JPS6115732B2 - - Google Patents

Info

Publication number
JPS6115732B2
JPS6115732B2 JP55074384A JP7438480A JPS6115732B2 JP S6115732 B2 JPS6115732 B2 JP S6115732B2 JP 55074384 A JP55074384 A JP 55074384A JP 7438480 A JP7438480 A JP 7438480A JP S6115732 B2 JPS6115732 B2 JP S6115732B2
Authority
JP
Japan
Prior art keywords
purifying agent
air purifying
phosphoric acid
gas
acidic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55074384A
Other languages
Japanese (ja)
Other versions
JPS571421A (en
Inventor
Yoshiharu Kobayashi
Junji Nakamura
Fumyoshi Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemical Industrial Co Ltd
Original Assignee
Nippon Chemical Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemical Industrial Co Ltd filed Critical Nippon Chemical Industrial Co Ltd
Priority to JP7438480A priority Critical patent/JPS571421A/en
Publication of JPS571421A publication Critical patent/JPS571421A/en
Publication of JPS6115732B2 publication Critical patent/JPS6115732B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は空気浄化剤に関し、その目的とすると
ころは、アンモニア、有機アミン等の悪臭ガスに
対する脱臭作用を有すると共に、NOxなどの有
害ガスを分解除去する作用を有する空気浄化剤を
提供するところにある。 悪臭は生活環境を不快にするのみならず、人間
の健康を損なう場合が多い。従来、アンモニア、
硫酸水素、メルカプタン、アミン等の悪臭は代表
的なものとして知られ、これらの悪臭を除去する
方法が数多く提案されている。例えば可熱性臭気
を高温処理する燃焼法、白金系触媒を用いて熱処
理する接触酸化触媒法、活性炭、シリカゲル等の
吸着物質で処理する吸着法、オゾン酸化法、ある
いは薬液洗浄法等、対象悪臭と環境条件の相違に
より適合される脱臭方法が採用される。 従来、薬液洗浄法は液体でガスと反応させるの
が普通であるが、ランニングコストが高く、設備
費もかかることより希薄ガスの脱臭には適さな
い。又、薬液交換等の取り扱いも不便で廃液の処
理にも問題がある。 一般に広く吸着系脱臭剤として使用されている
活性炭はアンモニウム等の低分子量のガスに対し
ては脱臭効果が小さいとされている。又、ゼオラ
イトも同様にアンモニアガスの脱臭には有効であ
るが、やはり単独では吸着容量が小さく、しかも
吸着ガスの飽和又は環境変化によつて吸着しても
脱着する性質がある。 特に、活性炭を始め従来の脱臭剤は、アンモニ
ア、硫化水素、メルカプタンなどの複合臭につい
ては、一度に脱臭できず、多段の脱臭操作を余儀
無くされた。のみならずNOxやSOxなどの有害ガ
スをも同時に除去できるものについては殆んど開
発されていない。 現在、アンモニア、アミン等の塩基性ガスを除
去する為に市販されている代表的な脱臭剤として
固形のスルホン化炭あるいは硫酸鉄系脱臭剤があ
り、これらはアンモニア吸収能70〜100mg/g程
度であるが、脱臭剤自身が吸湿変色あるいは変質
などを起し、成型された粒の崩壊を起すものがあ
る。脱臭剤充填器内において吸湿、崩壊を起した
場合、圧損失が大きく取り扱いも困難になる為、
脱臭効率は著しく低下する。又、脱臭能力の再生
が困難なものもあり脱臭剤自身の含有成分によつ
ては使用後の廃棄に問題を生じる場合もある。 一方、脱臭成分を担持したものを固形化する場
合、脱臭能力、強度、成形性等の観点より総合的
に検討してバインダーの選択を行なわなければな
らず、好適なバインダーの選択は予想以上にむず
かしい。 本発明者らは上記の様な諸問題に鑑み主にアン
モニア、アミン等の塩基性悪臭ガスの脱臭につい
て研究していたところリン酸や酸性リン酸塩と前
記ガスとの反応に注目して無機質担体にリン酸と
リン酸塩の1種又は2種以上を添加して固形化し
た脱臭剤を開発した(特願昭54−69940号)。 他方、大気汚染物質の中でも特に問題となつて
いるNOxやSOxガスの除去方法は非常に数多くの
提案がなされているが、環境濃度の汚染ガスの除
去については経済的又は機能的に不適な場合が多
い。 従来より、NOxやSOxなどの環境濃度の大気汚
染物質を除去する方法として幾つか知られている
が、例えば、ベントナイトを使用して除去する方
法(特開昭51−129885号)があるが除去能は不充
分である。 本発明者らは、先に上記の事実に鑑み過マンガ
ン酸カリウム、ベントナイトおよびゼオライトを
有効成分とする改良された空気浄化剤の開発に成
功した(特願昭53−61046号)。しかしながら、一
般的には悪臭ガスとNOxなどの有害ガスは共存
する場合が現実の汚染空気であることを認識、本
発明者らは、更に改良すべく鋭意研究したとこ
ろ、過マンガン酸カリウムとリン酸を担持したも
のが優れた空気浄化能を有することを知見し、本
発明を完成した。すなわち、本発明は、2種以上
の成分で構成される無機質粉末担体に過マンガン
酸カリウムとリン酸または/および酸性リン酸塩
を担持成型してなることを特徴とする空気浄化剤
に関する。 本発明において、使用できる無機質担体は過マ
ンガン酸カリウムに対して実質的に不活性であ
り、また、リン酸等を含浸または固定して、いわ
ゆる担持させる為の無機質基材である。この基材
は過マンガン酸カリウムと同様リン酸等に対して
も、不活性の場合はもちろん、リン酸と反応して
酸性リン酸塩になるものであつてもよい。かかる
担体としては、例えば、天然または合成ゼオライ
ト、活性白土、珪藻土カオリン、ベントナイト、
ボールクレー、天然または合成黄土、アルミナ、
珪酸等があげられる。これらのうち、それ自体に
ガス吸着能のあるものがより適当でリン酸等との
相乗効果が期待でき、本発明において特にモルデ
ナイト系のゼオライト、ベントナイト、天然また
は合成黄土が好適である。また、これは2種以上
の混合物でもよく、その性質上、特に上記に限定
されるものでもない。 また、これらの担体は多くの場合粉体である
が、一部短繊維状の物理的改質あるいは酸処理等
の化学的改質を行つたものであつてもよい。本発
明における無機質担体は上記の如き無機質基材が
2成分以上で構成されたものであることが必要で
ある。この理由は1種類のみの基材では後述する
薬剤を担持して成型する場合、成型性に劣るもの
が多いばかりでなく、仮に成型されたとしても、
成型強度が小さく、使用に耐えないからである。 従つて、所望の成型強度と空孔容積をもつた担
体とするには、2種以上の基材とその配合を適宣
選択して調製することができるからである。この
ように、本発明にかかる空気浄化剤は、無機質担
体に過マンガン酸カリウムとリン酸等を担持させ
たものであるが、このうち、過マンガン酸カリウ
ムとリン酸を担持したものは、空気浄化能は極め
て良好であるから、効果的な成型体が調製できれ
ば優れた空気浄化剤の一つとしてあげられる。 しかし、多くの場合、成型性に問題が生じ易い
ので酸性リン酸塩単独または該塩との併用が一般
的となろう。かかる酸性リン酸塩としてはアンモ
ニア等の吸収能にすぐれ、かつ粘結性をも有した
ものがよく、例えば、Na,K,Zn,Mg,Al,
Pb,Fe,Mn等の酸性リン酸金属塩、リン酸珪素
または酸性リン酸アンモニウム等があげられ、そ
れらは1種または2種以上併用しても差支えな
い。それらの酸性リン酸塩は前記したようにリン
酸と同様に脱臭能にすぐれ、かつ結合剤的作用も
あるので担体に担持させ易く、それらのうち
Al,Fe又はZnの酸性リン酸塩は好適である。 この場合、使用する塩は、上記酸性リン酸塩は
勿論であるが、中性リン酸塩であつても担体にお
いて、酸性リン酸塩として存在すればよいからリ
ン酸との併用にあつては当初の原料は中性リン酸
塩であつてもよい。 なお、本発明において、リン酸とは、多くの場
