonia and trimethylamine is measured with a gas-tech detector tube at any of the airflows of 10 VVM, 20 VVM, 30 VVM and 50 VVM. As long as this is done, all showed a removal rate of 100%, and the removal efficiency was improved as compared with Example 1 in which no water was interposed.

(実施例3)
前記と同じ実験用脱臭塔内に、Mg系担持セラミックスAを196.25mL(層高10cm)充填し、これに水100mLを実験開始時に浸透させ、濃度調整された酢酸臭の1時間通気後の入口濃度と出口濃度を(株)ガステック製のガステック検知管、酢酸No.81L((0.25)〜10.0ppm;1回の吸引時間約1分)により、定法に従い測定した。結果を表3に示す。
(Example 3)
In the same experimental deodorization tower as described above, 196.25 mL (layer height 10 cm) of Mg-based ceramics A was filled, and 100 mL of water was infiltrated at the start of the experiment, and the concentration-adjusted acetic acid odor was aerated for 1 hour. Inlet concentration and outlet concentration were measured using a gas tech detector tube manufactured by Gastec Co., Ltd., acetic acid no. Measurement was performed according to a conventional method using 81 L ((0.25) to 10.0 ppm; one suction time of about 1 minute). The results are shown in Table 3.

Figure 0004063316
Figure 0004063316

実施例2と同様に、10VVM、20VVM、30VVM及び50VVMで、酢酸臭の除去率は、ガステック検知管で測定する限り100%であった。   In the same manner as in Example 2, the removal rate of acetic acid odor was 100% at 10 VVM, 20 VVM, 30 VVM, and 50 VVM as long as it was measured with a gas tech detector tube.

(実施例4)
前記実施例2の酸性系担持セラミックスAを充填した実験用脱臭塔、前記実施例3のMg系担持セラミックスを充填した実験用脱臭塔への通気量を50VVMに固定し、1回/日、定時に自動噴霧で100mLの水を補給し、12週間の連続運転を行い、夫々入口と出口でガステックの検知管により、混合原臭の濃度測定を行った。表4に1週毎の測定結果を示す。
Example 4
The air flow rate to the experimental deodorizing tower filled with the acidic supported ceramic A of Example 2 and the experimental deodorizing tower filled with the Mg based ceramic of Example 3 was fixed at 50 VVM, once / day, on time 100 ml of water was replenished by automatic spraying, and continuous operation was carried out for 12 weeks. The concentration of the mixed raw odor was measured by a gas-tech detector tube at the inlet and outlet, respectively. Table 4 shows the measurement results for each week.

Figure 0004063316
Figure 0004063316

表4に示すように、アンモニア、トリメチルアミン及び酢酸臭の12週間の連続通気においても、毎日定時に100mLの水を補給することで、本発明の酸性系担持セラミックス及びMg系担持セラミックス多孔体を併用した脱臭方法により、これら3種の悪臭を100%除去できた。   As shown in Table 4, even in continuous aeration of ammonia, trimethylamine and acetic acid odor for 12 weeks, 100 mL of water is replenished at a fixed time every day, so that the acidic supported ceramic and the Mg supported ceramic porous body of the present invention are used in combination. By these deodorizing methods, 100% of these three kinds of bad odors could be removed.

(実施例5)
内径5cm、高さ70cmの実験塔に前記酸性系担持セラミックスA、無処理セラミックス(セラミックス多孔体A)を夫々10cmの層高に充填した実験区と、対象としてセラミックス未充填の実験区との、計3実験区で脱臭実験を行った。アンモニア入口濃度12.8ppm、通気量50VVM、水道水噴霧量200mL/分で4分間通気し、脱臭層下方の貯留水8Lを分析に供した。アンモニウムイオンはネスラー法、亜硝酸イオンはGR法、硝酸イオンはブルシン法により吸光度を測定し、窒素態の濃度値とした。表5に各窒素態の測定濃度を示す。
(Example 5)
An experimental section in which an experimental tower having an inner diameter of 5 cm and a height of 70 cm is filled with a layer height of 10 cm each of the acid-based supported ceramic A and untreated ceramic (ceramic porous body A), and an experimental section in which the ceramic is not filled as a target. Deodorization experiments were conducted in a total of 3 experimental areas. Aeration was carried out for 4 minutes at an ammonia inlet concentration of 12.8 ppm, an aeration rate of 50 VVM, and a tap water spray rate of 200 mL / min, and 8 L of stored water below the deodorizing layer was subjected to analysis. The ammonium ion concentration was measured by the Nessler method, the nitrite ion was measured by the GR method, and the nitrate ion was measured by the Brucine method to obtain a nitrogen concentration value. Table 5 shows the measured concentration of each nitrogen state.

