JP2010003617A - 試料台,試料回転ホルダ,試料台作製方法,及び試料分析方法 - Google Patents

試料台,試料回転ホルダ,試料台作製方法,及び試料分析方法 Download PDF

Info

Publication number
JP2010003617A
JP2010003617A JP2008163141A JP2008163141A JP2010003617A JP 2010003617 A JP2010003617 A JP 2010003617A JP 2008163141 A JP2008163141 A JP 2008163141A JP 2008163141 A JP2008163141 A JP 2008163141A JP 2010003617 A JP2010003617 A JP 2010003617A
Authority
JP
Japan
Prior art keywords
sample
sample stage
charged particle
stage
particle beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008163141A
Other languages
English (en)
Other versions
JP5048596B2 (ja
Inventor
Norie Yaguchi
紀恵 矢口
Takeo Ueno
武夫 上野
Kohei Nagakubo
康平 長久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, Hitachi High Tech Corp filed Critical Hitachi High Technologies Corp
Priority to JP2008163141A priority Critical patent/JP5048596B2/ja
Publication of JP2010003617A publication Critical patent/JP2010003617A/ja
Application granted granted Critical
Publication of JP5048596B2 publication Critical patent/JP5048596B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】トモグラフィー法にあって、試料を試料台の回転軸上に容易に搭載でき、全回転角において、観察・分析を正確に行うことができるようにする。
【解決手段】電子顕微鏡にも共用される、試料台が備えられている試料回転ホールダにあって、試料台の軸心上の試料搭載側先端に球体部を設け、粉体試料を効率よく回転軸中央に装着し、試料回転ホールダ及び試料台それぞれの各回転角で、三次元再構成時の取得画像の位置合わせが正確に行え、三次元再構成像を高精度で得ることができるようにした。
【選択図】図1