合、一般のオルトリン酸をいうが、他にメタリン
酸、縮合リン酸、無水リン酸等であつてもよい。 過マンガン酸カリウムとリン酸等の配合割合は
特に限定はないが多くの場合、P2O5/KMnO4
重量比で0.2〜2の範囲が好ましい。この理由は
約0.2以下では、塩基性ガスに対する除去率が低
下する傾向にあり、一方、約2以上では成型性に
問題があるからである。 また、無機質担体に対する前記有効成分の担持
量についても同様、成型性に問題がなければ多い
程好ましいが、多くの場合、過マンガン酸カリウ
ムは、KMnO4/担体の重量比で0.05〜0.3の範囲
であり、またリン酸等はP2O5/担体の重量比で
0.04〜0.16の範囲が好ましい。 この理由は、いずれも上限を越えると成型性が
悪くなり、一方、下限以下の場合は空気浄化剤が
不充分となる傾向となるからである。 ところで、過マンガン酸カリウムの酸化電位は
アルカリ性で+0.564V、中性で0.588V、そして
酸性で+1.695Vとなつて酸性側では著しく該電
位が高く、酸化力が大きいので、悪臭ガスや
NOxの酸化による無臭化および無害化能力は、
過マンガン酸カリウム単独にくらべてはるかに大
きい。また、一般的に、過マンガン酸カリウムは
二酸化マンガンが共存すると自己分解する性質が
あるが、本発明者らの実験によつてリン酸が存在
するとその分解を抑制することを確認しており
(特願昭53−85682号、特願昭53−85683号)、従つ
て、過マンガン酸カリウム自体の寿命を延長させ
るのみならず、悪臭ガス等の酸化によつて生じる
二酸化マンガンも活性で、かつ酸性雰囲気ではな
お酸化電位が1.23Vあるので硫化水素やメルカプ
タン等の悪臭物質を吸収除去する能力は依然とし
て消失することなく持続し、実質的に酸化力の寿
命が著しく延長できる。 一方、リン酸等は他の鉱酸と比べて、アンモニ
ア、アミンなどの塩基性悪臭ガスの吸収能にすぐ
れ、過マンガン酸カリウムと相俟つて相乗的に空
気浄化能を向上させることができる。 本発明に係る空気浄化剤は公知の方法で適当な
造粒機を用いて造粒し調製できる。この造粒は多
くの場合、そのまま造粒できるが、所望により水
又は有機もしくは無機の結合剤を適宣使用して造
粒する。造粒後、一定の成型強度があれば、その
まま製品とするが、一般的には乾燥して成型強度
を得て製品とする。 かくして、本発明に係る空気浄化剤は、活性炭
やゼオライト等の物理吸着による場合と異なり、
大気汚染物質、悪臭物質を化学反応で無臭、無害
に変化させて吸収又は吸着する一方的反応である
から、物理吸着に比べて吸着平衡による能力低下
はなく、更に一旦吸着したガス分子を放出するよ
うな脱着もない。 活性炭では殆んど除去できない。SO2,NO,
NO2の除去はもちろんのこと、悪臭物質として例
えばアンモニア、アミン類の含窒素有機化合物
(インドール、スカトール、カダベリン等)、硫化
水素、メルカプタン類の含硫黄有機化合物、硫化
カルボニル(COS)、アルデヒド類、フエノール
類、スチレン、アクロレン、エチレン、アセチレ
ン等の不飽和有機化合物等を除去することが可能
である。 又一部細菌、ビールス等に対する殺菌、消毒効
果も期待できる。 このように、本発明に係る空気浄化剤を使用す
ると、ワンパスで大部分の塩基性、酸性悪臭ガス
が除去できるが、更に活性炭フイルターを併用後
置すれば、本発明の空気浄化剤で除去率の低い有
機酸、有機溶剤等の有機化合物を含む殆んどの大
気汚染物質、悪臭物質の除去が可能となる。 本発明にかかる成型物の使用に当つては、適当
な容器に充填して使用することができるが、例え
ば、上下に金網を設けた直方体の簡単な箱形容器
を作製して、これに空気浄化剤を充填してフイル
ターとすることができる。このフイルターを用い
て空気浄化すると被処理気体との接触時間が一般
的な方法に比べ、非常に短かくてすみ、装置の小
型化または圧力損失の低減などの利点があり、経
済的にも実用性に富んだ方法であると言える。 以下、実施例を挙げて本発明を例証する。 実施例 KMnO4の微粉末結晶、85%リン酸又は/及び
50%重リン酸アルミニウムおよび担体としてゼオ
ライト、ベントナイトの各所定量の各材料を少量
の水と共によく混練したのち押出成型機にて直径
3mmの円柱状に押出し、これを長さ約10mmにカツ
トし、乾燥して表1に示す空気浄化剤を得た。 (表1のサンプルNo.1〜No.7は本願による実施
例、No.8〜No.11は参考のための比較例である。)
The present invention relates to an air purifying agent, and an object of the present invention is to provide an air purifying agent that has a deodorizing effect on malodorous gases such as ammonia and organic amines, and also has the effect of decomposing and removing harmful gases such as NOx. be. Bad odors not only make the living environment unpleasant, but also often impair human health. Conventionally, ammonia,
Typical bad odors such as hydrogen sulfate, mercaptans, and amines are known, and many methods have been proposed to remove these bad odors. For example, combustion methods that treat heat-generating odors at high temperatures, catalytic oxidation catalyst methods that heat-treat heat using platinum-based catalysts, adsorption methods that treat heat-treated odors with adsorbent materials such as activated carbon and silica gel, ozone oxidation methods, and chemical cleaning methods, etc. Deodorization methods adapted to different environmental conditions are adopted. Conventionally, chemical cleaning methods generally involve reacting liquid with gas, but this method is not suitable for deodorizing dilute gases because of high running costs and equipment costs. In addition, handling such as chemical solution exchange is inconvenient, and there are also problems in waste liquid disposal. Activated carbon, which is generally widely used as an adsorption deodorizing agent, is said to have a small deodorizing effect on low molecular weight gases such as ammonium. Zeolite is similarly effective in deodorizing ammonia gas, but its adsorption capacity is small when used alone, and it also has the property of desorbing even if adsorbed due to saturation of the adsorbed gas or changes in the environment. In particular, conventional deodorizing agents such as activated carbon cannot remove complex odors such as ammonia, hydrogen sulfide, and mercaptan all at once, necessitating multi-stage deodorizing