Figure 0004063316
Figure 0004063316

表5に示すように、酸性系担持セラミックスAの実験区における水中アンモニウムイオン濃度は1.1ppm、亜硝酸イオン濃度は0.01ppm、硝酸イオン濃度は0.3ppm、無処理セラミックスの実験区においては夫々6.4ppm、0.02ppm、0.3ppm、セラミックス未充填の実験区では夫々26.8ppm、0.06ppm、0.3ppmであった。
この実験装置においては、原臭は脱臭層下方から供給され、一方、水は脱臭層上方から散水されるため、脱臭層下方空間での水へのアンモニアの若干の溶解を示す結果であったが、脱臭層そのものの性能評価に影響を及ぼす数値ではなかった。
As shown in Table 5, in the experimental group of acidic supported ceramics A, the ammonium ion concentration in water was 1.1 ppm, the nitrite ion concentration was 0.01 ppm, the nitrate ion concentration was 0.3 ppm, in the experimental group of untreated ceramics. They were 6.4 ppm, 0.02 ppm, 0.3 ppm, respectively, and 26.8 ppm, 0.06 ppm, 0.3 ppm in the experimental section without ceramics filling, respectively.
In this experimental apparatus, the original odor was supplied from below the deodorizing layer, while water was sprinkled from above the deodorizing layer, so that the result was that some ammonia was dissolved in water in the space below the deodorizing layer. It was not a numerical value affecting the performance evaluation of the deodorizing layer itself.

2.セラミックス多孔体B
(セラミックス多孔体の製造)
ダクタイル鋳鉄製品の製造時に生成される非晶質のスラグを破砕篩別した鋳鉄スラグ70重量部と、蛙目粘土30重量部とを混合した。この混合物100重量部に水14重量部を加えてミキサーにて混合、混練した。この混練物を、押出機から棒状に押し出し、更に造粒機(マルメライザー)にて球状に成形し、乾燥し、1000℃で焼成し、直径3.5〜15mmの球状のセラミックス多孔体Bを得た。使用した鋳鉄スラグの化学組成を表6に示す。
2. Ceramic porous body B
(Manufacture of porous ceramics)
70 parts by weight of cast iron slag obtained by crushing the amorphous slag produced during the manufacture of the ductile cast iron product and 30 parts by weight of the clay are mixed. To 100 parts by weight of this mixture, 14 parts by weight of water was added and mixed and kneaded by a mixer. This kneaded product is extruded into a rod shape from an extruder, further formed into a spherical shape by a granulator (malmerizer), dried, fired at 1000 ° C., and a spherical ceramic porous body B having a diameter of 3.5 to 15 mm is obtained. Obtained. Table 6 shows the chemical composition of the cast iron slag used.

Figure 0004063316
Figure 0004063316

(酸性系処理)
マーガリンを濾過して油脂分を付着させた酸性白土を焼成炉にて焼成して油脂分を炭化させ、表面、孔隙もしくは微細気孔の内面に炭素膜が形成された酸性白土を得た。この表面に炭素を含む白土1.4kgを、硫酸20Lに分散させ含浸液とした。この含浸液に、前記球状セラミックス多孔体Bを加えてミキサーにて15分間攪拌し、セラミックス多孔体Bに、前記表面に炭素を含む白土を担持させ、酸性系担持セラミックスBを得た。
(Acid treatment)
The acid clay with the oils and fats attached by filtering the margarine was baked in a baking furnace to carbonize the oils and fats, and an acid clay with a carbon film formed on the surface, pores or inner surfaces of the fine pores was obtained. 1.4 kg of white clay containing carbon on the surface was dispersed in 20 L of sulfuric acid to obtain an impregnation solution. The spherical ceramic porous body B was added to this impregnating solution, and the mixture was stirred for 15 minutes with a mixer. The ceramic porous body B was supported with white clay containing carbon on the surface to obtain an acidic supported ceramic B.

(Mg系処理)
Mg(OH)2を焼成炉にて焼成して酸化し、MgOとした。20Lのリチウムシリケート水溶液(日産化学工業株式会社製、リチウムシリケート35)に前記MgOを2.8kgの割合で添加したスラリーを含浸液とした。この含浸液に、前記球状セラミックス多孔体Bを加えてミキサーにて15分間攪拌し、セラミックス多孔体Bに、MgOとリチウムシリケートを担持させ、Mg系担持セラミックスBを得た。
(Mg-based treatment)
Mg (OH) 2 was fired in a firing furnace and oxidized to obtain MgO. A slurry in which 2.8 kg of MgO was added to 20 L of an aqueous lithium silicate solution (lithium silicate 35, manufactured by Nissan Chemical Industries, Ltd.) was used as the impregnation solution. The spherical ceramic porous body B was added to this impregnating solution and stirred for 15 minutes with a mixer, and MgO and lithium silicate were supported on the ceramic porous body B to obtain an Mg-based supported ceramic B.

(実施例6:酸性系担持セラミックスBの脱臭試験)
原臭物質としてアンモニア又はトリメチルアミンを含む空気(原ガス)を、前記酸性系担持セラミックスBを充填したカラムを強制的に通過させて処理し、風速別の脱臭効果を調べた。結果を表7に示す。
(Example 6: Deodorization test of acidic supported ceramic B)
Air (raw gas) containing ammonia or trimethylamine as a raw odor substance was forcibly passed through the column packed with the acidic support ceramic B, and the deodorizing effect according to wind speed was examined. The results are shown in Table 7.

Figure 0004063316
Figure 0004063316

(実施例7:Mg系担持セラミックスBの脱臭試験)
原臭物質として酢酸を含む空気(原ガス)を、前記Mg系担持セラミックスBを充填したカラムを強制的に通過させて処理し、風速及び水分介在の有無(ドライ及びウエット)による脱臭効果を調べた。結果を表8に示す。
(Example 7: Deodorization test of Mg-based supported ceramics B)
Air containing raw acetic acid (raw gas) as a raw odor substance is processed by forcibly passing through the column filled with the Mg-based ceramics B, and the deodorizing effect due to wind speed and presence / absence of moisture (dry and wet) is investigated. It was. The results are shown in Table 8.