Description

本発明は、透過電子顕微鏡又は走査透過電子顕微鏡を用い、微小試料の回転投影像シリーズから三次元構造を再構成するトモグラフィー法に適用される試料台,試料回転ホルダ,試料台作製方法,及び試料分析方法に関する。
TEM(transmission electron microscope:透過電子顕微鏡)やSTEM(scanning transmission electron microscope:走査透過電子顕微鏡)を用いて、本来、微小試料が有する三次元の構造を観察するニーズが高まってきている。
微小試料の三次元構造の観察方法では、観察対象のマイクロサンプリングした試料は試料台に搭載され、電子顕微鏡によりその観察が行われる。
電子顕微鏡用の試料台は、試料の種類や観察目的等に合わせて種々のものがある。例えば、観察対象が生物切片や粒子状試料である場合に多く使用され、厚さが数100μmの金属製円盤で内部がメッシュ状になった試料台や、観察対象が各種材料系である場合に使用され、薄膜試料を接着剤等で固定した厚さが数100μmの金属製リング状試料台がある。これ以外にも、特開2004−199969号公報,特開2007−18944号公報に記載の、試料回転ホルダ用ニードル型試料台等がある。
試料が搭載された試料台は、電子顕微鏡用試料ホルダに装着されて、電子顕微鏡の試料室に挿入される。この試料室内では、試料台を数度(1〜5°)ステップで最大傾斜角度範囲を試料傾斜(回動)させながら、各試料傾斜位置(各回動位置)毎に、試料台をその回転軸を中心に回転して、回転位置に応じた試料の透過像を記録していく。なお、この透過像の記録時には、試料台の回転時における試料の位置ずれを抑えるため、試料を試料台の回転軸中心に搭載しておく必要がある。
その後、試料台の試料傾斜位置(試料台の回動位置)並びに試料台の回転位置に応じて記録した試料の各画像データについて、画像データ間の位置ずれを補正し、各画像データを画像相互間で座標合わせをした共通座標に基づく画像データに変換する。なお、このデータ変換における画像データの位置合わせの精度は、試料の三次元構造の再構成の精度に直接関連し、画素単位の精度が要求される。
そして、この画像相互間で座標合わせをした試料の回転位置に対応した投影像を基に、試料の三次元構造の再構成を行い、構築した試料の三次元構造を表示する。
この三次元構造の再構成は、例えば特開平3−110126号公報に記載されているように、投影切断面定理を用いて各2次元断面を再構成し、それらを積み重ねて三次元構造を構築することによって行われる。
ところで、このような試料の三次元構造の観察方法では、その画像相互間の位置合わせの方法として、マーカ法と位置相関法との2つの方法が知られている(社団法人日本顕微鏡学会発行 「顕微鏡」 Vol.39, No.1(2004)p.11-14 参照)。
マーカ法を用いる場合は、一般的に試料作製時に試料に直径10nmから15nmの金微粒子を付着(蒸着)させてから観察を行い、その後、金微粒子の位置から各回転像の位置合わせを行うようになっている(社団法人日本顕微鏡学会発行 「顕微鏡」Vol.39,No.1(2004), p.15-17 参照)。
これに対し、試料自体にマーカを付すことなく、試料を観察する場合、画像データの位置合わせの精度向上のためには、試料台の回転軸中心に試料を搭載する必要がある。しかしながら、実際には、試料台の回転軸中心に正確に試料を搭載することは困難である。
試料が粒子状である場合は、粒子状の試料を、試料台上に直接降り掛けたり、アルコール等に分散させてからその液滴を試料台上に滴下したりするため、試料台上における試料位置を制御することは困難である。
さらに、試料に付すマーカとは異なるマーカとして、特開2007−18944号公報に記載のように、柱状試料台上の面部に、目印となる回転角目盛りを設けたものがある。
特開2004−199969号公報 特開2007−18944号公報 特開平3−110126号公報 「顕微鏡」 Vol.39, No.1(2004)p.11-14 「顕微鏡」Vol.39,No.1(2004), p.15-17
しかしながら、上述した従来技術においては、次のような問題点がある。
まず、金微粒子を使ったマーカ法の場合、試料に付着した金微粒子が試料本来の構造観察の邪魔になるばかりか、またX線分析時には試料由来ではない金の特性X線が検出され易い。そのため、X線分析時には、金(Au)の特性X線のエネルギー(Mα:9.7eV)に近い特性X線のエネルギーを有する試料中の元素(例えば、白金の特性X線エネルギーはMα:9.4eV)の判別がし難くなる。これは、一般的に特性X線を測定するエネルギー分散型X線分析(EDX:Energy dispersive X-ray analysis)装置のエネルギー分解能が130eV〜150eV程度であることに起因する。
また、メッシュ状又はリング状試料台を用い、試料台を大きく傾斜させた状態で試料を観察する場合は、その試料や薄膜試料が試料傾斜軸を中心に試料台ごと傾斜された状態になっており、電子線は試料傾斜軸に垂直な所定方向から入射するため、その状態で試料台を回転させると、試料台が影になったり、試料の厚みが見かけ上、厚くなり、試料台のメッシュやリングの形状も変化してしまうため、マーカとなる部位を見失ってしまう等の問題がある。
また、特開2004−199969号公報、特開2007−18944号公報に記載の試料回転ホルダ用ニードル型試料台の場合、例えば特開2007−18944号公報の図3には、試料台の試料が搭載される先端部を先端が鋭角に形成した針状の試料台が示されている。しかしながら、試料台を大きく傾斜させた状態で試料を観察する場合は、前述した従来技術の場合と同様に、試料台の先端部が影になったり、試料台の傾斜状態でその先端部の見かけ上の形状も変化してしまうので、依然としてマーカとなる部位を見失ってしまう等の問題がある。
本発明は、上述した従来の問題点を鑑みなされたものであって、試料を試料台の回転軸上に容易に搭載でき、全回転角において、観察・分析を正確に行うことができるとともに、集束イオンビームで試料を追加工する際にも試料を汚すおそれのない試料台,試料回転ホルダ,試料台作製方法,及び試料分析方法を提供すること目的とする。
本発明は、試料を回転させながら収集した2次元画像を基に試料の3次元再構成像を得る際に、取得画像の位置合わせが容易な試料台,試料回転ホルダ,試料台作製方法,及び試料分析方法を提供すること目的とする。
上記した目的を達成するために、本発明は、試料を搭載するための試料台の、試料の回転軸と同軸の先端に、球体部又は半球体部を設けたことを特徴とする。
本発明は、電子顕微鏡等といった荷電粒子線装置の試料回転ホルダに備えられた試料台にあって、試料台の回転軸線方向の試料搭載側の端面が球体部又は半球体部による球面形状にし、粉体試料である場合でも、試料を効率よく試料台の回転軸の軸心上に搭載でき、試料回転ホルダを回動させたり試料台を回転させたりしても、試料に照射される電子線を極力遮ることがないようにして、様々な方向から試料の電子顕微鏡像(投影像)を取得でき、その位置合わせを正確に行うことができるようにしたことを特徴とする。
本発明は、電子顕微鏡等といった荷電粒子線装置の試料回転ホルダに備えられた、試料が搭載される試料台の先端を、マイクロサンプリング法により球体部又は半球体部にすることにより、試料を試料台の球体部又は半球体部の球面上に搭載すれば、実質的に試料台の回転軸に試料を搭載した場合と同様にして、三次元再構成の際の各像の位置合わせを容易かつ正確に行えるようにしたことを特徴とする。
本発明は、試料台の先端を球体部又は半球体部にすることによって、この球体部又は半球体部に試料を搭載しさえすれば、試料はこの球体部又は半球体部の軸線上(回転軸上)に搭載されていることになり、この球体部又は半球体部を三次元再構成の際の各像の中心位置合わせに用いることよって、三次元再構成の際の各像の位置合わせを容易かつ正確にし、三次元再構成の忠実度を向上させたことを特徴とする。
また、本発明では、この試料台の先端に設けた球体部又は半球体部の材質には、試料と異なる任意の材質、又は集束イオンビームを用いた追加工時にもスパッタされにくい材質が選択されていることを特徴とする。