operations. There are almost no products developed that can remove not only harmful gases such as NOx and SOx at the same time. Currently, solid sulfonated carbon or iron sulfate-based deodorizers are typical commercially available deodorizers for removing basic gases such as ammonia and amines, and these have an ammonia absorption capacity of about 70 to 100 mg/g. However, some deodorants themselves absorb moisture and cause discoloration or deterioration, causing the molded granules to disintegrate. If the deodorizer absorbs moisture or collapses inside the deodorizer filling container, the pressure loss will be large and it will be difficult to handle.
Deodorizing efficiency is significantly reduced. Furthermore, it is difficult to restore the deodorizing ability of some deodorizers, and depending on the ingredients contained in the deodorizer itself, there may be problems with disposal after use. On the other hand, when solidifying something that supports a deodorizing component, it is necessary to select a binder by comprehensively considering the deodorizing ability, strength, moldability, etc. It's difficult. In view of the above-mentioned problems, the present inventors have been researching the deodorization of basic malodorous gases such as ammonia and amines, and have focused on the reaction of phosphoric acid or acidic phosphates with the gases. A deodorizing agent was developed in which one or more of phosphoric acid and phosphate salts were added to a carrier to solidify it (Japanese Patent Application No. 69940/1982). On the other hand, a large number of proposals have been made for removing NOx and SOx gases, which are particularly problematic among air pollutants, but there are cases where it is economically or functionally inappropriate to remove pollutant gases at environmental concentrations. There are many. Several methods have been known to remove environmentally concentrated air pollutants, such as NOx and SOx. capacity is insufficient. In view of the above facts, the present inventors have previously succeeded in developing an improved air purifying agent containing potassium permanganate, bentonite, and zeolite as active ingredients (Japanese Patent Application No. 61046/1983). However, in general, the inventors recognized that the actual contaminated air is when malodorous gases and harmful gases such as NOx coexist, and after conducting intensive research to further improve the The present invention was completed based on the discovery that acid-supported materials have excellent air purification ability. That is, the present invention relates to an air purifying agent characterized in that it is formed by supporting and molding potassium permanganate and phosphoric acid or/and acidic phosphate on an inorganic powder carrier composed of two or more types of components. In the present invention, the inorganic carrier that can be used is substantially inert to potassium permanganate, and is an inorganic base material that is impregnated with or immobilized with phosphoric acid or the like to support it. Similar to potassium permanganate, this base material may be inert to phosphoric acid or the like, or it may be one that reacts with phosphoric acid to form an acidic phosphate. Such carriers include, for example, natural or synthetic zeolites, activated clay, diatomaceous kaolin, bentonite,
ball clay, natural or synthetic ocher, alumina,
Examples include silicic acid. Among these, those having gas adsorption ability by themselves are more suitable and can be expected to have a synergistic effect with phosphoric acid, etc., and mordenite-based zeolite, bentonite, and natural or synthetic loess are particularly preferred in the present invention. Moreover, this may be a mixture of two or more types, and due to its nature, it is not particularly limited to the above. Further, although these carriers are often powders, they may be partially modified physically into short fibers or chemically modified such as acid treatment. The inorganic carrier in the present invention must be composed of two or more inorganic base materials as described above. The reason for this is that when using only one type of base material to support and mold the drug described later, not only do many of them have poor moldability, but even if they are molded,