Figure 0004063316
Figure 0004063316

(実施例8:堆肥化施設の複合臭の脱臭)
通気面積0.36m2(0.6m×0.6m)、厚さ100mmの脱臭層3に、Mg系担持セラミックスB(4(Mg))と酸性系担持セラミックスB(4(酸性))とを充填した2層の脱臭層3のそれぞれに散水ノズル6を備えた脱臭装置1Aを用いた(図2参照)。散水ノズル6から各脱臭層3に間欠的に散水しながら、堆肥化施設の堆肥化装置から排出された、複合臭を含む空気(原ガス)を、Mg系担持セラミックスB(4(Mg))、酸性系担持セラミックスB(4(酸性))の順に1800m3/hで通過させて脱臭処理し、処理前後の空気中の原臭物質のガス濃度をガス検知管((株)ガステック製)で測定した。結果を表9に示す。
(Example 8: Deodorization of complex odor in composting facility)
Mg-supported ceramics B (4 (Mg)) and acidic-supported ceramics B (4 (acidic)) were added to the deodorizing layer 3 having a ventilation area of 0.36 m 2 (0.6 m × 0.6 m) and a thickness of 100 mm. The deodorizing apparatus 1A provided with the watering nozzle 6 in each of the two layers of the deodorizing layer 3 filled was used (see FIG. 2). The air containing the mixed odor (raw gas) discharged from the composting equipment of the composting facility while watering intermittently from the water spray nozzle 6 to each deodorizing layer 3 is converted into Mg-based ceramics B (4 (Mg)). , Acid-supported ceramics B (4 (acidic)) in this order at 1800 m 3 / h for deodorization treatment, and the gas concentration of the raw odor substance in the air before and after treatment is a gas detector tube (manufactured by Gastec Co., Ltd.) Measured with The results are shown in Table 9.

Figure 0004063316
Figure 0004063316

(実施例9:堆肥化施設のアンモニア臭の脱臭)
通気面積0.36m2(0.6m×0.6m)、厚さ100mmの脱臭層3に、Mg系担持セラミックスB(4(Mg))と酸性系担持セラミックスB(4(酸性))とを充填した2層の脱臭層3のそれぞれに散水ノズル6を備える脱臭装置1A(図2参照。)を直列に2台連結して用いた。散水ノズル6から各脱臭層3に間欠的に散水しながら、堆肥化施設の堆肥化装置から排出された、多量のアンモニアを含む空気(原ガス)を、Mg系担持セラミックスB(4(Mg))、酸性系担持セラミックスB(4(酸性))、Mg系担持セラミックスB(4(Mg))、酸性系担持セラミックスB(4(酸性))の順に1800m3/hで通過させて処理し、処理前後の空気中のアンモニア濃度をガス検知管((株)ガステック製)で測定した。結果を表10に示す。
(Example 9: Deodorization of ammonia odor in composting facility)
Mg-supported ceramics B (4 (Mg)) and acidic-supported ceramics B (4 (acidic)) were added to the deodorizing layer 3 having a ventilation area of 0.36 m 2 (0.6 m × 0.6 m) and a thickness of 100 mm. Two deodorizing apparatuses 1A (see FIG. 2) each having a watering nozzle 6 in each of the two layers of deodorizing layers 3 were connected in series and used. Air (raw gas) containing a large amount of ammonia discharged from the composting apparatus of the composting facility while intermittently sprinkling water from the water spray nozzle 6 to each deodorizing layer 3 is converted into Mg-based ceramics B (4 (Mg) ), Acidic supported ceramics B (4 (acidic)), Mg based supported ceramics B (4 (Mg)), and acidic supported ceramics B (4 (acidic)) in this order at 1800 m 3 / h, The ammonia concentration in the air before and after the treatment was measured with a gas detector tube (manufactured by Gastec Co., Ltd.). The results are shown in Table 10.

Figure 0004063316
Figure 0004063316

(実施例10:アスファルト再生工場の脱臭)
通気面積0.36m2(0.6m×0.6m)、厚さ100mmの脱臭層3に、Mg系担持セラミックスB(4(Mg))と酸性系担持セラミックスB(4(酸性))とを充填した2層の脱臭層のそれぞれに散水ノズル6を備える脱臭装置1A(図2参照。)を直列に2台連結して用いた。散水ノズル6から各脱臭層3に間欠的に散水しながら、アスファルト再生工場から排出された、各種悪臭成分を含む空気(原ガス)を、Mg系担持セラミックスB(4(Mg))、酸性系担持セラミックスB(4(酸性))、Mg系担持セラミックスB(4(Mg))、酸性系担持セラミックスB(4(酸性))の順に1800m3/hで通過させて処理し、処理前後の空気中の各種原臭物質の濃度をガス検知管((株)ガステック製)で測定した。測定は、脱臭装置設置当日と、設置25日目の2度行った。結果を表11に示す。
(Example 10: Deodorization of asphalt regeneration factory)
The gas permeable area 0.36m 2 (0.6m × 0.6m), with a thickness of 100mm deodorizing layer 3, Mg-based carrier ceramics B (4 (Mg)) with an acidic carrier based ceramics B and (4 (acidic)) Two deodorizing apparatuses 1A (see FIG. 2) each provided with a watering nozzle 6 for each of the two deodorized layers filled were connected in series and used. Air (raw gas) containing various malodorous components discharged from an asphalt regeneration plant while watering intermittently from the water spray nozzle 6 to each deodorizing layer 3 is converted into Mg-based ceramics B (4 (Mg)), acidic The support ceramic B (4 (acidic)), the Mg-based support ceramic B (4 (Mg)), and the acidic support ceramic B (4 (acidic)) are passed through in the order of 1800 m 3 / h, and the air before and after the treatment is processed. The concentration of various raw odor substances was measured with a gas detector tube (manufactured by Gastec Co., Ltd.). The measurement was performed twice on the installation day of the deodorizing apparatus and on the 25th day of installation. The results are shown in Table 11.