また、本発明の試料台の作製は、FIB装置(focused ion beam system:集束イオンビーム装置)又はFIB−SEM(scanning electron microscope:走査電子顕微鏡)等に設けられた、球体部又は半球体部を取り扱うことが可能なマニュピレータによって行われることを特徴とする。
また、本発明では、試料の三次元構造の再構成時における、試料の回転位置に対応した複数の二次元の投影像の位置合わせは、投影像に含まれる試料台の球体部又は半球体部の形状自体が、マーカとして用いられることを特徴とする。
本発明によれば、試料台の回転中心に試料を容易に搭載可能で、試料の形状によらず、取得画像の位置合わせを任意の試料台の回転角に対し正確に行うことができ、さらに画像や分析結果に影響を与えない、忠実度の高い、三次元再構成像を得ることが可能になる。
以下、図面を参照して本発明について説明する。
<試料台>
図1は、本発明の一実施の形態としての試料台の要部の構成図である。
試料台1は、断面円形の試料台本体10を有し、試料台本体10の軸線方向一端側の試料搭載側は、外径側に対して内径側が試料台本体10の軸方向に突出した環状テーパ面部11と、この環状テーパ面部11の内方の軸側端面部12とを有する形状になっている。そして、軸側端面部12には、球体部13がその中心を試料台本体10の軸線上に位置させて、試料台本体10に対して同軸に装着されている。これにより、球体部13の一部表面部(露出球面部)14は、環状テーパ面部11の内周側よりもさらに試料台本体10の軸線方向に突出するようになっている。
図1(a),(c)は、環状テーパ面部11の内径よりも小径の直径を有する球体部13を、試料台本体10の軸側端面部12に装着した実施例を示したものである。この場合、球体部13の露出球面部14は、試料台本体10の軸線と垂直な方向(試料台本体10の径方向)に、環状テーパ面部11の内径側からテーパ面に突出しないようになっている。
これに対し、図1(b),(d)は、環状テーパ面部11の内径以上の大きさの直径を有する球体部13を、試料台本体10の軸側端面部12に装着した実施例を示したものである。この場合、球体部13の露出球面部14は、試料台本体10の軸線と垂直な方向(試料台本体10の径方向)に、環状テーパ面部11の内径側からテーパ面に対して突出できるようになる。
また、試料台本体10の軸側端面部12に球体部13装着する際の位置決めのために、図1(a),(b)に示した実施例では、試料台本体10の軸側端面部12には、球体部13の一部表面部が当接係合して球体部13の一部が軸側端面部12に埋設されるように、曲率半径が球体部13の半径と略等しい球面凹部15が、試料台本体10の軸線と同軸に形成されている。この球面凹部15の軸方向深さ(球体部13の軸側端面部12への埋設深さ)は、球体部13の球面における露出球面部14の度合いに応じて適宜形成され、この球面凹部15の軸方向深さが球体部13の半径に比して小さい程、球体部13の球面における露出球面部14の面積の度合いは大きくなる。そして、環状テーパ面部11の内径よりも球体部13の直径が大きい上で、この球面凹部15の軸方向深さが球体部13の半径に比して小さくなる程、露出球面部14の環状テーパ面部11のテーパ面側に向く部分が拡大する。
これに対し、図1(c),(d)に示した実施例では、上述した球面凹部15に代え、球体部13の一部が軸側端面部12に埋没されるように、球体部13の露出球面部14と非露出球面部との境界部における球体部断面の直径と略同径の円形開口部16を有する孔17が、試料台本体10の軸線に沿って、軸側端面部12から内方に向かって延設されている。なお、孔17の形状は、その孔径が軸方向位置にかかわらず一定の円筒形状であってもよいし、その孔径が、図1(c),(d)に図示されているように環状テーパ面部11のテーパ面に沿って拡径する等、軸線方向位置に応じて変化している孔形状であってもよい。さらに、その孔17は、有底孔であっても、貫通孔であってもよい。そして、この図1(c),(d)に示した実施例の場合は、円形開口部16の直径寸法が球体部13の半径に比して小さい程、球体部13の球面における露出球面部14の面積の度合いは大きくなる。
球体部13や、この球体部13の球面における露出球面部14の大きさは、試料の大きさ又は形状等に合わせて、予め適宜設定されている。
図2は、図1に示した本発明の一実施の形態としての試料台の要部の変形例の構成図である。
図2(a)は、図1(a),(b)に示した実施例が、球体部13の半球部分表面よりも少ない球面部が球面凹部15に埋没される構成であったのに対して、それよりも球面凹部15の軸方向深さを深くして、球体部13の球面における露出球面部14の度合いを小さくした実施例を示したものである。
図2(b)は、図1(c),(d)に示した実施例が、球体部13の半球部分表面よりも少ない球面部が球体部13の直径よりも小さな直径の円形開口部16を有する孔17に埋設される構成であったのに対して、球体部13の直径と孔17の円形開口部16の直径とを略等しくして、球体部13の球面における露出球面部14の度合いを小さくした実施例を示したものである。
図3は、本発明の別の実施の形態の試料台の要部の構成図である。
図1及び図2に示した試料台1が、試料台本体10の軸線方向一端側の試料搭載側に、環状テーパ面部11と、軸側端面部12とを形成し、その軸方向端面部12に、別途作製された球体部13を装着した構成であったのに対し、図3に示した試料台1は、試料台本体10の軸線方向一端側の試料搭載側を機械加工又はレーザー加工等によって直接加工し、軸方向端面部12自体を球体部13に形成したものである。
図3(a)に示した試料台1は、球体部13としての球体状の軸方向端面部12の露出球面部14と環状テーパ面部11のテーパ面とが、その境界部分で一体的に連続する稜線形状になっている。そのために、露出球面部14の試料台本体10の軸線に垂直な最大断面部分の直径は、環状テーパ面部11の内径と同径になっている。
これに対し、図3(b)に示した試料台1は、球体部13としての球体状の軸方向端面部12の露出球面部14と環状テーパ面部11のテーパ面との境界部分が縊れ形状になっており、露出球面部14には環状テーパ面部11のテーパ面側に向く部分14aが含まれている。
そのために、露出球面部14の試料台本体10の軸線に垂直な最大断面部分の直径は、環状テーパ面部11の内径よりも大きく、環状テーパ面部11の内径は、この最大断面部分よりも断面積が小さい、露出球面部14の断面直径と同径になっている。
また、図1〜図3に示した試料台1において、環状テーパ面部11及び球体部13が形成された試料台本体10の少なくとも軸線方向一端側の材質は、試料のエネルギー分散型X線分析時に、電子線照射された試料台1から発生するX線(システムピーク)が試料の分析結果に影響を及ぼさない材質によって形成され、試料の高精度の組成分析が可能になっている。そのため、環状テーパ面部11及び球体部13が形成された試料台本体10の少なくとも軸線方向一端側の材質は、予め試料から想定される構成元素や確認したい構成元素に合わせて、適宜選択されるようになっている。
また、図1〜図3に示した試料台1において、環状テーパ面部11及び球体部13が形成された試料台本体10の少なくとも軸線方向一端側の材質は、各種イオンビームの照射によるスパッタレートの小さい材質であり、試料台1への試料固定後のイオンビームによる追加工時における、試料台1から試料へのスパッタ物の再付着のない材質が選択されるようになっている。
<試料回転ホルダ>
図4は、本発明の一実施の形態としての試料回転ホルダの先端部の構成図である。
図4(a)は、試料回転ホルダの先端部の断面図を、図4(b)は、図4(a)中に記載したb−b矢視方向に試料回転ホルダの先端部を眺めた外観図を示したものである。
試料回転ホルダ3は、FIB(集束イオンビーム装置)と、電子顕微鏡(SEM,TEM,STEM)との間で共用可能になっており、いずれの装置の場合にも、試料室内に挿入可能なように構成されている。
試料回転ホルダ3は、その先端側のホルダ軸31が、自身の軸線周りに360°回転可能に構成なっており、ホルダ軸31の内部には、ホルダ軸31の回転軸線と同軸に、ホルダ軸31に対して独立して回転自在な試料回転軸32が、ホルダ軸31の基端側から先端側に向けて延設されている。試料回転軸32は、ホルダ軸31の任意の回転位置で、ホルダ軸31とは独立して回転できるように、ホルダ軸31の内部に保持されている。