This is because the molding strength is low and it cannot withstand use. Therefore, in order to obtain a carrier having desired molding strength and pore volume, two or more types of base materials and their combinations can be appropriately selected and prepared. As described above, the air purifying agent according to the present invention has potassium permanganate, phosphoric acid, etc. supported on an inorganic carrier. Since the purifying ability is extremely good, if an effective molded product can be prepared, it can be cited as one of the excellent air purifying agents. However, in many cases, problems tend to occur in moldability, so it is common to use acidic phosphate alone or in combination with this salt. Such acidic phosphates preferably have excellent absorption capacity for ammonia, etc., and also have caking properties, such as Na, K, Zn, Mg, Al,
Examples include acidic metal phosphates such as Pb, Fe, and Mn, silicon phosphate, and acidic ammonium phosphate, and these may be used alone or in combination of two or more. As mentioned above, these acidic phosphates have excellent deodorizing ability like phosphoric acid, and also act as binders, so they are easy to support on carriers.
Acidic phosphates of Al, Fe or Zn are preferred. In this case, the salt to be used is not only the acidic phosphate mentioned above, but also a neutral phosphate as long as it exists as an acidic phosphate in the carrier, so when used in combination with phosphoric acid, The initial raw material may be a neutral phosphate. In the present invention, phosphoric acid often refers to general orthophosphoric acid, but may also include metaphosphoric acid, condensed phosphoric acid, phosphoric anhydride, and the like. The mixing ratio of potassium permanganate, phosphoric acid, etc. is not particularly limited, but in most cases, the weight ratio of P 2 O 5 /KMnO 4 is preferably in the range of 0.2 to 2. The reason for this is that if it is less than about 0.2, the removal rate for basic gas tends to decrease, while if it is more than about 2, there is a problem with moldability. Similarly, regarding the amount of the active ingredient supported on the inorganic carrier, it is preferable to increase the amount as long as there is no problem with moldability, but in most cases, potassium permanganate is in the range of 0.05 to 0.3 in terms of KMnO 4 /carrier weight ratio. , and phosphoric acid etc. have a weight ratio of P 2 O 5 /carrier.
A range of 0.04 to 0.16 is preferred. The reason for this is that when the upper limits are exceeded, moldability deteriorates, while when the lower limits are below, the air purifying agent tends to be insufficient. By the way, the oxidation potential of potassium permanganate is +0.564V when alkaline, 0.588V when neutral, and +1.695V when acidic.The potential is extremely high on the acidic side, and the oxidizing power is large, so it can be used for foul-smelling gases and
The ability to deodorize and detoxify NOx through oxidation is