Figure 0004063316
Figure 0004063316

(実施例11:堆肥化施設の脱臭)
通気面積0.36m2(0.6m×0.6m)、厚さ100mmの脱臭層3に、Mg系担持セラミックスB(4(Mg))と酸性系担持セラミックスB(4(酸性))とを充填した2層の脱臭層3のそれぞれに散水ノズル6を備える第1の脱臭装置1A(図2参照。)と、通気面積1.44m2(1.2m×1.2m)、厚さ100mmの脱臭層に、Mg系担持セラミックスBと酸性系担持セラミックスBとを充填した2層の脱臭層のそれぞれに散水ノズルを備える第2の脱臭装置1A’(図2に示す脱臭装置1Aと同様の構造で大型のもの)とを直列に2台連結して用いた。散水ノズル6から各脱臭層3に間欠的に散水しながら、堆肥化施設の高速堆肥化装置から排出された、多量のアンモニアを含む空気(原ガス)を、第1の脱臭装置1AのMg系担持セラミックスB(4(Mg))、酸性系担持セラミックスB(4(Mg))、第2の脱臭装置1A’のMg系担持セラミックスB(4(Mg))、酸性系担持セラミックスB(4(酸性))の順に1800m3/hで通過させて処理し、処理前後の空気中のアンモニア濃度をガス検知管((株)ガステック製)で測定した。結果を表12に示す。
(Example 11: Deodorization of composting facility)
Mg-supported ceramics B (4 (Mg)) and acidic-supported ceramics B (4 (acidic)) were added to the deodorizing layer 3 having a ventilation area of 0.36 m 2 (0.6 m × 0.6 m) and a thickness of 100 mm. A first deodorizing apparatus 1A (see FIG. 2) having a watering nozzle 6 in each of the two deodorized layers 3 filled, a ventilation area of 1.44 m 2 (1.2 m × 1.2 m), and a thickness of 100 mm A second deodorizing device 1A ′ (similar structure to the deodorizing device 1A shown in FIG. 2) having a water spray nozzle in each of the two deodorizing layers filled with Mg-based supported ceramic B and acidic-based supported ceramic B in the deodorized layer. And two large ones in series. The air (raw gas) containing a large amount of ammonia discharged from the high-speed composting device of the composting facility while watering intermittently from the sprinkling nozzle 6 to each deodorizing layer 3 is used as the Mg system of the first deodorizing device 1A. Supported ceramic B (4 (Mg)), acidic supported ceramic B (4 (Mg)), Mg supported ceramic B (4 (Mg)) of second deodorizing apparatus 1A ′, acidic supported ceramic B (4 ( Acidity)) was passed through in the order of 1800 m 3 / h, and the ammonia concentration in the air before and after the treatment was measured with a gas detector tube (manufactured by Gastec Co., Ltd.). The results are shown in Table 12.

Figure 0004063316
Figure 0004063316

(実施例12:水産食品加工工場の酢酸臭の脱臭)
通気面積3.24m2(1.8m×1.8m)、厚さ100mmの脱臭層3に、Mg系担持セラミックスB(4(Mg))と酸性系担持セラミックスB(4(酸性))とを充填した2層の脱臭層3のそれぞれに散水ノズル6を備える脱臭装置1B(図3参照)を用いた。散水ノズル6から各脱臭層3に間欠的に散水しながら、水産食品加工工場から排出された、酢酸を含む空気(原ガス)を、Mg系担持セラミックスB(4(Mg))、酸性系担持セラミックスB(4(酸性))の順に18000m3/hで通過させて処理し、処理前後の空気中の酢酸濃度をガス検知管((株)ガステック製)で測定した。結果を表13に示す。
(Example 12: Deodorization of acetic acid odor in fishery food processing plant)
The gas permeable area 3.24m 2 (1.8m × 1.8m), with a thickness of 100mm deodorizing layer 3, Mg-based carrier ceramics B (4 (Mg)) with an acidic carrier based ceramics B and (4 (acidic)) The deodorizing apparatus 1B (refer FIG. 3) provided with the watering nozzle 6 in each of the two layers of deodorizing layers 3 with which it filled was used. Air (raw gas) containing acetic acid discharged from the fishery food processing factory while being sprinkled intermittently from the watering nozzle 6 to each deodorizing layer 3 is converted into Mg-based ceramics B (4 (Mg)) and acidic-based materials. ceramics B (4 (acidic)) sequentially passed through at 18000m 3 / h of treated, the acetic acid concentration in the air before and after the treatment was measured by a gas detecting tube (Co. Gastec). The results are shown in Table 13.