ホルダ軸31の先端側部分には、試料台1が収容保持される試料台収容室33が形成されており、ホルダ軸31には、試料回転ホルダ3がFIB装置に装着された際に入射するイオンビーム6を遮ることがないように、又、マイクロプローブの先端を試料台収容室33内に挿入できるように、開放部34が形成されている。 図示の例では、この開放部34によって、ホルダ軸31の軸線と交差するように、試料台収容室33は、その試料台搭載面35に対して平行方向及び鉛直方向が開放されている。
その上で、試料台収容室33には、有底円筒形状の試料台挿入部36が、試料台搭載面35に対して回転可能に、その回転軸としての中心軸線をホルダ軸31の回転軸線と直交させるようにして設けられている。この試料台挿入部36の有底円筒部内には、試料台本体10の試料搭載側とは反対側の、試料台本体10の他端側の円柱形状部分が挿入されて、試料台1は、試料回転ホルダ3に保持される構成になっている。
一方、ホルダ軸31の基端側から先端側に向けて延設され試料回転軸32の先端側は、試料台収容室33内に臨んで試料台挿入部36と係合して、試料回転軸32自身の回転を試料回転ホルダ3に伝達する構成になっている。そのために、試料回転軸32の先端側には、自身の回転を、互いの回転軸線を直交させるように設けられている試料台挿入部36の伝達するための傘歯車37が設けられ、試料台挿入部36の開口側端面にも、この傘歯車37と歯合し、試料台挿入部36を回転させる傘歯車38が設けられている。
これにより、ホルダ軸31が回転することにより、このホルダ軸31の試料台収容室33に設けられた試料台挿入部36、及びこの試料台挿入部36に挿入配置された試料台1は、ホルダ軸31の回転軸線を中心に360°回動するようになっている。また、このホルダ軸31内の試料回転軸32が回転することにより、このホルダ軸31の試料台収容室33に設けられた試料台挿入部36、及びこの試料台挿入部36に挿入配置された試料台1は、試料台搭載面35上で、試料台本体10の軸線を中心にして360°回転する構成になっている。
試料回転ホルダ3は、図示しない電子顕微鏡鏡筒の側部から、挿入可能なように構成され、イオンビ−ム(FIB)6によって加工された試料の任意の箇所について、透過電子線8を用いた観察が可能となる。
<FIB加工装置>
図5は、本発明の球体部を装備した試料台の作製に用いるFIB加工装置の構成図である。
FIB加工装置(集束イオンビーム装置)5の鏡体50は、イオン銃51,コンデンサーレンズ52,絞り53,走査電極54,対物レンズ55が備えられて構成されている。
FIB加工装置5の試料室56には、試料9を取り付けた試料回転ホルダ3,その上方に二次電子検出器57,試料9への保護膜の形成及び試料台10への試料9の固定等のために用いられるデポジション銃58,FIB加工により作製した試料の運搬のためのマイクロプローブ59が取り付けられている。
二次電子検出器57には走査像表示装置60が接続されている。走査像表示装置60は走査電極制御部61を介して走査電極54に接続されている。また、マイクロプローブ59にはマイクロプローブ59の位置制御を行うためのマイクロプローブ制御装置62が接続されている。また、試料回転ホルダ3は、ホルダ制御部63に接続されている。
イオン銃51から放出されたイオンビーム6は、コンデンサーレンズ52と絞り53により収束され、対物レンズ55を通過し、試料9上に照射される。対物レンズ55上方の走査電極54は、走査電極制御部61の指示により、試料9に入射するイオンビーム6を偏向し走査させる。イオンビーム6が試料9に照射されると、試料9からは二次電子が発生する。発生した二次電子は、二次電子検出器57により検出され走査像表示装置60に試料像として表示される。
デポジション銃58より試料9等の加工対象方向に放出されたガスは、イオンビーム6の照射により分解され、ガスを構成していた金属が試料9等の面上のイオンビーム6照射領域に堆積する。この堆積膜は、球体部13又は試料9へプローブ59の固定、及びFIB加工前の試料9の表面の保護膜の形成、並びに試料9の試料台球体部13への固定等に用いられる。
加工位置の設定は、試料回転ホルダ3に接続されたホルダ制御部63により、試料回転ホルダ3の位置を移動するか、又はイオンビーム6の走査領域を制御することにより変えることができる。また、試料回転ホルダ3に接続されたホルダ制御部63により試料回転ホルダ3を回転させ、イオンビーム6の光軸上で光軸に対する照射面の角度を変えることが可能で、様々な角度から試料を加工することが可能である。
<試料台作製方法>
上述のFIB加工装置5を用い、図1(a),(b)に示した試料台1の作製する場合を例に、試料台1の作製方法について説明する。
図6は、本発明の一実施の形態の試料台作製方法の説明図である。
FIB加工装置5の試料室56に、球体部13をテープ64で固定したFIB用平面試料ホルダ65をセットする。この球体部13の材質は、試料9と異なる任意の材質、又は集束イオンビームを用いた追加工時にもスパッタされにくい材質が選択されている。
次に、マイクロプローブ(マニュピレータ)59を、FIB用平面試料ホルダ65に載置された球体部13の側面部に接触させてデポジション銃58から放出させ、FIB誘起デポジション(ガスアシストデポジション)によるデポジション膜66で固定する(図6(a))。固定後、マイクロプローブ59を移動させて球体部13をFIB用平面試料ホルダ65から吊り上げ、マイクロプローブ59ごと一旦退避させておく。
試料台1を試料回転ホルダ3に取り付け、FIB加工装置5の試料室56に挿入する(図6(b))。そして、試料台1の軸側端面部12の平坦面をイオンビーム(FIB)6で加工し、球体部13の露出球面部14と非露出球面部との境界部における球体部断面の直径と略同径の大きさ開口を有する、曲率半径が球体部13の半径と略等しい球面凹部15を加工する(図6(c))。
次に、先にマイクロプローブ59ごと退避させていた球体部13を、マイクロプローブ59を移動させて試料台1の球面凹部15に嵌め込み(図6(d))、イオンビーム6によってマイクロプローブ59とデポジション膜66とを切り離す(図6(e))。
本実施の形態の試料台作製方法では、このようにして、試料台本体10の軸線方向一端側の試料搭載側の軸側端面部12に球体部13を設け、試料搭載側の軸線方向端面が露出球面部14となった試料台1が作製される。
なお、球体部13の試料台1の球面凹部15に対しての装着固定方法は、上記した嵌め込みに限ることなく、他の装着固定方法を用いてもよく、例えば、球体部13の試料台1の球面凹部15に載置した後、試料台1の球体部13の露出球面部14と非露出球面部との境界部をガスアシストデポジションによって装着固定するようにしてもよい。
その後の試料台1への試料9の搭載は、例えば、試料9が粒子状試料の場合、球体部13上部から、試料9を振りかけることにより、試料9を試料台1に搭載する(図6(f))。
また、試料9がFIB加工試料の場合は、別途マイクロプローブ59で試料9を吊り上げ、球体部13の球体面の略中心に試料9を設置し、デポジション銃58からガスを放出し、試料9と球体部13の球体面との接触部にイオンビーム6を走査して照射し、この接触部にデポジション膜を作製することにより試料9を試料台1に固定する。
そして、試料の三次元構造の観察では、このようにして試料台1に搭載又は固定した試料9を装填した試料回転ホルダ3ごと、電子顕微鏡7の鏡体試料室76に挿入し、試料9を複数方向から観察する。
なお、このような試料台1の作製方法は、マイクロプローブを備え、ガスアシストデポジション機能を備えた電子顕微鏡を用いても可能である。
<電子顕微鏡>
図7は、電子顕微鏡の一実施例である透過電子顕微鏡の構成図である。
透過電子顕微鏡7の鏡体70は、電子銃71、コンデンサーレンズ72、対物レンズ73、投射レンズ74が備えられて構成されている。コンデンサーレンズ72と対物レンズ73との間には、走査コイル75が配置されている。
鏡体試料室76には、試料回転ホルダ3が挿入される。試料回転ホルダ3は、試料ホルダ制御部77に接続されており、試料回転ホルダ3に搭載された試料9の回転はこの試料ホルダ制御部77から制御される。