Much larger than potassium permanganate alone. Additionally, potassium permanganate generally has the property of self-decomposing when manganese dioxide coexists; however, the inventors' experiments have confirmed that the presence of phosphoric acid inhibits its decomposition ( (Japanese Patent Application No. 53-85682, Japanese Patent Application No. 53-85683) Therefore, not only the life of potassium permanganate itself can be extended, but also the manganese dioxide produced by the oxidation of foul-smelling gas etc. is active and In an acidic atmosphere, the oxidation potential is still 1.23V, so the ability to absorb and remove malodorous substances such as hydrogen sulfide and mercaptans continues without loss, and the life of the oxidizing power can be substantially extended. On the other hand, phosphoric acid and the like have superior ability to absorb basic malodorous gases such as ammonia and amines compared to other mineral acids, and can synergistically improve air purification ability in combination with potassium permanganate. The air purifying agent according to the present invention can be prepared by granulating it by a known method using a suitable granulator. In most cases, this granulation can be carried out as is, but if desired, water or an appropriate amount of organic or inorganic binder may be used for granulation. After granulation, if it has a certain molding strength, it can be made into a product as is, but generally it is dried to obtain molding strength and then made into a product. In this way, the air purifying agent according to the present invention differs from cases using physical adsorption such as activated carbon or zeolite;
Since it is a unilateral reaction that absorbs or adsorbs air pollutants and malodorous substances by chemical reaction, changing them to odorless and harmless substances, there is no decrease in capacity due to adsorption equilibrium compared to physical adsorption, and the gas molecules once adsorbed are released. There is no such thing as putting on and taking off. Activated carbon can hardly remove it. SO 2 ,NO,
Not only does it remove NO 2 , but it also removes malodorous substances such as ammonia, nitrogen-containing organic compounds such as amines (indole, skatole, cadaverine, etc.), hydrogen sulfide, sulfur-containing organic compounds such as mercaptans, carbonyl sulfide (COS), and aldehydes. It is possible to remove unsaturated organic compounds such as , phenols, styrene, acrolene, ethylene, and acetylene. It can also be expected to have sterilizing and disinfecting effects against some bacteria, viruses, etc. As described above, when using the air purifying agent according to the present invention, most of the basic and acidic malodorous gases can be removed in one pass, but if an activated carbon filter is also placed afterwards, the removal rate can be increased with the air purifying agent of the present invention. It is possible to remove most air pollutants and malodorous substances, including organic compounds such as organic acids and organic solvents with low levels of oxidation. When using the molded product of the present invention, it can be filled into a suitable container, but for example, a simple rectangular box-shaped container with wire mesh on the top and bottom is made and air is poured into it. It can be filled with a purifying agent and used as a filter. When using this filter to purify air, the contact time with the gas to be treated is much shorter than with conventional methods, which has the advantage of making the equipment more compact and reducing pressure loss, making it economically practical. It can be said that it is a sexually rich method. The invention will now be illustrated by examples. Example Finely powdered crystals of KMnO 4 , 85% phosphoric acid or/and
A predetermined amount of each material, 50% aluminum biphosphate and zeolite and bentonite as carriers, was thoroughly kneaded with a small amount of water, and then extruded into a cylinder with a diameter of 3 mm using an extrusion molding machine, which was then cut into a length of about 10 mm. The air purifying agent shown in Table 1 was obtained by drying. (Samples No. 1 to No. 7 in Table 1 are examples according to the present application, and No. 8 to No. 11 are comparative examples for reference.)