Figure 0004063316
Figure 0004063316

(実施例13:室内のホルムアルデヒド臭の脱臭)
通気面積0.09m2(0.3m×0.3m)、厚さ100mmの脱臭層3に、Mg系担持セラミックスB(4(Mg))と酸性系担持セラミックスB(4(酸性))とを充填した2層の脱臭層を備える脱臭装置(図4参照。)を用いた。容積26.8m3(W:3640mm×D:2730mm×H:2700mm)の内部ステンレス張りの実験室中に、ホルムアルデヒドの発生源として、コンクリート型枠用合板(900mm×900mm)を入れて密閉し、室内のホルムアルデヒド濃度が15ppm(高濃度)、1.5ppm(低濃度)となるように調整した。この実験室内の空気を、ダクトを通じて前記脱臭装置1Cの吸気側から供給し、各脱臭層3に給水しながら、Mg系担持セラミックスB(4(Mg))、酸性系担持セラミックスB(4(酸性))の順に通過させ、排気側からダクトを通じて再び実験室内へ戻す循環経路を設け、室内のホルムアルデヒド濃度の変化をホータブルガスモニター(サーモエレクトロン社製、「Model INNOVA」)で測定した。この結果、高濃度(15ppm)の場合は、脱臭装置の運転開始後、約1日で室内のホルムアルデヒド濃度は3ppmまで低下した。また、低濃度(1.5ppm)の場合は、約14時間後には室内のホルムアルデヒド濃度は0.6ppmまで低下した。
(Example 13: Deodorization of indoor formaldehyde odor)
On the deodorizing layer 3 having a ventilation area of 0.09 m 2 (0.3 m × 0.3 m) and a thickness of 100 mm, Mg-based supported ceramics B (4 (Mg)) and acidic-based supported ceramics B (4 (acidic)) A deodorizing apparatus (see FIG. 4) having two filled deodorizing layers was used. In a laboratory with a volume of 26.8 m 3 (W: 3640 mm x D: 2730 mm x H: 2700 mm), a concrete formwork plywood (900 mm x 900 mm) was placed and sealed as a formaldehyde source, The indoor formaldehyde concentration was adjusted to 15 ppm (high concentration) and 1.5 ppm (low concentration). The air in the laboratory is supplied from the intake side of the deodorizing apparatus 1C through a duct, and water is supplied to each deodorizing layer 3, while Mg-based ceramics B (4 (Mg)) and acidic-based ceramics B (4 (acidic) )) In order, and a circulation path was provided to return to the laboratory through the duct from the exhaust side, and the change in the formaldehyde concentration in the room was measured with a hortable gas monitor (manufactured by Thermo Electron, “Model INNOVA”). As a result, in the case of a high concentration (15 ppm), the formaldehyde concentration in the room decreased to 3 ppm in about one day after the start of the operation of the deodorizing apparatus. In the case of a low concentration (1.5 ppm), the indoor formaldehyde concentration decreased to 0.6 ppm after about 14 hours.

(実施例13:ペットショップの脱臭)
通気面積0.09m2(0.3m×0.3m)、厚さ100mmの脱臭層3に、Mg系担持セラミックスB(4(Mg))と酸性系担持セラミックスB(4(酸性))とを充填した2層の脱臭層を備える脱臭装置1C(図4参照。)を用いた。ペットショップの鳥展示部屋及び犬展示部屋の空気を、ダクトを通じて前記脱臭装置1Cの吸気側から供給し、各脱臭層3に給水しながら、Mg系担持セラミックスB(4(Mg))、酸性系担持セラミックスB(4(酸性))の順に通過させ、排気側からダクトを通じて再び各展示室内へ戻す循環経路を設け、室内の床から1mの高さの臭気強度を、室内用臭気測定器(株式会社双葉エレクトロニクス製、ハンディタイプ臭気測定装置「e−nose mobil」)で測定した。その結果、臭気強度が約1100であった鳥展示室は、脱臭装置の運転開始後、7.5時間で臭気強度が約700まで低下し、臭気強度が750〜800であった犬展示室は、脱臭装置の運転開始後、6時間で臭気強度が約600まで低下した。なお、展示室以外のペットショップ店舗内の臭気強度は約500であった。
(Example 13: Deodorization of pet shop)
Mg-supported ceramic B (4 (Mg)) and acidic-supported ceramic B (4 (acidic)) were added to the deodorizing layer 3 having a ventilation area of 0.09 m 2 (0.3 m × 0.3 m) and a thickness of 100 mm. A deodorizing apparatus 1C (see FIG. 4) having two filled deodorizing layers was used. The air in the pet shop's bird display room and dog display room is supplied from the intake side of the deodorizing device 1C through a duct, and water is supplied to each deodorizing layer 3 while supplying Mg-based ceramics B (4 (Mg)), acidic type A circulating path is provided in the order of supported ceramics B (4 (acidic)) and returned from the exhaust side to the exhibition room through the duct. The odor measuring instrument (stock) Measured with a handy type odor measuring device “e-nose mobile” manufactured by Futaba Electronics Co., Ltd.). As a result, the bird exhibition room where the odor intensity was about 1100 dropped to about 700 in 7.5 hours after the start of the operation of the deodorization apparatus, and the dog exhibition room where the odor intensity was 750 to 800 The odor intensity decreased to about 600 in 6 hours after the start of the operation of the deodorizing apparatus. The odor intensity in the pet shop store other than the exhibition room was about 500.