試料9上方、走査コイル75の下には、二次電子検出器78が組み込まれている。 二次電子検出器78は、信号増幅器79を介して走査像表示用ディスプレイ80に接続されている。走査コイル75には、走査電源81が接続されており、走査電源81には、走査像表示用ディスプレイ80及び電子顕微鏡用CPU82が接続されている。
投射レンズ74の下方には、暗視野STEM像観察用の円環状検出器83が配置されている。円環状検出器83は、信号増幅器84を介して走査像表示用ディスプレイ80に接続されている。また、円環状検出器83の下方には光軸(電子線軸)からの出し入れが可能な明視野STEM像観察用検出器85が備えられており、信号増幅器86を介し走査像表示用ディスプレイ80に接続されている。
明視野STEM像観察用検出器85の下方には、回折像観察用TVカメラ87が配置されている。回折像観察用TVカメラ87は、TV制御部88を介してTVモニタ89に接続されている。回折像観察用TV制御部88は電子顕微鏡用電子線装置用CPU82に接続されている。
試料9上方にはEDX検出器90が備えられており、EDX制御部91を介してEDXスペクトル及びマップ表示部92に表示される。
電子線8は、コンデンサーレンズ72及び対物レンズ73により、試料9の試料面上でスポット状に収束され、走査コイル75によって試料9の試料面上を走査する。走査コイル75には、鋸歯状波電流が流される。
電子線8の電子線束の試料9面上での走査幅は、この電流の大きさによって変化させる。同期した鋸歯状波信号は、走査像表示用ディスプレイ80の偏向コイルにも送られ、走査像表示用ディスプレイ80の走査表示電子線は、それぞれの画面を一杯に走査する。
二次電子検出器78は、電子線8の照射によって、試料9から放出される二次電子を検出して、信号増幅器79がその信号を増幅し、その信号で、走査像表示用ディスプレイ80の輝度変調が行われる。
明視野STEM像観察用検出器85では、試料9から角度が半角約50mrad以内で散乱を受けた透過電子を検出して、信号増幅器86がその信号を増幅し、その信号で、走査像表示用ディスプレイ80の輝度変調が行われる。
円環状検出器83についても同様であり、電子線8の照射によって、試料9から散乱角度が半角約80〜500mradの範囲で散乱した電子(弾性散乱電子)を検出し、信号増幅器84がその信号を増幅し、その信号で、走査像表示用ディスプレイ80の輝度変調が行われる。
この場合、像は、試料9の平均原子番号を反映したコントラストをもつ。これらにより試料9の形状や結晶構造観察を行う。
また、電子線8が試料9に照射した際に発生する特性X線は、EDX検出器90にて検出し、EDX制御部91により各エネルギー値に対応するシグナル強度を表示するよう表示部92に信号を送る。
試料9は、試料回転ホルダ3に接続された試料ホルダ制御部77により、試料回転ホルダ3及び試料台1を回転させることにより、電子線光軸上で角度を変えることが可能で、様々な角度から二次電子像,走査透過像,透過電子像を観察することが可能である。
<TEMトモグラフィー取得手順>
このようにして、透過電子顕微鏡7によって観察された試料の回転投影像シリーズから三次元構造を再構成するTEMトモグラフィー取得手順について説明する。
図8は本発明の一実施の形態によるTEMトモグラフィー取得手順の説明図である。
(1) まず、試料回転ホルダ3の試料台1の球体部13上に試料9を搭載し、この試料回転ホルダ3を透過電子顕微鏡7の試料室76に装填する(ステップS1)。
(2) 次に、試料9に係る回転シリーズ像の取得を行う。
試料9に係る回転シリーズ像の取得は、試料回転ホルダ3及び試料回転ホルダ3の試料台1を独立に回転変位させながら、様々な角度から二次電子像,走査透過像,透過電子像を取得することによって行う。
具体的には、試料ホルダ制御部77により、予め定められた方向から試料9の一部若しくは全部の所望の投影像を取得できるように、試料回転ホルダ3をその軸線を中心にして回転変位させ、試料台1,球体部13,及び球体部13に搭載された試料9を試料ホルダ3の軸線を中心にして回動変位させた状態で、試料回転ホルダ3の試料台挿入部36が例えば1回転するように試料回転軸32を所定量ずつ回転するように制御し、この際における試料台1の所定量(1〜5°)毎の回転位置に対応させて、様々な角度からの試料9の二次電子像,走査透過像,透過電子像といった投影像を取得することにより行われる。
この一定角度ステップ(1〜5°) で試料9を回転変位させながら、二次電子検出器78,円環状検出器83,明視野STEM像観察用検出器85,EDX検出器90等からの各種信号を取り込み、これら検出器からの出力に基づく試料9の観察画像を記録する(ステップS2)。
(3) 次に取得した各画像の位置合わせを、各投影像中の球体部13を目印とし行い、共通座標に変換する(ステップS3)。
この際、各投影像中において、試料回転ホルダ3及び試料台1がどのように回転して試料9の観察方向が各投影像間で変化していても、試料台1の球体部13は各投影像間で変わりない球体又は球面で表れているので、各画像の位置合わせを容易に行うことができ、共通座標への変換も迅速かつ正確に行うことができる。
(4) この共通座標に変換された、試料9を様々な方向から観察した投影像シリーズから、試料9の三次元構造を電子顕微鏡用CPU82とは別のコンピュータを用いて再構成する(ステップS4)。
(5) 再構成された試料9の三次元像はこの別のコンピュータによって所定のディスプレイ装置に表示される(ステップS5)。
以上のとおり、本発明では、試料の三次元構造の再構成時における、試料の回転位置に対応した複数の二次元の投影像の位置合わせは、投影像に含まれる試料台の球体部又は半球体部の形状自体がマーカとして用いられることによって、試料台の回転中心(試料台の軸心)からずれて試料が試料台に搭載されても、試料台の露出球面部上であれば、試料の形状によらず、取得画像の位置合わせを任意の試料台の回転角に対し正確に行い得、さらに画像や分析結果に影響を与えない忠実度の高い、三次元再構成像を得ることが可能となる。
この結果、試料が例えば粉体試料である場合でも、実質的な試料台の回転軸中心に容易に試料を装着可能であって、忠実性の高い三次元再構成像を得ることができる。
本発明の一実施の形態としての試料台の要部の構成図である。 図1に示した本発明の一実施の形態としての試料台の変形例の要部の構成図である。 本発明の別の実施の形態の試料台の要部の構成図である。 本発明の一実施の形態としての試料回転ホルダの先端部の構成図である。 本発明の球体部を装備した試料台の作製に用いるFIB加工装置の構成図である。 本発明の一実施の形態の試料台作製方法の説明図である。 電子顕微鏡の一実施例である透過電子顕微鏡の構成図である。 本発明の一実施の形態によるTEMトモグラフィー取得手順の説明図である。
符号の説明
1 試料台、 3 試料回転ホルダ、 5 FIB加工装置(集束イオンビーム装置)
6 イオンビーム(FIB)、 7 電子顕微鏡、 8 電子線、 9 試料、
10 試料台本体、 11 環状テーパ面部、 12 軸側端面部、 13 球体部、
14 露出球面部、 15 球面凹部、 16 開口部、 17 孔、
31 ホルダ軸、 32 試料回転軸、 33 試料台収容室、 34 開放部、
35 試料台搭載面、 36 試料台挿入部、 37,38 傘歯車、
50 鏡体、 51 イオン銃、 52 コンデンサーレンズ、 53 絞り、
54 走査電極、 55 対物レンズ、 56 試料室、 57 二次電子検出器、
58 デポジション銃、 59 マイクロプローブ、 60 走査像表示装置、
61 走査電極制御部、 62 マイクロプローブ制御装置、 63 ホルダ制御部、
64 テープ、 65 FIB用平面試料ホルダ、 66 デポジション膜、
70 鏡体、 71 電子銃、 72 コンデンサーレンズ、 73 対物レンズ、
74 投射レンズ、 75 走査コイル、 76 試料室、
77 試料ホルダ制御部、 78 二次電子検出器、 79 信号増幅器、
80 走査像表示用ディスプレイ、 81 走査電源、 82 電子顕微鏡用CPU、
83 円環状検出器、 84 信号増幅器、 85 明視野STEM像観察用検出器、
86 信号増幅器、 87 回折像観察用TVカメラ、 88 TV制御部、
89 TVモニタ、 90 EDX検出器、 91 EDX制御部、
92 EDXスペクトル及びマップ表示部