【表】 (i) 〔NH3ガスの除去例〕 上記で得られた空気浄化剤を用い、NH3ガスと
空気で濃度調整した試料NH3ガス(10ppm,
90ppm)について、SV(1/H)10000,20000
および50000に変えた場合の各浄化剤のNH3ガス
除去率は表2の結果となつた。 (SV=通過風量(m/H)/浄化剤の充填容積(m
))
[Table] (i) [Example of removing NH 3 gas] Using the air purifying agent obtained above, sample NH 3 gas ( 10 ppm,
90ppm), SV (1/H) 10000, 20000
Table 2 shows the NH 3 gas removal rate of each purifying agent when the concentration was changed to 50,000. (SV = Passing air volume (m 3 /H) / Filling volume of purifying agent (m
3 ))

【表】【table】

【表】 (ii) 〔NOxガスの除去例1〕 NH3ガスの除去法と同様に試料NOxガスについ
て除去率を調べたところ、表3の結果が得られ
た。〔NOx=NO+NO2を表わす〕
[Table] (ii) [Example 1 of NOx gas removal] The removal rate of sample NOx gas was investigated in the same manner as the NH 3 gas removal method, and the results shown in Table 3 were obtained. [Represents NOx=NO+NO 2 ]

【表】 (iii) 〔NOxガス除去例2〕 NOxガス除去例1で処理された排ガスについ
て更に活性炭を充填したフイルターを通過させて
排ガス処理を行つたところ、NOxの最初からの
除去率(%)は表4の結果となつた。
[Table] (iii) [NOx gas removal example 2] When the exhaust gas treated in NOx gas removal example 1 was further passed through a filter filled with activated carbon for exhaust gas treatment, the NOx removal rate from the beginning (% ) resulted in the results shown in Table 4.