本発明によれば、臭気物質や有害物質を含有する空気を、セラミックス多孔体からなる脱臭層を通過させるだけで、空気中から前記臭気物質や有害物質を除去することができ、室内や大気等の環境の悪化防止や環境改善に寄与することができる。また、本発明方法は、処理対象とセラミックス多孔体との接触に際して水分を介在させることで、前記臭気物質や有害物質の除去効率を向上させることができることから、空気中の臭気物質や有害物質のみでなく、水中の有害物質などの除去効果も期待でき、水質浄化への応用も期待できる。   According to the present invention, it is possible to remove the odorous substances and harmful substances from the air simply by passing the air containing the odorous substances and harmful substances through the deodorizing layer made of the ceramic porous body. It can contribute to prevention of environmental deterioration and environmental improvement. In addition, since the method of the present invention can improve the removal efficiency of the odorous substances and harmful substances by interposing moisture at the time of contact between the object to be treated and the ceramic porous body, only the odorous substances and harmful substances in the air can be obtained. In addition, it can be expected to remove harmful substances in the water and can be applied to water purification.

Claims (22)

悪臭成分又は有害成分を含む空気を、セラミックス多孔体からなる脱臭層を強制的に通過させることで、前記悪臭成分又は有害成分を除去し、無害化された空気として排出する脱臭方法であって、
前記セラミックス多孔体が、ダクタイル鋳鉄製品の製造時に生成される非晶質のスラグと可塑性粘土に水分を加えて混合、混練した組成物を、所望の形状に成形し、乾燥した後、900〜1150℃の範囲の温度で焼成した連続貫通気孔を有するセラミックス多孔体に酸性物質又は塩基性物質を担持させたものであり、
空気中の酸性成分は、前記塩基性物質を担持させたセラミックス多孔体を通過させることにより除去し、空気中の塩基性成分は、前記酸性物質を担持させたセラミックス多孔体を通過させることにより除去することを特徴とする脱臭方法。
A deodorizing method for removing the malodorous component or harmful component by forcing the air containing the malodorous component or harmful component through the deodorizing layer made of the ceramic porous body, and discharging it as detoxified air,
The ceramic porous body is a mixture of amorphous slag and plastic clay produced during the production of the ductile cast iron product mixed with water and mixed and kneaded. After forming into a desired shape and drying, 900-1150 An acidic substance or a basic substance is supported on a ceramic porous body having continuous through-holes fired at a temperature in the range of ° C.,
The acidic component in the air is removed by passing through the ceramic porous body supporting the basic substance, and the basic component in the air is removed by passing through the ceramic porous body supporting the acidic substance. The deodorizing method characterized by performing.
前記スラグの化学成分が、SiO2を35〜45重量%、Al23を10〜15重量%、MgOを1〜5重量%、その他、MnO、CaO、S等を含み、かつ(CaO+MgO)/SiO2の重量比が0.9〜1.2であり、Al23/SiO2の比が0.25〜0.35である請求項1記載の脱臭方法。The chemical component of the slag includes 35 to 45% by weight of SiO 2 , 10 to 15% by weight of Al 2 O 3 , 1 to 5% by weight of MgO, and other components such as MnO, CaO, and S, and (CaO + MgO) / weight ratio of SiO 2 is 0.9-1.2, deodorizing method according to claim 1, wherein the ratio of Al 2 O 3 / SiO 2 is 0.25 to 0.35. 前記セラミックス多孔体が、鋳鉄製品の製造時に生成される非晶質のスラグを破砕篩別して0.25〜2.0mmの粒度範囲に調整したものを50〜80重量%と、可塑性粘土を20〜50重量%の割合で混合した混合物100重量部に対して水を12〜25重量部加えて混合、混練した組成物を、所望の形状に成形し、乾燥した後、900〜1150℃の範囲の温度で発泡、焼成したものである請求項1又は2記載の脱臭方法。  50-80% by weight of the ceramic porous body prepared by crushing the amorphous slag produced during the production of the cast iron product and adjusting to a particle size range of 0.25-2.0 mm, and plastic clay 20-20 A composition obtained by adding 12 to 25 parts by weight of water to 100 parts by weight of a mixture mixed at a ratio of 50% by weight and mixing and kneading is molded into a desired shape, dried, and then in the range of 900 to 1150 ° C. The deodorizing method according to claim 1 or 2, which is foamed and fired at a temperature. 前記セラミックス多孔体が、粒状である請求項1〜3のいずれかに記載の脱臭方法。  The deodorizing method according to claim 1, wherein the ceramic porous body is granular. 前記セラミックス多孔体が、直径2mm〜20mmの球状である請求項4記載の脱臭方法。  The deodorizing method according to claim 4, wherein the ceramic porous body is spherical with a diameter of 2 mm to 20 mm. 前記セラミックス多孔体が、前記塩基性物質として固体塩基性物質を担持させたものである請求項1〜5のいずれかに記載の脱臭方法。  The deodorizing method according to any one of claims 1 to 5, wherein the ceramic porous body carries a solid basic substance as the basic substance. 前記固体塩基性物質が活性マグネシアである請求項6記載の脱臭方法。  The deodorizing method according to claim 6, wherein the solid basic substance is active magnesia. 前記セラミックス多孔体が、該セラミックス多孔体に、酸化マグネシウムをシリカゾルとともに含浸し、乾燥したものである請求項7記載の脱臭方法。  