Claims (13)

  1. 荷電粒子線が照射される箇所で、荷電粒子線の照射対象である試料を荷電粒子線の光軸方向に対して可変に保持する試料回転ホルダに回転可能に備えられ、試料が搭載される試料台であって、
    前記試料台の回転軸線方向の試料搭載側の端面が、前記試料台の回転軸線上に中心を有する球体部又は半球体部によって形成されている
    ことを特徴とする試料台。
  2. 請求項1記載の試料台において、
    前記試料台の回転軸線方向の試料搭載側の材質は、エネルギー分散型X線分析時に、電子線照射された前記試料台の試料搭載側から発生するX線(システムピーク)が試料の分析結果に影響を及ぼさない材質によって形成されている
    ことを特徴とする試料台。
  3. 請求項1記載の試料台において、
    前記試料台の回転軸線方向の試料搭載側の材質は、各種イオンビームによるスパッタレートの小さい材質であり、試料台への試料固定後のイオンビームによる追加工時に、前記試料台から試料へのスパッタ物の再付着を抑制した材質によって形成されている
    ことを特徴とする試料台。
  4. 請求項1記載の試料台において、
    前記試料台の回転軸線方向の試料搭載側の球体部又は半球体部の大きさは、荷電粒子線の対象の試料の大きさ又は形状に合わせて設定されている
    ことを特徴とする試料台。
  5. 荷電粒子線が照射される箇所で、荷電粒子線の照射対象である試料を荷電粒子線の光軸方向に対して可変に保持する試料回転ホルダに回転可能に備えられ、試料が搭載される試料台であって、
    前記試料台の回転軸線方向の試料搭載側の端面が、前記試料台の回転軸線上に中心を有する所定の曲率半径を有する球体面によって形成されている
    ことを特徴とする試料台。
  6. 請求項5記載の試料台において、
    前記試料台の回転軸線方向の試料搭載側の材質は、エネルギー分散型X線分析時に、電子線照射された前記試料台の試料搭載側から発生するX線(システムピーク)が試料の分析結果に影響を及ぼさない材質によって形成されている
    ことを特徴とする試料台。
  7. 請求項5記載の試料台において、
    前記試料台の回転軸線方向の試料搭載側の材質は、各種イオンビームによるスパッタレートの小さい材質であり、試料台への試料固定後のイオンビームによる追加工時に、前記試料台から試料へのスパッタ物の再付着を抑制した材質によって形成されている
    ことを特徴とする試料台。
  8. 請求項5記載の試料台において、
    前記試料台の回転軸線方向の試料搭載側の球体面の大きさは、荷電粒子線の対象の試料の大きさ又は形状に合わせて設定されている
    ことを特徴とする試料台。
  9. 荷電粒子線が照射される箇所で、荷電粒子線の照射対象である試料を荷電粒子線の光軸方向に対して可変に保持する試料回転ホルダであって、
    球体部又は半球体部によって形成された試料搭載側の端面を有する試料台が、当該試料台自身の回転軸線を当該試料回転ホルダの軸線の延設方向と交差させるようにして、回転可能に設けられている
    ことを特徴とする試料回転ホルダ。
  10. 荷電粒子線が照射される箇所で、荷電粒子線の照射対象である試料を荷電粒子線の光軸方向に対して可変に保持する試料回転ホルダであって、
    球体面からなる試料搭載側の端面を有する試料台が、当該試料台自身の回転軸線を当該試料回転ホルダの軸線の延設方向と交差させるようにして、回転可能に設けられている
    ことを特徴とする試料回転ホルダ。
  11. 荷電粒子線が照射される箇所で、荷電粒子線の照射対象である試料を荷電粒子線の光軸方向に対して可変に保持する試料回転ホルダに回転可能に備えられ、試料が搭載される試料台の作製方法であって、
    回転軸線方向の試料搭載側の端面が自身の回転軸線上に中心を有する球体部又は半球体部によって形成されている前記試料台の作製を、マニュピレータを備えた荷電粒子線装置による集束イオンビームのガスアシストデポジション機能を用い、試料台の回転軸線方向の試料搭載側の端面に当該球体部又は半球体部を形成する
    ことを特徴とする試料台の作製方法。
  12. 荷電粒子線が照射される箇所で、荷電粒子線の照射対象である試料を荷電粒子線の光軸方向に対して可変に保持する試料回転ホルダに回転可能に備えられ、試料が搭載される試料台の作製方法であって、
    回転軸線方向の試料搭載側の端面が自身の回転軸線上に中心を有する所定の曲率半径を有する球体面によって形成されている前記試料台の作製を、当該回転軸線方向の試料搭載側の端面を機械加工又はレーザー加工を用い、試料台の回転軸線方向の試料搭載側の端面に当該球体面を形成する
    ことを特徴とする試料台の作製方法。
  13. 試料を回転することにより得られる試料の回転位置に応じた複数の二次元の投影像からなる回転投影像シリーズから三次元構造を再構成するトモグラフィー法に用いた試料分析方法であって、
    前記試料の回転位置に応じた複数の二次元の投影像の取得を、回転軸線方向の試料搭載側の端面が自身の回転軸線上に中心を有する所定の曲率半径を有する球体面によって形成されている試料台に搭載して行い、各投影像を共通座標に変換する際に、当該試料台の球体面を位置補正のマーカとして用いる
    ことを特徴とする試料分析方法。
JP2008163141A 2008-06-23 2008-06-23 試料台,試料回転ホルダ,試料台作製方法,及び試料分析方法 Active JP5048596B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008163141A JP5048596B2 (ja) 2008-06-23 2008-06-23 試料台,試料回転ホルダ,試料台作製方法,及び試料分析方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008163141A JP5048596B2 (ja) 2008-06-23 2008-06-23 試料台,試料回転ホルダ,試料台作製方法,及び試料分析方法