【表】【table】

【表】 なお、試料ガスの測定において、NOxガスは
化学発光法、NH3ガスはインドフエノール法また
は北沢式ガス検知管法による。 (iv) 〔SOxガス除去例〕 表1のNo.7の試料と比較試料としてベントナイ
トおよび活性炭をそれぞれガラス管に充填し、亜
硫酸ガス(SO2)に対する除去率を測定したとこ
ろ、表5の結果になつた。
[Table] When measuring sample gases, NOx gas is measured using the chemiluminescence method, and NH 3 gas is measured using the indophenol method or the Kitazawa gas detection tube method. (iv) [Example of SOx gas removal] Bentonite and activated carbon were each filled into a glass tube as sample No. 7 in Table 1 and a comparison sample, and the removal rate for sulfur dioxide gas (SO 2 ) was measured. The results shown in Table 5 were obtained. It became.

【表】 (v) 〔硫化水素、メルカプタン、アルデヒドの除
去例〕 表1のNo.7の試料をガラス管に充填し、それぞ
れ硫化水素、メルカプタン、アルデヒドを通過さ
せたときの入口、出口のピーク高さまたは濃度よ
り除去率を求めたところ、以下表6,7,8のと
おりとなつた。
[Table] (v) [Example of removing hydrogen sulfide, mercaptan, and aldehyde] Peaks at the inlet and outlet when sample No. 7 in Table 1 is filled in a glass tube and hydrogen sulfide, mercaptan, and aldehyde are passed through, respectively. When the removal rate was determined from the height or concentration, the results were as shown in Tables 6, 7, and 8 below.

【表】【table】

【表】【table】

【表】 (vi) 〔N養老院における実施例〕 寝たきり老人6人が在室している部屋(気積35
m3)空気浄化機(5m3/分)1台を設置して、運
転停止時と運転中の部屋内部の悪臭ガス濃度を測
定した。
[Table] (vi) [Example at nursing home N] A room with 6 bedridden elderly people (volume 35
m 3 ) One air purifier (5 m 3 /min) was installed, and the concentration of foul-smelling gas inside the room was measured when the machine was stopped and when it was running.

【表】【table】

【表】 (vii) 〔S地下駐車場内料金微収所における実施
例〕 地下駐車場内の料金微収所の室内は自動車の入
出庫の際に出す排気ガスが入りこんで窒素酸化
物、炭化水素等の有害ガス濃度が上昇し、人体に
悪影響を与える。この室内(気積約60m3)に空気
浄化機(10m3/分)1台を設置して、運転停止時
と設置4ケ月後の運転中の部屋内の悪臭ガス濃度
を測定した。
[Table] (vii) [Example at the toll collector in the S underground parking lot] The exhaust gas emitted when cars enter and leave the garage enters the interior of the toll collector in the underground parking lot, producing nitrogen oxides, hydrocarbons, etc. The concentration of harmful gases will increase, which will have a negative impact on the human body. One air purifier (10 m 3 /min) was installed in this room (volume approximately 60 m 3 ), and the concentration of malodorous gases in the room was measured when the operation was stopped and when the room was in operation 4 months after installation.

【表】【table】

【表】 (viii) 〔T社動物飼育室における実施例〕 ラツト約750匹を収容する飼育室(気積約160
m3)に空気浄化機(4m3/分)2台設帯置して、
運転停止時と運転開始後30分後の部屋内の悪臭ガ
ス濃度を測定した。
[Table] (viii) [Example in the animal breeding room of Company T] A breeding room that accommodates approximately 750 rats (volume: approximately 160
m 3 ) with two air purifiers (4 m 3 /min) installed.
The concentration of malodorous gas in the room was measured when the operation stopped and 30 minutes after the start of operation.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 2種以上の成分から構成される無機質担体に
過マンガン酸カリウムとリン酸または/および酸
性リン酸塩を担持成型していることを特徴とする
空気浄化剤。 2 無機質担体が天然又は合成ゼオライト類、ベ
ントナイト、ボールクレー、カオリン、活性白土
又は珪酸カルシウムなどの珪酸カルシウムなどの
珪酸塩系化合物、合成黄土、アルミナなどから選
らばれた少なくとも2種以上の担体であることを
特徴とする特許請求の範囲第1項記載の空気浄化
剤。 3 過マンガン酸カリウムとリン酸または/およ
び酸性リン酸塩との重量比(P2O5/KMnO4)が
0.2乃至2の範囲であることを特徴とする特許請
求の範囲第1項記載の空気浄化剤。 4 酸性リン酸塩がアルミニウム、鉄又は亜鉛の
酸性リン酸意塩であることを特徴とする特許請求
の範囲第1項記載の空気浄化剤。
[Scope of Claims] 1. An air purifying agent characterized in that potassium permanganate and phosphoric acid or/and acidic phosphate are supported and molded on an inorganic carrier composed of two or more components. 2. The inorganic carrier is at least two types of carriers selected from natural or synthetic zeolites, bentonite, ball clay, kaolin, activated clay or silicate compounds such as calcium silicate, synthetic loess, alumina, etc. The air purifying agent according to claim 1, characterized in that: 3 The weight ratio of potassium permanganate to phosphoric acid or/and acidic phosphate (P 2 O 5 /KMnO 4 ) is
The air purifying agent according to claim 1, wherein the air purifying agent is in the range of 0.2 to 2. 4. The air purifying agent according to claim 1, wherein the acidic phosphate is an acidic phosphoric acid salt of aluminum, iron, or zinc.
JP7438480A 1980-06-04 1980-06-04 Air cleaning agent Granted JPS571421A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7438480A JPS571421A (en) 1980-06-04 1980-06-04 Air cleaning agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7438480A JPS571421A (en) 1980-06-04 1980-06-04 Air cleaning agent