The deodorizing method according to claim 7, wherein the ceramic porous body is obtained by impregnating the ceramic porous body with magnesium sol together with silica sol and drying. 前記シリカゾルとして、リチウムシリケート水溶液を用いてなる請求項8記載の脱臭方法。  The deodorizing method according to claim 8, wherein an aqueous lithium silicate solution is used as the silica sol. 前記セラミックス多孔体が、前記酸性物質として固体酸性物質を担持させたものである請求項1〜5のいずれかに記載の脱臭方法。  The deodorizing method according to any one of claims 1 to 5, wherein the ceramic porous body supports a solid acidic substance as the acidic substance. 前記固体酸性物質が、二次元層状構造からなる粘土鉱物の層間水を脱水させた後、酸処理したものである請求項10記載の脱臭方法。  The deodorizing method according to claim 10, wherein the solid acidic substance is obtained by dehydrating clay mineral interlayer water having a two-dimensional layered structure and then acid-treating it. 前記粘土鉱物が、その表面又は孔隙若しくは微細気孔内面に、吸着機能を有する炭素を含むことを特徴とする請求項11に記載の脱臭方法。  The deodorizing method according to claim 11, wherein the clay mineral contains carbon having an adsorption function on a surface thereof, a pore or an inner surface of a fine pore. 前記粘土鉱物が酸性白土である請求項11又は12に記載の脱臭方法。  The deodorizing method according to claim 11 or 12, wherein the clay mineral is acid clay. 前記セラミックス多孔体が、該セラミックス多孔体に、前記粘土鉱物を、無機酸とともに含浸し、乾燥したものである請求項11〜13のいずれかに記載の脱臭方法。  The deodorizing method according to any one of claims 11 to 13, wherein the ceramic porous body is obtained by impregnating the ceramic porous body with the clay mineral together with an inorganic acid and drying. 前記無機酸が、硫酸である請求項14記載の脱臭方法。  The deodorizing method according to claim 14, wherein the inorganic acid is sulfuric acid. 空気中の酸性成分を、塩基性物質を担持させたセラミック多孔体により除去する工程と、空気中の塩基性成分を、酸性物質を担持させたセラミックス多孔体により除去する工程との両方の工程を備える請求項1〜15のいずれかに記載の脱臭方法。  Both the step of removing the acidic component in the air with the ceramic porous body supporting the basic substance and the step of removing the basic component in the air with the ceramic porous body supporting the acidic substance The deodorizing method in any one of Claims 1-15 provided. 前記酸性成分を除去する工程と、前記塩基性成分を除去する工程とを連続して行う請求項16記載の脱臭方法。  The deodorizing method of Claim 16 which performs the process of removing the said acidic component, and the process of removing the said basic component continuously. 前記酸性成分を除去する工程と、前記塩基性成分を除去する工程とを繰り返し行う請求項17記載の脱臭方法。  The deodorizing method according to claim 17, wherein the step of removing the acidic component and the step of removing the basic component are repeated. 前記悪臭成分又は有害成分を含む空気を、セラミックス多孔体からなる脱臭層を通過させる際に、前記セラミックス多孔体との間に水分を介在させることを特徴とする請求項1〜18のいずれかに記載の脱臭方法。  The moisture containing the ceramic porous body is interposed between the ceramic porous body and the air containing the malodorous component or harmful component when passing through the deodorizing layer made of the ceramic porous body. Deodorizing method as described. 前記セラミックス多孔体に水分を供給して湿潤状態とし、この湿潤状態のセラミックス多孔体を、有害成分又は悪臭成分を含む空気を通過させることを特徴とする請求項19記載の脱臭方法。  The deodorizing method according to claim 19, wherein moisture is supplied to the porous ceramic body so as to be in a wet state, and air containing harmful components or malodorous components is passed through the wet ceramic porous body. 前記悪臭成分又は有害成分を含む空気を、0.5m/s〜4.0m/sの速度で脱臭層を強制的に通過させる請求項1〜20のいずれかに記載の脱臭方法。  The deodorizing method according to any one of claims 1 to 20, wherein air containing the malodorous component or harmful component is forced to pass through the deodorizing layer at a speed of 0.5 m / s to 4.0 m / s. 前記セラミックス多孔体による脱臭工程の前に、オイルミスト除去工程を行うことを特徴とする請求項1〜21のいずれかに記載の脱臭方法。  The deodorizing method according to any one of claims 1 to 21, wherein an oil mist removing step is performed before the deodorizing step with the ceramic porous body.
JP2007529283A 2005-12-28 2006-12-28 Deodorization method Active JP4063316B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005378378 2005-12-28
JP2005378378 2005-12-28
PCT/JP2006/326245 WO2007077924A1 (en) 2005-12-28 2006-12-28 Method of deodorization

Publications (2)

Publication Number Publication Date
JP4063316B2 true JP4063316B2 (en) 2008-03-19
JPWO2007077924A1 JPWO2007077924A1 (en) 2009-06-11

Family

ID=38228273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007529283A Active JP4063316B2 (en) 2005-12-28 2006-12-28 Deodorization method