Publications (2)

Publication Number Publication Date
JP2010003617A true JP2010003617A (ja) 2010-01-07
JP5048596B2 JP5048596B2 (ja) 2012-10-17

Family

ID=41585165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008163141A Active JP5048596B2 (ja) 2008-06-23 2008-06-23 試料台,試料回転ホルダ,試料台作製方法,及び試料分析方法

Country Status (1)

Country Link
JP (1) JP5048596B2 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011158257A (ja) * 2010-01-29 2011-08-18 Hitachi High-Technologies Corp 像分解能評価用試料,荷電粒子線装置、および試料作成方法
JP2012002552A (ja) * 2010-06-15 2012-01-05 National Institute Of Advanced Industrial & Technology 電子顕微鏡用試料作製方法
JP2012209050A (ja) * 2011-03-29 2012-10-25 Jeol Ltd 電子顕微鏡および3次元像構築方法
WO2013108711A1 (ja) * 2012-01-20 2013-07-25 株式会社日立ハイテクノロジーズ 荷電粒子線顕微鏡、荷電粒子線顕微鏡用試料ホルダ及び荷電粒子線顕微方法
WO2014195998A1 (ja) * 2013-06-03 2014-12-11 株式会社日立製作所 荷電粒子線顕微鏡、荷電粒子線顕微鏡用試料ホルダ及び荷電粒子線顕微方法
JP2016062658A (ja) * 2014-09-14 2016-04-25 サンユー電子株式会社 電子顕微鏡画像の立体画像構築システムおよびその立体画像構築方法
JP2016103387A (ja) * 2014-11-28 2016-06-02 株式会社日立ハイテクノロジーズ 荷電粒子線装置
CN105973918A (zh) * 2016-07-08 2016-09-28 丹东华日理学电气股份有限公司 工业ct用3d球检测平台
CN109709116A (zh) * 2018-11-23 2019-05-03 中国石油天然气股份有限公司 一种步进旋转样品台、微观颗粒三维表面成像方法及系统
CN111257359A (zh) * 2018-11-30 2020-06-09 浙江大学 样品对准转轴轴线的调整方法
CN113188720A (zh) * 2021-03-19 2021-07-30 南京环科试验设备有限公司 一种淋雨试验箱用样品旋转台及其使用方法
WO2022028633A1 (en) * 2020-08-07 2022-02-10 Tescan Brno Method of operation of a charged particle beam device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10111223A (ja) * 1996-10-04 1998-04-28 Hitachi Ltd 3次元構造観察用試料作製装置、電子顕微鏡及びその方法
JP2004109097A (ja) * 2002-09-20 2004-04-08 Toshiba Corp 物理解析用研磨冶具及び物理解析方法
JP2005221426A (ja) * 2004-02-06 2005-08-18 Sii Nanotechnology Inc 微細試料支持回転ホルダとそのホルダを採用したナノバイオ対応ctシステム
JP2006172958A (ja) * 2004-12-17 2006-06-29 Hitachi High-Technologies Corp 集束イオンビーム加工装置及びそれに用いる試料台
JP2007018944A (ja) * 2005-07-11 2007-01-25 Hitachi High-Technologies Corp 荷電粒子装置用試料台