Publications (2)

Publication Number Publication Date
JPS571421A JPS571421A (en) 1982-01-06
JPS6115732B2 true JPS6115732B2 (en) 1986-04-25

Family

ID=13545612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7438480A Granted JPS571421A (en) 1980-06-04 1980-06-04 Air cleaning agent

Country Status (1)

Country Link
JP (1) JPS571421A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60108048A (en) * 1983-11-17 1985-06-13 日本化学工業株式会社 Air purifying agent
US6004522A (en) * 1993-12-15 1999-12-21 Purafil, Inc. Solid filtration media incorporating elevated levels of permanganate and water
US5942323A (en) * 1995-01-27 1999-08-24 Purafil, Inc. Fiber filter and methods of use thereof
WO1996023726A1 (en) * 1995-02-02 1996-08-08 Fred Klatte Chemically impregnated zeolite and method for its production and use
KR100452148B1 (en) * 2001-04-10 2004-10-12 (주) 솔리브 Elemination of Tabacco Injurious Gas by Adsorbent
JPWO2013031415A1 (en) * 2011-08-29 2015-03-23 ニチアス株式会社 Nitrogen dioxide adsorbent, nitrogen dioxide adsorbing apparatus, and method for removing nitrogen dioxide
JP6417597B2 (en) * 2014-08-22 2018-11-07 小松マテーレ株式会社 Deodorizing apparatus and deodorizing method

Also Published As

Publication number Publication date
JPS571421A (en) 1982-01-06

Similar Documents

Publication Publication Date Title
JPH03296434A (en) Composite adsorbent and its manufacture
KR880002540B1 (en) The preparation method of air-filtering material
US6004522A (en) Solid filtration media incorporating elevated levels of permanganate and water
US5462693A (en) Air purifying agent and a process for producing same
JPS6115732B2 (en)
KR100214444B1 (en) Complex molecular sieve granules for deodorizer and their preparations
JP3722866B2 (en) Hydrophobic deodorizing material and method for regenerating the same
AU2003293118B2 (en) High capacity solid filtration media
CN109926033B (en) Modified small pore molecular sieve adsorbent and its preparation method and use
JP2019516554A (en) Catalyst mixture for exhaust gas treatment
ZA200504233B (en) High capacity solid filtration media.
WO1996022827A1 (en) Deodorant material, process for producing the same, and method of deodorization
EP0638320B1 (en) Air cleaning agent and production thereof
JP3131480B2 (en) Air purifier and method for producing the same
JPH0584283A (en) Deodorant
JPH1099418A (en) Deodorizing filter
JP4138289B2 (en) Method for removing malodorous substances generated from composting equipment
JPH01130729A (en) Adsorbent for cleaning air
JPH05293162A (en) Air cleaner and its production
JPH07178152A (en) Aliphatic aldehyde adsorbent
JPS60108048A (en) Air purifying agent
JP3576303B2 (en) Deodorizer and deodorizing material
JP3576302B2 (en) Deodorizer and deodorizing material
JPH0631128A (en) Deodorizing method
KR100413243B1 (en) A deodorant based on aluminum phosphate and activated bentonite