Country Status (2)

Country Link
JP (1) JP4063316B2 (en)
WO (1) WO2007077924A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101734185B1 (en) 2016-12-05 2017-05-11 (주)신화엔바텍 System for removing foul smell of multiple pollutant with variable laminated absorption type, and deodorization method using the same

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2203242B1 (en) * 2007-08-29 2013-01-09 SpectraSensors, Inc. Method of making a scrubbing medium for reactive gasses
WO2014175209A1 (en) * 2013-04-25 2014-10-30 小松精練株式会社 Gas purification device and gas purifying method
JP6232679B2 (en) * 2013-08-02 2017-11-22 小松精練株式会社 Drying processing apparatus and organic waste processing method
JP6162467B2 (en) * 2013-04-25 2017-07-12 小松精練株式会社 Gas purification device and gas purification method
JP6118168B2 (en) * 2013-04-25 2017-04-19 小松精練株式会社 Waste treatment equipment
JP6417597B2 (en) * 2014-08-22 2018-11-07 小松マテーレ株式会社 Deodorizing apparatus and deodorizing method
FR3050122B1 (en) * 2016-04-14 2019-11-08 Deltalys NEW PROCESS FOR DEPOLLUTION OR DEODORIZATION OF GAS
CN110124421A (en) * 2018-02-02 2019-08-16 刘庆军 Air cleaning system and air purification method
JP6981677B2 (en) * 2019-06-06 2021-12-15 無臭元工業株式会社 Deodorizing method of asphalt mixture
CN111013526B (en) * 2019-11-18 2022-02-11 昆明理工大学 Antimony tailing based adsorption material and preparation method and application thereof
JP7430562B2 (en) 2020-04-01 2024-02-13 水澤化学工業株式会社 Adsorbent for purines

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08243383A (en) * 1995-03-10 1996-09-24 Nikki Universal Co Ltd Hydrphobic deodorant and method for regenerating same
JP2838097B2 (en) * 1995-03-27 1998-12-16 工業技術院長 A water-resistant carbon dioxide-friendly material
JP2899954B2 (en) * 1996-06-20 1999-06-02 英雄 居上 Porous crystallized glass composition
JPH1085316A (en) * 1996-09-13 1998-04-07 Green Tec:Kk Air cleaner
JP3985081B2 (en) * 1998-04-03 2007-10-03 株式会社大林組 Microbial carrier
JP3977514B2 (en) * 1998-05-26 2007-09-19 高砂熱学工業株式会社 Air purification filter, method of manufacturing the same, and advanced cleaning device
JP2000157835A (en) * 1998-11-27 2000-06-13 Shinsei Dental Laboratory:Kk Exhaust gas treatment apparatus for garbage incinerator
JP2002047075A (en) * 2000-08-02 2002-02-12 Clay Baan Gijutsu Kenkyusho:Kk Ceramics porous body and its manufacturing method
JP2003117341A (en) * 2001-10-17 2003-04-22 Ebara Corp Method for treating gas containing ammonia and device therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101734185B1 (en) 2016-12-05 2017-05-11 (주)신화엔바텍 System for removing foul smell of multiple pollutant with variable laminated absorption type, and deodorization method using the same

Also Published As

Publication number Publication date
JPWO2007077924A1 (en) 2009-06-11
WO2007077924A1 (en) 2007-07-12

Similar Documents

Publication Publication Date Title
JP4063316B2 (en) Deodorization method
US20110002870A1 (en) Composition of a material with a porous structure comprising a silicate and a carbonate, hydroxide or oxide of alkaline or alkalinoterrous elements, and corresponding preparation methods and uses
CN201564831U (en) Biochemical-physical combined type deodorization device
KR100773913B1 (en) Preparing method of filter member for heat exchanger
JP3530516B2 (en) Adsorbent for air purification and air purification device
KR102152773B1 (en) A Apparatus for air cleaning
JP2007038106A (en) Deodorization method
KR100810126B1 (en) Activated carbon body having air cleaning function and the manufacture method thereof
KR20220117105A (en) Deodorizing porous ceramic balls of female materials for deodorizing fillings made of deodorizing solutions and metal powders
KR20230081778A (en) VOCs reduction device
JPS6115732B2 (en)
KR20160063108A (en) Hybrid type biofilter system for removal of odor cases and volatile organic compounds
KR100879178B1 (en) Deodorizer and method for production thereof
JP2000107555A (en) Method for deodorization
CN114682003B (en) Waste gas treatment filter material and preparation method and application thereof
KR101455227B1 (en) Composite deodorization system in organic waste disposing apparatus
JP2003210931A (en) Method for deodorization treatment
CN1713946A (en) High capacity solid filtration media
KR101216398B1 (en) Deodorizing Catalyst Comprising Metal Oxide of Manganese Dioxide for the Refrigerator
CN103252156A (en) Biochemistry-physicochemistry combined deodorization device
CN208694707U (en) Purification particle based on graphene channel
JP2011212539A (en) Deodorizing system and method of using deodorizing system
KR100277565B1 (en) Porous ceramics for treating food waste and eliminating a bad smell
JP2006263613A (en) Deodorization catalyst, structure of the same and systemized structure of the same
KR100523756B1 (en) Deodorizer for water-treating apparatus

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071224

R150 Certificate of patent or registration of utility model

Ref document number: 4063316

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140111

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250