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10111223A (ja) * 1996-10-04 1998-04-28 Hitachi Ltd 3次元構造観察用試料作製装置、電子顕微鏡及びその方法
JP2004109097A (ja) * 2002-09-20 2004-04-08 Toshiba Corp 物理解析用研磨冶具及び物理解析方法
JP2005221426A (ja) * 2004-02-06 2005-08-18 Sii Nanotechnology Inc 微細試料支持回転ホルダとそのホルダを採用したナノバイオ対応ctシステム
JP2006172958A (ja) * 2004-12-17 2006-06-29 Hitachi High-Technologies Corp 集束イオンビーム加工装置及びそれに用いる試料台
JP2007018944A (ja) * 2005-07-11 2007-01-25 Hitachi High-Technologies Corp 荷電粒子装置用試料台

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011158257A (ja) * 2010-01-29 2011-08-18 Hitachi High-Technologies Corp 像分解能評価用試料,荷電粒子線装置、および試料作成方法
JP2012002552A (ja) * 2010-06-15 2012-01-05 National Institute Of Advanced Industrial & Technology 電子顕微鏡用試料作製方法
JP2012209050A (ja) * 2011-03-29 2012-10-25 Jeol Ltd 電子顕微鏡および3次元像構築方法
WO2013108711A1 (ja) * 2012-01-20 2013-07-25 株式会社日立ハイテクノロジーズ 荷電粒子線顕微鏡、荷電粒子線顕微鏡用試料ホルダ及び荷電粒子線顕微方法
JP2013149507A (ja) * 2012-01-20 2013-08-01 Hitachi High-Technologies Corp 荷電粒子線顕微鏡、荷電粒子線顕微鏡用試料ホルダ及び荷電粒子線顕微方法
CN104067369A (zh) * 2012-01-20 2014-09-24 株式会社日立高新技术 带电粒子束显微镜、带电粒子束显微镜用样品支座以及带电粒子束显微方法
US8963102B2 (en) 2012-01-20 2015-02-24 Hitachi High-Technologies Corporation Charged particle beam microscope, sample holder for charged particle beam microscope, and charged particle beam microscopy
WO2014195998A1 (ja) * 2013-06-03 2014-12-11 株式会社日立製作所 荷電粒子線顕微鏡、荷電粒子線顕微鏡用試料ホルダ及び荷電粒子線顕微方法
JP2016062658A (ja) * 2014-09-14 2016-04-25 サンユー電子株式会社 電子顕微鏡画像の立体画像構築システムおよびその立体画像構築方法
JP2016103387A (ja) * 2014-11-28 2016-06-02 株式会社日立ハイテクノロジーズ 荷電粒子線装置
CN105973918A (zh) * 2016-07-08 2016-09-28 丹东华日理学电气股份有限公司 工业ct用3d球检测平台
CN109709116A (zh) * 2018-11-23 2019-05-03 中国石油天然气股份有限公司 一种步进旋转样品台、微观颗粒三维表面成像方法及系统
CN109709116B (zh) * 2018-11-23 2021-11-02 中国石油天然气股份有限公司 一种步进旋转样品台、微观颗粒三维表面成像方法及系统
CN111257359A (zh) * 2018-11-30 2020-06-09 浙江大学 样品对准转轴轴线的调整方法
CN111257359B (zh) * 2018-11-30 2021-03-02 浙江大学 样品对准转轴轴线的调整方法
WO2022028633A1 (en) * 2020-08-07 2022-02-10 Tescan Brno Method of operation of a charged particle beam device
CN113188720A (zh) * 2021-03-19 2021-07-30 南京环科试验设备有限公司 一种淋雨试验箱用样品旋转台及其使用方法
CN113188720B (zh) * 2021-03-19 2024-04-23 南京环科试验设备有限公司 一种淋雨试验箱用样品旋转台及其使用方法

Also Published As

Publication number Publication date
JP5048596B2 (ja) 2012-10-17

Similar Documents

Publication Publication Date Title
JP5048596B2 (ja) 試料台,試料回転ホルダ,試料台作製方法,及び試料分析方法
US7863564B2 (en) Electric charged particle beam microscope and microscopy
US8963102B2 (en) Charged particle beam microscope, sample holder for charged particle beam microscope, and charged particle beam microscopy
JP2008270056A (ja) 走査型透過電子顕微鏡
EP2402976A1 (en) Method of electron diffraction tomography
JP4654216B2 (ja) 荷電粒子線装置用試料ホールダ
JP2009152120A (ja) 電子線トモグラフィ法及び電子線トモグラフィ装置
US7622714B2 (en) Standard specimen for a charged particle beam apparatus, specimen preparation method thereof, and charged particle beam apparatus
US9514913B2 (en) TEM sample mounting geometry
JP3677895B2 (ja) 3次元構造観察用試料作製装置、電子顕微鏡及びその方法
US20190323977A1 (en) Apparatus for combined stem and eds tomography
WO2014195998A1 (ja) 荷電粒子線顕微鏡、荷電粒子線顕微鏡用試料ホルダ及び荷電粒子線顕微方法
JP2004087214A (ja) 荷電粒子線装置用試料ホールダ
JP4433092B2 (ja) 三次元構造観察方法
JP2011222426A (ja) 複合荷電粒子ビーム装置
JP4988175B2 (ja) 荷電粒子装置用試料台
US20230298855A1 (en) Method and apparatus for micromachining a sample using a focused ion beam
TWI813760B (zh) 試料加工觀察方法
JP4393352B2 (ja) 電子顕微鏡
JP5939627B2 (ja) 電子顕微鏡用試料、電子顕微鏡画像形成方法及び電子顕微鏡装置
US11837434B2 (en) Setting position of a particle beam device component
US20230260744A1 (en) Method for producing a sample on an object, computer program product, and material processing device for carrying out the method
US9947506B2 (en) Sample holder and focused ion beam apparatus
JP2009070604A (ja) 3次元構造観察用の試料支持台及び分度器、並びに3次元構造観察方法
JP2006040768A (ja) 電子顕微鏡

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120502

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120626

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120719

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5048596

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350